
(HASA-CR-114646) ELECTROHYDRODYNAMIC HEAT N73-31839
PIPE RESEARCH (Colorado State Univ.)

p HC $4.50 CSCL 20
Se Unclas

G3/33 14353

ELECTROHYDRODYNAMIC HEAT PIPE RESEARCH

NASA CR-114646

Research Report #4

July 1973

By

T. B. Jones and M. P. Perry

Department of Electrical Engineering

Colorado State University

Fort Collins, Colorado 80521

NASA Grant # NGR-06-002-127

Prepared for

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, California 94035



This work was performed under the

auspices of NASA/Ames Research Center,
Grant # NGR-06-002-127. Mr. J. P.
Kirkpatrick is the Technical Monitor.

The research program is being conducted
by Dr. Thomas B. Jones, Assistant
Professor of Electrical Engineering,
Colorado State University, Ft. Collins,
Colorado 80521.

/



ELECTROHYDRODYNAMIC HEAT PIPE RESEARCH

NASA CR-114646

Research Report #4

July 1973

By

T. B. Jones and M. P. Perry

Department of Electrical Engineering

Colorado State University

Fort Collins, Colorado 80521

NASA Grant # NGR-06-002-127

Prepared for

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, California 94035

//



TABLE OF CONTENTS

CHAPTER PAGE

I. Introduction 1

II. Theoretical Considerations 3
A. Description of Goals 3
B. Approximate Heat Pipe Conductance 3

Heat Transfer in Laminar Flow 3
Approximate Evaporator Conductance 6
Other Contributions to Thermal Resistance 8

Calculation of Heat Pipe Conductance 9
C. Evaporator Groove Design 11

Problem Definition 11
Hydrodynamic Equations 14
Boundary Conditions 16
Burn-Out Condition 17
Solution to Hydrodynamic Equations 18
Comments on Maximum Heat Flux Into a Groove 23

D. Discussion of Theoretical Results 23
Heat Pipe Conductance and Groove Design 23
,Extension of Theoretical Results 24

III. Capillary Feltmetal EHD Heat Pipe Experiment 27

IV. Discussion 37
A. Conclusions Based on Theoretical Results 37
B. Experimental Results 38

Heat Pipe Conductance 39
Other Experimental Results 40

C. Further General Discussion 40

ACKNOWLEDGEMENT 42
APPENDIX 43
REFERENCES 45

//



LIST OF FIGURES

FIGURE PAGE

Figure la Flat-Plate Evaporator and Condenser 7

Configuration

Figure lb Rectangular Groove Geometry in Flat- 7

Plate Evaporator and Condenser

Figure 2a Fluid Configuration in a Groove 13

Figure 2b Deep Groove Case, w<<d 13

Figure 3a Maximum Heat Flux-vs. Groove Width 20

Figure 3b Maximum Heat Flux vs. Groove Width 21

Figure 3c Maximum Heat Flux vs. Groove Width 22

Figure 4a Triangular Groove Configuration 26

Figure 4b Possible Cylindrical Groove Configuration 26

Figure 5a Exploded View of Feltmetal Heat Pipe 28

Figure 5b Cross-sectional View of Second Electro- 28

hydrodynamic Heat Pipe Experiment

Figure 6a Evaporator-Condenser Temperature vs. 32

Tilt for Feltmetal EHD Heat Pipe
Condenser Temperature = 490C

Figure 6b Evaporator-Condenser Temperature vs. 33
Tilt for Feltmetal EHD Heat Pipe
Condenser Temperature = 230C

Figure 7 Feltmetal Heat Pipe Conductance vs. 35

Input Power When Capillary Wick is

Just Saturated with Liquid.and No
Voltage Applied



I. Introduction

Previous research reports in this series have considered the

feasibility of electrohydrodynamic (EHD) heat pipes,1 the entrainment

limit in these devices,2 and initial data obtained with the first

experimental EHD heat pipe.3  This present report covers more recent

work performed on both experimental and theoretical fronts related to the

research program.

In the first EHD heat pipe experiment,3 a design was tested which

employed a tent electromechanical flow structure for axial liquid flow

and circumferential threaded grooves for surface distribution. The

principal factor limiting the performance of the device was found to be

the grooves which did not have sufficient pumping capability. As a con-

sequence of this experiment, theoretical investigations have now been

made of grooves and groove performance specifically for dielectric

fluids. Both the rate of heat transfer from the evaporator surface and

the groove pumping capacity have been studied. The theory should allow

the optimal design of the grooves of future EHD heat pipes with respect

to maximum heat throughputs and minimum temperature drops.

In other work, and to complement the previous experiments,3 another

experimental EHD heat pipe has been tested with the results reported

here. In this experiment a tent electromechanical flow structure was

used to modify a conventional (feltmetal) capillary wick heat pipe.

The purpose of this experiment was to determine whether an EHD flow

structure would increase the maximum thermal throughput by shunting

the high fluid resistance capillary flow path with the low resistance

flow path of the tent structure. The experiments reported show that

this kind of improvement is possible, though the over-all performance
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as measured by the effective thermal conductance is not very good. The

rather large temperature drops are thought to be due to the excessive

thickness of the capillary wick lining the inside of the pipe.

Based upon the more recent experimental and theoretical findings,

the conclusion has been reached that the most significant drawback of

the electrohydrodynamic heat pipe is the required use of dielectric

liquids as working fluids. Dielectric fluids suffer, when compared to

more typical working fluids (water, ammonia), because of their poor

thermal conductivity, low latent heat of vaporization, and low surface

tension. Note that surface tension remains important in the EHD heat

pipe designs promoted here, due to reliance upon capillary pumping for

circumferential liquid distribution and collection.

The experiments conducted to date indicate that the electromechan-

ical flow structures used have performed adequately, thus providing

"proof of concept" for EHD heat pipes. The severe performance limita-

tion in both experimental devices have been found to be in the capil-

lary circumferential fluid distribution operation: (i) inadequate

circumferential grooves in the first experiment3 and (ii) grossly sub-

optimal feltmetal wicking in the second experiment . Thus a need to

consider the capillary flow and heat transfer problems for dielectric

fluids has been well-eatablished. Present efforts in the project are

directed at this issue.

*Chapter III of this report
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II. THEORETICAL CONSIDERATIONS

A. DESCRIPTION OF GOALS

This section contains theoretical considerations for two basic

problems. One is the prediction of the effective thermal conductance

of an electrohydrodynamic heat pipe with threaded grooves for fluid

distribution to the evaporator surface. An approximate result for the

temperature drop at the evaporator is obtained by using known solutions

for heat transfer in laminar flow through pipes and ducts. This result

is applied to the geometry of the first heat pipe and effective thermal

conductance is computed. In addition, the conductance calculation is

applied to the flat-plate EHD heat pipe experiment.

The other problem considered theoretically is the design of thread-

ed grooves for the evaporator of an electrohydrodynamic heat pipe.

Solutions of relevant hydrodynamic equations are obtained. These solu-

ions are investigated to determine conditions of optimum heat transfer

at the evaporator. Design tradeoffs which allow more flexible heat

pipe operation with respect to input heat and tilt are discussed.

These calculations are applied to the flat-plate experiment to predict

maximum heat input allowed before "burn-out" occurs.

B. APPROXIMATE HEAT PIPE CONDUCTANCE

Heat Transfer in Laminar Flow

The problem of heat transfer for fluid flowing in a capillary

groove is similar to laminar flow through a pipe or duct. Several

assumptions are made in calculating the amount of heat transferred

in a duct.4 Fully developed thermal and velocity profiles are

assumed to exist throughout the length of the duct. Thus, entrance



region effects due to temperature and velocity changes 
are neglected

for long tubes or ducts. In addition, the heat flow mechanism in

laminar flow is purely due to conduction.
5 No mixing is assumed

to exist in the fluid bulk. This allows heat conduction equations

to be solved exactly for flow through a round tube and from this

result, heat transfer in ducts of varying geometries is inferred.

To apply these calculations to capillary grooves in a heat pipe,

the assumptions must be justified. In a capillary groove, laminar flow

is assumed. This is well justified for the range of practical input

heats in the heat pipe experiments. In addition, no thermal resistance

is assumed to exist at the liquid surface where evaporation occurs.

Hence, all thermal resistance is due to conduction through the liquid

in the groove. In the case of entrance effects, velocity and tempera-

ture profile changes generally depend on the fluid Prandtl number.

Velocity profile changes can be neglected if the tube length is approxi-

mately 50 times or more long wide.
5  This is consistent with

the heat pipe groove dimensions. For liquids with a moderate Prandtl

number such as Freon-113 (see Table I) the thermal profile develops

at nearly the same rate as the velocity.
5  Consequently, entrance

region effects for capillary grooves can be neglected.

Using these assumptions, the Nusselt number, Nu, has been 
plotted

for various rectangular shapes.
6  The Nusselt number is a normalized

measure of the effective thermal convection coefficient:

Lh
Nu = c (2.1)

where h is the convective heat transfer coefficient and L is an
C



NAME SYMBOL VALUE MKS UNITS

Heat of Vaporization h 1.47 x 105 joules/kg

-4
Dynamic Viscosity 5.1 x 10 kg/m-sec

Liquid Density pP 1.5 x 103 kg/m 3

Dielectric Permittivity E 2.33co farads/meter

Surface Tension a .019 newtons/meter

Thermal Conductivity k .066 watts/m-Co

Electrical Conductivity at < 10- 1 2  ohm- 1 - meters- 1

Prandtl Number Pr 7.1 dimensionless

Table I Properties of Freon-113
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an appropriate length. In the case where groove dimensions are approxi-

mately equal, the Nusselt number for laminar flow is approximately equal

to four.

Approximate Evaporator Conductance

To calculate the approximate thermal conductance of an evaporator,

consider a flat-plate evaporator and condenser with rectangluar grooves

cut into each end as shown in Figures la and lb. Assuming that liquid

is present in the evaporator grooves, the convection coefficient can be

calculated by rearranging eq. (2.1):

k Nu (2.2)h (x,z) =
c DH(x,z)

where k is the liquid thermal conductivity and DH is the hydraulic

diameter 4 associated with a particular fluid filled groove.

D = 4 (fluid cross-sectional area 
(2.3)

H 4 wetted perimeter

The thermal conductance of an entire groove is then calculated by

G gr(x) = 2w f z h (x,z)dz, (2.4)
gr0 c

where w is the groove width and £z is the "wetted" length.

For an entire evaporator, the total thermal conductance is obtained

by adding the thermal conductance of each groove.

nk

G = e G (i), (2.5)
evap i= gr

where n is the density of evaporator grooves, Re is the evapor-

ator length, and G gr(i) is the thermal conductance of the ith

groove.
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As an alternative to calculating the thermal conductance of an

evaporator using eq. (2.5) further approximations can be used to make the

calculation simpler. Assume that the convective heat transfer coefficient

is constant over the evaporator surface. Let this quantity be calculated

using the hydraulic diameter of a saturated groove, i.e.,

D 4wd (2.6)
H w + 2d

Also, assume that thermal conductance is proportional to the entire

evaporator area. Then, a rough approximation of the total thermal

conductance can be made by

h a k Nu (w + 2d) (2.7)
c 4wd

and

k A Nu (w + 2d)
G e (2.8)
evap 4wd

where Ae is the total evaporator surface area. These approximations

are reasonable since DH is uniformly less than in eq. (2.6) for all

grooves, while the area, Ae , is larger than the sum of all individual

groove areas.

Other Contributions to Thermal Resistance

When evaluating the total heat pipe conductance, all significant

factors contributing to temperature drops must be considered. In this

treatment, no quantitative model is attempted for dynamic phenomena in

the heat pipe other than evaporation. To get an approximate value of

the thermal resistance between evaporator and condenser walls, tem-

perature losses due to fluid in the vapor phase are neglected. A

contribution to this effect could be caused by heat transfer from

the vapor phase to the heat pipe walls in the adiabatic region.
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Capillary threaded grooves are cut into the condenser section of

the first experimental heat pipe and also the flat-plate heat pipe.

This suggests that the condensation process could be similar to evapora-

tion at the heated end. Laminar flow clearly develops in the capillary

grooves at the condenser. Fluid is then pumped by the grooves and col-

lected at the EHD artery. Hence, it may be inferred that the thermal

resistance at an evaporator and condenser of equal areas will be nearly

equal. The total heat pipe thermal resistance is thus roughly equal

to twice the resistance at the evaporator surface.

Calculation of Heat Pipe Conductance

In this section, the results of the preceding analysis are used to

get approximate conductance for the circumferentially grooved heat pipe

and a proposed flat-plate heat pipe experiment. The Nusselt number in

each case is assumed to be equal to four.

Table II gives the dimensions of the grooves in the cylindrical

heat pipe tested. By experimental observation and direct calculation,

the fluid pumping to the evaporator was found to be approximately 1 cm

on each side of the artery. This observation was made under conditions

of horizontal heat pipe orientation and no heat input. However, it is

thought to be an accurate representation of the available pumping head

due to the grooves with low heat input. Using the liquid thermal con-

ductivity in Table I, the following results are obtained:

-4
D = 2.6 x 10 m

h = 103 watts/m2_-C (evaporator) (2.9)

Ghp = 2.3 watts/*C
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DESCRIPTION SYMBOL VALUE

Length of Heat Pipe x .304 m

Length of Evaporator e .114 m

-2
Inner Radius of Evaporator r 1.46 x 10 m

Area of Evaporator A .104 m
e

-4Width of Groove w 2.9 x 10 m

-4Depth of Groove d 1.2 x 10 m

3 -1
Density of Grooves n 2 x 10 m

Table II Dimensions of Grooved Heat Pipe



Ghp is the total heat pipe thermal conductance. This result is con-

sistent with data from Research Report #3, in which heat pipe conductance

varies between 2.5 watts/*C and 2.9 watts/*C at 25 watts input and 73
0 C

condenser temperature.

Similar results can be obtained for the flat-plate device, assuming

complete wetting of the evaporator surface. Measurements of groove

dimensions were made of an aluminum plate obtained for experimental

purposes. Table III shows approximate dimensions of this device. Cal-

culations using the same formulae yield these results:

-5
DH = 4 x 10-5 m

h = 6.6 x 103 watts/m2-_C (2.10)

Ghp = 36.3 watts/=C.

C. EVAPORATOR GROOVE DESIGN

Quantitative calculations can be made to investigate the perform-

ance for specific groove designs. This section contains the development

of relevant hydrodynamic equations and approximate solutions for some

cases.

Problem Definition

For simplification, the flat-plate heat pipe geometry is used in

this analysis. The results obtained can be extended to other geometri-

cal configurations. Figures la and lb show the axes orientation with

respect to the evaporator surface; x is along the axial flow struc-

ture and z points along a groove. The rectangular groove design

shown in Figures 2a and 2b with dimensions (w,d) is considered.
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DESCRIPTION SYMBOL VALUE

Length of Heat Pipe kx .304 m

Length of Evaporator £e .114 m

1/2 Width of Evaporator 2z .05 m

-4
Groove Width w 1.9 x 10- 4 m

-5Groove Depth d 7 x 10- 5 m

3 -1Density of Grooves n 3 x 10 mI

-1 2
Area of Evaporator Ae 1.1 x 10 m

Table III Dimensions of Flat-Plate Heat Pipe

Experiment
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Consistent with previous assumptions, uniform heat flux, q, is applied

to the entire evaporator surface. Other parameters are then functions

of spatial coordinates (x,z). At a given point in a groove, the wall

temperature surrounding working fluid is constant. The liquid surface

temperature is fixed over the entire evaporator. A list of symbols

and definition of each is provided.

Hydrodynamic Equations

As a first quantitative relation, conservation of mass can be

written for evaporation of fluid along a groove. The decrease in mass

flow along the groove is proportional to the amount of evaporation due

to input heat:

d A (z) u(z) w- (2.11)
dz [ = -pl

Since the right side is independent of z, eq. (2.11) can be integrated

directly. Differential equation (2.11) is ordinary since the grooves

are hydrodynamically uncoupled from each other. The boundary condition

in this case is that all fluid must be evaporated at z = Z .

A (z) u(z) = q (z - z). (2.12)
x pX z

An approximate relation for the steady fluid dynamics in the groove

can also be written. The following result is obtained by differentia-

ting Bernoulli's equation. Viscous loss along a groove is estimated by

using the familiar hydraulic diameter concept of laminar flow through

a tube. 7

dp 32u(z) 1 pu(z)du(z) (2.13)

dz D2 () 2 dz
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The pressure difference across a liquid vapor interface is known to

depend on the surface radius of curvature rc at that point.8
c

P_ 2 (2.14)
v - r

c

Differentiating eq. (2.14) with respect to z and assuming constant

vapor pressure along z gives

dp 2 drp 2 dr c 
(2.15)

dz 2 dzr (z)
c

Now, assume that kinetic energy loss is small compared to fluid pressure

loss in eq. (2.13). This assumption is justified for the low fluid

speeds typical of capillary grooves. In addition, the liquid cross-

sectional area can be uniquely computed from the radius of curvature,

2 8 w 2 2 1
A (z) = wd - r - + - (2 (2.16)

x c 2 2 c1

where sin w (2.17)
2 2r

Using these results, a nonlinear, ordinary differential equation

for r can be found.
c

w 2  r 2  dz p z

where w is the wetted perimenter,

w = w + 2d and 0 < z < L (2.19)
p - -z
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This equation can be solved to find the radius of curvature along

a groove provided the boundary condition r c(z=O) is known.

Boundary Conditions

Notice that even though eq. (2.18) is ordinary, the unknown

parameter, re, is a function of x and z. The boundary condition

r c(z=0) depends on x, the groove location along the axial artery.

To get this initial value, consider the liquid pressure variation inside

the EHD flow structure, which is located at z=0.

pz(x) = p9(0) - p9gx sina - APx,visc (2.20)

where p (0) is the liquid pressure at the surface of excess liquid

at the condenser, and Apx,vise is the hydrodynamic viscous loss along

the axial artery. Other pressure losses are neglected. At the entrance

of a groove, the radius of curvature depends on the liquid-vapor pres-

sure difference across the meniscus.

p (x) - p (x) 2a (2.21)
v z rc(x"O)

Pv(x) is the vapor pressure at location x along the artery. At the

condenser liquid surface (x=O),

P(O) - p(0) r0,0) (2.22)

Combining eqs. (2.21) and (2.22),

A Pv(x) - A p (x) = 2a r(xO) r(,O) (2.23)

where A p = p(x) - p(O). If the condenser is operated in a saturated



17

condition, r (0,0) = . In addition, the vapor pressure difference

between evaporator and condenser is assumed to be negligible.

Consequently,

p (0) - p = 2 (2.24)
S- rc(x,O)

Plugging this equation into eq. (2.20), and assuming axial viscous

losses are neglibible compared to gravitational pressure losses,

the desired result is obtained.

r (x, z=0) = 2a (2.25)
c pgx sine

Burn-Out Condition

The limiting condition on rc for a given groove pertains to

the maximum pumping ability of that groove. Clearly, for a groove

which is deeper than it is wide, the minimum radius of curvature

which the groove will support is one-half the groove width. Figure 2b

shows this pumping limit concept. As the heat flux into a groove is

increased, the radius of curvature at the end of the groove will

decrease until the limit

r (x, z) = (2.26)
c z 2

is reached. The groove then becomes burned out and pumping will cease

prior to z = Rz, causing evaporative heat transfer to be drastically

reduced. The maximum heat flux into a groove is reached when eq. (2.26)

is satisfied. In a heat pipe, the evaporator groove farthest from the

condenser will be the first to dry out as q is increased past the

limit.
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Solution to Hydrodynamic Equations

This section describes solutions obtained to the differential

equation (2.18) subject to the boundary condition eq. (2.25) and the

maximum pumping limit defined in eq. (2.26).

If eq. (2.18) is integrated between the limits of re imposed

in the previous section the maximum value of heat flux input can be

easily computed for a given rectangular groove of dimensions (w,d).

Conversely, a desirable groove design can be determined if eq. (2.18)

is integrated for a given q. However, a closed form solution is not

possible for arbitrary grooves. A numerical solution is required to

find the maximum possible heat flux input into the groove. Various

values of q must be tried and eq. (2.18) integrated for each until the

correct one is found. This iterative procedure is slow, expensive, and

subject to computational round-off errors.

An approximate closed form solution to eq. (2.18) tan be obtained

for the case where groove depth is much greater than the width. Later,

it is shown that this is a desirable, if hard to realize, condition.

The liquid cross-sectional area is the difference between a-"saturated"

area and an area due to curvature:

A = A - A' (2.27)
x o

where A wd, (2.28)

and A' r2 sin c - 2  (2.29)

In the case of w<<d, A'<<A and

A 3 - A 2(A - 3A') (2.30)
x 0
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Plugging these equations into eq. (2.18), a simplified differential

equation is obtained:

2r
2 .3w2  c 1 dr wq(z - a )

(wd) a wd -12 dz Pw c z
_ 3 sin +

p(w+2d) r 2 c 2 r
c c

(2.31)

Eq. (2.31) is easily integrated between the desired limits to produce

the following expression:

2d + - 3r sin 3w2
w2d)2 4 r o 2r 4r w

wqiz
21A (2.32)
2pX '

where q is now the maximum allowed input heat flux and r =

r c(x,z=0).

Plots of maximum heat flux versus w are found in Figures 3a, 3b

and 3c. Note that only portions of the complete curves have been ob-

tained, since the condition w<<d is imposed. The points marked by

dots on the curves denote numerical trial and error solutions of

eq. (2.18). The various graphs represent different values of the groove

depth. On each graph are three plots corresponding to different initial

conditions on r . The smallest initial value is obtained using x

equal to the length of the flat heat pipe, a=100 , and fluid properties

of Freon-113. Other values of r0  used are twice this amount, and r

1 m.
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Comments on Maximum Heat Flux into a Groove

The plots in Figure 3 all show similar characteristics. At w=0

and w = 2r (x,0), no heat is transferred by evaporation. For

w = 2rc(x,0) , no capillary pumping is obtained from the grooves, so the

evaporator groove remains essentially unwetted. At some point between

the two extremes, a maximum heat flux exists. The maximum heat flux

increases with larger initial radius of curvature and increased groove

depth, since these conditions allow greater flow capacity in the groove.

This suggests that the maximum possible groove depth is desirable in

heat pipe fabrication.

Two basic forces are affecting the curves obtained for maximum

heat flux. As w approaches zero, viscous forces begin to appear and

eventually dominate the hydrodynamics. Maximum heat input is reduced

since capillary pumping cannot overcome viscous losses. As w in-

creases, the capillary pressure head available for liquid pumping is

reduced. This tends to decrease the maximum possible heat flux. The

combination of these two phenomena causes heat flux curves to pass

through a maximum with respect to w

D. DISCUSSION OF THEORETICAL RESULTS

Heat Pipe Conductance and Groove Design

To summarize results obtained in previous sections, groove design

and heat pipe performance are discussed in this section.

The ultimate goal in heat pipe design is that sufficient overall

thermal conductance between evaporator and condenser be achieved. The

temperature drop as a function of spatial coordinates for a grooved

evaporator is thus desired. As an approximation, assume that the

temperature difference is proportional to the hydraulic diameter, i.e.,
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AT(x,z) = q DH(x,z)
" (2.33)

4k

This is a reasonable approximation for several reasons. First, as is

easily shown, this corresponds to a constant Nusselt number of four.

This result is employed in Section B of this chapter to predict the

approximate performance of a threaded groove heat pipe. Further, AT

is a monotonically increasing function as w approaches d for fixed

d. Hence, groove conductance increases as the width decreases. This is

an expected result. Notice that AT(x,z) is minimized near z = z±z

at conditions approaching burn-out. The outer extremity of the last

evaporator groove is the point where the smallest temperature drop

occurs.

Now consider this temperature drop approximation and a typical

heat flux curve in Figure 3. If a specific heat flux is desired,

the groove depth and initial radius of curvature for the last evaporator

groove must be sufficiently large. In general, a range of groove

widths are then available which will allow the specified input level.

The smallest width achieves maximum conductance but allows no flexibil-

ity for increasing heat input or increasing heat pipe tilt. The

largest width achieves poorest conductance but also allows no flexibil-

ity in input conditions. To design for a situation in which operating

conditions could be changed without burn-out, an intermediate width

w might be chosen. Maximum flexibility would be obtained by choosing

w to be the value corresponding to the qmax peak.

Extension of Theoretical Results

The results of analysis present in Section C of this chapter for a

flat evaporator with rectangular grooves can be generalized to include

other configurations.
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If the evaporator is not flat, eq. (2.13) can be modified to include

the pressure gradient due to gravitational body force along the groove.

For the cylindrical heat pipe geometry employed in the experiment,

this modification could be used to investigate groove requirements.

In addition, non-rectangular groove designs can be used in the

theoretical model. Specifically, triangular and circular grooves have

been proposed as desirable pumping mechanisms. Triangular grooves seem

to be attractive for evaporation since the average liquid film thickness

would tend to be smaller.

The modification required for other groove geometries is simple.

The hydraulic diameter defined in eq. (2.2) can be applied to any desired

groove geometry. Figures 4a and 4b show these other two groove designs.

Changes in hydraulic diameter would effect viscous losses for hydro-

dynamic equations and also the temperature drop for a given input heat.

Hence, solution of eq. (2.18) can be obtained for a desired groove

geometry in a manner identical to the method used in Section C for rec-

tangular grooves.
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a ) Triangular Groove Configuration.

-

b) Possible Cylindrical Groove Configuration.

Figure 4
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III. CAPILLARY FELTMETAL EHD HEAT PIPE EXPERIMENT

This section describes the second experimental heat pipe in which

an EHD flow structure is employed. This device is characterized by

the presence of an axially mounted electrode to provide EHD pumping

from condenser to evaporator. Figures 5a and 5b show the physical con-

figuration of this experiment. The heat pipe has capillary wicking

material for conventional operation. The wicking material provides

distribution of fluid to the entire evaporator, as well as axial fluid

pumping. Viscous losses along an EHD artery are thought to be negli-

gible compared to those in a typical capillary wick. Hence, it was

hoped that the EHD flow structure would shunt the axial flow resistance

due to the porous capillary wick. In this experiment, heat pipe per-

formance is not limited by poor fluid pumping in circumferential grooves,

as has been observed in the first. The entire evaporator area is sup-

plied with liquid in this case.

A conventional feltmetal capillary heat pipe was obtained. This

heat pipe consists of a 15.3 cm length of 2.5 cm OD stainless steel

pipe with .16 cm wall thickness. The inner walls are lined with a

.16 cm layer of copper feltmetal, attached by silver solder. The felt-

metal lining is intended to provide axial and circumferential fluid

pumping for conventional heat pipe operation.

This heat pipe is modified by the placement of a wire electrode

mounted axially inside the pipe approximately 0.3 cm above the felt-

metal surface. Plexiglas ports are fitted on each end so the wire

electrode can be mounted easily and insulated from the conducting

walls. The heat pipe is sealed using a low vapor pressure epoxy resin.

In a manner similar to the first experiment,3 a water jacket is placed
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Plexiglas End Port Water Jacket

Evaporator Thermocouple
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3.18cm 

15.2cm
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Electrode

a) Exploded View of Feltmetal Heat Pipe

Feltmetal Wick

Vapor

High Voltage
Wire

Dielectric
Liquid

t ~Heater

b.) Cross- sectional View of Second Electrohydrodynamic

Heat Pipe Experiment with Feltmetal Capillary Wick
and Tent Electromechanical Flow Structure

Figure 5
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over the condenser and thermocouples are fixed to evaporator walls and

placed in the water jacket. The evaporator and condenser sections are

approximately 6.4 cm long, separated by a 2.5 cm adiabatic section. A

heater is designed to heat uniformly the entire evaporator surface. A

spatially varying electrode is employed and Freon-113 is used as the

working fluid. The heat pipe cavity is evacuated to about .03 mm Hg

prior to introduction of the fluid.

Thermocouple locations on the evaporator walls are shown in

Figure 5a. A total of six thermocouples are fixed at approximately

equal intervals around the evaporator. Due to the short evaporator

length, no more than one thermocouple is placed in line along the

heated area. Additional thermocouples are mounted outside the heater

and insulation to monitor any input heat losses.

C. PROCEDURES

Experimental Procedure

The experimental techniques for obtaining data from the second

EHD heat pipe experiment are described in this section. Prior to the

initiation of an experiment, heaters are fixed to the evaporator walls

and well-insulated from the outer environment to minimize losses. With

the heat pipe cavity fully evacuated, the vacuum valve is closed and

working fluid is introduced at room temperature from a graduated burret.

Sufficient fluid is introduced so that a small excess forms at the

bottom. This excess fluid provides an axial pumping mechanism for

horizontal heat pipe operation. When the evaporator is raised above the

condenser, the excess fluid fills the electrode flow structure when

voltage is applied. The working fluid used in all heat pipe experiments
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is Freon-113. Table I lists the properties of this fluid. The fluid

inventory in each heat pipe is varied to some extent, but no perceptible

change in heat pipe performance is observed.

To begin an experiment, heat is applied to the evaporator section

and the condenser temperature is established. After-allowing thermal

equilibrium to be reached with the heat pipe horizontal and no voltage,

a measurement of thermocouple voltages is made. When voltage is applied

with the heat pipe still horizontal, no effect on thermocouple temper-

atures is observed. Further measurements are made by lifting the evap-

orator above the condenser, and applying sufficient voltage to the

electrode such that the fluid fills the entire electrode length. Ap-

proximately 25 minutes are allowed for temperature transients to dis-

appear between measurements. The evaporator is lifted above the con-

denser until electrical breakdown in the vessel occurs. The basic

procedure for testing a heat pipe consists of measuring thermocouple

voltages for various tilts and sufficient voltage to allow operation.

When possible, measurements are made on evaporator thermocouples

at each tilt with no voltage applied to the electrodes. This is done

to compare heat pipe operation with and without EHD pumping between

condenser and evaporator. This procedure is particularly meaningful in

the second heat pipe, in which capillary material provides some pumping

for returning liquid, since this allows the direct comparison of capil-

lary and EHD flow structure efficiency. Unfortunately, these compari-

sons are limited at high thermal throughputs by high temperatures which

develop at zero voltage when the evaporator is dry. To avoid damage

to thermocouples and other materials, this procedure is terminated when

excessively high temperatures are reached.
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In addition, measurements are taken of thermocouple voltages with

no fluid in the heat pipe for both devices. This is done so that axial

thermal conductance through the heat pipe walls can be computed. The

effective conductance of the walls is also verified by direct calculation.

In this experiment, approximately 9 ml of fluid is needed before

any excess accumulates on the bottom. Another 3 ml is introduced in

order to provide the required excess. This brings total fluid inventory

to approximately 12 ml. This amount is not varied significantly from one

test to another. It is verified by observation that the entire felt-

metal lining is wetted by fluid under these conditions. On a volume

basis this amount is a huge increase in fluid inventory over the first

experiment3(where the heat pipe cavity volume is approximately four times

as large as the feltmetal device).

Experimental procedure is similar to that for the first experiment.

Higher tilts are obtained for the second experiment due probably to

closer electrode spacing. Results from this experiment are plotted in

Figures 6a and 6b. Again, the temperature drops from evaporator to

condenser are insensitive to tilt. With no voltage applied, the temper-

ature difference increases rapidly as tilt is increased, despite axial

capillary pumping. This is proof that the EHD artery does a better job

of axial pumping than the feltmetal. Note the temperature curves for

input heat of 20 watts in Figures 6a and 6b. Results show the voltage

has no effect on heat pipe performance for any tilt. This indicates

that evaporator burn-out occurs between 20 and 40 watts input. Subse-

quently, tests were made to determine where burn-out occurs with no

voltage.
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Figure 7 shows the results obtained with the feltmetal wick just

saturated with liquid and with no excess on the bottom. For the tilts

considered, heat pipe conductance falls off dramatically between 20 and

25 watts, while falling off more slowly afterwards. Hence, it is as-

sumed that the evaporator starts to burn out between 20 and 25 watts for

both tilts. Notice that conductance is better for lesser tilts as ex-

pected. With excess fluid at the bottom and no tilt, the heat pipe con-

ductance is constant since the axial flow resistance is shunted by ex-

cess inventory. However, when the evaporator is raised, the excess

fluid collects at the condenser end. Unless voltage is applied to es-

tablish axial flow, the heat pipe is dependent on axial capillary pump-

ing to return the fluid.

When considering the data with respect to overall heat pipe con-

ductance, it is clear the feltmetal EHD heat pipe is a poor heat con-

ductor. This is undoubtedly due to thermal blanketing of the vapor

from the evaporator walls by the thick layer of dielectric fluid in

the wick. Since the evaporator feltmetal is saturated by Freon-113

working fluid, a layer of insulating fluid is causing larger thermal

resistance to the input heat. Overall heat pipe conductance is even

worse than in the first experiment,3 despite the shorter length of

the second device. This experiment demonstrates the characteristic

that dielectric liquids with low electrical conductivity tend to in-

sulate thermally the evaporator walls because of their low thermal

conductivity.

Execution of this experiment is hampered because of pressure leaks

which develop at high temperatures. Since "0" rings are not used to

seal the end ports, the pressure seal is maintained by low vapor
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pressure epoxy. Above a certain temperature, the epoxy cracks and leaks

develop. This puts a'limitation on the condenser operating temperature.

In this experiment, no tests are made with the condenser temperature at

73C, and the burn-out curves in Figure 6 are not completed. However,

the data trend is well-established despite this restriction.

Each time a leak develops, the heat pipe is disassembled and a new

electrode is mounted for the next experiment. This means that the elec-

trode is usually free of defects which cause fluid surface instabil-

ities. Hence, dc high voltage is used exclusively in this experiment,

and no fluid surface disruptions are encountered.

At the beginning stages of this experiment, a short circuit was

induced several times when voltages above 10 kv were applied. It is

conjectured that the short was caused by feltmetal being pulled from

the inside walls by strong forces which are present between the electrode

and the feltmetal surface when high voltage is applied. The problem was

encountered only in the early stages of experimentation, suggesting that

all "loose" feltmetal was eventually pulled up and removed during clean-

ing. However, this phenomenon could pose a question as to the compati-

bility of feltmetal wicks and electromechanical flow structures.

The long term effect of F-113 fluid in a feltmetal wick has not

been determined. However, the heat pipe was soaked for several days in

the working fluid to eliminate impurities which appeared in the fluid

when first introduced into the cavity.
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IV. DISCUSSION

A. CONCLUSIONS BASED ON THEORETICAL RESULTS

Theoretical considerations have been directed at two primary ob-

jectives. A simple model for estimating thermal conductance of a grooved

heat pipe is derived. In addition, a hydrodynamic model for liquid flow

in a capillary groove is presented. Approximate solutions to these

equations are obtained. The solutions provide a quantitative method by

which evaporator grooves in a heat pipe can be designed.

The model for approximate thermal conductance of a grooved heat

pipe is based on known solutions for heat transfer in laminar flow

through a duct. For long tubes and ducts, a constant Nusselt number of

four is assumed along the entire length. This result gives an effective

convection coefficient which depends on the variable hydraulic diameter.

A rough calculation is made assuming constant hydraulic diameter and

letting the entire evaporator area contribute to evaporation. The

estimated conductance for the grooved heat pipe is close to the experi-

mental result obtained at 25 watts input, and 73
0C operating temperature.

However, the theoretical model does not take into account changes in

condenser temperature or variations of input power.

The problem of evaporator groove design to achieve optimal heat

pipe performance is also discussed. Solutions to hydrodynamic dif-

ferential equations give curves which show the maximum amount of input

heat the groove can accept before burn-out occurs. Basic factors which

control performance of a rectangular groove are its width and depth, as

well as liquid curvature at the entrance to the groove. Maximum pump-

ing ability of a groove occurs when the liquid radius of curvature
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equals one half of the groove width. The initial radius of curvature is

dependent on the heat pipe tilt in a gravitational field.

Investigation of the theoretical curves produces the following con-

clusions. Under any conditions, the maximum groove depth obtainable is

desired. Groove depth fixes the quantity of liquid present in a groove.

Therefore, more liquid can be evaporated when groove depth is increased.

As expected, greater tilt of the heat pipe produces a smaller radius of

curvature at the groove entrance. Hence, greater tilt causes decreased

flow capacity and resulting evaporation limitations. Increased groove

depth reduces this effect.

For design purposes, groove width is the critical parameter. In-

creased pumping by narrower grooves is counteracted by increased losses

due to viscous forces. For a given heat input, groove depth, and

initial radius of curvature, a range of groove widths exists which al-

lows the entire groove to be wetted. The smallest of these widths

will yield the smallest temperature drop. At this point, increased

heat input will cause burn-out to occur because of viscous forces.

Hence, a slightly greater groove width might be desired to allow some

flexibility in heat input.

These results can be extended easily to include other cross-

sectional groove geometries.

B. EXPERIMENTAL RESULTS

Most conclusions reached about the EHD heat pipe described in

Chapter III of this report are essentially consistent with those com-

municated earlier regarding the first experimental device.3 Once again

an electromechanical flow structure has been successfully used for axial
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liquid transport in a heat pipe. The structure serves as an artery for

the fluid which is pumped from the condenser to the evaporator surface.

However, unlike the first experiment, axial pumping by both capillarity

and EHD polarization forces is possible in this device, This second

experiment is significant because viscous losses along the EHD flow

structure are shown to be negligible compared to the flow resistance

due to the feltmetal material.

Experiments show again that the variable conductance feature for

EHD heat pipes is a built-in capability for terrestrial applications.

If the heat pipe is slightly tilted, the voltage source becomes the

mechanism by which the heat pipe can be turned on and off. Similarly,

by continuously varying the voltage under these conditions, total heat

pipe conductance can be varied between nearly zero and 100% of its maxi-

mum value. Hence, the high voltage source becomes the controller of

heat pipe conductance.

Plots of experimental data show that uniform thermal conductance

is achieved over a range of tilts. The experiment also provides a com-

parison to conventional heat pipe operation in regard to this property.

When the EHD flow structure is not used, capillary forces are relied

upon to provide axial pumping. Heat pipe conductance then falls off

rapidly as tilt is increased.

Heat Pipe Thermal Conductance

Overall thermal conductance of the second experimental heat pipe

is once again also very poor. The thick layer of feltmetal lining the

inside heat pipe walls fills with dielectric fluid. The resulting

liquid layer thermally insulates the hot evaporator walls from the

fluid surface where evaporation takes place. Evidently, conduction of
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heat to the liquid surface by the feltmetal fibers is not significant

enough to reduce this effect.

Other Experimental Results

The compatibility of EHD flow structures and capillary grooves was

established in the first experiment. 3  In the second experiment, some

difficulty was encountered as short circuits between electrodes developed

when high voltage was applied. However, as the experiment progressed,

this phenomenon diminished. It is thought that electrical forces pulled

loose feltmetal from the capillary wick, causing the short circuit.

Hence, the compatibility of feltmetal capillary wicks and EHD flow

structures is subject to question.

C. FURTHER GENERAL DISCUSSION

Both electrohydrodynamic heat pipes tested thus far have exhibited

a similar set of characteristics. Certainly, the concept of using an

electromechanical flow structure for axial liquid flow from condenser

to evaporator is proven out at this point. On the other hand, the per-

formance has not been highly encouraging primarily based on experimental

thermal conductance values. The experience gained with these devices

has indicated a striking mismatch of the EHD forces utilized for axial

flow and the capillary forces relied upon for circumferential distri-

bution and collection. Further, poor condensation and evaporation heat

transfer coefficients have been encountered. Both of these problems

stem from the generally poor capillary fluid transport factors of the

organic and fluorocarbon dielectrics used in EHD heat pipes. Any heat

pipe using these liquids as working fluids thus suffers from the obvious

disadvantages that low thermal conductivity, surface tension, and latent
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heat of vaporization bring. Still, the plausible future requirement of

a heat pipe operating in the range of utility of the dielectric liquids

(2500 F to 7500 F) would seem to justify efforts to determine the ultimate

capability of electrohydrodynamic heat pipes. This statement is reason-

able because it has been shown (for at least one case) that an electro-

mechanical flow structure can greatly enhance the performance of a con-

ventional heat pipe using a dielectric working fluid.

The inescapable conclusion is that effort should be directed at the

design and construction of an EHD heat pipe device where sufficient

attention has been given to the design of an adequate capillary distri-

bution network of circumferential grooves, or wicking material. Pre-

vious performance estimates1,10 were misleading because this part of

the problem was not recognized in the early stages of the research.

With the theory and optimization techniques developed by Perryll and

reviewed here, much more reliable performance calculations should be

possible for electrohydrodynamic heat pipes.

* Refer to Fig. 6a, b of this research report.
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APPENDIX

NOMENCLATURE

A evaporator surface area

A' liquid cross-sectional area correction due to curvature

A cross-sectional area of a groove

A liquid cross-sectional area in a groove
x

DH  hydraulic diameter of a groove containing fluid

G total thermal conductance of evaporator
evap

G thermal conductance of a groove
gr

Ghp heat pipe thermal conductance

L characteristic length in Nusselt number definition

Nu average Nusselt number

Q input heat

T temperature of liquid surface

AT T - T
w s

AT evaporator temperature minus condenser temperature
ec

d groove depth

g gravitational constant

h thermal convection coefficientc

k liquid thermal conductivity

z evaporator length
e

2 length of heat pipe
x

z one-half of evaporator width

n density of grooves

pt liquid pressure

Pv vapor pressure
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APx,visc viscous pressure loss along EHD artery

q input heat flux

qmax maximum input heat flux

r liquid radius of curvature

ro radius of curvature at groove entrance

u(z) average liquid velocity in a groove

w groove width

w wetted perimeter
p

a angle of heat pipe inclination

A symbol denoting difference

E permittivity of free space

C dielectric liquid permittivity

6 parameter defined in eq. (4.15)

X latent heat of vaporization

PIP liquid viscosity

p,pX liquid density

a liquid-vapor surface tension
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