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APPLICATION OF BOUNDARY INTEGRAL METHOD TO ELASTIC

ANALYSIS OF V-NOTCHED BEAMS

by Walter Rzasnlcki, Alexander Mendelson, and Lynn U. Albers

Lewis Research Center

SUMMARY

A semidirect boundary integral method, using Airy's stress function and its deriva-
tives in Green's boundary integral formula, is used to obtain an accurate numerical
solution for elastic stress and strain fields in V-notched beams in pure bending. The
proper choice of nodal spacing on the boundary is shown to be necessary to achieve an
accurate stress field in the vicinity of the tip of the notch. Excellent agreement is ob-
tained with the results of the collocation method of solution.

INTRODUCTION

Knowledge of the stress distribution in the neighborhood of a singularity, such as
the tip of a V-notch in a beam loaded in tension or bending, is of fundamental importance
in evaluating the resistance to fracture of structural materials. Elastic solutions to
various geometries have been obtained by a number of different methods. Among the
more effective ones, are the complex variable method (ref. 1), collocation method
(ref. 2), and finite element method (ref. 3). However, the first two of these methods
are not general enough nor readily adaptable to three-dimensional or elastoplastic prob-
lems. And the finite element method requires solutions of large sets of equations and
fails to give sufficiently fine resolution in the vicinity of crack tips.

The recently developed boundary integral methods (ref. 4) offer an attractive alter-
native to other methods of analysis. These methods have a number of advantages which
may be listed as follows:

(1) They obviate the need for conformal mapping.
(2) Mixed boundary value problems are handled with ease.
(3) Stresses and displacements are obtained directly without need for numerical dif-

ferentiation.



(4) No special considerations are needed for multiply connected regions.
(5) The internal stresses and/or displacements are calculated only where and when

needed.
(6) The extension to three-dimensional problems is direct.
(7) Nodal points are needed only on the boundary instead of throughout the interior

as required by finite element methods.
The last point, which is probably the most important one, is illustrated in figure 1.

For the finite element method, the whole region must be covered by a grid producing a
large number of nodal points and corresponding unknowns. Thus a large number of
simultaneous equations must be solved. For the boundary integral methods, nodal
points are taken only on the boundary, resulting in a much smaller number of unknowns.

The object of this report is to present a solution to the elastic problem of a V-
notched beam in pure bending using one of the boundary integral methods described in
reference 4. A necessary part of this solution is the strategy by which the nodal spac-
ing on the boundary is chosen to achieve stable and accurate solutions. It is intended to
use the spacing which gives good elastic results in the extension of the method to the
more interesting and complicated elastoplastic problem, which will be discussed in a
subsequent report.

a

a

SYMBOLS

notch depth

dimensionless notch depth, a/w

coefficients in boundary equations

coefficients in stress equations

boundary contour

Young's modulus of elasticity

value of Rice's contour integral

stress intensity factor at notch tip for mode I crack opening

half length of beam



n order of stress singularity in vicinity of tip of notch

n,¥ unit vectors normal and tangent to contour C

P(x, y) point on contour C or in region R

q(C,T]) point on contour C

q dimensionless load, CT
max/

CTQ

R planar region bounded by closed contour C

r,, distance between two points having coordinates (x, y^ and (£ ,TJ) .

r,9 polar coordinate directions

s length measured along contour C

Tj stress vector active along boundary

u. displacement vector

u displacement in y-direction

u(x, y), v(x, y) arbitrary continuous functions

W(e) strain energy density

w width of beam

x, y, z rectangular Cartesian coordinate directions

x, y dimensionless rectangular Cartesian coordinate directions, x/w, y/w

a notch angle, deg

Sj. Kronecker delta

e-.: strain tensor

r arbitrary contour surrounding crack tip

M Poisson's ratio

£ , 77 rectangular Cartesian coordinate directions
2

p function of r, p - r In r

Oj. stress tensor

CT „_ maximum nominal bending stressmax
or , cr , vz, a components of stress tensor in Cartesian coordinates

tensile yield stress

function of Airy str

Airy stress function

2
function of Airy stress function, $ = V <p



V2 Laplace's operator, 32/3x2 + 32/3y2

V4 biharmonic operator, 34/3x4 + 2 34/3x23y2 + 34/3y4

Subscripts :

i , j ,k integers

Superscripts:

~ dimensionless quantity
1 derivative in outward normal direction, 9/3n

ANALYSIS

The Integral Equation Method

The problem of determining the state of stress in a plane elastostatic problem can
be reduced to solving a homogeneous biharmonic equation

(1)

subject to appropriate boundary conditions, where (p(x, y) is the Airy stress function
and the components of the stress tensor, in Cartesian coordinates, are

For the problem under consideration (fig. 2) the stress function <p (x, y) and its
outward normal derivative 3<p/3n must satisfy the following boundary conditions
(ref. 5):



along boundary OA and OA':

3n

along boundary AB and A'B':

3n

along boundary BC and B'C':

^(X,y) = -!<nax4! + ax2
 + a2x + ^

w \3 3)

along boundary CD and C'D:

*!
2

3n

*-}2 3n

(3)

The method of solution utilizes Gre.en's second theorem to reduce the homogeneous
biharmonic equation (1) to two coupled, Fredholm type, integral equations, which must
satisfy the specified boundary conditions.

Green's second theorem states

(uV2v - W2u) dx dy = , ™ L - v— ds
3n an/

(4)

where the arbitrary functions u(x, y) and v(x, y) and their derivatives of first and sec-
ond order are continuous in the simply connected region R, bounded by a sectionally
smooth curve C. The notation employed is depicted in figure 3.

If we let

> (5)

then it follows, that

I IJ J
dx dy = [\<P — (V2

V) - l£ V2v + V2<p -^ - v -L
Jc L an an an an

ds

(6)
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Let us introduce the function $(x,y) such that

$ = V2(p (7)
i

Substituting equation (7) into equation (1) yields

V2$(x,y) = 0 (8)

Let r(x, y; |,TJ) be the distance between any two points P(x, y) and q(C,7]) in the
region R, as shown in figure 3, such that P c R + C and q c C.

Substituting relations (5), (7), and (8) into Green's second theorem, equation (4),
o

choosing first, v = In r (the fundamental solution of V v = 0) and taking into account the
singularity at r = 0 (ref. 5) results in

2;r<l>(x, y) = / [$ A (m r) - -?* In r] ds for P c R (9)
L L 3n 3n J

and

TT$(X, y) = / [$ — (In r) - i* In r] ds for P c C
Jr~, L 9n 3n J

Combining equation (6) with equations (1) and (7) and choosing this time v = p =
o

r In r, and taking into account the singularity at r = 0, we obtain (ref. 6)

(10)

/ \<
Jr* L

<P A (v2p) - l£ V2p + $-^-Mplds for PC R (11)
3n 3n 3n 3n

and

4ir?(x,y) = / \<p A (V2p) - !£ V2p + $ i£ - 1* pi ds for P c C (12)
jU L 3n 3n 3n 3n J

Equation (11) would give us directly a solution to the biharmonic equation (1) pro-
vided the functions (p(x,y), dcp(x, y)/3n, V^<p(x, y), and 3[V (p(x, y)]/3n were known
on the,boundary C.

However, only the stress function (p and its outward normal derivative



are specified on the boundary. The values of V (p = $ and 3(V <p)/dn = 3<l>/3n on
the boundary must be compatible with these boundary conditions. To assure this com-
patibility, we have to solve the system of coupled integral equations (10) and (12), which
contain the unknown functions <£ and 3<l>/3n.

Once the values of $ and 3$/3n on the boundary C of the region R are known we
can proceed with the calculation of the stress field in the region R utilizing equations (11)
and (2).

Numerical Procedures

Solution of the integral equations. - Since it is generally impossible to solve the
system of coupled integral equations analytically, a numerical method is utilized in
which the integral equations (10) and (12) are replaced by a system of simultaneous al-
gebraic equations.

For simplicity of notation, let us denote the normal derivatives by prime super-
scripts.

Let us assume that the function <5 and its normal derivative <3>' are piece-wise
constant on the boundary C. We can divide the boundary into n intervals, not neces-
sarily equal, numbered consecutively in the direction of increasing s. The center of
each interval is designated as a node and assigned the constant values of 4^ and $!.
The arrangements of boundary subdivisions is shown in figure 4.

Using these assumptions, equations (10) and (12) can be replaced by a system of
2n simultaneous algebraic equations with 2n unknowns, that is, 3>. and $.'

" Vi
(13)

n

where i = 1, 2, 3 . . . n. The coefficients appearing in the boundary equations (13) are
defined by the following relations:



:;;)' ds

= - A l n r y

ds

ds

V2p.. ds

(14)

where integration is taken over the j interval, and r^ is the distance from i node
to any point in the j interval. The normal derivatives in equation (14) are taken on
the jth interval.

The coefficients given by equations (14) can be evaluated by Simpson's rule for
i it j, and analytically for i = j. For the boundary intervals which can be represented
by straight lines an analytical solution is possible for all the coefficients.

Equations (13) expressed in matrix form become

h - v]
nx n

y
nx n

nx n

n x

4

nx 1

[•j]
nx 1

•J

> = -
nx n

nx n

[o]
nx n

nx n

•*

'M
nx 1

M
nx 1

_j

0

(15)

Thus, the problem is reduced to the solution of the following matrix system:

[B] {X} = {R} (16)



where [B] is a 2n x 2n matrix and (x) and {R} are 2n x 1 column matrices.
To calculate stresses for any point in the region R from the stress function (11),

we need not perform any numerical differentiation of the stress function. Once $ and
<£' are known on the boundary we can differentiate under the integral sign in this equa-
tion and then obtain stresses by the same type of numerical integration as in equa-
tions (13). Applying equations (2) to equation (11) and using notations of equations (14)
yields the stress equations

n

n

n•z VI

(17)

where i refers to any point in the stress field, and the coefficients A-, B^, C-, D^,
E.-, F.-, G.., H.., Ij., and Kj. are obtained by appropriate differentiation under the
integral sign of the coefficients given by equations (14), and are listed in the appendix.

The stress function <p is not constant on the loaded boundaries BC and B'C'.
The assumption that it is piece-wise constant may lead to appreciable errors in the
numerical results. To overcome this difficulty, the summations given in equations (13)
and (17) for intervals lying on the loaded boundaries and involving the stress function are
replaced by direct integration.

Boundary interval size. - The number of nodal points prescribed for the boundary
is theoretically unlimited. However, computer storage capacity for the computer used
and the difficulties associated with inversion of large matrices limited the order of the
coefficient matrix [B] of equation (16) used herein to 140.

Because of geometric and loading symmetry about the x axis it is possible to re-
duce the number of unknowns. For 2n total number of nodal points the number of
equations and unknowns, $. and $?, is reduced from 4n to 2n. Additional reduction
in the number of unknowns is accomplished by taking into consideration the St. Venant's
effect at the loaded boundaries. By definition



Since, near the loaded boundaries BC and B'C1, a can be assumed to be essen-
j

tially zero if L > 1.2 (ref. 2), then it follows that

=

(18)

= 0

Thus on the boundaries BC and B'C', $.= and <£! are known.
The arrangement of boundary subdivisions and nodal points is shown in figure 5.

Note that the corner points are always designated as interval points, never as nodal
points, thus eliminating discontinuous functions from the numerical analysis.

Since the vicinity of the crack tip is of greatest interest, a fine nodal spacing along
the notch was chosen. To reduce the error introduced by the change in the interval size
(ref. 7) around boundary points A and A' and at the same time to obtain fine resolu-
tion at the tip of the notch, the boundary along the notch was divided into a number of
intervals progressively decreasing in length. The rate of change in the interval length
and the resulting length of the smallest interval was found to have a great influence on
the stress field in the vicinity of the tip of the notch.

Each of the boundaries AB, A'B', DC and DC' was divided into 5 intervals of
equal length. Each of the boundaries BC and B'C' were assigned values of $. and
$!, given by equations (18), at 15 uniformly spaced nodal points. To complete the
boundary nodal arrangement, 60 nodal points were taken along each of the boundaries
along the notch. The rate of change in the interval's length along these boundaries was
optimized for all cases by the method illustrated in figure 6 for the case of a specimen
with a 10° edge notch and a/w = 0.3. The dimensionless y-directional stresses at
three locations below the tip of the notch were plotted as a function of tapering ratio,
that is, the ratio of the lengths of two consecutive boundary intervals. Note that the
stresses far enough from the tip were insensitive to changes of the taper. The general
pattern was that the stress converges smoothly to its correct value as the tapering ratio
increases until at a certain point it starts to oscillate erratically. This behavior is
caused by the violent oscillations in $ and <&' near the tip of the notch that occur when
the minimum interval length becomes too small.

This result suggests the following strategy in choosing the optimum tapering ratio
for a given number of boundary intervals along the notch:

(1) Plot the x-directional or y-directional stresses at several locations below the
tip of the notch, where good resolution of stresses is desired, for a sequence of taper-
ing ratios.
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(2) Start with a ratio of 1.00 and increase it uniformly. Continue plotting these
curves from the smooth monotonic regime into the region where the variation becomes
erratic. Pick as an optimum ratio the largest one that is in the smooth regime for all
curves.

For the case of a 10 edge notch and an a/w = 0.3, an optimum tapering ratio of
1. 09 is associated with the smallest dimensionless interval length of approximately
0. 00015. For the other cases considered, optimum ratios were found to be in the range
of 1. 08 to 1.10. The resulting smallest dimensionless boundary interval length varied
from 0.0001 to 0.0002.

The nodal arrangement shown in figure 5 was used for all cases considered, result-
ing in a set of 140 equations containing 140 unknowns, that is, 3^ and $.', i = 1, 2,
3, . . ., 70.

The numerical calculations were performed on an IBM 7094 digital computer using
single-precision arithmetic. The matrix system given by equation (16) was solved using
the modified Gauss elimination method, which utilizes pivoting and forward and back-
ward substitutions.

RESULTS AND DISCUSSION

The computations were performed for cases of 10°, 30°, and 60° notch angles and
varying notch depths. Selected results were also obtained for a 3° notch angle. Fig-
ures 7 to 9 show x-directional and y-directional stress distribution as a function of dis-
tance from the tip of the notch. The results are compared with stress values obtained
by the boundary collocation technique reported by Gross (ref. 2) and are found to be in
excellent agreement. Table I contains selected results of these stress computations.

As expected, the stresses approach infinity near the tip of the notch. The square
root singularity associated with the crack changes from 0.500 to approximately 0. 488
for a 60° notch angle as shown in table n. The order of stress singularity computed
herein is compared with results given by Gross and Mendelson (ref. 8) and excellent
agreement is obtained.

The stress intensity factor Kj under mode I notch displacement is defined (ref. 2),
in terms of the coordinate system shown in figure 2, as follows:

(19)
0=0

lim V27T rn CT (r, 0)
r — 0 y

From the known stress field in the vicinity of the tip of the notch the order of stress
singularity n in equation (19) can be determined by plotting In a against In r, and

11



obtaining a least-squares fit of a straight line through the plotted points. The slope of
the line gives n.

Once the order of stress singularity is found, a plot of the function of r in equa-
tion (19) as r - 0 yields the stress intensity factor Kj. Figure 10 shows the variation
of the dimensionless stress intensity factor K, with notch depth for a 10° notch as
compared to the analytical solution obtained by Gross and Mendelson (ref. 8). These
analytical results generally give values higher by approximately 1 percent.

Figure 11 shows the dimensionless elastic plane-stress displacements at the edge
of the notch as a function of notch depth. The displacements were obtained by numerical
integration of relation (22) along straight line paths. The comparison is made with
available results by Gross (ref. 2) and are found to be in very good agreement.

Finally, the relations between path independent Rice's integral J and the stress
intensity factor K, were checked. These relations were given by Rice (ref. 9) for a
linear elastic body in the following form:

J = l ~ M K? (for plane strain) (20a)
E L

J = 1 K? (for plane stress) (20b)
E L

where J is defined as

J= I W(e) dy - T ds (21)

Here r is an arbitrary curve surrounding the notch tip. The integral is evaluated in a
counterclockwise sense, starting from the notch surface. Strain energy density is de-
fined as

rmn
°ij eij

and the traction vector is

Ti

12



while u. is a displacement vector defined in terms of strain tensor as

u

Equations (20) allow one to evaluate the stress intensity factors without detailed
knowledge of the stress field very near the notch tip.

For the plane- stress case, the comparison between J values obtained by numerical
integration of relation (21) and by use of equation (20b) is shown in table in.

CONCLUSIONS

The results obtained for the elastic stress analysis of V-notched beams subjected
to pure bending compared very well with the collocation method of solution. The bound-
ary integral method appears to be well suited for the solution of problems with geomet-
ric singularities. The dependence of the accuracy of the stress field in the vicinity of
notch tip on the choice of nodal spacing has been demonstrated. The strategy of making
this choice has been shown to be successful by comparison to results obtained by the
collocation method of solution. The experience gained from those studies can now be
utilized in performing the more complicated elastoplastic calculations.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, July 20, 1973,
501-21.
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APPENDIX - COEFFICIENTS OF THE STRESS EQUATIONS

The coefficients appearing in stress equations (17) are given by the following rela-
tions :

ay 3n

04 - I) - (Yj -

i - 77)2J

ds

ds

c .,, ds

D.. =• + IV ds

ds

3x2 «'
F l l=-^-(d lJ = - / J ln[( X i - i ) 2

+ ( y i

2(X, -

'
\£i / \£

ds

14



G a _ 2 — ( e = - 8 I -£-. ds

H.. -
ax ay

ds

V-*-("«) =213 3x 3y 13 9n
ds

3x 3y
ds

The evaluation of these integrals is given in reference 5.

15



REFERENCES

1. Bowie, O. L.: Rectangular Tensile Sheet with Symmetric Edge Cracks. J. Appl.
Mech., vol. 86, no. 2, June 1964, pp. 208-212.

2. Gross, Bernard: Some Plane Problem Elastostatic Solutions for Plates Having a
V-Notch. Ph. D. Thesis, Case Western Reserve Univ., 1970.

3. Hays, David James: Some Applications of Elastic-Plastic Analysis to Fracture
Mechanics. Ph. D. Thesis, Imperial College of Science and Technology, Univ.
London, 1970.

4. Mendelson, Alexander: Boundary Integral Methods in Elasticity and Plasticity.
NASATND-7418, 1973.

5. Rzasnicki, Walter: Plane Elasto-Plastic Analysis of V-Notched Plate Under Bending
by Boundary Integral Equation Method. Ph.D. Thesis, Univ. Toledo, 1973.

6. Collatz, Lothar: The Numerical Treatment of Differential Equations. Third ed.
Springer-Verlag, 1960.

7. Walker, George E., Jr.: A Study of the Applicability of the Method of Potential to
Inclusions of Various Shapes in Two- and.Three-Dimensional Elastic and Thermo-
elastic Stress Fields. Ph.D. Thesis, Univ. Washington, 1969.

8. Gross, Bernard; and Mendelson, Alexander: Plane Elastostatic Analysis of
V-Notched Plates. NASA TN D-6040, 1970.

9. Rice, James R.: A Path Independent Integral and the Approximate Analysis of Strain
Concentration by Notches and Cracks. Rep. E39, Brown University (AD-653716),
May 1967.

16



TABLET. - DIMENSIONLESS ELASTIC x-DIRECTIONAL STRESSES ax/oQ AND y-DIRECTIONAL

STRESSES a /aQ ALONG x-AXIS (y = 0) IN THE VICINITY OF THE NOTCH FOR A

SPECIMEN WITH A SINGLE EDGE NOTCH SUBJECTED TO PURE BENDING

[Dimensionless load q = 1.0.]

(a) Dimensionless notch depth a = 0.2 (b) Dimensionless notch depth a - 0. 3

x/a Notch angle, a, deg

10 30 60

r
X

0.01
.02
.04
.06
.10
.20

7.13
5.01
3.47
2.77
2.07
1.35

7.04
4.93
3.43
2.75
2.06
1.35

6.28
4.47
3.15
2.56
1.94
1.29

cy
0.01

.02

.04

.06

.10

.20

7.40
5.27
3.73
3.04
2.33
1.61

7.44
5.27
3.72
3.03
2.27
1.60

7.36
5.24
3.71
3.03
2.33
1.61

x/a Notch angle, a, deg

3 10 30 60

X

0.01
.02
.04

.06

.10

.20

7.72
5.45
3.80
3.06

7.88
5.54
3.85
3.09
2.30
1.51

7.66
5.33
3.72
3.00
2.26
1.50

6.72
4.80
3.40
2.77
2.11
1.42

ay
0.01

.02

.04

.06

.10

.20

7.81
5.54
3.88
3.13

7.99
5.65
3.95
3.18
2.39
1.54

7.84
5.52
3.86
3.10
2.33
1.51

7.81
5.54
3.89
3.14
2.37
1.54
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TABLET. -Continued. DIMENSIONLESS ELASTIC x-DIRECTIONAL STRESSES a /a AND y-DIRECTIONAL

STRESSES a /OQ ALONG x-AXIS (y = 0) IN THE VICINITY OF THE NOTCH FOR A SPECIMEN WITH

A SINGLE EDGE NOTCH SUBJECTED TO PURE BENDING

[Dimensionless load q = 1.0. ]

(c) Dimensionless notch depth a = 0. 4

x/a Notch angle a, deg

10 30 60

3
X

0.01
.02

.04

.06

.10

.20

8.82
6.24
4.36
3.51
2.63
1.70

8.55
6.07
4.26
3.44
2.59
1.68

7.53
5.40
3.84
3.13
2.39
1.58

ay
0.01

.02

.04

.06

.10

.20

8.74
6.13
4.23
3.36
2.45
1.44

8.73
6.13
4.23
3.36
2.45
1.44

8.66
6.11
4.25
3.39
2.48
1.47

(d) Dimensionless notch depth a = 0. 5

x/a Notch angle, a, deg

10 30 60

a
X

0.01
.02
.04
.06

.10

.20

10.63
7.54
5.28
4.24
3.15
1.96

10.46
7.42
5.20
4.19
3.13
1.94

8.98
6.44
4.58
3.72
2.80
1.79

sy
0.01

.02

.04

.06

.10

.20

10.29
7.17
4.86
3.79
2.63
1.30

10.49
7.29
4.94
3.85
2.67
1.32

10.21
7.15
4.88
3.82
2.68
1.35
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TABLE I. - Concluded. DIMENSIONLESS ELASTIC x-DIRECTIONAL

STRESSES ax/a0 AND y-DIRECTIONAL STRESSES a /aQ ALONG

x-AXIS (y = 0) IN THE VICINITY OF THE NOTCH FOR A

SPECIMEN WITH A SINGLE EDGE NOTCH

SUBJECTED TO PURE BENDING

[bimensionless load 7J = l.O.J

(e) Dimensionless notch depth a = 0. 6

x/a Notch angle, a, deg

10 30 60

a
X

0.01
.02
.04
.06
.10
.20

13.80
9.78
6.80
5.42
3.94
2.27

13.46
9.56
6.68
5.33
3.88
2.24

11.59
8.30
5.87
4.73
3.50
2.04

5y
0.01

.02

.04

.06

.10

.20

13.06
8.96
5.91
4.46
2.85

.83

13.26
9.11
6.01
4.53
2.91
.88

12.98
8.99
5.98
4.54
2.93

.90
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TABLE II. - ORDER OF STRESS SINGULARITY n AT THE TIP OF THE NOTCH FOR SPECIMENS

WITH A SINGLE EDGE NOTCH SUBJECTED TO PURE BENDING AND BEHAVING ELASTICALLY

[bimensionless load q = 1. oj

Dimension-
less notch

depth,

a =2-
w

0.2
.3
.4
.5
.6
.7

Notch angle, a, deg

3 10 30 60

Source

Present
report

Reference 8 Present
report

Reference 8 Present
report

Reference 8 Present
report

Reference 8

Order of stress singularity at tip of notch, n

0.4999

ao.

1

5000 0. 4990
.4999
.5007
.4999
.4999
.5010

0.49

i

99 0. 4986
.4978
.4989
.4989
.5010
.5000

0.4

1

385 0.4875
.4896
.4929
.4886
.4863

0.4878

i

aValue obtained for a = 0°.

TABLE in. - DIMENSIONLESS ELASTIC PLANE-STRESS RICE'S

INTEGRAL ^- FOR A SPECIMEN WITH A 10° EDGE
CT0W

NOTCH SUBJECTED TO PURE BENDING

[bimensionless load q = 1.0; Poisson's ratio p. = 0. 33.J

Dimension-
less notch

depth,

a = ^
w

0.3
.5

Dimensionless elastic plane-stress Rice's integral obtained

By integration of
equation (21)

1.193
3.546

From stress intensity
factor Kj in equa-

tion (20b)

1.212
3.408
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Figure 1. - Interior and boundary nodal
points.

'max

Figure 2. - Single-edge V-notched beam subject to
pure bending load.

Figure 3. - Sign convention for a simply connected
region R.
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Figure 4. - Boundary subdivisions for P(x,y)cC.
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Figure 5. - Distribution of boundary subdivisions and nodal points.
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Reference 2
Present investigation
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I I I I I
1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20

Ratio of lengths of two consecutive boundary intervals

Figure 6. - Dimensionless elastic y-directional stress distribution in the vicinity of the tip of the notch for a
specimen with a 10° edge notch and 60 tapered intervals along the notch. Dimensionless notch depth a = 0.3;
dimensionless load q • 1.0.
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O Reference 2
Present investigation

Dimensionless
notch depth,

3 -a /w

(a) Dimensionless x-directional stress as a function of x.

40.—,

.004 .008 .012 .016 .020 .024

(b) Dimensionless y-directional stress as a function of ?.

Figure 7. - Dimensionless elastic x-directional and y-directional
stress distribution in the vicinity of the notch for a specimen
with a 10° edge notch subjected to pure bending. Dimensionless
load q-1.0.
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O Reference 2
Present investigation

Dimensionless
notch depth,

a = a/w
-0.6

.2

(a) Dimensionless x-directional stress as a function of xf.

30
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10

.004 .008 .012 .016
x = x/w

.020 .024

(b) Dimensionless y-directional stress as a function of 5c.

Figure 8. - Dimensionless elastic x-directional and y-directional
stress distribution in the vicinity of the notch for a specimen
with a 30° edge notch subjected to pure bending. Dimensionless
load q = 1.0.
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(a) Dimensionless x-directional stress as a function of x:.
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.004 .008 .012
x =x /w
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(b) Dimensionless y-directional stress as a function of x.

Figure 9. - Dimensionless elastic x-directional and y-directional
stress distribution in the vicinity of the notch for a specimen
with a 60° edge notch subjected to pure bending. Dimensionless
load q = 1.0.
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Dimensionless notch depth, a • a/w

Figure 10. - Dimensionless stress intensity factor Ki for a specimen with a 10°
notch subjected to pure bending and behaving elastically. Dimensionless load
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Figure 11. - Dimensionless elastic plane-stress y-directional notch opening displacement
for a specimen with a 10° edge notch subjected to pure bending. Dimensionless load
q = 1.0; Poisson's ratio p = 0.33.
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