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N noise, dB
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NOISE REDUCTION OF A TILT-ROTOR AIRCRAFT

INCLUDING EFFECTS ON WEIGHT AND PERFORMANCE

by

J. Gibs, W. Stepniewski,

R. Spencer and G. Kohler

Boeing Vertol Company

SUMMARY

Various methods for far-field noise reduction of a tilt-rotor

acoustic signature and the performance and weight tradeoffs which

result from modification of the noise sources are considered in

this report. In order to provide a realistic approach for the

investigation, the Boeing Tilt-Rotor Flight Research Aircraft

(Model 222 as defined in Ref. i) was selected as the baseline.

This aircraft has undergone considerable engineering development. "

Its rotor has been manufactured and tested in the Ames full-scale

wind tunnel• Therefore, the study reflects the current state-of-

the art of aircraft design for far-field acoustic signature reduc-

tion and is not based solely on an engineering feasibility (paper)

aircraft. This report supplements a previous stuay investigating

reduction of noise signature through the management of the terminal

_ flight trajectory (Ref. 2).

The following tasks comprise this study:
,>

4!:,"

%,,_ A. Review of rotor acoustic phenomena &ependence on design

_ parameter s •

,:..' D

I"
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B. Definition of the tilt-rotor aircraft performance, weight

and acoustic signature with respect to aircraft design

parameters.

C. Definition of two new "quiet" aircraft usin 9 design ground

rules applicable to the Model 222.

On the basis of Task A, the following four design and/or opera-

tional parameters were selected as potentially representing the

most important inputs to noise reduction at the source using

current technology.

i. Tip Speed

2. Number of bla_es

3. Disc loading

4. Rotor blade area.

A quantitative study of the effectiveness of those parameters

was performed in Task B. Although the main effort was directed

toward various aspects of noise reduction generated by the rotors,

acoustic problems of the powerplants were also briefly discussed.

The results of the studies performed in Task B are generalized by

presenting them under the form of various derivatives about the

Model 222 tilt-rotor design parameters. Rotor tip speed was identi-

fied as the most effective design parameter for noise reduction.

!

Finally in Task C, the most effective methods of noise atten-

uation at the source, resulting in the most favorable performance

and/or weight tradeoffs, were applied to the design of two tilt-

rotor aircraft. These aircraft were designed to have the same

2.
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basic performance (1298-pound payload over a i00 n.mi. radius

mission), structural envelope and flying qualities.

In addition to the above constraints, the acoustic signatures

of both aircraft (in comparison with the Model 222) must be re-

duced at a distance of 500 feet while hovering out-of-ground

effect. For one aircraft, this reduction should amount to 10

PNdB in the perceived noise level, while for the other, I0 dB

in the overall sound pressure level. This results in an increase

of design gross weight of 25.3 dnd 5.8 percent, respectively.

I. INTRODUCTION

Reduction of the far-field noise intensity through acoustic

(
improvements at the source and management of terminal flight

trajectories of aircraft represent two of the most important inputs

into improving acoustic signatnre on the ground. This latter aspect

is significant from the military (detection, exposure of ground

personnel, etc.) as well as the civilian (annoyance of the popula-

tion) point of view. _{

Noise abatement possibilities offe_'ed by management of the

terminal flight trajectories have been studied for a transport- i

type tilt-rotor aircraft of the 46,000-pound gross weight class

(Ref. 2). In that study, penalties in increased fuel consumption

_ and/or time required to reach prescribed cruise conditions (altitude

and speed) were also indicated.

(

_ 3.
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In order to complete the picture of the effectiveness of

various approaches te noise abatement on the qround, it was

necessary to investigate aspects of noise reduction at the

source. For this task, t51. < ng tilt rotor flight research

aircraft (Fig. i-I, 12,0C pound_ jross weight) was selected as the

reference from which acoustic improvements and associated weight

and performance penalties were evaluated. The selection of this

aircraft as a baseline results in a more realistic study because

of the flve-year design effort, wind-tunnel configuration studies,

and construction of a full-scale rotor and control system.

The Model 222 is not necessarily representative of the

ram.

whole spectrum of tilt-rotoz aircraft that may be developed in

the future (from utility to transports) because of its design

gross weight and weight breakdown. However, the relative (non-

dimensional) trends developed in this study would be indicative

of the noise reduction - performance and/or wgi@ht tradeoffs -

of other tilt-rotor aircraft as well, after accounting for

the differences in wing span loading, equivalent parasite drag

loading, and weight-empty to gross-weight ratio. In order to best

accomplish the envisioned tasks, the whole study is divided into

the following sections:

• Review of the Influence of Design Parameters on Rotor

Acoustics

• Turboshaft Engine Noise

4. _i
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FIGURE 1-1. MODEL 222-1 TILT ROT(.,R NASA RESEARCH AIRCRAFT

P
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• Rotor Deslgn Parameters Tradeoff Studies (weight, perforrL_ance,

and nois_

e Partial Derivatives with Respect tc Operational and

Des_cn Parameters

• Conc£ptual Design of Quiet Tilt Rotors

• Conclusions

o Recommendations

Each of the above section£ represents, to some extent, a

closed entity, but together, they show efficient methods to reduce

the aircraft far-field acoustic signature as well as to indicate

- performance and/or weight penalties to be encountered.

In general, this report may be looked upon as a review

of current design practices for the reduction of a_rcraft noise.

However, it should be emphasized that all of the above studies

reflect the present state of the art; thus, the penalties shown

may be reduced with advancex.ents in aircraft technology. Con-

sequently, directions for R&D efforts which may contrikute to

j smaller performance and weight penalties associated with noise

| reduction are pointed out.

II. INFLUENCE OF DESIGN PARAMETERS ON ROTOR ACObSTICS

General Discussion

A major part of the acoustic/performan, e t_adeoff study cf

tilt-rotor air_raft was devoted to an evaluation of state-of-_be-

6.
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art regarding minimization of rotor noise. A digest of the

findings is presented herein and additional data forming the

background are reviewed in Appendix A.

There has been substantial data accrued in the last five

years by government and industry to doc_unent the effect of

various design and operational parameters on the noise of

rotors, but not all of this has been applicable to tilt-rotor

acoustics.

An area of particular interest was the applic-bility of

current noise prediction methods to the tilt-rotor. The method

presented in Ref. _ has proven to be reliable for low-twist

£otors; however, it had never been evaluated or substantiated

(
for highly-twisted tilt-rotors due to a lack of suitable full-

scale tests. As of this writing, it appears that a representation

of airloading in terms of az'muth position and blade passage

harmonics is sufficient to predict rotary--wing noise, whether

helicopter or tilt-rotor. Unfortunately, the state-of-the-art

for high harmonic airload prediction is not sufficient to define

any but the lowest harmonics of noise. Mowever, recent data from

a 26-foot diameter rotor (Model 222) in the NASA Ames 40 x 80

facility should substantially aid the advancement of tilt-

rotor acoustics.

To optimize the design of a quiet tilt-rotor aircraft, the

sensitivity of trades of noise with all the operating and design

! variables which affect vehicle performance must be known For

,j
b
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example, tip speed plays an important role in establishing rotor

acoustic signature. However, while this aspect for all types of

!

airscrews has been generally well know;,, precise knowledge of

this particular parameter on tilt-rotor acoustic characteristicswas lacking. Furthermore, most of the available data had been

investigated on an individual basis, but not viewed totally.

In this study, all the meaningful data which could be amassed

were evaluated for their influence on tilt-rotor noise character-

istics. There are many design and operational parameters which

can be applied to the design and operation to influence rotor

acoustics. Some of them offer substantial control of the acoustic

signature while others have only a second-order effect on the

noise. An investigation into the effectiveness of the following

major parameters is discussed in this report: _)

i. Tip Speed _

_. Blade Geometry (planform and twist)

3. Airfoil Sections
D

4. Design Alternatives within Rotor Itself (number of

blades, radii of blades, angle between blades, blade area,

disc loading, power loading, etc.)

5. Special Devices (such as blade tips, leading edge modi-

fications, boundary layer control devices, tip blowing,

etc .) •

Some of the information used in the study was assembled

from a recent comprehensive search of contemporary literature.

"e

2:

1
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Other inputs were obtained from Boeing-Vertol research as well
m

|
as many years of continuous review of literature (primarily f_om

the University of Pittsburgh's Knowledge Availability Systems

Center, Abstract Search Facility). This, supplemented by

personal contact with researchers working on special devices,

provided the basis for the material presented in this section.

In describing the acoustic signature of a rotor, it is

desirable to define the frequency spectra using a narrow filter

in order to investigate harmonic as well as broadband components

of noise. In so doing, a detailed definition of all frequencies

reveals three spectral regions which display definable character-

istics (see Figure 2-1).

(

60 [-- VER'%'LOW
I. FREQUENCIES

"HIGH

ii _ Fr_EQUENCIES

0
0 100 200 300 400 50O

FREQUENCY - Hz i
I

" _ FIGURE 2-1 CHARACTERISTIC FREQUENCY RANGES FOR ROTORS

" ! 9.
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i. The very low frequency range (harmonic numbers less than

i0} where the lowest harmonics may be below the audiDle -_

frequency threshold. This region of the frequency spectra

is characterized by a decrease in h_:-monic amplitude with

increasing harmonic number. In this case, good correlation

with theory is typic_l (5dB}.

2. The intermediate frequency range (harmonic numbers above I0}

where harmonics of blade passage are definable. Harmonic

levels increase in amplitude with increasing frequency,

later decreasing and finally blending in with the broadband

noise. This characteristic of rotor noise may result from

incident and reflected wave phasing.

3. The high frequency range (no harmonics of blade passage °_

present} where the noise is of a broadband characteristic.

The broadband noise spectra generally displays an amplitude

maximum somewhere in this range.

A discussion of the effectiveness of idealized variations in

a large number of design variables on far-field noise is included

in Section IV.

While the impact of each of the design variables previously

! noted will be discussed separately, a combined summary of all the
5

: findings is presented in Figure 2-2. A review of th_ _ figure shows

that for a constant thrust, the controlling parameter is tip

speed, and this appears to be the factor which exerts the m&jor

I0. O

-,_ I
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CONSTANT THRUST
(10,000 - 20,000 L3)

FOR EFFECT OF A CHANGE IN NUMBER OF RLADES,
CALCULATE THE CHANGE IN TIP SPEED REQUIRED
TO PROVIDE CONSTANT THRUST

16 ,. _f ,

12 ,//

8 I i/

4 • ,i I _'-" .,,. 1
I_._ _ 1 l ;"THIN TIP

# ._ t I' BLADE GEOMETRY///_/.;=

8 "_ s'_/ (PLANFORM. AIRFOIL._',__,_ __
12 o

_ 16 _

=_12

\ _,.

A --;_ -,-'k "='_=.
__ .,_ J#_._ DISC LOADING =

8

12 '

;, 0 •500 600 700 800 900 1000 1100

" ROTOR TIP SPEED, VT - FPS!

i_ ( FIGURE 2-2 EFFECT OF ROTOR DESIGN ON NOISE

t 11.
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order of magnitude influence on the generated noise. Variations

in number of blades, airfoils, planforms, and twist may combine ..
}

to provide the illustrated scatter about the tip speed trend line.

These tend to be of second-order influence at lower speeds, but

become substantial as drag divergence is approached and thin air-

foils at the blade tip become important.

In actual design practice where a given payload must be

carried a specified distance, the effect of decreasing tip speed

will be to increase the gross weight which would have the effect

of rotating the Figure 2-2 trend line clockwise about the 750 fps

point thus reducing the net acoustic benefit.

The above discussion deals with overall sound pressure level

which, for propellers and rotors, is set by the lowest few har- _

J
monics. The details of airfoil and blade design, however, affect

the higher harmonic noise generation in a manner which appears to

defy systematic categorization. Although this has no effect on

overall sound pressure level, and a very minor effect on calculated

perceived noise level, it has been observed that blades of differ- !

ent designs have noticeably different sounds which influence sub-

jective acceptability.
I

Unfortunately, the tip speed reduction comes at a performance

price as illustrated in Figure 2-3. This figure, from the Ref. 4

paper by Stepniewski and Schmitz, illustrates the adverse weight
%

trend of transmissions, blades, and control systems which accompany

/
.%

/_! 12 •
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reduced tip speeds. Although this figure was based on heli-

copter designs, it is indicative of the expected trends.

1.3
&

ACTUAL (WE/WEo) RATIOS

= _ DESIGN STUDIE'S

_-, | I

I - - N _ ''I

l " m 1.0

( (Wl/Wu°)"Vt__axo _L_'°'-) .9

HPf = HPfo .8

-10 -8 -6 -4 -2 0

,3 N, dB

FIGURE 2-3 WEIGHTS, 9ma x AN;; DOC TRENDS WITH

NOISE REDUCTION _Y L(WE_ING V t

Tip Speeds

Reduction in helicopter rotor noise as obtained by lowering

tip speed is generally predictable with good accuracy and has been

• documented by many investigators. The data reviewed by this study

1973023205-020



included the following:

- p

(i) Substantial quantities of noise levels recorded on the hueing- !

Vertol experimental whirl tower facility (Figure 2.4) on CI]-2_,

CH-46, and CH-47 rotor blades (Ref. 5). In addition it included

two-, three-, and four-bladed rotors wihh blades which were

otherwise identical in design and construction, and numerous

_Jind-tunnel noise surveys, as well as data obtained on a 13-

foot diameter propeller with 41 ° twist.

(2) Full-scale rotor data published by Hubbard and Maglieri

(Ref. 6).

(3) Whirl tower data published by Stuckey and Goddard on a

Westland rotor (Ref. 7).

3
The above data has been summarized in the characteristic tip

speed trend shown in Figure 2-5. The data shown are for overall,

or low harmonics of noise. Trends of specific sets of data dis-

play variations of 3-6 dB per I00 ft/sec change in tip speed.

Grouped together, the combined data shows a 4.2 dB/100 fps slope.

Higher harmonics are not as consistent with variations in tip

speed and, in fact, tend to be somewhat erratic. As shown in

the Appendix, the higher harmonics display a slope of 3 dB/100 fps,

or less.

l,

, a ta' 14.
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Number of Blades

There are several design variables that lead to noise

reduction of a rotor system, but which are not clearly identi-

fiable. This is due to the fact that they are generally

incorporated into the rotor, together with changes to other

rotor parameters which, in themselves, may also contribute to

noise reduction. Number of blades is one of these. For example,

there is no available data regarding changes of blade nun,her

where the solidity of the rotor remained constant, since all

published data had been obtained from programs which added

blades of the same geometrical configurations to the rotor, and

thus increased rotor solidity. Adding additional blades alsc

creates a change in blade loading. Depending on how the data

on blade number is compared, several conclusions may be drawn.

First, blade number at ccnsta_t tip speed will be examined.

Figure 2-6 illustrates the effect of blade number of measured

sound levels as a function of thrust as obtained on a whirl tower.

When viewed in this manner, adding blades to the rotor clearly

improves the acoustic signature.

Leverton (Ref. 8), from research at the Institute of Sound

and Vibration Research, Univ. of Southampton, concludes that rota-

, tional noise will decreaae by 4-5 dB per blade added, while broad-

! band noise should decrease by the factor l0 log (B + blades added)/B).

4

" (
h
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Figure 2-7 compares noise produced by the 2- and 4-bladed

rotors at constant thrust. For this size rotor, the noise in-

creases rapidly with tip speeds above a1_proxirately 725 fps.

Thus, for minimum noise, the number of blades should be high

,_ enough to produce the desired thrust while operating at a tip

speed of 725 fps or less.

However, when 2- and 4-bladed data is co_cJred on the basis

of CT/O, as is typical for performance evaluation, the data

collapses to a large scatterband and the value of increasing the

number of blades disappears (Figure 2-8). It appears, hence,

that the real advantage of adding similar blades of constant area

to a rotor results from an ability to reduce kip speed because

( of the increased lift from the added blade.

Broadband noise produced by t_e 2- and 4-bladed rotors is

compared in Figure 2-9. At the low thrust (9,000 pounds),

the 2-bladed rotor is approximately 5 dB less noisy than the 4-

bladed one throughout the range of tip speeds tested. At 18,000-

pound thrust, the broadband noise again disnlays a 5 dB difference

at VT = 900 fps. This difference decreases with tip speed, both

rotors producing the r_me noise below 700 fps.

I

i In addition to permitting a reduction in tip speed, an in-

] crease in thp n,._he _ of blades will also result in a noise reduc-

tion if the rotor rpm and radius are maintained unchanged. The

i ._ Army-NASA OH-6A Q_iet Helicopter (Ref. 9) was modified by in-
¢

I : _. creasing the number of main rotor blades from 4 to 5 and the

i

.19.
¢
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, i

number of tail rotor blades from 2 to 4 without changing their

original dimensions. Other m_nor modifications were also made,

but when both the standard and modified aircraft were operated

at the same rpr,,, the increased number of blades was primarily

responsible for an average 9 dB noise reduction measured during

a 100-foot altitude fly-by.

Thrust

_ increase in rotor thrust results in an increase in noise

level of the rotor, but it is both tip-speed and frequency depend-

ent. Figure 2-10 was selected to illustrate the point because the

data it represents was recorded on a system which measured all

r frequencies from 2 Hz to i0,000 Hz with the same frequency

response. The increase in noise level with thrust for the 1st

harmonic of blade passage frequency increases with very predictable ,

regularity at the rate of 0.85 dB/1000 pounds of th_'ust at the high

tip speeds (650 fps) and drops to 0.3 dB/1000 pounds of thrust at

the high tip speeds (900 fps). The higher harmonics display signif-

icantly more scatter as well as increase at a lower rate: the
!

slopes at the equivalent tip speeds being 0.5 dB/1000 pounds at

V t = 650, and 0.2 _B/1000 pounds at V+ = 900. The scatter in the _

higher harmonics appeazs to be typical of rotor data and apparently,

results from the ambient condition effects such as wind gusts which

affect the higher harmonic airloading. Additional data on the
},

_ effect of thrust on noise may be found in the Appe_,"x.
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4 Blade Tip _hape%

A wide variety of tip shapes have been applied to rotor

blades to reduce noise. However, these attempts have met with

minimal success in reducing noise below that produced by a

standazd squa._.erip. Trapezoidal and square tips appear to be

the two most common nonstandard shapes. A test of full-scale

trapezoidal tips (Ref. i0) resulted in a reduction of broadband

or 'vortex' noise by approximately 7 dB compared with a square

tip at low thrust levels, but at normal thrusts, the improvement

was less impressive.

Other investigations have shown the square tip to exhibit

a sma)l advantage over the trapezoidal one (see Pollard and

(
Leverton, Ref. II), but either of these tips appears to generate

lower broadband noise than almost any other configuration evaluated•

However, the latter test was conducted on a 10-foot diameter rotor

at 8" collective pitch and for a V t no greater than 367 fps. It

appears, hence, that tip shape does exhibit some control over

broadband noise, but has little influence on the rotational noise

established by the basic airloading on the blade.

Blade Planform

With the exception of tip speed, number of blades and thrust

level, all other noise control techniques which can be incorporated

in the rotor system appear to have only secondary effects on rota-

tional noise. The influence of blade planform on rotor noise for

25
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example, was investigated by Boeing-Vertol on a whirl tower

during two test programs. For one program, a set of blades was

constructed with constant chord from the cutout to the 59 per-

cent radius, and a 3:1 linear taper from 59 percent radius to the

tip was incorporated. A NACA 0012 airfoil was maintained for the

entire blade. The noise produced by these blades was compared to

standard 0012 CH-47A blades. Plan views of these blades are shown

in Figure 2-11.

Noise spectra from this test are illustrated in Figures 2-12

and ?-13. From these figures, it can be seen that little or no

change in amplitude in the very low harmonics results from blade

planform and corresponding solidity modifications. On the other hand,

at 722 fps, the broadband noise of the tapered blade was constantly

higher than for the reference blade and this probably resulted from .-

the higher collectives required to achieve the same thrust.

In a second program, another experimental blade (designated

the Advanced Geometry Blade (AGB)) was designed to demonstrate the

practicality o£ advanced composite materials. It included both

spanwise airfoil variation as well as planform taper. The airfoil

section varied linearly from a V23012 at the cutout to a V23010 at

the 70 percent radius, and then to a 13006 at the tip. The planform

geometry also is illustrated in Figure 2-11. Although the effects

of variation of airfoil sections and planform geometry cannot be

separated, a noise comparison of this blade with the CH-47B blade

-f
is nevertheless interesting. The AGB spectra are compared to those

,_ 26.
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CH-47A CH-47C AGB TAPERED

AIRFOIL 0012 23010-1.58 VARIES (SEE SKETCH) 0012

RADIUS 29.5 FT 30 FT 31 FT 30 FT

CHORD, 23" 25.25" VARIES VARIES

TWIST -9.0 ° -9,147 ° -6 ° -9.0 °

CUTOUT 5.7 FT 5.8 FT 5.7 FT

SOLIDITY .062 .067 .069 .0427

ROTOR CENTEP.LINE ....

j J .167 c = 10.6"' r/R
C= 23"

.19 --

.325 V23012-
c = 37.32"

(

t

.67 C = 23" i
.70 -- V23010-

1.58

---" -- 1.0q -- V13006- 1.00 C = 7.66"
0.7

;' C = 31.05"

,_ FIGURE 2-ii BLADE DESIGNS
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of the standard 23010 CH-47B rotor in Figures 2-14 through 2-16.

There is no conclusive advantage for either blade. At a thrust

of 9000 pounds and tip speed of 750 fps, the standard blade

spectrum is approximately i0 dB higher at frequencies of about

30 cps. However, the standard blade has a lower spectrum than

the AGB at a tip speed of 650 fps, and shows little difference

at higher thrusts at 750 fps.

Note again that blade comparisons at the same tip speed and

thrust show very similar sound pressure levels for the low har-

monics. Differences in the spectra appear only in the high

harmonics and in broadband noise. For the AGB/CH-47B rotor com-

parison, the change in higher harmonics which results from the

blade variations is probably less significant than that due to

-)changing ambient conditions between test runs. _._

Ambient wind has a substantial effect on the noise produced

by a rotor (Ref. 12) and this is one reason why whirl tower mea-

surements frequently result in data scatter of as much as 6 dB

for repeated points. Consequently, the effects of such blade

desggn parameters as planform and airfoil section (which represent

second-order influences) are frequently within the scatter of

repeated test points and thus, are difficult to accurately measure.

m With the limited amount of data available on the noise of

rotors with various planform, radii or airfoil sections, there

.L

is no strong evidence to recommend one configuration over another.

" _ Furthermore, it is also clear that a particular blade is not

0
30.
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consistently better or worse than any other in terms of its

acoustic spect m. Based on this evidence, it appe=_s that

a rotor should be designed for its optimum pe£formance at the

lowest possible tip speed.

Airfoil Section

The airfoil sections typically used for rotor blades have

little effect on the noise generated b_ the blades at local Mach

numbers below 0.85. Above this, aicfoil thickness becomes

important and the inception of compressibility effects produce

an undesirable impulsive noise. Below M = 0._ , spanwise air-

loading determines the pressure ampl_tude _luctuation of _ passing

blade. Wnveforms of different airfoils sometimes display diffe:-

ent time-history characteristics, but there is little or no chan%¢

in the audible chara.teristic.

Figure 2-17 con,pares the spectrum of a mode] with V23CI0-1.58

airfoil sections with another made up of VR-7 sections inboar_ and

VR-8 sections outboard of 85 percent R. (The VR-7 and VR-8 are

i "high-lift" airfoils developed at Vertol for application to the
HLH-ATC rotor). There is no significant difference _ver the entire

frequency range at the thrust levels tested, which are al _ below

stall.

Figures 2-1_ through 2-20 provide a c_mpari_ n between the

symmetrical 0012 airfoil incDrporated in CH-47A rotors and the

cambered V23010-1.58 used in the CH-47B and C. These data were

34.
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( obtained from whirl tower tests under the same conditions for

each set of blades. At the lower tip speed tested (650 fps),

the V23010 tends to have a lower SPL, but the reverse is true at

850 fps.

At higher thrusts and/or blade tip speeds, the airfoil section

has two significant effects not apparent in the test data described

above. One is related to the airfoil stall inception point. A

section with the greater stall inception angle would delay the

noise increase which accompanies blade stall. The importance of

this can be seen from Figure 2-21, taken from Ref. 13, which com-

pares a stalled with an unstalled propeller. The stalled propeller

spectrum is approximately 5 dB greater at the mid and high fre-
I

quencies, of the stalled propeller is lower.
although Vt

Another effect is the reduction of "Mach banq" in the transi-

tional Mach number range by the use of thin airfoils. Figure 2-22,

from Ref. 4 depicts the advantage of the 8-percent thick VR-7

airfoil over the V23010 at high Mach numbers. At M = .92, the

difference is 3 dB.

It may be concluded, hence, that ver_ limited control over

noise may be exercised by airfoils below the transonic and stall

regions since, in those regimes, the effect which the airfoil may

produce is not readily discernible to the listener. It is only

when the local velocity is greater than M = 0.85 or when blade stall

is approached, that airfoil characteristics become effective in

noise control.

39.
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Blade Twist

Blades with large spanwise twists such as those of tilting ""

rotors and propellers have lower spanwise blade loading3 near

the tip than flat blades and display, for the same thrust and tip

speed, reduced noise levels when compared to helicopter rotors.

Results of a 6-foot diameter model rotor test of two heli-

copter rotors with different twist are depicted in Figure 2-23.

The Option I rotor incorporated a -9 ° linear aerodynamic twist;

the Option II had a -7.65 ° linear twist from the root cutout to

the 85 percent radius station which increased linearly to -13 °

at the tip. The Option II configuration is approximately 2 dB

quieter at the lower thrust level (CT/O = .07), but at higher

thrusts, there is no measurable difference. _

The effect of twist on near-field noise of the Boeing-Vertol

160 tilt-rotor is illustrated in Figure 2-24. (This data was

measured on the ASD indoor propeller whirl rig; no free-field

correction is available). An increase of twist resulted in a

decrease in noise at tip speeds of 550 and 750 fps, the decrease

being more apparent at the lower collective pitch values. At 900

fps, the 41 ° twist maintains a significant advantage at the lower

collective pitch only.

Although the blade twists of Figure 2-24 are too great for

helicopter rotors, they are of the magnitude being considered

for tilt-rotor aircraft. Examining the plot of I0 ° collective

0
:': 42.
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13 FT ROTOR STATIC WHIRL UNCORRECTED FOR REFLECTION



and tip speed of 750 fps, design tip speed of the Model 222,

it is seen that a difference in twist has little effect on the

lower four harmonics (first harmonic frequency = 55Hz), but can

have a significant effect on the higher harmonics. The 41 °

twist rotor, for example, shows sound pressure level 3-5dB lower

than that with a 36 ° twist over the frequency range of 400-800 Hz.

Therefore, while not affecting the overall sound pressure level,

increased twist could appreciably lower the perceived noise level

of a rotor with uniform flow.

Other Noise Reduction Techniques

Some research is currently underway in the areas of differen-

tial azimuth spacing between blades in the same rotor. Although

the results are not definitive at this time, it appears that the

overall sound levels generated by rotors with different blade

spacings remain constant, with harmonic levels varying for each

configuration. For example, a four-bladed rotor with equal spacing

between blades displays a strong harmonic at four times the funda-

mental rotational speed. As the Dlade spacing approaches an M

configuration, the harmonic frequency becomes associated with

!I two times rotational speed. This changes the subjective quality

of the sound but does not affect the amplitude of the waveform.

Other devices for reducing noise such as serrated leadingi,
edges for airfoils have demonstrated only limited success in spe-

'_ cific frequency ranges an4 at low velocities. However, they have

(
I_ not contributed to significant reductions in the range of Reynolds

_ number where rotors typically operate.

!
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Expanding the tip vortex by additional fluid mass injected

into the core region is currently being investigated and these

tests show promise of substantial velocity reductions in rota-

tional velocities of the core fluid. Full-scale evaluation of

this concept will be conducted on the NASA Langley Whirl Tower

in 1973.

III. TURBOSHAFT ENGINE NOISE

There are four sources of turboshaft engine noise: (i)

compressor, (2) combustion, (3) turbine, and (4) exhaust jet.

The noise emitted from the engine inlet is primarily due to the

compressor, while that coming from the exhaust pipe is a combina-

tion of combustion, turbine and jet noise. Engine noise has a

-)
directivity pattern at the inlet and exhaust originating from ._

the above four sources. Typically, the maximum acoustic output

of a front-drive turboshaft engine occurs at 30 ° from the front

of the engine for inlet and at 160 ° for exhaust. This directivity

pattern changes, to a small extent, with power setting because the

relative magnitude of the acoustic emissions from the sources are

changing.

Using the trends for uninstalled engine noise shown in Figure

3-1, it is obvious that the design objective of minimization of

installed power also produces a quieter aircraft.

I

0
46.

I

1973023205-053



[ I II _ I

(

J m

1ON . ..

i Zl GE T_4SIKORSKY

! AkO _, r
GARRETT GENERAL _ -

O 1955 ELECTRIC
95 -

LEVEL 90 ..... GARRErT _ L _

AT eO_,_'_ 1967.,'O_i'r58.SIKORSKY

500 FT __,_L' / "_J". _9_9_ I _ _ i
_" GARRETT / /,-,,- I" A GARRETT

85 - .,,,,'_1964/._o :" 1968

_ SUPPRESSED
0 1959 ]80

70 I I I II1 I I . I I I I I11 , I I I I 11 !11 I 1 1 o-
30 50 100 200 500 1000 2_,"n 5000 10,000 .'q),00040,00_

HORSEPOWER

F_CURF SUMMARY CURVE -

)_._.. BARE "_,- OSHAFT ENGiNF, HOISE i_

g, .-

%

7, .3

= r

]973023205-054



Figure 3-2 shows the sound pressure level spectra in .oveL

of the Model 222 rotor and Lycoming T53-LI3 engine inlet and

exhaust. The maximum inlet noise intensity occurs at 30 ° azi-

muth, 500 feet radially and 12 ° below the aircraft. The engine

inlet noise, as shown on this figure is lower than the rotor

spectrum level over most ot the frequency range. The high fre-
R

- quency spike occuring in the 12,500 Hz one-third octave band is

caused b_ fundamental blade passage frequen_y of the _irst stage

of the engire compressor.

Since the engine inlet only exceeds the rotor spectrum at

low frequencies (less than 160 Hz one-third octave band), and at

high frequencies (12,500 Ez one-third octave b_nd), the aircraft

perceived noise ]eve] (95.0 PNdB) does 1_ot differ significantly

from that of the rotors alone (93.6 PNdB). _

The exhaust spectrum sheen on Figure 3-2 i_ lower than the

inlet spectrum. Thus, the exhaush is less of a factor in the air-

craft perceived noise and overall sound pressure levels th;_ the

engine inlet-. This is due to the relatively low exit and the

resulting jet mixing velocities.

If the rotor acoustic s_/nature (either OASPL or P_[L) is

significantly reduced, then further reduction of the aircraft

acoustic signature may requ±re some treatment of the engine

installation. TLe two engine inlets can be treated by applic'a-

tion of a sound absorptive lining to the inner surfaces. The

typi_l attenuation characteristics of these linin_js are shcwn
I

_ in Figure 3-3 (Ref. 14). _ _

i 48.
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FIGURE 3-3 PARAMETERS FOR TYPICAL ATTENUA-

TION SPECTRUM

AS can be seen from this figure, the sound attenuation

of these linings are frequency sensitive. Therefore, to obtain

an effective inlet lining, the frequency bandwidth in the engine _

inlet spectra requiring the most attenuation in dE and a lining

configuration giving an optimum bandwidth match are selected.
m

Designing a lining having this optimum bandwidth match can be

accomplished by two different methods: one is multiple lining

layers having different attenuation spectra and peak attenuation

frequencies (Figure 3-4) and the other is a longitudinal series of

linings with differing properties either in parallel or in series i

as shown in Figure 3-5. I

These attenuation characteristics are a strong function of

the parameters shown in Figure 3-6. The lining geometry parameter i

length/height (L/H) is changed to obtain the proper attenuation

over a specified frequency range.once the liner material and con-

0figuration have been selected.

50.
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IMPORTANT PARAMETERS: fH/c = HfA, L/H, M, WALL IMPEDANCE,
INITIAL SOUND PRESSUREPROFILE

FIGURE 3-6 SUPPRESSION PAPJLMETERS

To determine the proper geometry, a curve such as shown in

Figure 3-7 (Ref. 14) is used for a particular lining material.

•Refer to Appendix B for a sample calculation of the geometry of an _

absorptive lining installed in the engine inlets of the Model 222.
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: FIGURE 3-7 MACH NUMBER EFFECT ON PEAK ATTENUATION
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,_ The exhaust noise presents no problems for perceived noise

_ level or overa]l sound prrssure level, because the exhaust noise

is more than 10 dB below that of the rotor throughout the major

portion of the spectrum. If treatment of the exhaust noise is

desired, a broadband absorptive muffler may be used.

There may also be a different approach to changing the engine

acoustic signature other than the previously discussed treatment

of the engine installation. The engine manufacturer could under-

take a development program for redesign of the internal components

of the engine to reduce the inlet and exhaust noise. This would

result in changing the rotor/stator spacing of the compressor

and/or redesign combustors to reduce the combustion rumble. Re-

design of the engine components is an expensive process compared

to sound suppression treatment of the aircraft engine installation.

However, this initial expense would be somewhat offset by a reduc-

tion in aircraft operating _osts since weight penalties for engine

component redesign should not be as severe as those for the modi-

fization of the engine installation.

i

IV. ROTOR DESIGN }'RAMETER TRADZOFFS

General Discussion

This section of the report deals with one aspect of the design

I problem_ defining tradeoffs in performance and weight associated

i; with the noise reduction. This is done by investigating the sensi-

. tivity 9f the far-field noise levels as well as performance and

- 53.
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weight to variations of the following selected design parameters. r _

The acoustic impcrtanc_ of these parameters have been identified ._

in Section II.

(I) tip speed

(2) rotor solidity ratio

(3) number of blades per rotor of constant area per blade

(4) number of blades per rotor of constant total blade area

(5) hover disc loading.

It should be realized that although this study is directed

toward basically low disc-loading rotary-wnng aircraft, the results

may i t be directly applicable to such other low disc-loading con-

figurations as helicopters. This is due to unique roto_ design

criteria for a compromise of performance optimization between hover "_
_r

and forward flight.

Sensitivity Study Approach

The establishment of a mis['on profile, aircraft co_on per-

formance _£ound rules, drag trends, and prop-rotor hovering cruise

performance are nec, sary for a comprehensive and systematic study.

Aircraft performance, weight and acoustic signature resulting from

changing rotor design _arameters can now be compared on a common

i
basis.

A20ustiq Performance Design Study Mission. - The Boeing-Vertol

Model 222 will be presented as a transport aircraft in this report.

The mission _hown in Figure 4-1 is derived from the above approach O

54.
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and thus, is not meant to show its military capability. In this

[
section, the gross weight of the aircraft will not change from _.

its current 12,000 pounds. Therefore, the payload will vary as

the Model 222 is affected by the parameter changes.

Common Performance Ground Rules. - According to the intent of

this study, the Boeing Vertol Model 222, as defined in Ref. i, is

selected as the baseline aircraft. All of the aircraft resulting

from the modification of the baseline model should fulfill the

following requirements:

i. All aircraft shall have a gross weight of 12,000 pounds.

2. Engine maximum rating will be equal to hover power required

at a thrust-to-weight ratio= i, IGE Sea Level Standard Day,

with one engine inoperative. 9

3. Transmission torque limit is to be _ized for rotor hover

rpm and one engine maximum power at 2,500 feet, 93°F,

static condition.

The above requirements do not necessarily result in a specific

maximum level flight speed of the Model 222 such as 300 knots at

10,000 feet, Standard Day, at hover rpm. Instead, the maximum

level flight speed will vary from changes in drag, transmission

torque limit and propulsive efficiency.

I"

The manufacturer's engine fuel flow shall be increased by 5

percent in accordan_"¢ with MIL C-5011A.

0
i 56.
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" The equivalent flat plate trend shown in Figure 4-2 was
f_

_ _ derived from the "Minimum Parasite Drag Breakdown" of the Model

222 (Ref. I, Table 7, p. 126). The parasite drag is presented

as a function of wing area only, as moment arms and t_il volume

coefficients are assumed constant.

This study investigates the influence c_ the 5 rotor _esign

parameters.

i. Hover tip speed, Vth, at constant CT/O , B, W/A

2. Rotor solidity ratio, u, at constant Vth , B, W/A

3. Number of blades per rotor, B, at constant o/B, Vth , W/A

4. Number of blades per rotor, B, at constant o, vth , W/A

5. Hover disc loading, W/A, at constant CT/O J Vth, B.

To isolate the effects of each parameter, sensitivity was

studied by changing one parameter while the others remained constant.

Two off-baseline values for the five parameters were selected, with

the baseline providing the third point. In this way, the sensitivity

curve was defined in each case. The off-baseline values were

expected to reduce the acoustic signature of the aircraft hovering

out-of-ground effect.

The wing chord and thickness do not change and thus, wing area

becomes a function of rotor diameter, since fuselage width and rotor-

' fuselage clearance remain constant. This approach is acceptable,

since there is no need to maintain partlcular ,ding chord-to-
i,

i; diameter or rotor area-to-wing area ratios. For tilting-rotor

• _ ( aircraft, the wing does not have to support a significant portion

57.
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. of the aircraft weight in low speed (near-hovering) flight.

(. This permits the designer to optimize the wing geometry for

airplane configuration cruise flight, while complying with the

following constraints: the need for placing the rotors at the

wing tips and to provide sufficient wing thickness to support

the aircraft in the helicopter mode.

The rotor hover and cruise performance trends were established

by the following calculation procedure. At each condition, a per-

formance evaluation for a change in twist was calculated using the

Boeing Rotor Performance Coi_puter Program. This computer program

uses a vortex wake analysis plus an empirical slipstream correc-

tion factor (see Ref. 15). The procedure outlined below assured

that all rotor designs would have the same design tradeoff between

hover and cruise performance. The original Model 222 blade twi_st

increment varying linearly along the blade span was added. The

manner in which the optimum twist was obtained is illustrated in

the sketch below. _

OPTIMUM TWIST

MAXIMUM FIGURE i
,OF MERIT DESIGN POINT !

,• ;_i.. .,_.....AO:E" " MAXIMUM
• -_ FM , ' CRUISE
i J _ _ EFFICIENCY

• - j DESIGN
,,o, ETC.

r_ k
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The other blade characteristics such as blade chord, thick-

ness ratio and airfoil section distribution were kept the same _

as the baseline rotor (Ref. i). Also, the rotor design eperating

conditions were selected to be the same as those fur the Model 222

aircraft; i.e., hover at 2500 feet, 93°F, 12,0n0 pounds gross

weight and thrust-to-weight equal to 1.05; and cluise at 300 knots,

!0,000 feet standard day. Cruise thrust was based on the Model 222

drag in the cruise condition, while cruise tip speed was assumed

to be 70 percent of the tip speed of the modified aircraft in

hover.

The above procedure avoided excessive rotor design iterations

which would have been necessary to define the optimum hover-cruise

compromise twist. Thus, the rotor parameters in the s@nsitivity

matrix were defined. Cruise performance was calculated using the

same Boeing rotor performance computer program.

Discussion of Results of Tilt-Rotor Sensitivity

to the Five Design Parameters

Structural Flight Enve]ope Limits. - The weight empty of the

aircraft in this section will be dependent on the following struc-

tural limits which are the same as for the baselin_ aircraft.

I. VMO = $50 knots, EAS

Vdi = 350 knots, EAS_" ve

3. MMO = .569

4. Wing Design Maneuver Load Factor = 3g.

60.
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In general, when the parameters were changed in a manner

indicating an improvement in acoustic characteristics, the

result reduced aircraft performance and increased its weight

empty. The exceptions to this generalization were the following

parameter variations: (i) rotor hover disc looding, and (2)

number of blades with constant rotor solidity. The aircraft

desian points establishing the sensitivity lines have their

s_nmary weight statements and configurations tabulated in

Appendix D.

Rotor Performance. - T_ sensitivity of the rotor performance

to the variation of the design parameters is shown in Figure 4-3

for hover and Figure 4-4 for cruise performance. The changes in

rotor perf _mance shown in these figures result from the following:

(. increased profile power for changes in rotor solidity whether or

not the number of blades were changed from the baseline; and twist,

changing the L/D of the rotor blade by a_tering the spanwise lift

distribution for tip speed and hover disc loading.

Aircraft Performance. - Figures 4-5 and 4-6 show the rate of

" change of shaft horsepower required to hover out-of-ground effect

at a T/W = 1.05 and 2500 feet altitude, 93°F, with respect tc the s I

i five design parameters. '

k Tip speed variation at a constant CT/a causes the hover power ,

required to increase as V t is reduced. This is due to the compro-

_ _ mise in spanwise lift distribution necessary to maintain the desired

li.
" Ci t
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Figure-of-Merit/Cruise Propulsive Efficier y trade line of 1:4.

}
The need to change total twist is explained by the use of the _w

following sketch of generalized prop-rotor performance.

_' is sketch represents generalized performance for small

chan% in rotor solidity, while the following characheristics

are constant: (a) airfoil section, (b) twist distribution, and

(c) planform. A hover tip speed reduction at constant CT/O re-

sulting in a reduced cruise Vt(.?Vth) causes the cruise design

point to move horizontally (arrow in chart) as design cruise

speed is fixed. The degraded cruise performance is caused by an

increased inflow ratio altering the angles of attack along _ne

blade; therefore, changing the lift distribution. This indicates

i
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a deviation from the hover-cruise performance trade slope corre-
spondin_ to a hover payload/mission fuel tradeoff. Thus, the

twist must be altered to maintain the study's prop-rotor performance

ground rules. If the rotor wer_ to be designed for hover only, the

twist could have been selected to maximize the Figure of Merit. How-

ever, cruise efficiency at the design cruise speed would be so poor

that unacceptable aircraft performance would result.

Increasing rotor blade solidity ratio at a constant tip

speed, either with a constant or increasing number of blades per

rotor, requires a larger hover power caused by increasing rotor

profile power in direct proportion to solidity (Figures 4-5 and

4-6).

" The two parameters reducing the hover power required are:

increasing the number of blades per rotor at constant solidity,

and reduction of disc loading at constant CT/_. When the number i

of blades is increased, a small change occurs [-8 HP/blade) which

is less than 1 percent of the total power required to hover. This

can be attributed to a change in the blade chord-to-radius ratio

and its associated induced power because of the improved tip loss

factor.

With respect to disc loading, the hover power required

changes at a rate of 47.5 HP p_r ib/ft 2 as the induced power

becomes smaller. The induced power has the following relation-

< ship to disc loading:

1

_ 67.
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w 'A -
 sPindh= ss0/ indh

where kindh is the nonuniferm inflow and tip _nduced power loss

factor.

_HHPindh W (T %'21 kindh + /--W-" 8kindh I_(W/A) - $5; ) 2 ¢20(W/A) _'_ _(W/A)-,

A _urther discussion of the calculation of hovering perform-

ance is crntained in Appendix C.

In this study, payload is calculated on the basis of mission

fuel required fox I00 n.mi. radius and a takeoff gross weight. The

sensitivity of payload to changes in the five design parameters is

shown in Figures 4-7 through 4-11. From Figure 4-7, it appears that
,.'%

payload i_ directly proportional " tip speed. The mission fuel is _

increased because of reduced cruise efficie, y (Figure 4-4) and

Figure-of-Merit (Figure 4-3). Weight empty is also growing (Table

I, Appendix D). The same factors result in the inverse proportion

of payload to rotor solidity whether payload changes as a result of

the varying number of blades per rotor, or the blade area at the

same number of blades.

Changing the number of blades at constant solidity has no

significant impact on mission payload. Increasing the blade number

from 3 to 4 causes the payload to grow by 26 pounds, or 2 percent of

the original payload; i.e., .22 percent of the gross weight. Another

: increa3e from 4 to 5 blades decreases the payload by 4 pounds, or

• .31 percent of the paylo&d. For details, see Table I, Appendix D. 52
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From Figures 4-11 and 4-15, it can be seen that the variation

of payload with disc loading reaches a maximum at (W/A) = 9 ibs/ .,

sq ft. This maximum is caused by a decrease and then an increase

in weight empty while mission fuel is becoming smaller in a

linear manner.

The hover rpm transmission limit determines the maximum level

flight speed of the Boeing Vertol Model 222 at 10,000 feet standard

day (Figur_ 63, Ref. i). This is due to the fact that the engine

power available at cruise speed, 10,000 feet Standard Day is

greater than the power that can be safely input for extended

periods of time to the gearbox at the hover rpm. Even though a

reduced tip speed in cruise increases the propulsive efficiency

of the prop-rotor because of a better rotor blade L/D, the trans-

mission power limit at cruise rpm (70 percent of hover rpm) j

becomes lower. The transmission limit is set by the torque trans-

mitted and thus, for constant torque, as rpm is reduced the power

transmitted becomes smaller (30 percent). The corresponding
-=

improvement in propulsive efficiency resulting from the lower tip

speed is approximately 20 percentage points. However, this does

not overcome the 30 percent loss of power available. Therefore, L

the maximum propulsive power available occurs at the hover tip

| speed.

I

Figures 4-12 and 4.-13 show the impact of the 5 design param-

I
• eters on the following characteristics which influence maximum

74.
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NOTES: 1. GW = 12,00(; LB 2. 10,000 FT STANDARD DAY

3. ROTOP DIAMETER = 26 _T

3_o , I I I 320 ' i---T-IMODEU 222 BASELINE
HOVER RPM XMSN

HOVER RPM XMSN LIMIT SPEED

300,-,M,-,sT,:oI. =oNODEL 222 BASELINEO
Z t I i

280 % ,-. 280 !
e_

in

¢- 260 -- 260

D - - .99 BEST RANGE -cr - .99 BEST RANGE
_" SPEED SPEED

,,,o Jl +.
I it

I I 'i

o/B = .0385 o = .1153

220 - W/A 11.3 LB/FT 2 - -- 220 " W/A i 1.3 LB/F 2
HOVER VTI P= 750 FPS HOVER VTI P= 750 FPS

I

200 ----- 26 _ [

<> <-i> •
2 3 4 5 6 2 3 4 5 6

NUMBER OF BLADES WITH NUMBER OF L;L**OESWITH
CONSTANT AREA PER BLADE CONSTANT TOTAL AREA

FIGURE 4-13 VARIATION OF NO. OF BLADES WITh .99 BFST RANGE
SPEED AND TRANSMISSION LIMIT SPEED
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level flight speed: (a) equivalent flat plate drag, (b) trans-

. missicn power limit (determined from co_on performance ground

rules), and (c) propulsive efficiency. The equivalent flat

plate drag and wing span are constant, but the transmission

limit undergoes small changes with the following four parameters

(Table 2, Appendix D):

• tip spe_d

b. rotor sclidity

c. number of blades of constant area per blade

d. n'mber of blades of constant total area.

However, their influence on the Vma x is considerable due to the

variation in propulsive efficiency.

" Hover rp_ trans: ission limit speed is directly proportional to

disc loading (Figure 4-12). This results from the fact that common

performance ground rules state that the transmission limit is

determined by h. ver power required. As show_n previously, hover

power becomes smaller as disc loading decreases. Parasite drag

increases as a function of the increasing wing area which, in turn,

is inversely proportional to the square root of the disc loading.

The _ging geometry changes because the chord is constant while the

wing span varies so that the win a tip rotors maintain a constant

fuqelage clearance. Both the transmission power limit and parasite :_

_ drag deviations from the base] ine values (Table 2, Appendix D) have /

_o a greater influence on the Vma x level than changes of propulsive

efficiency and induced drag.

( ,
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The .99 best range speed is dependent on engine fuel flow

which, in turn, is a function of sfc and power. The latter depends _,
|

on the tilt-rotor's speed and equivalent lift-to-drag ratio (L/De).
!

The specific range performance of the Model 222 aircraft is shown i

- in Figure 70 of Ref. i. The changes from the baseline performance

of .99 best range speed are shown _n Figures 4-12 and 4-13.

The performance sensitivity of the .99 best range speed to all

of the design parameters except disc loading results primarily from

variations of propulsive efficiency and installed power (Table 2,

Appendix D). Therefore, the magnitude of the changes in the .99

best _;ange speed from the baseline level, as caused by varying tip

speed, rotor solidity at constant blade number, and increased number

of blades are relatively small. The largest change (12 knots) from

the baseline performance occurs when hover tip speed is reduced from

750 fps to 550 fps.

However, .99 best range sp_ed is a very strong function of

disc lo_ding as shown in Figure 4-12. This is due to wing geometry

changes as a function of disc loading. The wing loading and span

loading are directly proportional and parasite drag J_ inversely

proportional to disc loading. These factors aetermine the lift/drag

ratio of an aircraft and in turn, the best range speed. The above

factors affect the maximum L/D speed as sht_n below:

wf = gross weight�re equivalent flat _Zate area
Zoading _n Zb/ft"

wb = gro_s weight/b 2 span loadin_ _n lb/ft 2 !

78.
i
i
!

I

1973023205-085



Vop t = (4wfu_ ) /

Aircraft Weight Sensitivity. - Sensitivity of weight empty

to the five design parameters are shown in Figures 4-14 through

4-16. In addition, the summary weight statements for all the

- aircraft used to define the sensitivity trends are in Table I,

Appendix D. The weights of the baseline aircraft subsystems were

either determined from vendor information, statistical trends, or

analysis of engineering drawings. The variation of weight empty

from that of the baseline is determined from the weight tre_ds

created for the VASCOMP computer program (R6f. 16). These trends

are substantiated in a separate document.

Except for disc loading and number of blades with constant

rotor solidity, large changes in weight empty occurred as a func-

tion of the design parameter variation.

In the case of disc loading variation, the trend indicated

that _ weak minimum for weight empty occurs at W/A _ 9 lbs/sq.ft.

(Figure 4-15). The unusual sensitivity relationship of weight

empty to disc loading is caused by the variation of the drive system

I

weight, which is a function of the torque limit calculated in the !

following way:

Torque - (HP x _50 x R)/V t . !

: So, for the decreasing disc loading at a constant tip speed 1
used in this study, the rotor rai_ius i_ increasing but the horse-

i. { power limit decreases r:.pidly, then levels off. This causes the I

I
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FiCURE 4-14 EFFECT OF HOVER TIP SPEED AND ROTOR SOLIDITY ,_ .

RATIO ON WEIGHT OF TILT-ROTOR SUBSYS'fEMS _ 1
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ON WEIGHT OF TILT-ROTOR SUBSYSTEMS

I

1973023205-089



transmission weight trend shown in Figure 4-15. The importance
of this trend is that the increasing weight of the wing and

tail group is balanced by the declining weight of the 1otor

system flight controls and engines (Table I, Appendix D).

• With respect to the variation in the number of blades at

constant sDlidity, the weight empty remains almost constant

(Figure 4-15). This is due to the fact that when the nu_ er of

blades increase_ while keeping rotor solidity constant, the

weights of the rotor and flight control systems are increasing at

a faster rate than the rate at which the wing group, engines and

drive system weights are declining. However, the magnitude of

the variation, ranging from -.208 to .0584 percent of gross weight

per blade, is so small that one could neglect it and say that

there was no change in weight empty as a function of number of

blades at constant rotor solidity.

Weight empty is inversely relat_d to hever tip speed. This

is caused by the increasing weight of the engines, £otor system,

drive system and flight controls which is only partially offset

by a decrease in wing weight due to increased weight relief of wing

bending moments.

Increasing rotor solidity for either constant or varying

number of blades _er rotor causes _,eight empty to grow. The rate i

of increase in this case is a result of a large growth in rotor

system and fllght control system weight and to a smaller extent
2

(_ due to an increase in engine and drive system weight. As in the
-!

83.
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previous case, the component weight increases have been somewhat

offset by a decrease in wing group weight. Increasing blade number

with constant area per blade increases the weight empty by 395 ..

pounds for each additional blade over three.

The airframe weight shown in Figures 4-14 through 4-16 is that

defined in the AMPR (Aircraft Manufacturers Planning Report) which

is one section of the Cost Information Report.

Fa_-Field Acoustic Signature. - The acoustic signature discussed

in this s. tion occurs under the following conditions:

a. hover OGE

b. noise source (rotors) i00 feet above and 500 feet away

from the observer

c. sea level, standard day.

The prediction method used it. this section for rotor acoustic

signatur_ is based on that used in a previous Boeing-Vertol study
%

(Ref. 2). However, the rotational noise loading law used in the

above study has been modified by wind-tunnel test results (Ref. 17).

The hew loading law is shown in Figure 4-17. A discussion of the

accuracy of the theoretical tilt-rGtor acoustic model is contained

in Appendix E.

The tradeoff slope or senaitivity of overall sound prussure

level to the variation of the 5" design parameters is shown in Figures

4-18 and 4-19. The first harmonic of blade passage frequency is a
Ii

{ component of the acoustic signature determl _ng, to a large extent,

the overall sound pressure level. The magnit_:.de of this majort

component is a function of: L_ i
L

81. ,_
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NUMBER OF BLADES NUMBER OF BLADES WITH -',
OF CONSTANT AREA PER BLADE CONSTANT TOTAL AREA .Ih

I

i FIGURE 4-19 EFFECT OF NO. GF BLADES ON PERCEIVED _OISE
LEVEL A_D OVERALL SOUND PRESSURZ LEVEL
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(a) tip speed
(b) thrust

(c) number of blades per rotor

(d) rotor power
(e) rotor radius

(f) height and distance of source from the observer.

In this study, all acoustic aspects were investigated for con-

stant height(100 feet) and distance [500 feet). However, it should

be realized that the relative influence of power and thrust change

• with the height of the source over the observe_ for a constant

horizontal distance. The rotor power becomes a more important

factor as the observer approaches the tip path plane. By con-

_rast, the sensitivity of overall sound pressure level would not

be affected by variations in ho%er power required if the observer

was 500 feet directly beneath the rotor.

Broadband noise of the rotor accustic signature is approximately _

15-20 dB below the sound pressure level of the first harmonic of

blade passage frequency. Thus, the overall sound pressure level is

less _ensitive to variation of the broadband noise sound pressure

level than that of the first harmonic. Overall sound presJure level

shows the smallest sensitivity to the variation of rotor solidity

at a constant number of blades. Solidity varying from .1154 to .15

_J causes a .i dB decrease; then, a further increase in solidity from

.15 to .20 results in an increase of .4 dB.

The trend for tip speed reduction shown on Figure 4-18
I

! indicates that the overall seund pressure level decreases with a
, reduced tip speed, b_t at smaller increments as the tip sp_._d

I
m becomes lower.

88. _
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Increasing the number of blades per rotor either at a

constant or changing rot<_r solidity, reduced the overall sound

pressure level (Figure 4-19).

Figures 4-18 and 4-19 show the effects of the variation of

5 design parameters on perceived noise level. It can be seen

that the tip speed at constant CT/_ is the most effective parameter

for reducing the perceived noise level from that of the baseline

aircraft. A 37.5 percent reduction in tip speed decreases the pe'-

ceived nciu_ level by 6.6 PNdB. Increasing the number of blades

of constant area per blade is the second most effective parameter

for reducing noise.

The effectiveness of the tip speed reduction is due to t_e

spectrum shift to a lower frequency combined with lowering of hhe

spectrum sound pressure level. The frequency weighting of per-

ceived noise leve" requires that the broadband noise component be

weighted more than that of the rotational noise. This depends on

the magnitude of the fundamental blade passage frequency. There-

fore, as the rotor becomes larger in diameter at a constant tip

speed, the rpm drops, and thus, the dependence of PNL on the broad-

i band component grows.

I The rel_tive tolerances of the tradeoffs discussed in this

l s_ction are included in Appendix F.

89.

v;

1973023205-096



Additional Design Change. - A promislng desig_ parameter

other than those analyzed in the previous sections i_ to be

selected for study. The se__ction process re_uize_ the _t_dy

and comparison of unusu_l or new rotor noise reduction design

concepts, and determination of the most p_:omising.

The special devices studied fer _us_iDle irclusion in this

report were:

i. Vertical rotor blade spacing in various planes of rota-

tion and unequal blade azimuZh spacing.

2. Tip blowing (linear mass in_ectien causing the rapid tip

vortex decay).

3. Owl Wing (1_ading edge serrations to favorabi} affect "_

the boundary layer).

4. Special blade tips (discussed in Section II).

' The investigation led to the following information bout the

above-listed concepts. There are sonle _ndlc_tions that a more

I favorable tip vortex separation can be achieved by vertical an_

I unequal azimuth blade spacing (Ref. _8). Hewever, no acoustic

test data has been published cn these concept_ as ..f thi_ writing.

r

John Ward, Principle Investigator, NASA Langley Research Center,
J

_ indicated that recent acoustic measurements on a sma" _ ,_ model

i d_d not indicate signiZica,t changes from the acoustic signature

of a conventional arr<ncemen_.

4
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Test data on tip blowing has been published (Ref. 19), but :

the test results refer to a fixed-wing at relatively low tunnel i

speeds. The tests were performed primarily to determine the tip

vortex behavio" and very little acoustic information was presented, i

This concept of tip blowing is scheduled to be tested on a full-

scal_ rotor (UH-I) at Langley Research Center later in 1973.

The owl w_ng showed very little noise reduction potential at

conventional rotor Reynolds Numbers although some benefits were

derived at very low Reynolds Numbers (Ref. 20). The maximum reduc-

tion obtained was 4 dB OASPL at a very large collective pitch

setting of 18 ° on a zero twist rotor and a Reynolds Number at the

tip of 1.59 x 106 .

Tip shapes have been extensively discussed in published litera-

ture and a large amount of. test data has been taken, IIowever: when

test data from various sources (Refs i0, i!, and 13) are compared

objectively, there does not seem to be any clear-cut improvement

over the conventional square tip with a thin airfoil section,

Hence, from Lhe investigation of unconventional rotor designs, _

it may be concluded that the technical data available were not z_

sufficient to permit ranking of the devices discussed above, nor !icould an evaluation and comparison of their relative acoustic

:_ effectiveness be performed.

._.
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V. PARTIAL DERIVATIVES WITH RESPECT TO

OPE.qATIONAL AND DFSTGN PARAMETERS

J

General Remarks i
}

A linearized approach in establishing trends in performance

and/or weight tradeoffs vs noise is quite attractive, since it

would permit one to superimpose the influences of various opera-

tional and/or design parameters. In order to apply this approach,

one must know, at the point of interest, values of partial deriva-

tives of various significant quantities with respect to either

operational or design parameters. Seven tables of such derivatives

in nondimensional form, are presented in this section.

At this point, one must be cautioned that due to strong non-

linearities which may be associated with large excursions in the

parameter values, validity of trends established by the linearized

approach may be limited to the immediate neighborhood of the point

of interest. However, large design parameter excursions from the

baseline were necessary to achieve acoustically significant reduc-

tions (3dB, 3PNdB) as shown in Figures 4-18 and 4-19. One should

also realize that although the derivatives are presented in non- i

dimensional form, the values canrot be consider as general. They

were established on the basis of one particular aircraft only, and !

consequently, they must be applied with caution to other rotary-wing I

configurations and even to other tilt-wing aircraft.

D
4
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K
a_ A comparison of OASPL nondimensional derivatives between

test and prediction (Table 5-6) can be made fcr thrust and tip

speed. The test data slopes are taken from Figures 2-5 and 2-10,

and the resulting nondimensional derivatives are .28 for tip speed

and .084 for thrust. The predicted derivatives (Table 5-6) agree

fairly well with measured ones, considering that the measured SPL

of the fundamental blade passage frequency was assumed to be

directly proportional to the OASPL in the calculation of the

measured data derivatives.

93. !
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NONDIMENS IONAL VALUE

pARTIAL DERIVATIVES -------

A_IOVER SHPREQ /'_! -. 12

__P Rzq/vth

"ff_EB S_P_zql o

AHOVERSHPREQ/A_B/ -.0_? I-_ov_Rslip_/_ / o= 11s4' l
I
I

A_OVER S_PREqI___B1 .0809

"_-VER S.P Rzqt B /0/3=.0385

%OVER SHP REQ/

hHOVER SHPRER/AV__hl -.118
-AOVER SHPREQ / V_h _CTIa-.0896

_HOVER SHPEE_._/_ I .149
-_OVER SHP R_/ _"J"" "CTIO-.0896

TABLE 5-i

SENSITIVITY OF HOVER SHPRE Q @ 2500'93°F

TO DESIGN PARAMETER CRANGES

94.
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_ NONDIMENS_ ONAL

PARTIAL DERI }ATIVES VALUE

I

Bz_s/_ .o:9_ ,

.._._ oo649

A "9 9 B_SS / _- I -.0112_9"9 o/B=.0385

_.99 B_s,tZ_vt_,I .1o_
._ BEE'/ v"_lcT/o" .o89e

_. 99 BRS/(_WIA) I .4e,_
: _ B"_/ (W/A) .r,,I/o.,,.0896

TABLE 5-2

SENSITIVITY OF .99 BEST RANGE SPEED
TO DESIGN PARAMETER CHANGES

95.
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NONDIMENSIONAL VALUE ;
PARTIAL DERIVATIVES

II I I In I

ATLS / AVth
TLS / Vth -.0369

_/_ -._,,_

TLS o-. 1154

/TLS o/B=.0385

ATLS / AT 3
_L-'-'_ .-2- o. o

A_r.s2r.s/ _vthi_
.0616

Vttz CT/O-.0896

A2L_____S/ (AW/A) ._9oT£,S (W/A) CTIO =.0896

''' I I

TABLE 5-3

SENSITTVITY OF HOVER RPM TRANSMISSION LIMIT SPEED
TO DESIGN PARAMETER CHANGES

4
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\

NONDIMENSIONAL
PARTIAL DERIVATIVES VALUE

AWE /AVth
WE / Vth 0.0

' aw_/AB I -.0081_WE / B o-.1154

"_'f/'_'l o / B=. 0 38 5

wE/ 2

"W=E'/_ICT/O- .0896

AW_/r,AW.IA_] .00807_'?C/ (W/A) C_/o= .0896

TABLE 5-4

SENSITIVITY OF WEIGHT EMPTY
TO DESIGN PARAMETER CHANGES

!

(

j m
97.

1973023205-104



a
- _ i l_i

i

i NONDIMENSIONAL f ' "

PARTIAL DERIVATIVES VALUE i

-

i

APAYLOAD IAVth -.184
PAYLOAD / Vth

_PAYLOADI_ -_ 078
PAYLOAD' o

'APAYLOAD,/ BI ,oeol
P'AYL-_/"B-I o,. i154

APAYLOAD/ AB I -1. 086PAYLOAD/'B- O/B-.0385

APAYLOAD/ A2 8o4

APAYLOAD / CAW IPAYLOAD/ (W/A) -.3$?
CT/_-.0896

: TABLE 5-5

," SENSITIVITY OF MISSION PAYLOAD

TO DESIGN PARAMETER CHANGES

v

C_

98.
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NONDIMENS IONAL VALUE '
PARTIAL DERIVATIVES

• -- ,,|H

AOASPL /AVth .243
oASPL/ Vth

L_--°.A_s_-_P_L/_° -. o00721
OAb'PL / C

I0=.i154

AOASPL /AB I -. 0649
OASPL/-B- o/B=.0385

T .1038

aOASPL/aVt_I ._35
OAsPr,i Vth I

CTIO*.0896

CTIO=.0896

l

i TABLE 5-6

SENSITIVITY OF OVERALL SOUND PRESSURE LEVEL
TO DESIGN PARAMETER CHANGES

!
m

!

, (
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NONDIMENSIONAL
VALUE

PARTIAL DERIVATIVES

APNL/_ Ft h

Pr_r:'/_ .1_ ,

"_'NL/_I -.OSS_
P_L/ B IolB..0385

CT/O- .0896

CT/a-.0896

, . . ii | _ ,.ii ..,, - .

I

i TABLE 5-7SENSITIVITY OF PERCEIVED NOISE LEVEL

I TO DESIGN PARAMETER CHANGES

i00.
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VI. CONCEPTUAL DE.qlGN OF QUIET TILT-ROTOR AIPCRAFT

Approach

%his section covers the problems of reducing tP si_:_,a re

of the baseline rotor design by: (i) -i0 dB OASPL and (2) -1O

PNdB, while maintainin_ a specified payload over a radius Gf i00

n.mi. and performing the mission defined in Section IV. The

three parameters shown in Section IV to be most effective in

changing the rotor acoustic signature are: (i) number of blades

at constant solidity, (2) tip speed (Vt) at constant CT/a, and

(3) hover disc loading (W/A) at constant CT/C. When these

parameters are varied, the gross weight will change from that of

the Model 222.

(
In this section, an effort is presented of designing for a

specified noise level while pursuing the traditional design goals

of performance, flying qualities, and structural flight envelope.

Criteria

All aircraft shall carry the reference aircraft payload
|

(1298 pounds) for the design study mission as shown in Figure

4-1. One design shall have a PNL i0 PNdB lower than #hat of

the Model 222 and the other one, an OASPL i0 dB less than that

of the baseline aircraft. For convenience, the design shall

be designated throughout the rest of the report as M_.22-I0

PNdB and M222-I0 dB OASPL. The two aircraft shall have

i01. i
¢

I

1973023205-108



|

tail volume coefficients and overall fuselage dimensiens identical

to that of the Mode] 222. The engine and transmission sizing

requirements as _tated in Section IV shall be met by all aircraft.

The landing gear shall be able to withstand a vertical sink speed

of 14 fps. The study structural limits which remain the sd,,= as

for the baseline aircraft are: (i) VMO = 350 knots EAS, (2)

Vdive = 350 knots EAS, (3) MMO = .569, and (4) wing design maneuver

load fnctor of 3 g's.

The wing chord shall be a function of gross weight only. The

rotor diameter plus fuselage and rotor fuselage clearance will

determine the wing span. The wing sizing criteria stated above

is identical to that used in Section IV. The tilt-rotor has no

need to maintain a specific wing chord to rotor diameher ratio ._

as other convertible aircraft, because the wing does not contribute _

a significant portion of lift in low-speed flight. Thus, the wirq

loading may be designed for cruise only, except as limited by the

placement of the rotors at the wing tips and the requirement of

sufficient thickness to support the fuselage in near--hovering flight. _

The engine specific fuel consumption shall be increased by 5

|

percent as required in MIL-C-5011A. The engine performance shall

be scalable from that of the Lycoming T53-LI3.

The end result of the above criteria is that the two new air-

craft(M222-10 _NdB and M222-I0 dB OASPL) will be similar in external

dppearance; however, rotors and wings as well as performance char-

acteristics differ from the M222 model as defined in Ref. i.

102.
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Quiet Aircraft Select ion

The three rotor Faram(ters were varied one at a ti_: in the

direction shown in Section IV "..o b_ _,._st effrctive. The disc

loading of the baseline was reduced to one-,all its original

value in two equal steps. The hover tip speed was reduced _y

i00 fps inzrements from the baseline. Then, the above matrlx

of rotor design was repeated for 4 and 5 blades per rotor. Thus,

27 designs were evaluated. The final selection of an a_rcraft

meeting each acoustic criteria was made on the basls cf minimum

design gross weight_

The process of selecting the minimum design gross i:eight was;

facilitated by the three figures (Figures 6-i, -2 and -3) sh_winc

the variation of design gross weight as a function of hover tip

speed and disc loading (W/A) for 3, 4 and 5 blades per rotor. Also,

shown on these figures are the lines of constant PNL and _ASPL

which are i0 dB lower then that of the baseline aircraft. In Figure

6-1, however, the OASPL - i0 dB line is missing because it does r!ot

occur in the range of parameters investigated. This graphical

optimization method not only shows the minimum, but also the

parameter values _bouu the minimum, thus determining t_e penalt_

involved in a nonoptimum design.

Description of New Designs

The selected aircraft ha%_ a lower disc loadin%, a larger

number of blades per rotor, and higher design gross weight thaq

the reference model. T_2 aircraft with a reduced overall sound

103.
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L I I

MODEL 222 MODEL 222 MODEL 222
- I0 OB - I0 PNdB
OASPL,-- i i ii

ROTORGROUP Ii00 1211 1743 "_

WINGGROUP 800 1402 1416 J
,,.TAIL GROUP 213 305 361

BODY GROUP 1211" 1274 12'82
BAS 11_

SECONDARY. ,.

sECOND. -DOORS. ETC_,

-,.ALIGHTI.NG GEAR 590 62_3 737

__FL IGHT CONTROLS ' 1183 i262 1623

ENGINE SECTION 400 400 400

PROPULS. !QN GROUP (.2533) (2387) (3405)
-- ENGINES(S) 1026 718 988

AIR INDUCTION I

EXHAUST SYSTEM ..,," 7200 200 200
COOi.ING SYSTEM J

LUBRICATING SYSTEM/ ..
FUEL SYSTEM / 200 200 200

ENGINE CONTROLS t/

START,NG SYSTEM j ......

PROPELLER INST. ,.

* DR I VE SYSTEM 1107 ].269 !017

AUX. PQWER, PI_ANT t

INSTR,,, AND NAV, , 108 1..08 108 ,,

_HYDR, AND PNEU. , _"

ELECTRICAL GROUP 305 305 305

ELECTRON I CS GROUP 230 230 230 .... alF
ARMAMENT GROUP __

FURN. t_ En_,,P,, GROUP (439) (439) (439)
PERSOr,, ACCOM, 299 299 299
MISC. EOUI PMENT 63 63 63, , ,,,

ir[JRNiSH iNG S 35 _ 35 35
£k'ERG.EOUIPMENT 42 42 . 42

AIR_O_._D.,._EpE-.ICJN.G 108 108 108 _
pHOTOGRAPHIC ........

AUXILIARY GEAR 10 .. 10 10

T |MFG. V',RIAT|QN_ ,.¢-. i i i

WE I'.,,T EMPTY 9230 10064 12167
I I I III I

--FIXED USEFUL LOAD (4001 (400) (,400) ,,

CR_W (2) ] 360 .360 360
TRAPPED LIQUIDS I "40 I 4b "" _ 40
CNG ! NIE OIL _"

FbEL 1072 9_5 1180

_CARq_""_tK1/o¢ 1298 1298_ 1'298 ....

I I ,,

TABLE 6-i SUMMARY WEIGHT STATEMENT COMPARISON
l :
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than for the Model 222. Flying qualities have not been investigated

in this study. Thus, the pilot acceptance is unknown. However, an

effort was made to keep the flying qualities similar to the

original model by the sizing constraint of constant tail con-

trol volumes. Nevertheless, each aircraft has different char-

acteristics.

Performance

The performance estimates for the reference aircraft and

the two designs with acoustic constraints were made in the

following areas:

i. Rotor hover performance (Figure 6-4)

_ _ 2. Level flight power required (Figure 6-5)

t
4

3. Mission payload - radius (Figure 6-6)

4. Mission productivity as a function of range (Figure 6-7).

The design hover Figure-of-Merit for the three aircraft are:

i. M222 FM = .757

"_ 2. M222 - I0 dB OASPL FM = .796

3. M222 - i0 PNdB FM = .751

The above Figures of Merit correspond to the design points

L shown in Figure 6-4. This figure indicates that no large hover/

_ performance penalty is encountered by a quiet design. However,

7 the same cannot be said for cruise performance, as the aircraft

::; propeller efficiencies decrease from the baseline values for the

(_ design condition of 300 knots, I0,000 feet Standard Day.

7 iii.

: g
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M222 _p _ I

2. M222 - i0 dB OASPL qp _ 28

3. M222 - I0 PNdB n 683

The comparison of leve_ '' h _- power required (Figure 6-5)

shows tha _ the common perfe _ _ ground rules chosen for this

study result in balanced deliqn, as all three aircraft have a .99

best range speed (cruise condition) very close to the cruise rpm

transmission limit. Taking into account the differences in

parasite drag, wing span loading, rotor area to wing area ratio

and hover disc loading, the only unusual item in the comparison

is the relative increase in power required through conversion

with respect to that in hover, as the design hover tip speed is

decreased (M222, Vth = 750 fps; M222 - 10dB OASPL, Vth = 660 fp8; _)

and M22 - i0 PNdB, Vth = 505 fps). The transition power required

increase occars at advance ratios (V/V t) _ ._0 and a nacelle angle

of _ 45 degrees. The increasing power is attributable to re-

treating blade stall despite the rotor blade area increasing as

the square of the reduction of design hover tip speed.

Design approaches for reducing power required through con-

version are: (I) lower the CT/_ , (2) decrease wing loading, and/or

(3) incorporate sophisticated high-lift devices on the wing. The

above design alternatives penalize the aircraft performance and

weight. The two new aircraft have had their wing area increased

over that of the baseline (Table 6-4), but not enough to permit

conversion to the airplane mode at sufficiently low speeds to !_

116.
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II w

- _--__ :;J72 : "/_-" _'P,5 "

:_ ., _ ¢.

:¢.-NG

Ascec- Ei-ic :.c2 "-"

/ _=C.::ZOh-F.m_L_AIL
Are:, --" - -" . . :_ _. _,'-." _"• 2.': ,'

ASpeCT- ._iuic 4.2_" 4.--" -, ,,'

Taper Ratio .33 _ ::" : :
Tal! Volume Coeff. I.J ',,,.' ', ,'

i

Moment Arm, Ft. -'O.," -,'".", -,'';
. . K.......

! 'ra:7.
Area, Ft£ 2 4a., ,_.-, ::,_.,_

Span, F_. 8.12 1:,'_ l.'._,

Aspect Ratio 1.5_ [.}',' I. '
CT

.32_i " ,,} i',_
Taper Ratio, U_
Tail Volume Coeff. •127 IJ' .I ''

Moment Arm, Ft. 19.55 ['}. l"._, ,

NO. OF ENGINES 2 .' -' _

SHP*/ENGINE 1550. 1100. l ',l O. , ,_

XMSN HP LIMIT/ROTOR 1150. 820. I I.",.

fe, Ft. 2 6.279 7.40-I _. :/_, :

' i.oo
OASPL _ 500 Ft. 92.5 7'}.4 _.'....

PNL_ 500 Ft. 93.6 8_. ._'}.I 2_

4
TABLE 6-4

I I'I.
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avoid an increase in power required. It is left to a more detailed "_

study to determine the optimunt design of the wing and rotor in the

conversion flzght regime.

The payload vs mission radius comparison (Figure 6-6)

illustrates that as a result of the common performance ground

rules adopted in this study, the capability of all three aircraft

does not vary widely. The same cannot be said of the comparison

of mission productivity (Figure 6-7) where the productivity of the

noise constrained designs is lower than that of the Model 222.

Far Field Acous_ Signatures

The two naise constrained designs have sound absorptive

linings in the inlets of the engines. Thus, the rotor spectrum i

represents the major influence in determining either OASPL or PNL.

Acoustic signature resulting from engine inlet treatment and rotor

design in hover is shown in Figures 6-8 through 6-10. As a result of

the design changes, the aircraft acoustic dirQctivity pattern also

changes from that of the baseline aircraft (Figure 6-11). A comparison

of the relative aural detectability of the baseline and the two noise

constrained designs in airplane configuration level flight is shown

in Figure 6-12. The baseline aircraft (Model 222) is shown to be

:, less detectable (shorter detection distance) at some airspeeds than

the design with reduced OASPL. The aural detectg.on distance for

aircraft in this qtudy is set by the broadband com- O
the tilt-rotor

ponent of the rotor spectrum (_ypically, the 315 Hz, i/3-octave

_| 118.
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FIGURE 6-9 MODEL 222 - i0 dB OASPL HOVER OGE SPECTRUM

O
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band). Broadband noise is a function of thrust, tip speed and -2

blade area. However, there is not much difference in rotor

blade areas between the baseline and the M222-10 dB OASPL. The

difference in aural detectability of the new design with reduced

OASPL is attributable to the larger thrust (drag) at the higher

speeds shown in Figure 6-12. The equivalent flat plate drag is

shown in Table 6-4 for all three designs.

Takeoff and Landing Trajectories

The trajectories performed by these designs show their off-

design point performance and perceived noise level. An aircraft

designed to improve the acoustic signature in hover, but acoustically

unacceptable in takeoff or landing, would not represent much improve-

ment over an aircraft with no claims of being designed with such a

constraint. The three types of trajectories show the tradeoff between

acoustically constrained designs and performance capability defining

the trajectory and thus the distance between aircraft and observer.

The three types of trajectories performed are:

I. Conventional Takeoff (nacelle tilts from vertl- i to

horizontal while climbing)

2. Conventional Landing (nacelle tilts from horizontal to

_ vertical while descending)

3. Helicopter-Type Takeoff (nacelle remains at an angle _. _ 80 o 0

such that the wing contributes no lift while climbing).

124.
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The spectra of the maximum PNL of each aircraft in both the

helicopter and airplane modes, if occurring in the trajectory, are

also shown. A review of Figures 6-13 through 6-27 reveals that the

peaks in the PNL time histories for the two climbing trajectories

of the M222 - i0 dB OASPL and M222 - I0 PNdB aircraft are lower

than the baseline Model 222. However, the duration of the peak

PNL is longer for the two quiet designs. The longer durations

are the result of both quiet designs having less excess power than

the baseline; hence, the result is a lower rate of climb. The

landing trajectory information shown in Figures 6-28 through 6-36

indicates that as in the takeoffs, the two quiet designs have lower

peak PNL than the baseline. However, the durations of the peak i
¢

levels do not change very much from the Model 222 to M222 - 10dB
OASPL and M222 - i0 PNdB.

125.
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VII. CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS: _

A. The only design parameter change produciDg a significant

reduction of perceived noise level at constant gross weight

is lowering the hover tip speed at a constant CT/O. How-

ever, the following performance and weight penalties are

associated with this approach.

I. A lower payload due to increases in weight empty and

mission fuel.

2. Small increase in power requ_d tc buyer.

3. A small decline in both hover rpm transmission limit and

.99 best range speed.

- 3
E_ample: A reduction in hover tip speed from 750 fps to

550 fps caused a 7.6 PNdB reduction in PNL, while

a. Weight empty increased 8.7 percent,

Mission Fuel increased 4.3 percent, _nd

Payload declined 57.7 percent.

b. Hover Power Required increased 2.6 percent.

c. Hover rpm Transmission Limit and .99 Best Range

Speed both declined 4.3 percent.

B. The design parameter variations most effective in decreasing the

overall sound pressure level are as follows:

,: 144. i
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i. Reducing tip speed. [

2. Lowering Disc Loadi_.g.

3. Increasing number of blades with constant rotor solidity.

Lowering the hover tip speed from 750 fps to 550 fps -educes

the overall sound pressure level by 5.9 dB. The performance

and weight renaltie_ are the same as those identified for e_q

ceived noise level reduction.

Reducing the disc loading changes the performance and weight

as follows:

a. A large decrease in power required to hover.

b. A large decline in both hover rpm transmission limit

(_ speed and .99 best range speed.

, c. Very small variation of weight empty* and payload.

d. A lower mission fuel consumption.

Examp? e: A reduction An disc .loading from ii.3 to 5.6 ib/ft

causes the overall sound pressure level to decrease

from 92.5 to 89.1 dB, while:

*The very small variation in weight empty as a function _f disc

loading is the result of the common perfo1_ance ground rule i

requiring that the engines supply sufficient power to meet the i

-- hovering condition 9nly. •

(
1.
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o Hover power required was reduced by 26.6 percent. -_

o Hover rpm transmission limit speed declined 19.4

Fercent and .99 best range speed decreased by

20.2 percent.

o Weight empty increased 1 percent and payload
|

increased 1.9 percent.

o Mission fuel declined ii percent.

Increasing the number of blades at constant rotor solidity

from 3 to 4 blades results in the following:

a. 2.1 _B decrease in OASPL.

b. No nQticeable change in weight empty, mission fuel and

payload.

c. A small decline in power required to hover.

d. No noticeable change in .99 best range speed.

e. A small decrease in hover rpm transmission limit speed.

- Example: An increase in the number of blades at constant

, solidity from 3 to 5 blades reduces the overall

sound pressure level by 1.8 dB per blade or 3.6

)! o Hover power required declined 1.6 percent.

_ o Hover rpm transmission limit speed decreased 1 percent. O _

i 146.
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_'' C. Design of tilt-rotors with significantly lower OASPL (-10dB)

| in hover than an unconstrained design may be accomplished with

a moderate increase in design gross weight of 5.84 percent.

However, the increase in design gross weight for a design con-

straint of a significant reduction in PNL (-10 PNdB) increases

the DGW by 25.4 percent over that of the unconstrained design.

D. Mission productivity (Vbloc k × Payload/WE) siqnificantly

declines from that of the reference.

E. A tradeoff exists between an acoustic design constraint in

, hover and maximum rate of climb capability on the resulting

duration corrected annoyance (EPNL) underneath the takeoff

J; trajectory. The same tradeoff is not applicable to landing.

F. The tradeoffs shown in Section IV and used in Section VI are

dependent on the criteria used to size the engines and trans-

missions. If the criteria were based on a high-speed dash

capability (300 knots) rather than hover, the weight penalties

would be much larger than those used. It should be realized,

hence, that many of the above conclusions are particular

to the selected design and performance ground rules.

_: RECOMMENDATIONS :

f_ A. The 57.7 percent decrease of payload at constant gross weight

caused by a tip speed reduction of 200 fps is too severe a

penalty to be accepted as a normal design practice. An effort

to reduce this penalty through advanced drive systems and
_Ub

147 •
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advanced composite materJa!s in the rotor system is necessary
-%

if tip speed is to be the route used for reduction of far- D

field acoustic signature.

B. Airfoils should be developed which have a higher L/D over a

wider range of Reynolds Number and angles of attack than

present ones. This would make possible a better compromise

between hover and cruise performance when the hover tip speed

is reduced in order to improve acoustic far-field characteristics.

C. The influence of (i) rotor blade span loading distribution,

(2) number of blades per rotor with constant total area, and

(3) airfoil characteristics, on the far-field rotor acoustic

signature is not well understood. An investigation should be

conducted to establish a consistent data base and empirical _

relationships for the above design parameters.

D. Continuing theoretical and experimental research should be

carried out to improve the quantitative predictions of prop-

rotor noise. If the measure of acoustic acceptability is fre-

quency weighted, then emphasis should be placed on prediction

of the rotor acoustic signature above 250 Hz.
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3
APPENDIX A

SUPPCRTING ACOUSTIC DATA

The following material on tip speed and blade tips is supple-

mentary to that presented in Section II. It is included for

information purposes.

Tip Speed

The relationships presented in Section II on Tip Speed were

found to be supported in most of the literature. However, the

data reported by Stuckey and Goddard (Ref. 7) and presented in

Figure A-l, . show a lesser effect of tip speed on noise than D

those reported elsewhere. The sound pressure levels shown are

for constant nominal thrust of a full-scale 3-bladed rotor. The

first harmonic noise levels increase (with a few exceptions)

with tip speed as expected. However, the higher 10th and 15th

harmonics are essentially constant below a tip speed of i000 fps.

Other available data show an increase in noise with tip speed

even in the higher harmonics. Figure A-2, for example, shows the

results of a whirl-tower test of CH-47B/C rotor blades operated

at three different nominal thrusts (Ref. 5). The microphone
!

• located at a three--diameter distance registered an average 6 dB

.'YI t

_ increase in first harmonic SPL for each i00 fps of tip speed

_ increase. The data gathered by the ground microphone indicates

'_,.

I
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a somewhat lower rate of increase, and does not display the same

( uniformity with increasing tip speed as the aerial microphone.

The higher harmonic amplitudes generally increase with tip

speed, but the trends are not as well defined as for the lower har-

monics of sound pressure.

A cross-plot of Hubbard and Maglieri full-scale rotor data _'

(Ref. 6) illustrates rotor noise in terms of tip speed and is

given in Figure A-3. The overall SPL is approximately linear,

increasing at 5 dB per I00 fps. This agrees well with th6 Vertol
Z"

data of Figure A-2.

Figure A-4 illustrates the sound pressure level for several

harmonics of the 13-foot diameter Model 160 propeller (-41" twist).

C " 1For this configuration, the increase in sound pressure is approxi-

mately linear for all harmonics shown up to 850 fps tip speed,

with a 6 dB increase for each i00 fps of tip speed between 550

and 850 fps for the lower two harmonics. Above 850 fps, the

higher harmonics increase at a diverging rate.

i
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Blade Tip Modifications

Blade tip modifications can have a moderate effect on

far-field noise. A Boeing-Vertol investigation in 1961 on a

tied-down CH-46 revealed that several modifications to the tip

could be made to achieve amplitude reductions in certain fre-

quency ranges relative to the unmodified, revolved airfoil tip.

These tests were conducted on an overlapped tandem-rotor air-

craft and the r_sults shown in Figure A-5 would be expected to

be less pronounced than for a single isolated rotor. The greatest

reduction in noise at all frequencies was displayed by the square

tip which averaged 5 dB over 6 octave bands.

A recent test reported by Pollard and Leverton (Ref. ii) also

confirms that the square tip is as quiet as any tip yet tested,

at l_ast at the low tip speeds. Figure A-6 from thei_ report shows

the results for a 10-foot di_,_eter rotor at 8 ° pitch. By contrast,

Sikorsky data (Figure A-7), taken from Ref. i0 show a contradictory

trend for trapezoidal tips when compared with that of Pollard and

Leverton. However, the maximum tip speed in Figure A-_ is only

367 fps.

A double-swept tip was installed by Bell on a UH-I and the

results reported in Ref. 21. Figure A-8, reproduced from this

reference, shows a very small benefit (in the 75-150 Hz ban_) _
i

except at an advancing ti_ Mach number of .8 where the difference i
t

is 6 dB.

t '
156• 0
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APPENDIX B

l SAMPLE CALCULATION OF TURBO-
SHAFT ENGINE INLET NOISE
SUPPRESSION

The following sample calculation is included to familiarize the

reader with design parameters controlling the installation of

•ound attenuating linings. The calculation procedure will utilize

figures from Section III which are representative of the current

state-of-the-art sound absorption lining design. The parameters

" represent the Model 222 and typical noise attenuation requirements.

Peak attenuation frequenoy (f) = 4000 Hz

Distanoe between inside inZet

s.rfaoe & transmission fairing (R) = .5 ft.

- ¢ Speed of sound (o) = 111? ft/seo

Desired attenuation = -10 dB

Therefore, the frequenoH p_rameter (fH/o) = 4009 x .5 . 3.79 {T.on-
111 ? dime .",si.ona l)

Then, using Figure 3-7, the resulting peak attenuation per L/H is

-?.6dS/(L/H) at M = 0.

Since the desired peak attenuation is 10d8, the L/8 carlo needed is

_,_ lOdB I S35
"_,, (L/H)S = 7. _dZ_I(LIH) = "

_
,_'

151.
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3
Thus, the length of inlet lining needed is

LN = (L/S) Ns = 1.333 x .5 = .67 f¢.

This procedure ignores the modifications that m_ght be needed to

de-ice the new noise suppression inlet.

Z

C|
' 162.
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- APPENDIX C

I HOVER OGE PERFORMANCE
PREDICTION

Hover and axial flow rotor performance presented in this report

is calculated by a comFuter program consisting of vortex theory

with empirical corrections for the wake structure. The Boeing

Vertol Company uses this program as a primary design tool in the

optimization of aerodynamic performance of rotors in axial flow.

Confidenc_ in the prediction capability of this method was gained

by comparing test results and predictions for many rotors, pro-

pellets, and convertible proprotors. Examples of such comparisons

may be seen in References 22 and 23.

I In hover, the interaction of the wake vortex structure and the
induced velocity at the rotor plane caused by the wake determine

the wake vorticIty. The calculation procedure uses momentum

theory to establish the reference or ,ormuZ vortex structure.

A new blade loading is calculated frr _he reference wake vortex

structure which is then updated to account for the new blade loading.

The proc_uure is repeated until a solution is found.

:< Wake structure reflects the vortex law requiring vortex filaments

to travel at the same velocity as the flow in the wake. The wake

_i flow is the sum of the axial speed Of the airscrew (V) and the

_: three components of flow induced by the vortex filaments. Thus,

- __ the axial variation of the _lipstreamvelocities are a prime factor
_- t:

163.
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in the vortex arrangement of the wake. Glauert's approximation

. (Ref. 24, pg. 367} of the downstream variation of the slipstream j

velocity with distance from the tip path plane was used.

This finally led to the approximate formula

v=lv:, = c7/2. [2 - r:, - ¢¢-1)

where the slipstream acceleration factor AF is about 0.19 and

falls asymptotically to zero as v increases.

The slipstream model based on the above relationship worked quite

_'ell for low disc loadings, but gave too optimistic results for

propellers as used in the tilt-wing configurations. Assuming that

the general form of Equation (C-1) is correct, values of the so-

called contraction rate parameter _ were selected to match theoretical

results against experimental data. In this way, a _urve of "correct"

values of N versus airscrew thrust coefficient values (CT = T/AoFt 2)

was obtained. The thus established relationship of N = f(C T) was

used in the computer program.

Combined blade element and momentum theory may be used for rapid cal-

culation of rotor hover performance. Fairly accurate results (_+. SZ

Figure of Motif) should be attained by suitable correction factors

based on the more detailed description of a hovering rotor contained

in the vortex theory computer program.

Thus:

CT3h Fdo a
,, Cp - _ kindh �_1C-2)!

{

: _: 164.
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and >

l Figure of Merit CT3/z kindh/_ + (_do°/8) 1C-3)

where:
)

ki_dh _ nonideal ind.ced pouer correction

c-do _ average blade profiZe drag.

,2

A reasonable average profile drag for the spanwise airfo¢l section .:
2

distribution (Reference i) of the Model 222 rotor is .00831 at the

design operating condition. The nonideal induced power correction

factor is shown to be a function of thrust coefficient (CT) in _

Figure C-I. The dependence of the nonideal induced power correction

_ on CT is consistent with the explicit vortex interference theory

:: because the wake structure of the vortex theory was defined

,._ empirically as a function of CT . The trend of the nonideal induced

power correction shown in Figure C-i is only good for the _ssumed

hover figure-of-merit to propeller cruise efficiency tradeoff and

can be represented over the range .008 _ CT _ .028 by the following

equation:

kindh = .873_ + 4_._0C T - 1?74.9CT = + _8884CT 3 (C-4)

If kindh J CT/O and disc loading (W/A) are assumed to be constant,

it can be shown that the figure-of-merit would increase as hover

tip speed decreases.

_ CT/o = . 0896

"_i CTI w/A =_°°netant/Vt=xla/_ = X/Vt= 1C-61(C-51FHI CTlO ., W/A Xu='kindhl_ + . 01_8V¢ "f;

165.
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Equation (C-6) contradicts the trend shown in Figure 4.3. How-

ever, kindh is not a constant as assumed in Equation (_-6), but I

has been shown to be a function of CT. Therefore, Equation (C-6)

is consistent with the methodology used for performance calculations

and supports the rotor performance trends shown in Figure 4.3 if

kindh varies.

xz-1.

i 1.3

•_ ,,_. II ./7.o_. _ I
_"" _° i / _°_ I'" I

Z

_,.,
i-o.,.......0,,.o,..o_..4....
2 ROTOR THRUST COEFFICIENT, CT, , T •

, lrR20VT2

_. FIGURE C-I. HOVER INDUCED POWER CORRECTION
FOR TILT-ROTOR AIRCRAFT AND HELICOPTERS

J
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C APPENDIX D

TABULATION OF SUMMARY WEIGHT STATEMENTS

AND CONFIGURATION CHARACTERISTICS

c
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APPENDIX E

ACCURACY OF THE THEORETICAL
TILT-ROTOR ACOUSTIC MODEL

The acoustical mathematical model used in this report to predict

the aircraft signature is the same as that in Reference 2, with

a minor change in the loading law as shown in Figure 4-17.

The accuracy of the acoustic model in predicting the signature

of a tilt-rotor has not been defined in depth due primarily to

a lack of data on full-scale rotors. Howevur, a valid comparison

of predic*ion and experimental rotor data has been made with a

CH-47B/C for a range of rotor tip speed and thrust sweeps on the

Boeing Vertol experimental whirl tower. This comparison is shown

in Table E-I and E-2. These blades have less than 9° twist,

however, tilt-rotor blades have 30-40 degrees. For correlation,

harmonically related 4a_a is analyzed with narrow band filtering

(2 Hz bandwidth) and averaged over approximately 30 rotor cycles

or 5 seconds. For comparison with broadband theory, the data is

analyzed with 1/5 or I/i octave filters and the average of 3

seconds of 4ata is also read. i
(

! The only comparisons of prediction and measuremen= to be incorporated )

into this report are test data published in Reference 5, pages 47, 48,

and 49. To accurately interpret the comparisons shown in Tables E-I

_} and E-2 for OASPL and PNL respectively, the following must be t_ken

into account.

zTz.

* r .... j I

ill .... I I .... ' " "_
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(1) Whirl Tower Data may vary by as much as 6 dB for identical _j

test conditions.

(2) The rotor height was approximately one diameter above the

ground. To be out of aerodynamic effects of the ground

plane, the rotor should be 1.5 diameters, or higher, above

the ground.

(3) The acoustic model assumes 1/3-octave bands with a:_ infinite

roll-off of I/3 octave; the rotor to be out-of-ground effect

with zero forward speed.

(4) The acoustic model prediction has not been corrected for

the reflections of the rotor acoustic signature from the J

ground. See Ref. 12, pgs. 96 - i00 for pure tone correction. _ , L

(5) The octave band filters used are 3 dB down at bandwidth

limits and have a rolloff of 25 dB/octave. |

(6) The prediction of the rotor fundamental blade passage fre- 1

ouency is not includ.,d in the OASPL or PNL presented in

Tables I_-1 and E-2.

The theoretical acoustic model for harmonically related noise con-

sistently predicts the first five,hs-ronics of the rotor signature

_ i with good accuracy (Reff.S). The empirical theory or algorithm

i for broadband noise, however, does not achieve the same amount of

! 172. O
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precision and consistently underpredicts data (Ref. 5). Although a

generalized empirical correction has been made to this theory to

improve the agreement with rotor data, it cannot be verified with

any accuracy at this time due to a lack of available data for com-

parison. When compared with CH-47B rotor data from whirl tower

experiment, _he acoustic model consistentl/ underpredicts both

OASPL and PNL by an average of 6.9 dB and 6.6 PNdB, respectively.

The OASPL deviations vary from a minimum of 4.2 dB and a max'mum of

11.5 dB. The PNL deviations have a minimum of 1.5 PNdB and a maximum

of 13.5 PNdB. It cannot be determined from this small data sample

whether the theoretical model is correctly predicting the chahge of

the acoustic signature as a function of either tip speed or thrust.

7h_, authors caution the reader that the trends of the small number

_f _-_a points pTesented in Tables E-1 end E-2 are not sufficient

£o be, conclusive evidence of the accuracy of the acoustic model.

For statistical accuracy, a minimu,, of 8 data points per design

parameter variation (while maintaining other design parameters as

i constants) ,,ould be desirable, including repeated measurements to

• define the data variance. It is recommended that this oe pursued _

_. so as to create a data base against which any _athcmatic representa.

,_,_ tion of rotor acouztics can be compared. This would be useful to
2

_ the whole rotary-wing industry, as the rotor acoustic far-field

i signature be.'.o_,es more importe_t to opera_ors of rota. y-wing

( aircraft.

173.
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MEASURED AND PREDICTED OVERALL SOUND PRESSURE
LEVELS FOR A CH-47B/C ROTOR ON A WHIRL TOk_R

TIP SPEED THRUST CALCULATED MEASURED
Vt _ _ LB _ _ dB _ _ dB _ _ dB

8,600 85.3 96.8 ll.S
650 " 17,500 90.9 96.1 5.2

23,000 93.4 97.6 4.2
...... . =

9,700 94 0 99.6 5.6
750 19,000 103.2 109.5 6.3

8,300 93.2 102.3 9.1
850 17,C00 98.7 106.9 8.2

i 26,600 102.5 107.4 4.9
|. l .......

TABL_ =-1 Average bdB 6.87

= MF'qURED AND PREDIC_'F_.I)PERCEIVi:D NOISE LEVELS "_
FOR A CII47E/C ROTOR ON A WHIRL TOWER _.;

_'" qPFED THRUST CALCUL,_TfD MEASURED
. .'.l: 'x, 'x, LB 'x, 'x, dB 't, q, dB "t, 'x, dB 'x,

8,600 93.5 107.0 13.5
,. 650 17,500 99.5 101.2 1.7

23,000 101.9 103.5 1.6
,,. .

9,700 97.2 108.3 11.1
750 19,000 102.0 113.1 11.1

8,300 98.9 106.9 8.0
850 17,000 .104 9 109.2 4.3

26,600 1.08.6 110.! 1.5
I

Taalr: r_-_ '" Average AdB 6.6

L
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APPENDIX F

AIRCRAFT SENSITIVITY PREDICTION TOLERANCES

This section contains sensitivity prediction tolerance charts.

To provide further insight into this assessment, an Evaluation

Diagram is presented which summarizes the analytical process used

to calculate the most probable predicted value. In addition,

optimistic (low cumulative probability) and pessimistic (high

cumulative probability) values are estimated and plotted as a

probability curve to indlcate the range of possible deviations.

Evaluation diagrams and prediction ranges for the following

characteristics contained in this
are Appendi..

i. Weight Empty Figures F-I and F-2

2. dover RPM Transmission Limit Speed F-3 and F-4

3. Mission Payload F-5 and F-6

4. 99% Best Range Speed F-7 and F-8

5. Overall Sound Pressure Level F-9 and F-10

6. Perceived Noise Level F-If and F-12

(
175.
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FIGURE F-2 PREDICTION RANGE FOR WEIGHT EMPTY
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ACOUSTICDESIGNSTUDY
MISSIONPAYLOAD

I AIRI:OIL .__ INSTALLATION AIRFOIL I
CHAR(_.CTERISTICS LOSSES CHARACTERISTICS

I I

POWERRED LOSSES _ METHODOLOGY

i ! !
POWERREQUIRED AVAILABLE CHARACTERISTICS POWERREQUIRED

I,, I I i ' !
GROSSWEIGHT FUELREQUIREMENTS

t . I
l

DETERMINATIONOF ]

OESIGNMISSIONPAYLOAO

;'_ FIGURE F-5 EVALUATION DIAGRAM ACOUSTIC DESIGN STUDY

'! _SSION PAYLOAD
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FIGURE F-6 PREDICTION RANGE FOR MISSION PAYLOAD
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APPENDIX G -_

WEIGHTS PRZDICTION METHODOLOGY

This appendix contains the summary, development and valida-

tion of the mass properites (weight, balance and moments of

inertia) for the Model 222, 26_foot diameter tilt-rotor aircraft

(baseline). Preliminary estimates indicate only minor changes

to the quantitative dnta presented in this report.

Summary and Development

The significant weights developed for the Model 222 aze:

Weight Empty 9,230 ibs -%
Operating Weight Empty 9,630 ibs

Design Gross Weight 12,000 ibs

Alternate Gross Weight 14,400 Ibs

Airframe Weight* 7,499 ibs

*DCPR (or AMPR)

• The aircraft we_]ht empty was determined using a combination

of methods, including: i'

Statistical Weight Trend Equations 21%

Actual Weights of Existing Aircraft
and/or Components 22%

Vendor Information 16%

I
I Calculated Weight_ (T,ayout and , tail

Drawings) 31% 0

186.
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Similar Components of _xisting Aircraft _0%

(Percentages pertain to the weight empty of the aircraft.j

A summary weight statement for the aircraft is presented

in Table G-I. Balance and mass moments of inertia for

the c:,ntiguration are included in Table G-2. The data

in this table is dist-cibuted by sections of the aircr-_ _t

to _.acilitate mass properties -tudies, Balance reference

datums (X, Y and Z) defined in the 'able cor1_.spond to

those used on the Mitsubishi MU-2 ,_ a_rcraft. Balance

arms were determined by scaling the uarious layeut

drawings.

The group weights in Table G-I consideu current technolo_,

and the use of existing materials and manufac#uring tech-

niques.

Validatio_', of Weights

' The weight trends were developed aro_ ,id the aircraft

- geometry, design parameters, materials and structural

criteria. A discuss±on of the various groups and th_

methods used to determine their weights follows:

1 187.
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MODEL 222 TILT RO ?OR AIRCRAFT -..NA_ A ,_S'F, AR(]_ _AIRCRA]: _ .,

_NGINES (2) T53-L-_3 DESIGN ALT. 1 i _PR

ROTOR nTA.- 2& ' WEIGHT WEIGHT. , i

ROTOR GPOUP :i00 I I_00

WING GR.,UP .SG..... I 800
T./II t GROUP _)1 I _ .. . 1 2 1 "I

BoDY GRO_Ir 1211 ...... ] , ,,,1211
.As,c ...... .:

I

SECONDARy .... 1 ....

_ECO_p.-OOORS.E_TC. I i

ALIG.,,Nr.GEAR 590 LE:;S; WHEELS. TI_-_.BPJ_KES.AIR -Z00 "490
3.mEei.__ _._ 1183 i .,, 1183

_.__ECT I ON t ----4"0"0" i ann
R..p..e.Q._._,X:._GROUP___ (2533) _ . I _ '(1357)
..___N_,__SlS) . 1026 LRRS-- RN=TNR_ , L --10_ "

AIR INDUCTION 35 _ L 35
...... ;o i 40E XH_,_ST SYSTEM ......

_. _a.J_,L,,_:.,_..i_L_._ 60 _ 60.
LUflR ICAT IN_ SYSI ['M ____.____._ .......... 20

, FUEL _YSTEM . 20(_ LR_._:, RI.eLDDRR PIIRT. TJ_d_,II(R - .50 150
,,ENGINE CONTROI, S , 20 i 20

STIRT ING SYSTFM ...... .2.5_......... ,_._.._ _.L

PROPELLER INST, ,,,, t

_ ,DRivE SYSTEM I]07 T._..._,__-XM_ nTT. -ln0 . ]nn_

AUX. POW[R PLANT ..... -- .... _ - - l

I

IR_TR, AN0 NAy, . I0]__.. LESS: IND'IC. ,XHTR,AMPL. - SQ I 48
HYDR. AND PNEI)I _-- --..

ELECTnICALGROUP "_nK LESS: BATTERY & AC,DC coMI. -180 125 _'

[LECTRON#CSGROU,_ 230 LRS_- eft. & C,FAR _QUTp_ -175 I 5_5

_RMAMENT GROUP .(_ _ .....

FURN. & EOUIP, GROUP 39 .. 43§ :

r.CRSON,_ACCt. , 99 > ,,1200 :
MISC. EOUI PMENT 63

$ FIIRN I SH I NGS 35
FMERG, EQUIPMENT__ ....... 42 .......

i08 LESS: ENVIRONMENTAL CONT. - 40 _DE- IC,NG 6L
/ 'I

PHOTOGRAPNI C --

__J_A8_ ..... 1Q _ i0

_,I._..VSI_JAlION , ........ - '_

*Ii_:,.,_,,'_Y 9230 9230 _ -1731 7499 '_

LIIXlI_IISl,FULLOA_D (IPERATING W GHT EI{PTY
c,'_, (2) _ 3K0 3_0 ..... "i' _.__

IRA.__ _PED LIQUID.'., an 41"%_ .....
l N_;II_L OIL ...... -- :_ = . I

i " Fb£L 1170 _ 4770 I, IZnstrumentation 1200 J ...............

PA_r.EN_,LI2_;/TI|OOP_ )

GROSS _r IGH_ L2000 14400 :

............ , in i Ill UII t

TABLE G-I SUMMARY WEIGHT STATEMENT ,_ !

(,") !

%j kJ

I II II III I II I I I I I I i ili i
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(i) Win Gr_ 800 lbs-- I

0.S85
w_ = 22o(x)

where

Ww = weight of wing (lbs)

and

(Rmw=s I

LE6END :

Rm = regief term = 1.0

Wx = gross weight less tip pod = ?000

Sw = planform area of wing = 200 (sq.ft)

b = wing span = 35.42 (ft)

8 = maximum fuselage width = $.6 (ft)

= taper ratio = 1.0

kr = relative wing root thickness = .21

N = ultimate loa a factor = 4.0

VD = dive velocity = $60 (kts)

IR = aspect ratio = 6.81

!

The wing weight equation predicted the weight of the Model 222

tilt-rotor wing. For conventional wings, designed primarily for

airloads resulting from forward flight, the term RmW z indicates

the magnitude of the resultant winq shear and bending loads

located at the semispan center of lift in forward flight. _) _

!90.
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I Figure G-I represents the results of wings analyzed in this

manner. In the tilt-rotor, the wing design requirements

results from vertical flight and transitional modes and the

term RmW z is reinterpreted by locating the center of lift at

the thrust line of the rotor and defining _ as the aircraft

gross weight less the %eight of the nacelle and contents.

The trend weight represents the total wing structure as

defined in AN-9103D MIL-STD weight specification.

The wing weight was determined from. _ayout drawings. Honey-

comb construction torque-box was stress-checked to the avail-

able loads. The remaining wing structure ribs, fittings,

leading and trailing edges, etc., were calculated from scale

drawings. The calculated weights* are as follows:

Torque Box 436 ibs i

Nacelle Carry-Through Structure 50 ?

Ribs, Doublers, Hardware i00

Leading and Trailing Edges 250

and Misceilandous 50Fittings

TOTAL 886 ibs 3

*Stress-Checked i
Wing structure weight review meetings are currently in _:

progress for the purpose of reducing the wing weight below

the predicted trend value of 800 pounds.

191.
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_. (2) Tails

The weights of the horizontal and vertical tails are

determined from the weight trend equations presented below.

Horizontal Tail 122 lbs
L

Wh = $60(K) °'s_

where Wh = weight of horizontal tail (Zbs)

K = Fh TMA({) and Fh = I0 6 I + Xh

Vertical Tail 91 ibs

(
Wv = _80(K) °.5_

where Wv = weight of vertical taiZ (Ibs)

K = v + _O-O/_TM4(t) and Fv = / 10' I I + Xv _!.

gEGEND :

F = tail load parameter i

8 = planform area (sq.ft.)

VD = dive v¢locit_ (kts)

_; TMA - tail moment arm (meaeured from wing 2/d (ft)
= ohord t.o tail I/4 chord)

,, t - root thiekneas

_:, 193.
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WG = design gross weight (Zbs)

ky = pitch radius of gyration (f_)

kz = yaw radius of gyration (ft)

b = tail span (ft)

= taper ratio; (chord at _ip)/(chord at root)

a = height of horizontal tail attachment to

vertical tail (measT_red from root of
vertical tail)

Subscripts:

h denotes horizontal tail

v denotes vertical tail

D
The trends consider the tail loads which are a function of the

gross weight, span, radius of gyration and point of load application

(distance of the mean aerodynamic chord from the point of support).

The "a" term in the vertical tail equation accounts for "T" tail

configurations. Figures G-2 and G-3 present the aircraft used to

develop the trends.

Refer to Figures G-4 and G-5 to determine the values of ky

and kz to be placed in the structural bcx of the weight equations

for Fh and F,,, respectively. The weight trend equations over-

predict the weights of both horizontal and vertical tails (Figures

(G-2 and G-3) of the Mitsubishi MU-2u aircraft as receive4 from

Mitsubishi Aircraft International, Inc., San Angelo, Texas. Q

4

194.
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LENGTH OF FUSELAGE

NOTES:

2 1. SELECT APPROPRIATE VALUE FOR kv FROM -
ABOVE. INCLUDE DECIMAL ONLY ON WEIGHT
INPUT SHEET.

2. MAS_qMOMENTS OF INERTIA
W
_-- (ky)2

1- _ J I I I I 1 ..... I .
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• LENGTH OF FUSELAGE - FT (L)

FIGURE G-4 RADIUS OF GYRATION - PITCH
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5

3

2
I-
kU
LU
u_

I

x 9

u_
O 7

6 LEGEND:

W = GROSSWEIGHT
MASS 32.17

>- Lf = LENGTH OF FUSELAGE
--N LC = LENGTH OF CABIN !
v 3 b - WING SPAN

e - SEE BELOW
I I I II I

NOTES: 1. SELECT APPROPRIATE VALUE FOR kz FROM
Z ABOVE. INCLUDE DECIMAL ONLY ON

WEIGHT INPUT SHEET.

2. MASS MOMENTS OF INERTIA = g-'--"(kz)2

10 2 3 4 5 6 7 8 9 100 2 3 4

• LENGTH IN FEET (e)

I e - b+_ (AIRPLANES) e - Lf+Lc (HELICOPTERS)
I

I :- FIGURE G-5 RADIUS OF GYRATION - YAW

m
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Therefore, the constants 360 for the horizontal tail and 380

for the vertical tail were changed to 305 and 256, respectively.

This assures ";hat the aircraft in the Sensitivity Study and the

new quiet design tail weights are all based on the same design

criteria as represented by the Weight Trend Line.

(3) Body and Ali_hting Gear 1,801 ibs

The weights of the body and landing gear are actual weights

of the Mitsubishi MU-2J aircraft.

(4) Flight Controls

The weights of the flight controls were determined from the

( following:

Cockpit Controls WCC = 26(GW/lO) °'_I = 71 Zbs

Upper ControZs WUC = .35(W R - Wspin) = 360 Ibs __i

Hydraulics WH = 2_(W R - Wspin/100_°'6_ = 178 Ibs

Fixed-Wing Controls WFW = .OJ2(GW) = 144 Ibs

SAS and Miz Box = 76 Zbs

TiZting Mechangsm .029(GW_ = $_g Ibs

where: "

GW - groes weight

WR - propelZer weight

Wapin - epinn_r weight

Miscellaneous flight control components have been calculated

and are in general agreement with the trend weights.
199.
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(51 E__n_ine Section

(a) Internal Structure 400 Ibs

The weights comprising the engine section were determine4

from layout drawings. The internal structure supporting the

engine and transmissions is as follows:

Internal Structure 200 ibs

Fairing 140

Fire Walls 40

Engine Mounts 15

Miscellaneous 5

TOTAL 400 ibs

(b) Engines 1026 ibs

The engine weight was obtained from the manufacturer. The

engines (2) are Lycoming Turboshaft T53-L-13B. The engine was

modified by removing the speed decreaser gearing (engine gearbox).

Vertol is designing its own drive system for the Model 222. The

• engine weight, including resudual fluids (fuel and oil), is 513

pounds each.

" (c) Engine Installation 200 ibs

The items comprising the engine installation package were

calculated and estimated from layout drawings. The weights _re

I as follows:

d
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(
Air Induction (no foreign object separator) 35 ibs

Exhaust 40

Cooling System (includes core, fan and 60
drive unit)

Lubrication 20

Engine Controls 20

Starting System (cables, etc.) 25

TOTAL 2_0 ibs

(6) Fuel SYStem 200 ibs

The weight of the fuel system is based on a fuel capac%ty of

308 gallons carried internally in _he wing. A statistically-d£zived

weight factor of .65 pounds gallon was used to deterine the
per

fuel system weight of 200 pounds. The weight includes crash-resistant

fuel bladders, pumps, valves, filters, plumbing and installation

hardware.

(7) Rotor Installation ii00 ibs
m m •

The rotor installation weight was determined from detail draw-

i ings of the individual components of the rotor assembly. The details

_ represent the rotor system designed and fabricated at Vertol for

_ NASA under Contract NAS2-6598. A summary of the items and weights

comprising the rotor installation are as follows:

,__ Hub and Hardware (2) 300 Ibs

_ ( Blade Retention 88
201.
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Spinners (2) 60

Blades (6) 625

TOTAL ii00 ibs

The rotor installation weight was also checked using the

weight equation shown below. The weight of the spinners must

be added to the end result to compare it to the calculated values.

WR = _4.2 a(X) °'s_

where

HR --ueight of rotor installation (Iba)

a - propeZlor 9roup adjustment factor (I.I0)
(rigid , articulated, etc.)

.S

Rl.s

_OTE: The last term is a droop factor. It ie used onIH if the
r_suZt is greater tha_ I.

5

LEGERD:

I
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c = blade chord (average) 1.57 ft

Kd = droop constant
i

t = blade thickness at 0.25 ft

in the trend equation, the (14.2) constant is the average

for the articulated rotor system presented in Figure G-6. The

(16.0) constant is the estimated average line for rigid or

hingeless systems based on the limited number of points shown.

The "a" factor for the Model 222 is 1.10. The trend weight for

the rotor is 515 pounds, plus 30 pounds for the spinner.

(8) Drive System 1107 ibs

The weight of the drive system was determined from design

layout drawings. A second method of checking the weight was

with the weight trend equation shown below:

WBO x = 160(QPUA/#S--B)o.,

where

W80 x = weight of the individual gearbox

and

Q = nondimensional weight factor for gear aet or
pZanetar_ 8tage

P = design horsepower

U = function of uae factor

A = gearboz support factor

N = rpm
m

8 = average Herin factor

B - bearing eupport f_c%or

203. 1
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{_ The trend permits a box-by-box building block approach

to determine the drive system weight. It allows for actual design

considerations to be used in predicting the weight of the indi-

vidual gearboxes. The trend includes the weights ol the gears,

bearings, seals, spacers, case, etc. The weight of the lubrica-

tion system and interconnect cross-shafting is not included in

the trend values; these must be added separately. Figure G-_

presents a plot of the actual weights of some existing aircraft

gearboxes. The trend weights are presented below along with the

weights of the various boxes, lubrication system and shafting

determined from calculating layout drawings.

Calculated Trend

Weight Weight

Engine Box 174 150

Rotor Box (includes accessory drive) 624 589

Bevel Box 65 90 i

_ Cross-Shaft 100 100

Miscellaneous Shafting 26 26

!

Lubrication '18 112 !

TOTALS 1107 1067 Ibs i

I

_; (9) Fixed Equipment 1

The fixed-equlpment group includes the items beginning with

the. auxiliary powerplant and ending with the auxiliary gear group

on the Summary Weight Statement, Table G-1. The weights were

5; (
20S.
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i determined from equipment lists developed around the tilt-rotor
research aircraft requirements. A summary of the items and the

weights of the individual groups are tabulalated below:

(a) Instruments 108 ibs

Flight 50

Engine 25

Drive/Rotor 26

Hydraulics 7

TOTAL 108 lbs

(b) Electrical Group 305 ibs

Power Supply (starter/generator,

(_ batteries ) 133

Power Conversion 46

Power Distribution (controls. !
circuit breakers, junction
boxes, connectors, wiring,

{

supports, etc.) 106 ,

Lights (interior, exterior,

landing, taxi, etc.) 20

+

TOTAL 305 ibs

(c) Electronics 230 lbs i

I
AN/ARC-51A Radio (UHF) 36

AN/ARC-II5 Radio 6

! AN/ARN-52 Radio (TACAN) 47

_ I AN/AIC-14 Interphone 19
!
A
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AN/ASN-73 Attitude and Heading <*

Reference System 49

AN/APN-171(V) Electronic
Altimeter Set 20

Shelves, Wiring & Supports 53

TCTAL 230 ibs

(d) Furnishings and Equipment 439 Ibs

Accommodations for Personnel: 299

(pilots ejection seats (2)
(No. American Aviation LW-3B),

seat rails, relief tubes, litter

supports)

Miscellaneous Equipment: 63

(data cases, windshield

wiper/washer, instrument )boards, consoles) ._

Furnishings: 35
(floor covering, trim,

soundproofing

Emergency Equipment: 42
(fire detection and extinguishing

equipment, portable fire ext.,

first-aid kit)

_ TOTAL 439 Ibs

(e) Airconditioning: 108 ibs

Environmental Control Unit, Fan,

Plumbing, Ducting, Supports and
Hardware

_ 208.
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(f) Auxiliary Gear i0 Ibs

Fittings and Supports for Tiedowns
(jacking, leveling, hoisting, etc.)

(g) Useful Load 2770 ibs

The useful load for the 12,000-pound DGW configuration

includes:

(a) Pilots (2) - 180 ibs each 360

(b) Trapped Liquid & Engine Oil 40

(c) Mfssion Fuel for i00 n.mi. 1072
radius

(d) Mission Payload 1298

(
TOTAL 2770 Ibs

(
- 209.
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Ir,C_'LDOT._

3 2

-_-!-_--
"_J--"_" _ WING

' il i ASPECT RATIO 6.57AREA 308.3 SQ FT

GEOM. MEAN CHORD 6.9 FT

' -- TAPER RATIO 1,0

ROUT THICKNESS 0.210

TiP THICKNESS 0.210

WING LOAOING 48,8 Lil/SG FT

21"10" ASPECT RATIO 4.61
AREA 103.0 SO FT

/ ! " MEAN CHORD 4.7 FT

THICKNESS/CHORD 0.1

" VERT. TAIL
/ _ ASPECT RATIO 1.77

_lrI'' O _jl_ ._'_ AIPEC_I " RATIO 1.77

AREA U_9 IQ FT

pAN 17.-0 FT

MEAN CHORO 7.1 FT

i THICKNEIIIh_HOR D 0.0O0

PROPELLER

_-/ ' / , I mA--':TE. _7.6FT
s SOt.tOITY 0.113DIIC I.OAOING 6JI LIJliQ FT

ENGINE INLETII AND GEAR BOX FAIRINGI THRUST cOEFFJSOLIDITY 0.0_

TREATED WITH SOUNO ATTENUATION MATERIAL BI.AOF.I/ROTOR 4.0

/
. - ___..._ f WEIGHT EMPTY 12.117

OR0011 WEIGHT 18,046

i
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