
N A S A C O N T R A C T O R

R E P O R T

Os

CXI

N A S A C R - 2 2 9 6

-"-

DIALOG:

AN EXECUTIVE COMPUTER PROGRAM

FOR LINKING INDEPENDENT PROGRAMS

by C R. Glatt, D. 5. Hague, and D. A. Watson

Prepared by

AEROPHYSICS RESEARCH CORPORATION

Hampton, Va. 23666

/or Langley Research Center

N A T I O N A L A E R O N A U T I C S AND SPACE ADMINISTRATION • WASHINGTON, D. C. • SEPTEMBER 1973

1. Report No. 2. Government Accession No.

NASA CR-2296
4 Title and Subtitle

A^^clJTiVE COMPUTER PROGRAM FOR LINKING
INDEPENDENT PROGRAMS

7. Author(s)

C. R. Glatt , D. S. Hague, and D. A. Watson

9 Performing Organization Name and Address
AEROPHYSICS RESEARCH CORPORATION
P. 0. Box 7007
Hampton, V i rg in ia 23666

12 Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, D.C. 20546

3. Recipient's Catalog No

5 Report Date

September 1973
6 Performing Organization Code

8. Performing Organization Report No

10. Work Unit No.

11. Contract or Grant No.

NAS1- 10692

13. Type of Report and Period Covered

Contractor Report
14. Sponsoring Agency Code

15 Supplementary Notes

This is one of two final reports.

16. Abstract

A very large scale computer programming procedure called the DIALOG
Executive System has been developed for the CDC 6000 series computers.
The executive computer program, DI^OG, controls the sequence of execution
and data management function for a library of independent computer
programs. Communication of common information is accomplished by DIALOG
through a dynamically constructed and maintained data base of common
information.

The unique feature of the DIALOG executive system is the manner in
which computer programs are linked. Each program maintains its individual
identity and as such is unaware of its contribution to the large scale
program. This feature makes any computer program a candidate for
use with the DIALOG executive system. This manuscript describes the
installation and use of the DIALOG Executive System at Langley Research
Center. Installation on other CDC 6000 series computers would be
similar.

17. Key Words (Suggested by Author(s))

Design, synthesis, ODIN, multiple
programming, data base, language,
optimization

18. Distribution S'atement

Unclassif ied - Unlimited

19 Security Oassif. (of this report)

Unclassif ied

20. Security Classif. (of this page)

Unclassif ied

21. No. of Pages

141

22. Price*

$3.00

For sale by tha National Technical Information Service, Springfield, Virginia 22151

Page Intentionally Left Blank

PREFACE

This report was prepared under Contract NAS 1-10692,
"Study to Develop a Computer Program for the Synthesis
and Optimization of Reusable Launch Vehicles." The
study was carried out in the period from March, 1971, •
to June, 1972. The study was funded by the National
Aeronautics and Space Administration, Langley Research*
Center, and sponsored jointly by the Space System Division
and the Flight Dynamics and Control Division. The United
States Air Force Flight Dynamics Laboratory concurrently
sponsored a companion study entitled "Analysis Program
for Rapid Mission Performance Analysis of Military Flight
Vehicles" which uses the executive system presented in
this report.

The two studies resulted in a new, large-scale programming
technique called ODIN, for Optimal Design Integration.
The use of ODIN involves the linking of independent com-
puter programs and inter-communication of common informa-
tion among the programs. This report describes the
executive computer program, DIALOG which implements the
ODIN concept. DIALOG controls the sequence of execution
of the independent ODIN programs and performs the data
management function for the program inter-communication
data.

111

TABLE OF CONTENTS

Page
1.0 SUMMARY 1
2.0 INTRODUCTION 4
3.0 DIALOG FUNCTIONS 8

3.1 Computer Control Card Assembly 8
3.1.1 Execution of an Applications Program -1 8
3.1.2 Creation of a Control Card Data Base (CCDATA) ' 12

3.1.2.1 Storage of the Control Card Data Base 13
3.1.2.2 Updating the Control Card Data Base .' 13

3.1.3 Execution of a Sequence of Applications Programs
* through Control Card Linkage 13

3.1.4 Repetition of Control Card Sequences 14
3.2 Data Management Function 19

3.2.1 Data Base Information Transfer System 21
3.2.2 Creation of a Design Data Base 2k

3.2.2.1 Adding Information to the Design Data Base 2k
3.2.2.2 Combining Data Base Information 25
3.2.2.3 Defining Variables and Reserving Space in the

Data Base 28
3.2.2.4 Identification of Applications Program Data....28

3.2.3 Communicating Information from the Data Base to the
Appl ications Programs 30
3.2.3.1 Modifying Program Input to Communicate with

the Data Base 30
3.2.3.2 Data Base Communication through Input 30
3.2.3.3 Combining Data Base Information in the

Modified Input Stream 32
3.2.4 Communicating Information from the Applications Programs

to the Data Base 33
4.0 INSTALLATION OF THE DIALOG EXECUTIVE SYSTEM ON A TYPICAL 6000

SERIES COMPUTER AND THE LIBRARY OF INDEPENDENT ANALYSIS PROGRAMS 35
4.1 Compilation and Storage of the DIALOG Executive Program 36

4.1.1 Data Base Parameters 36
4.1.2 Deck Setup for DIALOG Storage 38

4.2 Compilation and Storage of a Library of Programs 38
4.2.1 Program Modification to Provide Data Base Information...40

4.2.1.1 Creating a Special Output File .\..40
4.2.1.2 Format of the Special Output File 41
4.2.1.3 Use of the NAMELIST Feature in FORTRAN %..4l

4.2.2 Storage of an Absolute Element Program 41
4.2.2.1 Absolute Element Files for Overlayed Programs..43
4.2.2.2 Absolute Elements Files for Unoverlayed

P rog rams 44
4.2.2.3 Creating Overlay Files Using AUTOLAY 44
4.2.2.4 Updating Absolute Element Programs on Data

Cel 1 47
4.3 Assembly of the Control Card Data Base 47

4.3.1 Construction of a Control Card Sequence for a Data
Base Entry 50

4.3.2 Standard U t i l i t y Sequences 53

5.
5.
5.
5.
5.
5.
5.
5.
5.

.1

.2

.3

.4

.5

.6

.7

.8

.9

Page
4.4 Storage of the DIALOG Executive System 53

A.A.I Elements of the DIALOG Executive System 53
4.4.2 Deck Setup for,Storing the DIALOG Executive System 55

4.4.2.1 Modification of the DIALOG Program 55
4.4.2.2 Creation of a Data Cell Location for the

D IALOG Execut i ve 55
t A.4.2.3 Creation of the Special Procedures f,or the

DIALOG Executive System 55
, 4.4.2.4 Creation of Absolute Element Programs and

Initializating the DIALOG Executive System 58
5.0 USE OF THE DIALOG EXECUTIVE SYSTEM 60

5.1 Control Di rectives £ 62
CREATE D i rect i ve 62
RESTART Directive _. 65
UPDATE Directive 65
DESIGN Directive 6?
EXECUTE D i rect i ve 6?
LOOP TO Directive ,.68
I F D i rect i ve 68
PRINT Directive :69
END Directive 69

5.2 Communication Commands 69
5.2.1 The ADD Command 70

Adding Fixed Element Information 71
Adding Multiple Data Elements Ik
Transferring Data Elements 7k
Combining Data Elements with Constants 75
Combining Data Elements with other Data
Elements and Constants 75
Adding Arrays 76
Adding Constant Arrays 76
Adding Mixed Arrays 77
Transferring Array Elements 77
Comb i n i ng Ar ray E1 ement s 77

5.2.2 The DEFINE Command 78
5-2.3 The Comment Command 79
5-2.4 Replacement Command 81

5.2.4.1 Simple Replacement of Data Base Names 83
5.2.4.2 Simple Replacement of Data Base Combinations...86

* 5.2.4.3 Array Replacement by Name 87
5.2.4.4 Array Replacement of Data Base Combinations....87

5.3 Standard U t i l i t y Procedures 88
5.3.1 COLOGO: Compile, Load and Execute a FORTRAN Program 88
5.3-2 COMPILER/MYPROGRAM: Compile a FORTRAN Program/

Execute the Compi led Program 90
5.3.3 PRINTER: Prints Output Generated in the Previous

Execution 91
5.3-4 PLOTSV: CALCOMP Plot Save Procedure 92
5.3.5 REPORT: Generates Data Base Status Report 92
5.3.6 ROUTECC: Route Normal Output to the Central Site 93

The /
5.2.
5.2.
5-2.
5.2.
5.2.

5.2.
5.2.
5.2.
5.2.
5.2.
The [
The (

\DD
.1
.2
.3
.4
.5

.6

.7

.8

.9

.10
)EFI
^omm

vi

Page
5.3.7 ROUTEXP: Dynamically Prints Report at the

Originating 'Terminal 95
5.3-8 CCSAVE: Permanent Storage of the DIALOG Executive

System Including CCDATA 95
5.3.9 NEWPROC: Execution of an Arbitrary Sequence of

Control Cards "1 96
5.3.10 ENDODN: To Save a Design Data Base for Future Use 96

5.4 Special Options in DIALOG Executive Program 97
6.0 APPLI CATIONS 99

6.1 Orbiter Landing Skin Temperature Study 99
6.3 Shuttle Orbiter Wing Design Study 99

7.0 CONCLUSIONS 106
8.0 REFERENCES 108
APPENDIX A - CONTROL CARD SUMMARY v.109
APPEND I X B - CONTROL CARD DATA BASE 117
APPENDIX C - SPECIAL PROCEDURES FOR THE DIALOG EXECUTIVE SYSTEM 123
APPENDIX D - CONTROL DIRECTIVE SUMMARY 12A
APPENDIX E - COMMUNICATION COMMAND SUMMARY 125
APPENDIX F - FORTRAN STATEMENT SUMMARY 127
APPENDIX G - EXCLUDED NAMES FOR DATA BASE VARIABLES 13A

VI I

1.0 SUMMARY

An executive computing system called DIALOG has be.en developed for
linking independent applications computer programs to form an interdependent
system of programs for synthesizing engineering processes. The DIALOG
executive system represents a significant departure from the usual
means of forming synthesis programs as illustrated in Figure 1-1. Todays
typical synthesis program is a collection of analysis programs merged
together into a single computer program. The data management function
is programmed into the synthesis program. DIALOG controls the sequence
of execution of the independent program elements and performs the
data management function by maintaining a data base of information.
The data base is the common information link among the program elements.

The DIALOG executive program provides a very large scale programming
system with the potential benefits listed in Figure 1-2. The basic
elements of the DIALOG executive system are:

1. A library of independent applications programs.

2. A data base of control card sequences for the execution of the
independent programs.

3. A language for controlling the execution of a sequence of independent
programs by simple commands.

4. A dynamically constructed data base containing all interprogram data
in an unstructured name oriented format. These data can be randomly
selected by name at any point in the simulation.

5. A language for automatically retrieving data base information as
input to any of the applications programs. An advanced information
access and retrieval system is included as an integral part of the
DIALOG executive system.

6. A simple technique for allowing any program in the synthesis to
update the data base. The technique does not influence the stand
alone operation of the program.

7. A data base of input information for each library program
structured to meet the needs of the particular program. These
input files may or may not contain data base interface
informat ion.

All elements of the program intercommunication are directly controlled by
DIALOG. The significant advantage to the system is the rapid response to
everchanging synthesis requirements. The analyst has the choice of model
complexity through replacement or addition of functional program elements.
The developer of new program elements is unconstrained by the requirements
of the executive system. New programs may be rapidly incorporated into
the program library.

LU
CD > S_,
O •—• UJ

LU OO|

CO

D_
LU

OO_j —«:̂ coc_> LU o;<__>
CO

CD

CO

_

-̂. cr:
— i toD_ o
o_<c o_

OO

OO

CD

CD
CD
CC.
0.

LU
H-
Q.

OO

LU

OO

OO

LU
X
LU

O

<c
I— I(=1

OO

C££
LL,
LU

h-
OO<a:o_

LU
CD

OO
LU

OO
OO
LU
C_>

§Q_

00
LU

LU

H=

LL.
CD

LU
Qi
CD

OO
LU

<C

CD

OO<a:
LU

PQ

CD

OO
LU

LU

OO

LU
CD

CD

OO

00
LU

OO

LU

OO
LU

LU

LU

CD

OO

LU

LU
PQ

CDQ_

CD

2.0 INTRODUCTION

The design of an aerospace vehicle demands the involvement of specialists
from all engineering disciplines. Many iterations are usually required
/before a suitable vehicle design emerges. The design iterations usually
require from one to three months depending on the level of detail employed.
Each discipline involved in the design process generally is constrained by
the requirements of other disciplines, and much laborious data communication
is required at each step. The interface among disciplines is often i l l -
defined leading to untimely or inaccurate information transfer. Under these
circumstances, decisions affecting the usefulness of the end product can be
based on poor or unreliable information.

The above factors have lead to increased use of the high speed digital
computer to expedite the design process and improve the quality of the
design information. Automation of the individual disciplines has played
an increasing role in the design process for more than a decade. Structural
analysis and system performance have led the way in large scale computer
applications, although nearly every aspect of the design process has been
automated to some degree. More recently, the merging of the technologies
into a single preliminary design tool has been attempted. One successful
preliminary design tool is exemplified by References 1 and 2. Here a
complete synthesis of the design and mission analysis is contained in a
single computer program.

The confidence gained in early simulation attempts has led to the development
of more detailed and complex modules. References 3 through 8 are examples
of recently developed simulation tools. However, most modern day integrated
design programs tend to suffer from one or more of the following deficiencies:

a. Lack of depth in the analysis techniques.

b. Insufficient or inflexible data intercommunication.

c. Poor response time to rapidly changing design requirements,

"d. Excessive computer core requirements.

By-and-large the technical depth is available in independent technology
programs. The pattern of development of these programs has been the
generalized multiple option approach suitable to the analysis of many classes
of vehicles, each class being represented by input data. The problem arises
in combining the technology programs into a design synthesis program.
Computer core limitations require that resulting synthesis programs be
generally more limited in scope than the individual program. As a result,
the synthesis programs tend to become obsolete very quickly as the design
process evolves. Very often the obsolescence occurs before any effective
use can be made of the synthesis program.

The deficiencies described above have led to the development of a new
design synthesis procedure called ODIN (Optimal Design Integration) described
in Reference 9- The ODIN procedure shown schemetically in Figure 2-1
is a very large scale synthesis procedure which allows the selective
use of existing computer programs as elements of a larger more comprehensive
design simulation. Reference 9 exemplifies the technology modules which
have been used with the ODIN procedure. All the depth of analysis in
each technological area is maintained and the computer core requirement
is no larger than the,largest program element selected.

The linking of the independent program elements is controlled by the
executive computer program, DIALOG which also controls the communication
of information among the independent program elements. An input language
to the DIALOG executive system provides the user with the ability to
formulate the design problem at the task level in much the same manner
as is currently employed in the design process. As much or as little
of the design process may be automated as suites the particular application.
The design staff directly controls the specific information being communicated
from program-to-program and from the design simulation to the design
staff.

Since the system uses existing checked out computer codes as building
blocks in performing the design tasks, no program development is usually
required. The program elements are usually in common use throughout the
design staff and therefore readily usable in the design simulation.
No more effort is required to establish an automated design sequence
than that required to establish a single design cycle by ordinary means.
The same computer codes are generally used in either case. Once established
the automated procedure can be used many times for design perturbations,
and can be quickly changed to suit changing design requirements. The
designer never relinguishes his option to perform any task by some alternate
means including hand calculation.

The current documentation describes the control and communication language
of the DIALOG executive system. It w i l l become apparent that the DIALOG
executive system is not specifically tied to design simulation. Although
originally developed to implement the ODIN procedure, the DIALOG executive
system is generally applicable to any engineering process. Little reference
is made to design simulation in this report. The library programs which
DIALOG controls are referred to as applications programs to avoid the
implication that only technology oriented tasks may be employed.

Indeed there are many "utility programs" used in ODIN which perform non-
engineering tasks but are quite useful in any process.

Section 3 contains a general description of the DIALOG executive functions.
Much of the programming detail has been ommitted providing an overview
of the system capability. Section k is a detailed description of the
installation of the DIALOG executive system at the NASA Lang ley Research
Center Computer Complex. The nature of the DIALOG executive system requires

§Q_

3

O

CD

P^

CQ

C5
CJ

I
CM

a close relationship with the operating system on which it is installed.
Although representative of the installation on other CDC 6600 systems,
the LRC system installation is presented as an example. Section 5 is
devoted to the use of the DIALOG languages developed for the purpose
of linking independent programs and communicating information among them.

3.0 DIALOG FUNCTIONS

Usually the submission of a computational sequence to the digital computer
involves the execution of a single computer program with possible repetitive
evaluation of successive data cases. When using the DIALOG executive
system, submission of a computation may involve the sequential execution
of many programs to obtain a complete analysis. For example the repetitive
execution of program sequences w i l l be required for parametric studies
or optimization problems. The use of the DIALOG executive system also
affords the analyst the opportunity to conveniently communicate data from
stratified sources among the programs in the execution sequence. A discussion
of these two basic functions is presented in the following paragraphs.

3-1 Computer Control Card Assembly

On a digital computer the execution of a single program is governed by
a set of control cards which provides instructions to the computer system
for compiling and/or loading the specified program. The control cards
are peculiar to each computer system and installation. The control cards
rarely employ user oriented format. For example, Figure 3~1 presents
typical control cards for an elementary FORTRAN compilation and execution
of the same program on a CDC 6000 series computer, an IBM 360 series
computer and a UNIVAC 1108. Further, control cards on any computer of
a given series or manufacturer can vary from installation to installation.
Figure 3-2 shows the control cards to retrieve from storage and execute
a machine language program at three different installations. Though
each installation uses a CDC 6600 computer, the differences in compilers,
loaders and peripheral hardware result in entirely different control
cards to perform the same functions.

3.1.1 Execution of an Applications Program

In actuality, to retrieve and execute an applications program, several
independent programs must be executed. Collectively the control cards
required to execute an applications program may be referred to by name
such as PGMA or PGMB. These independent program executions which we
call "control cards" are all part of the computer operating system. System
programs of the type called by control cards bear a similar relationship
to the computer operating system as do independent applications programs
PGMA and PGMB to the DIALOG executive system, Figure 3~3- This analyogy
may be formalized as follows:

"The operating system employs independent system utility programs to
retrieve, compile and execute a given applications program. The DIALOG
executive system employs control card sets to synthesize an engineering
process."

DIALOG contains a higher order programming language which carries out
the analysis function by linking control card sets rather than carrying
out the individual control card functions.

CDC 6000 SERIES COMPUTING SYSTEM

RFL,60000,
FTN,OPT=0,
LGO,
7-8-9

SOURCE DECK
7-8-9

DATA DECK
6-7-8-9

IBM 360/67 SERIES COMPUTING SYSTEM

//EXEC FORTGCG
//FORT,SYS IN DD *

SOURCE DECK
/*
//GO,SYS IN DD *

DATA DECK
/*

UNIVAC 1108 SERIES COMPUTING SYSTEM

3 FR5 MAIN
SOURCE DECK

a XQT MAIN
DATA DECK

aFIN

FIGURE 3-1 TYPICAL CONTROL CARDS TO COMPILE AND EXECUTE
A FORTRAN PROGRAM

NASA LAN6LEY RESEARCH CENTER

FETCH,AOOOO,SPRAOO,BINARY,,OVL,
OVL,
7-8-9

(DATA DECK)
6-7-8-9

A. F. FLIGHT DYNAMICS LABORATORY

ATTACH,OVL,AOOOO,CY=1,MR=1,
OVL,
7-8-9

{DATA DECK)
6-7-8-9

NASA AMES RESEARCH CENTER

LIBCOPY,ALIB,OVL/BR,AOOOO,
LODE,I=OVL,0=UNSATED,
7-8-9

(DATA DECK)
6-7-8-9

FIGURE 3-2 EXAMPLE CONTROL CARDS TO RETRIEVE,AND EXECUTE
A MACHINE LANGUAGE PROGRAM AT THREE CDC 6600
COMPUTER INSTALLATIONS

10

OPERATING

SYSTEM

REWIND! IREQUEST

COMPUTER OPERATING SYSTEM

DIALOG

EXECUTIVE

PROGRAM

DIALOG EXECUTIVE SYSTEM

FIGURE 3-3 ANALOGY BETWEEN OPERATING SYSTEM AND DIALOG
EXECUTIVE SYSTEM

11

3.1.2 Creation of a Control Card Data Base (CCDATA)

The nature of the computer operating systems with regard to the execution
of applications programs via a sequence of control cards has led to the
development of the control card data base concept. The data base contains
all the control card sequences required to retrieve and execute a library
of applications programs. Collectively, any sequence of control cards
necessary to execute a given applications program is referred to by a
name.

EXECUTE PGMA

The name, PGMA, is assigned when the control card sequence is stored
in CCDATA. In the remainder of this section details of the control cards
w i l l be omitted. The control card sequences w i l l be referred to by the
name under which it is stored. The command to execute the control card
sequence:

EXECUTE PGMA

w i l l be referred to as a cont ro1 d i rect i ve (i.e. the EXECUTE directive).
Other control directives w i l l be described, each performing a "control
function" in the execution sequence. Collectively the control directives
form the DIALOG control directive language.

The control directive language is input to the DIALOG executive program.
DIALOG processes all input to all programs and performs certain functions
based upon the control directives encountered. To distinguish DIALOG
input from the input of applications programs, the control directives
must be delimited as follows:

'EXECUTE PGMA1

The creation of the control card data base is a function of DIALOG. It
reads from input cards the control card sequences to retrieve and execute
programs from the library. The control directive which creates the control
card data base is:

'CREATE CCDATA1

Following this directive, the control card sequence such as those illustrated
in Figure 3-1 and 3~2 are entered into CCDATA by name:

PGMA =

control
card
sequence

Any number of these control card sequences may be entered into CCDATA,

12

each representing the retrieval and execution of an applications program.
Once established, CCDATA may be accessed by the DIALOG executive through
the EXECUTE directive described above.

3.1.2.1 Storage of the Control Card Data Base

The creation of a control card data base does not insure the availability-
of the data base for a future use. It is only available for the run
in which it was created. However, it can be saved by the execution of
a special utility procedure. The special procedure is simply another
control card sequence analogous to an applications program control card
sequence. Usually the procedure is itself stored in CCDATA and executed
by the EXECUTE control directive as follows:

'EXECUTE CCSAVE1

The CCSAVE procedure is one of a series of utilit y functions which have
been developed for the DIALOG executive system. The utility functions
include plotting, picture drawing, abnormal end and file printing procedures.

The CCSAVE save procedure is installation dependent and hardware dependent
(i.e. tape, disk or data cell). As such it is generally provided in
the basic control card data base created at the time the DIALOG executive
system is installed. Other u t i l i t y procedures which w i l l be described
later in this report are also provided in the basic system.

3.1.2.2 Updating the Control Card Data Base

Once established, the control card data base can be freely accessed by
the EXECUTE control directive without regard to the actual control: card
sequence involved. Usually the control card sequences do not change.
However the DIALOG control directive language permits the complete replacement
of existing control cards sequences or the modification of individual
cards. The UPDATE control directive is used for this purpose. UPDATE
is described in detail in Section 5.

3.1.3 Execution of a Sequence of Applications Programs through Control
Card Linkage

Now consider the problem of sequential execution of more than one application
program using the DIALOG executive system. Assume the following three
control directives:

'EXECUTE PGMA '

'EXECUTE PGMB '

'EXECUTE PGMC '

The function of DIALOG is simply to retrieve the control cards sequences
for PGMA PGMB and PGMC from the control card data base, CCDATA and queue

13

them sequentially on a file called CONTROL. The CONTROL file is then
interrogated by the operating system which performs the various control
card functions. Included in these control card functions are the executions
of the desired applications programs. Figure 3~** illustrates the relationship
between the DIALOG executive and the operating system. Progressing from
left to right in Figure 3-b, the control directives to execute control
card sequences are read by DIALOG, which "builds" the control card sequences
from information stored in the control card data base and passes the
control card sequences to the operating system: «

i

The physical' link among the control card sequences of the various applications
programs and DIALOG is an operating system u t i l i t y such as the CCLINK
u t i l i t y on the CDC 6600. CCLINK is executed by a control card which
forces the operating system to read control cards from an alternate file
b u i l t by DIALOG. In the DIALOG executive system CCLINK is used to link
the execution sequences of an applications program to DIALOG, then from
DIALOG to the next applications program, then to DIALOG, etc. This is
illustrated in Figure 3~5- So the DIALOG executive program first constructs
the control card sequences to execute applications programs then through
the use of CCLINK, provides for the re-execution of DIALOG to process
the application program input and output data. Details of the operation
of the example u t i l i t y CCLINK are contained in Appendix A. S i m i l a r utility
programs are usually available in most third generation systems.

3.1.A Repetition of Control Card Sequences

Thus far we have described a capability which permits the execution of
control card sequences in an arbitrary manner using higher order readily
understood commands. This is achieved by the creation of a control directive
language which replaces the control card sequences such as those in Figures
3~1 and 3~2. However, there are two additional capabilities which exist
in the DIALOG executive system which are not possible simply by queu'ing
control card sequences. These include the conditional branching logic
described below and the maintenance of a design data base described in
Section 3-2.

The DIALOG executive system permits automatic repetition of control card
sequences by a system of conditional branching logic. This capability
is achieved by extension of the control card directive language in the
following manner:

'DESIGN POINTI'

'LOOP TO POINTI'

1 IF VI .LT. V21

The DESIGN directive establishes an identifier in the execution sequence
where control may be returned (or skipped to). The LOOP TO di rective
points to the identifier to which control is to be returned. The IF

14

I- UJ
< H-cc in
LU >
O_ (/)
o

1
1

_J
0
o;

O
0

Q
cc

o

LU
o
"Z.
LU

0
LU
C/5

< OQ Os s s:
(9 U> C9
0.0.0.

LU LU LU
I— I— h-
)̂ D̂ ZJ
U O O
LU LU LU
X X X
LU LU LU

X

3

LU

CQ

CL,

nz
CO SI
^ LU
O I—
•—• COJ— >-
<C CO

LU CJ3

Q_
O

<o

f— <c
oo

15

PGMA

CCLINK (DIALOG)

DIALOG

CCLINK (PGMB)

I P G M B I

CCLINK (DIALOG)

I DIALOG 1

CCLINK (PGMC)

PGMC

FIGURE 3-5 ILLUSTRATION OF THE FUNCTION OF THE SYSTEM
UTILITY, CCLINK

16

directive is a conditional operator based upon design dependent logic.
If absent, the LOOP TO di rective is a mandatory branching command. VI
and V2 are example values which may be constant or computed in any of
the applications programs. In the latter case such values must have
variable names and be defined in the design data base. A description
of the design data base is given in Section 3-2.

In general the DIALOG executive system permits a complicated system of
analysis loops for satisfying a variety of matching constraints. It
is not possible or necessarily desirable to rigidly define the topology
of the system of computational loops. Instead, the analysis sequence
to be performed is defined within the control directive language. This
technique allows the analyst complete freedom in specifying the computational
sequence; no l i m i t is placed on the complexity of the analysis.

Any number of loops can be created using the LOOP TO and conditional
IF control directives and the associated DESIGN control directive. Using
the symbolic notation:

,s
!T~

to indicate if the statement S is true go to A, it is apparent that series
loops, nested iterative loops and combined series and nested loops can
be constructed. For example:

~tiAc,

a. SINGLE LOOP b. TWO'SERIES LOOPS

' I I ? 1 -> A

Irf - B

•
"c

*p?
,

C. TViO NESTED LOOPS TWO SERIES LOOPS
TIVO NESTED LOOPS

17

The IF tests employed encompass the standard set of six tests in FORTRAN;
although the form of the DIALOG control directive language test differs
in form to that of FORTRAN. The six tests are:

.'IF VI .LT. V21 -IF (VM-V2)

'IF VI .GT. V21 IF (VI > V2)

'IF VI .LE. V21 IF (VI <V2)

'IF VI .GE. V21 IF (VI >V2)

'IF'VI .EQ. V21 IF (VI a V2) ' ,

'IF VI .NE. V2' IF (Vl^ V2)

As noted previously VI and V2 are constants or variables constructed
in the design data base or constructed within any independent program
in the synthesis and passed to the design data base.

The a b i l i t y to select alternative program execution paths based on design
dependent logic is illustrated below:

'EXECUTE PGMA'

'DESIGN POINTA1

'EXECUTE PGMB'

'LOOP TO POINTS'

' IF VI .E0_. V2'

'IF V3 .LT. W

'EXECUTE PGMC' ,

'LOOP TO POINTA1

'DESIGN POINTS'

'EXECUTE PGMD1

The above control directive sequence defines the execution of PGMA and
PGMB with a conditional loop (in this case, skip) to POINTS,. If neither
of the IF conditions is satisfied, PGMC is executed followed by a mandatory
loop back to POINTA.

18

In general, both VI and V2 may be defined by the analyst or alternately
either may be a variable computed by any of the application programs.
In the latter case such variables must be defined in the data base as
described in Section 3.2.

3.2 Data Management Function

The usual manner of transferring information from one program to another
is by use of a structured file. This simply means program A is coded
to create a file of data in exactly the same format as required by
program B. In the sequential execution of the two programs, the structured
file created by A is passed to B via parameters on the execution control
card.

In the DIALOG executive system the above means of transfer of information
is possible and often employed. However, in the communications of information
from one program to another, it is not always possible or even desirable
to create a structured file of input data for each program. Often
only a few stratified bits of common information are required for each
program. Usually a different set of data and a different order is required
for each program. The DIALOG executive system maintains a name-oriented
data base containing an unstructured set of data accessible by all
programs. The data base file of information is dynamically constructed
by DIALOG as the analysis proceeds. The file is resident on disc or
tape at the users option. Construction of the design data base involves '
the following tasks:

a. Search to see if the variable name exists within the fixed field
of the data base.

b. If not, locate a vacant location in the data base and install the
information and the name.

c. Otherwise, replace the information associated with th'e name.

Additional information can be added or existing information may be updated
by the analyst at any point in the analysis. Data base limits are
discussed in Section 4.

The design data base can be updated by any of the applications programs
as the analysis proceeds. Updating the data base by the applications
programs involves tasks similar to those described above.

Further, the analyst may specify that all information created by the applications
programs shall be placed in the design data base. In this case the tasks are
identical to that of creating the design data base. Figure 3-6 illustrates the
data interplay among the applications, programs. Consider a variable stored by
the name, WEXPAR. Assqme WEXPAR is computed in program A (PGMA) and subsequently
Used by program B (PGMB). Schematically this is illustrated in Figure
3-6. Any number of subsequent programs may access WEXPAR or alternately
update the value of this variable. All interface between the applications

19

PGMC

PGMD

KA!-!E VALUE

WEXPAR 12.451

DATA BASE

FIGURE 3-6 DATA INTERPLAY AMONG APPLICATIONS PROGRAMS

PRPROGRAM DIALOG

DATA
BASE

FIGURE 3-7 DIALOG EXECUTIVE CONTROLS ACCESS TO DATA BASE

20

programs and the design data base are performed by the DIALOG executive
as illustrated in Figure 3-7. The same is true of the interface between
the analyst and the data base. All data requests are addressed to the
DIALOG executive. '

Data base information may be accessed by the analyst for placement
into the input stream of any of the applications programs. The DIALOG
tasks in performing this function are:

a. Search to see if the variable name encountered exists in the data base,

b. If not, ignore the access request.

c. Otherwise, retrieve the information associated with the access request.

d. Replace the variable name encountered with the data base information.

The technique employed in the storage and retrieval of data base information is
discussed in the following paragraphs. They involve the extension of the
control card directive language described in Section 3.1 as well as the
creation of a new intercommunication language for passing design information
from one applications program to another.

The new language contains a simple set of instructions which will be
referred to as communication commands. Communication commands are
physically inserted into the applications programs input data. In
general, these commands are either removed or replaced by the DIALOG
executive program before the input data is processed by the applications
program.

The communication commands form the basis by which unstructured' information
is passed from one applications program to another. The communication
commands are delimited in exactly the same manner as the control directives.
Complete syntax rules for the language are given in Section 4.

3.2.1 Data Base Information Transfer System

Data base information transfer is accomplished through a rapid search
by name. Search speed is obtained by the use of "hash" and "collision"
methods of Reference 10. This approach is more efficient than the
more usual linear sequential search which starts with the first name
in the table and proceeds sequentially until the desired name is located
and the corresponding value is retrieved.

The hash and collision data transfer system operates in the following
idealized manner:

a. Take the variable name and treat the binary representation of
this word as an integer;

b. Find the remainder when the integer representation is divided by the

21

number of elements in the data base. This is equivalent to the
FORTRAN MOD function which is a very rapid machine operation.

c. Use the remainder as the nominal location oc "hash" location of the
variable within the data base. This assures the location derived
will fall within the data base limits.

d. Check to see if the location is in use since more than one variable
name may hash to this location. If this location has already been
used for another variable name store the new variable in the next
vacant location and provide a pointer to this location in the data
base entry originally searched. This pointer is called a "collision"
pointer. Each entry has associated with it a name, a value, a
hash address and a collision pointer.

e. The retrieval process operates in the same manner. The name is
converted to nominal retrieval location. If that location contains
the wrong name, the specified alternate location is searched for the
desired name, etc. until the desired name is found and the variable
value is retrieved.

Figure 3-8 illustrates the hash and collision method. Suppose the binary
representation of three variables A, B and C are identical to a fourth
variable stored in the data base. Upon initial entry, the name A "hashes"
to the occupied location. After unsuccessful comparison with the existing
name at that entry, a new location for A is defined and a collision
pointer is stored at the original entry forming a link to the new location.
Once a location is established for A, the information (value) is stored
or retrieved. The name B is also "hashed" to the original location.
An unsuccessful comparison with the existing entry sends B to the location
where A is stored via the pointer described above. An unsuccessful
comparison with A causes the next available location to be defined
for B. A pointer to the newly defined location is stored at the entry
for A forming the link to B. This chaining process Described can be
continued to the limits of the table.

In numerical experiments with a 2000 word data base filled approximately
75 per cent, it was found that the average name can be retrieved in
less than two attempts (fetches). This would compare with 750 fetches
using a linear search for information retrieval. In practice using
DIALOG, approximately 9000 values per second may be retrieved on the
CDC 6600. This figure varies but is less affected by the amount of
data stored than by the internal numerical pattern produced by the
variable names stored. It is difficult to control numerical uniqueness
since the data base names are arbitrarily chosen by the user. However,
in all past experiences with DIALOG collisions have never exceeded
20 per cent. The access time is essentially unchanged with data base
size, while the linear search technique increases in access time in
proportion to data base size.

22

A
B
C.

A,B,C

B,C

FULL

FULL

FULL

ENTER A

FULL

ENTER B

FULL

ENTER C

FULL

VALUE A

VALUE B

VALUE C

1 + 6

1 + 8

I + 10

I

I + 1

1 + 2

1 + 3

1 + 4

1 + 5

1 + 6

1 + 7

1 + 8

1 + 9

I + 10

FIGURE 3-8 IDEALIZED INFORMATION RETRIEVAL SYSTEM

23

3.2.2 Creation of a Design Data Base

The design data base, DBASE, is created in much the same manner as the
control card data base. The two data bases are similar in construction
and occupy the same computer core locations but at different times.
The data bases consist of two distinct parts, a free storage array
of packed information and a directory of names and pointers to the
actual data in the free storage array. Space in the free storage array
is allocated as required by the user and/or the applications programs.
As the information is stored in the free storage array, the directory
is constructed as described in Section 3.2.1. Access to the data base
is always through the directory. Both the directory and the data base
have certain attributes which distinguish them from one another. Among
these are:

Total number of data base entries

Number of computer words per data base entry

Total number of directory entries

Number of words of descriptive information associated with each name

For example, CCDATA elements are 8 computer words (8 words = one card) in
length since CCDATA is used for storing control card sequences. DBASE
elements are two computer words in length since DBASE is used for storing
design type data in BCD format.

The construction techniques employed in creation of the design data
base as well as the control card data base are easily extendable to
a multiple data base involving many combinations of attributes such
as data type and technology origin.

The design data base, DBASE is created with the control directive:

'CREATE DBASE'

This directive is followed by a file of information containing the
necessary communication commands to initially establish the data base.
These communication commands are described below. It is not essential
that any information be initially placed in the data base. The dynamic
nature of data base maintenance permits information to be added at any
point in the execution sequence.

3.2.2.1 Adding Information to the Design Data Base

The basic communication command available to the analyst is the ADD
command. It permits a variable name and value or values to be placed
in the data base:

'ADD name = value, value,'

24

Any number of values may be added for a given name. The number of
values associated with the name is also the number of locations reserved
in the data base for that information. Later modifications to the
information can not create more data base space. The values may be
real, integer, hollerith or logical. The data type is immaterial since
the information is stored in coded or character format.

A single ADD command may be used for creating or updating many information
sets.

'ADD VI = 25., V2 = 30, V3 = ALPHA, V4 = .TRUE.,

A = 10., 15., 20., 25., I = 4, 5, 6'

The data type is specified by the input. Any of the four common types
of variables may be entered into the data base. The format of the
ADD statement is patterned after the FORTRAN NAMELIST feature and indeed
has the same characteristics and utilization rules. For example, all
name/value sets are separated by commas (,); all elemental values of
an array are separated by commas; the entire statement (command) is
delimited. In the case of NAMELIST, the delimiter is a dollar ($)
sign; in the case of ADD command the delimiter is (').

However, the ADD command has additional capability not present in the
FORTRAN NAMELIST feature. The value associated with the ADD name may
be a previously defined data base variable name:

ADD VI = V2,

The effect of the above command is to transfer the information associated
with V2 to the data base space assigned to VI. VI may or may not exist
prior to the ADD command. If VI did not exist, space will be created
in the data base as the information is transferred. If VI did exist,
then the information in VI will be replaced by the information in V2.
The transfer of information from one data base location to another
is generally limited to scalar quantities. Complete rules are given
in Section 5. Finally the ADD command may be used for transferring
multiple constants in the data base:

'ADD VI = 5 * 0.,'

In the above illustration, VI will be a data base array name. Five
zero values will be stored.

3.2.2.2 Combining Data Base Information

The ADD command capability thus far described includes the addition
or modification of data base information with either constant or variable
type information. The ADD command may also be used for combining existing
data base information with other data information or constant information:

25

'ADD VI = V2 * K,'
or

'ADD VI = V2 * V3,'

In the above statements VI, V2 and V3 are data base variables and K
is a constant. VI may be a new or existing data base variable. The
operation illustrated above indicates a multiplication of the two numbers
on the right side of the equal (=) sign prior to transferring the resulting
information to the space allocated to VI. Any algebraic operator may
be employed as follows:

+ addition
- substraction
* multiplication
/ division
** exponentiation

More than one operation may be performed on the right side of the equal
(=) sign.

'ADD VI = V2 + V3 * K,'

Up to ten operations may be performed within a single ADD command.
However, the hierarchy or order of the operations is not the same as
FORTRAN. For example, in the above illustration, V3 is added to V2,
then the sum is multiplied by K. This is a significant departure from
the hierarchy employed in FORTRAN. The basic rule in combining variables
with the ADD command is:

"The operations are performed in a serial manner analogous to that
employed in a hand calculator."

The operations start from the equal sign and progress to the right. The first
variable is combined with the second. The result of that operation
is combined with the third. The result of that operation is combined
with the fourth, etc. It is very important from the outset that the
analyst understand this principle.

In summary, the ADD command gives the analyst the ability to add, modify
and combine information in the data base at any point in the execution
sequence. The only constraint is that its occurrence must be within
an input data set for an applications program or as a result of a CREATE
or UPDATE control directive for DBASE. Figure 3-9 illustrates the
possible locations for ADD commands. ADD commands can not be mixed
with control directives. It may be noted that the ADD command serves
as an instruction only to the DIALOG executive and is not a part of
the normal input data to the applications program. As such, the ADD
command is removed from the input stream as it is processed.

The combining of variables is very useful when coupling computer programs
from independent sources. One example is the matter of units conversion.

26

(a) Adding data to a new data base

CREATE DBASE

ADD VI = 25., V2 = 30.,

VN = 60.,

(end of file)

(b) Adding data to an existing data base

UPDATE DBASE

ADD VI = 25,

(end of file)

(c) Adding data during the execution sequence

EXECUTE PGMA

ADD VI = V2,

(end of file)

FIGURE 3-9 POSSIBLE LOCATIONS FOR THE ADD COMMAND

27

Very often computer programs use different unit systems. When coupling
such programs the output of one computer program may not provide compatible
data for the input to another. The ADD command gives the analyst an
immediate means of providing that essential data compatibility without
modifying any applications programs. The DIALOG executive system does
not exclude the possibility of automatically providing data compatibility
among applications programs at a future date.

The ADD command is also useful for performing simple interface transformations.
Indeed, a limited FORTRAN capability exists as part of the communication
command language. However, it is not intended to replace FORTRAN or
other languages. It simply augments existing analysis tools. Later
discussions will show that full FORTRAN (or any other common language)
capability is immediately available within the DIALOG executive system
for complex data transformation problems.

3.2.2.3 Defining Variables and Reserving Space in the Data Base

It is often desirable in using the DIALOG executive system to reserve
space in the data base before the information is actually generated.
The DEFINE command was developed for this purpose. As with the ADD
command, the DEFINE command may be employed anywhere within the execution
sequence. However, it is most likely to be used in conjunction with
creating or updating the data base. The format is as follows:

'DEFINE Vl = n, description,'

VI is a new or existing data base entry. The number of locations reserved
is n. If VI is an existing variable, n is ignored. If n is absent
from the command, one is assumed. The description is a short hollerith
description briefly describing the variable VI. The length of the
description is typically three computer words. This is not a hard
limit and can be altered with the alteration of a dimension statement
in DIALOG. The description is printed together with the data name
and value when the control directive:

'PRINT DBASE'

is employed. Figure 3-10 is an illustration of a printed data base.
\.

3.2.2.4 Identification of Applications Program Data

In addition to the ADD and DEFINE commands, there exists a special
"command" for identifying data. The format is:

'. comment'

No action is performed as a result of this command. It is useful only
as an identifier for other data. For example, consider an application
program which uses formatted input (i.e. numbers with no identifiers
or names associated with them). The comment command may be used to

28

;
*

*
.!

$
£

*
3j(

1/5
3:
O
-J

O
U,

10

^
in
I-M

a
2
Ul

UI
10

X

<t
,-J

o

2

_̂J

lu
a:
cc
z>
u
Id
or

Ul
cc
Uiĵ-
V-

*
(1
$

I)

a«L«.

2
O

t-
a

a
u
in
lu.
O

,
z
o
1-4

a
o

^
VI

UJ

1

~̂^

h-
z
UJ
or
ct

o

.,
o
H-»

01

z
U]
2C
»-«

0

z
o
»__

- ^')

'•>

Ul

2

•*-'

2 in
c a
"I A)

<l UJ

5 ~£
>- x
1-1 vl

t/< 3.

>-. 9
o >—
UJ 5?
IT. O
Z5 U

a a
0 0
if. CO
UJ UJ

UJ H-^- *^
>- o
U. CO
U> Uj
c -t

*-0
o
+
Ul
in

IT

O

„ _. \lr~+ *\J

0s f*-
f")

0. -t
0 T.
t/. C.
UJ .J
«.». -I

0

0.
O

a
_i

iO

•~r*
a
0

2

U*
s^

b

UJ
2

U,
u-
Q

rH
O
+

Ul
IT
r-l

<\i

0 0

c*,_

Q
_)
t-4

r>
X

2

2f o:
o
*-H O

\- n. c c

5 >-• «.• 5 a c uj iij »-
Zi t- > O i— t- t^1

o a _i jj u 'jj .'c »i « i^
7- -. - T O O ct: .t

r. w 13 >- uj z ~ u o a r
o ui u. i- cj o t- J-. c; i—
t-i <(;• -" x z:
a. 't ui :•• -i J-: »-< o o ~
C -t _J J-l Li ~ >~ -3

i— a i >; .j i— <i i— >— c%

n. «t i/i --X u. ^ ;r u co t/i »r
>-<o'-i_ia: ><.>~ioc>
^ oiLjujcu IU.OO

u.1 uj _j Q Cj »- _i _i rr
o to a. <t >- o a ?. «t < ~
cr. D c t- o- IT. o to s- i- (.-'
< < cj c iu u, cr c c c s.
uuioH-a;-. <ta.'-<f-i-uj

1

IjJ -J LJ >- V- Ul 1-
*T *•> j? ~" Z^ 2 T
•-I v- >-. c o •— o

Q u. — « ii. c/i to a u. o c o
c u. ;• IL, u. ui c u c '•« c
< Q H, 0 <J < <£ 0 <c Q «;

o <v co 10 c
o h» !P o o
(\) -C + 0
C1 «• If IU O
<C c\i vf r^ o
o^ rvj \cr f**" o
O^ o o o
C* 5T 33 ^ ^
•J^ < f*- (V o
o ~> n tr> o

O C* C7* l/^ O
o a» in ^-< c
0 c> IT ̂ - o
O C ffl t~ *

O CM C^ « CO O
_l O- t- 2 n o o
>- o •< M r- o o
<r • r-- Q «r i-j Ji

M jS OJ «-" O (Vi * W O l/l

t-4 »— i ro co IP f*- ro r-* to f'- u^
n •-< rv. f v; «-« f\j •-) n

>.
a a <; u' »- r z- »-
v. " i ; t/" r."i K-) — o".
IT r; i\ »- M 'i •- '-» "" --
c c v »- .r -5 •- -' c r: 't
n ir •-. _j -i -^ •- -•> o u r
o o c. ii- • " > • » • . o. H- t~ >-

t- \-
u u
0 0

tj.' ^1
> >

& o
r: ̂ j
•3 t.0
<c « i
i— i—
j) to

rt n:
UJ UJ
\- i—
ui >-<
o -Q
o r:
;) o

i- >-
z; r̂
C 'O
1 — i —
— L. -

-i- ir>
0 O
+ ->
:u! u.
"o c •>
r~ i:
'.j -t
V "C
<-> J^
IP ĵ -
\p f^-
X' *^
r- ?
-• r i
o p

'•••< <"n
^ cv-
o o

C?* fO
{\t ?t

, O
_ '^

J — 'f
T- "*,

•" '

a
U!

IP
c
0
a:
u.
o
V*-
T.

>̂— *
LJ
*i

y
i/i
o
•}£

13

1-
~j
O
H
21

Ô

*UJ
v}-

l"*-.
X
cv
f)
IP
^1
TV!
•̂
CO
VC

»c
<v

O

*— 4
•—4

n
i/"
~>

fcj_
^*
•'•

.r.
»-
H-l

ac

b
Si_
o
1-
•jc.
c
>— 1

UJ
"•i

10
10
o
C£

o

1-
D
o
>—
3

«c
o
>
III
U"1
,M
r-
*v
o
3>
G*
n
o
IV
o
OC

l~-

O

IP
f-4

a
{/"

ĉ»r
i"

liJ 4

</> *

W *

X *U

$
Ul
X A

•̂

H-

*It.
O $

O #

0 *
—)

>- »
<
0. *

*
0

1- *
Z)
o •»
t-
•? 1>

*
I/) ^<
o
•V l)t
tu
- 5>

in
r* ^*f^.
O^ 4
•̂•1

»o *
i*
i **i
a' *

n *

0 *

0

i)

*
V

f^-
(\J 4

*
*
<f

a
o
.j -S
>-
*t ^
n.
"' *

M

1Q

0)

5

•d
B
1>

C
a>

o
•H

ft^

S
0 g
ui 3 '
fl> O
ft o

^

d)
CO
a)
,0
a)
•P C
oj O
^ -H

"m
a i
<u v<

£5

1 ° g
(U C -H
M C 0 -P
n) O -H o)

^> -H W S
+^ C S

o3 a3 0 o
-P o £5 Vi
Oi O -r-1 C

Q H -d -H

&

a
(U

0)

8
5
<d
•g §
0 C

e

in

fo
rm

a
ti
o
n

1

O
D

IN

o
u
tp

u
t

1

K '
-P CU

CO

0) ,Q

0) 0)
•d -P

&5
+J OJ

S *
H

C
J3 *rH

•Zi r»
A O
> -H

+3

3 p
§ o

<H
0 C
U -H

0) Q>

EH 5

3

O
U

3
•d
0)

"S
(U

^>
01
H
03

CO

+>
CO
•H
H

B

C

EH
2
W

I
ro

W
«
ID
O

29

identify the data elements within the input data stream. The affect
of processing this command through DIALOG is that the command is simply
replaced with blanks. If the resulting card is entirely blank, then
the card is "removed" from the input stream.

The effect of using the comment card with the execution sequence is
to provide some self documentation. It serves to identify data which
is not generally recognizable as it stands. The comment command is
somewhat analogous to the comment card in the FORTRAN language.

3.2.3 Communicating Information from the Data Base to the Applications
Programs.

The three commands described above, the ADD command, the DEFINE command
and the "." command (comment), basically provide user interface with
the data base. This paragraph and the next paragraph deal with applications
program interface with the data base.

In this section the passing of information from the data base to the
applications programs will be discussed. Section 3.2.4 deals with
the passing of information from the applications programs to the data
base.

3.2.3.1 Modifying Program Input to Communicate with the Data Base

Development of the DIALOG executive system Is based on the premise
that independent applications programs can be made to communicate with
each other without significant modification through a data base. By
following this premise a method of communicating data base information
into each program has been devised. No modification to the program
input data code is required by this method. The input data prepared
by the user however is modified to indicate data base inputs. The
modified data input does not affect the applications program since the
DIALOG executive program inspects the data input prior to execution
of the applications program. DIALOG combines the required data base
information with the basic program inputs, then prepares automatically
a file containing the modified input format for the applications program
and provides for the execution of that program in the nominal-'manner.
This is illustrated schematically in Figure 3-11.

It should be noted that the applications program may still be executed
in the normal manner as a stand-alone program independent of the DIALOG
executive system.

3.2.3.2 Data Base Communication through Input
1

Data base information is entered into the applications program input
by means of the special delimiters ('). Any data base variable name
may be entered between the delimiters. The DIALOG executive program
will replace the variable name by its data base value and rewrite a

30

O
S3
H

CO D
53 ft
O 2

W
CO
<«
<
EH 2
< O

u «=>:

H H C5 Q H
EH 2 EH
<S H EH
U < Q Z
H « t> W

W H _ . .
t-3 g ft O U
H O ft « 2
fa 2 <C ft H CJ H

co

l\~\

31

normal card image to replace the modified input cards. The value is
placed within the closed region which includes the delimiters. Therefore,
namelist-like inputs, rigid format input and special input procedures
can be accommodated by the general input modification. For example,
in a true namelist input, a data base variable woul'd be entered as
follows:

NAM1 = 'VI',

NAM1 is the name of the NAMELIST variable. VI is the data base name.
The delimiters specify the field width to be employed in replacing
the data base name with the corresponding data base value. Similarly
for a formatted input where all that normally appears on a card is
a number the data base input procedure is simply:

'VI'

The delimiters are placed at the appropriate card columns defining
the field for the data element.

Additional capability is available when namelist input is used by the
applications program. Entire arrays may be transferred to the input
stream.

NAME = 'VARRAY'

where VARRAY is a data base array. If the data in VARRAY is more than
three elements, additional 'cards' are created to pass all the information
in the VARRAY to the input stream of the applications program.

3.2.3.3 Combining Data Base Information in the Modified Input Stream

Data base variables and constants may be combined much like the capability
described for the ADD command in Section 3.2.2.2.

For example, the operation may be performed:

'VI * V2'

The above example illustrates how the multiplication of data base variable
VI by data base variable V2 can be performed prior to replacing the
delimited set with the product of the multiplication. A new data base
variable representing the combination is not created. The product
never resides in ̂ the data base, only in the modified input stream.
VI must be a data base variable but V2 may be a data base variable
or constant.

The operation illustrated above indicates a multiplication of the two
numbers enclosed in delimiters prior to replacement of the delimited
command with the product. Any algebraic operator may be employed.

32

+ addition
- substraction
* multiplication
/ division
** exponentiation

More than one of the above operations may be performed within the delimiters.

'VI + V2 * V3'

Up to ten operations may be performed within a single command. The hierarchy
of operations is the same as that described for the ADD command.

In general, array elements may be used in the replacement command:

'Vl(5)' or
* V2(6)'

One exclusion from this capability is the first element of an array:

'Vl(l)'

The above illustration is not an acceptable statement to the DIALOG
executive for transferring the first element. Any other element of
any array may be employed. A convenient means of avoiding the above
limitation is the following two cards:

'ADD NEW = VI (1)'

'NEW'

The ADD command defines a new location which will contain VI (1) the
replacement command will place the variable NEW (i.e. VI (1)) in the
modified input stream.

A special feature of the replacement command is the element-by-element
combining of entire arrays or arrays with constants. As an illustration,
consider the example:

'VI * V2'

where the data base variables VI and V2 are arrays. The above command
specifies the element-by-element multiplication of the arrays. If
one array has fewer elements than the other, the combining of elements
ceases after the shorter array is exhausted and the rest of the longer
array remains unchanged. The variable V2 may be a constant or data
base name.

3.2.4 Communicating Information from the Applications Programs to
the Data Base

The communication of information from an applications program to the
data base generally, but not always, requires modification of that

33

applications program. This modification is usually trivial and involves
little programming knowledge to accomplish. Further, a mechanism is
available within the FORTRAN language which further simplifies the
task. This mechanism is the NAMELIST output feature. A more detailed
description of the modification procedure is described in Section 4.
The obj'ective of the modification is to generate a special file of
information available to the DIALOG executive system, which contains
the desired information in the proper format.

The special file is interrogated by DIALOG for name oriented information
in the following format:

$name name = value, value, $

Note the similarity between the above format and the FORTRAN NAMELIST
feature.

!

In generating the file within the applications program, the analyst
has the option of using NAMELIST (in FORTRAN programs only) or simply
simulating NAMELIST by following four basic rules.

a. Separate name and values with equal (=) signs (N = VI).

b. Separate name/value sets with commas (,) (Nl = VI, N2 '= V2) .

c. Separate values (as in an array) with commas (,) (N3 = VI, V2).
[<

d. -Delimit multiple name value sets with a delimited ADD like "command"
($name $) .

34

4.0 INSTALLATION OF THE DIALOG EXECUTIVE SYSTEM ON A TYPICAL 6000 SERIES

COMPUTER AND THE LIBRARY OF INDEPENDENT ANALYSIS PROGRAMS

The DIALOG executive system can be installed on any CDC 6600 computer which has
an operating system containing control card linking capability. The linking
capability is provided by an operating system utility program which directs the
system to read control cards from a user specified file other than INPUT.

For computer installations not having this capability, two alternate system
utility programs are included in the basic library which provide control card
linking capability. At Langley Research Center (LRC), thefcontrol card linking
utility installed is called CCLINK. Similar utilities are available at other
installations where the DIALOG executive system is in use.

The description of the installation of the DIALOG executive system is strongly
dependent upon the computer operating system in use. Each computer complex
has unique operating system features not generally available at other computer
complexes. System differences are reflected in the control cards.

As a specific example, the discussion in this section is directed
toward the installation of the DIALOG executive system at Langley Research
Center. Therefore, the control cards described (including CCLINK) will be
peculiar to the operating system employed at the LRC facility. Appendix
A summarizes the control cards commonly used in the DIALOG executive
system at the LRC computer complex. Complete detailed information
for control card usage at LRC may be obtained from literature available
upon request from the LRC computer complex.

Before installing the DIALOG executive system the storage devices for the
independent programs must be chosen. This affects both the procedure in
storing the program library as well as the entries into the control card
data base. The program storage devices can be either data cell (online)
or tape (offline) at LRC. The two device types may be mixed if so desired.
However, the data cell is the most commonly used at LRC and considering the
number of programs involved, the use of data cells assures a smoother
operating system. Therefore, data cell storage will be discussed exclusively
in this section.

In general terms the installation of the DIALOG executive system involves four
basic tasks:

a. Compile and store the DIALOG executive programs.

b. Compile and store a library of independent programs.

c. Create a control card data base containing the control card sequences
of each independent program.

35

d. Store the DIALOG executive system including the control card data base.

When all of the above tasks have been accomplished, the use of the DIALOG
executive system may commence as described in Section 5. The above tasks will
be described in detail in this section. (

4.1 Compilation and Storage of the DIALOG Executive Program

The objective of this paragraph is to describe first the compilation and storage
of DIALOG, a brief description of how DIALOG fits into the DIALOG executive
system, a discussion of data base parameters and finally a deck set
up for storing DIALOG.

The DIALOG executive has two main programs:

DBINIT - initialization

DIALOG - language processing

DBINIT is the DIALOG executive system initialization program. DBINIT is called
only once when a new design data base (see Section 5) is being created, but
performs no language processing function. DIALOG is the language processing
program. DIALOG is executed initially to establish the execution sequence of
the independent programs; then is called after the execution of each independent
program to process the data for the independent programs.

4.1.1 Data Base Parameters

Before compiling the executive programs the design data base size must be
established through the data base parameters. These parameters control the
number of names and number of data elements which can be stored in the dynamic
data base as described in Section 3. They also control the length of the
description for each entry. All data base parameters directly affect the core
storage requirements for the DIALOG executive system.

As an example, for a data base size of 3000 data elements, 200 names and a
description length of three computer words, the corerstorage requirement for
the system is 55000 (base 8). The above parameters are the standard values
for the DIALOG executive system. Unless there are specific requirements for
the data base parameters, they may be left as they are. However, they are
usually set such that the core size matches the core size of the largest
independent program anticipated for the system or, as an example, they might
be adjusted for remote terminal operation (70000 - base 8).

The alteration of the data base parameters requires changes to tHe following
programs or subroutines:

DBINIT - data base initialization program

DIALOG - language processing program

DBLOAD - data base loader subroutine

36

INITL - DIALOG initialization subroutine

The data base consists of two parts; a packed array for storage of data elements
and a directory of names and pointers to the data element locations. Both the
number of names and number of data base elements may be altered. The directory
also includes provisions for a description array for each name. The data base
parameters involved in changing the data base size are:

DBLEN - length of the data base (i.e. the packed array of data elements)

DIRLEN - directory length or number of name entries possible in the directory

DIRWID - directory width

The directory width consists of the following elements or words:

a one word for the name

b one word for the value (pointer)

c one word for the "hash" table

d one word for the "collision" table

e one word for the update command

f a variable number of elements for the description

The minimum directory width is five which allows no space for descriptive
information in the directory. Therefore, the variable DIRWID may be computed
as follows:

DIRWID = 5 + number of words of description

Once the three data base parameters are established, the parameters and
dimensions may be set in the four affected routines:

DBINIT:

COMMON /DTBASE/ IDATA(2*DBLEN)

COMMON /DIRECT/ IOPR(50), INUM(60), ID(DIRLEN*DIRWID)
i

DIALOG:

COMMON /DTBASE/ IDATA(2*DBLEN)

COMMON /DIRECT/ IOPR(50), INUM(60), ID(DIRLEN*DIRWID)

37

DBLOAD:

COMMON /DTBASE/ IDATA(2*DBLEN)

COMMON /DIRECT/ IOPR(50), INUM(60), ID(DIRLEN*DIRWID)

INITL:

DATA KEYLEN /!/, DBLEN /DBLEN/, DIRLEN /DIRLEN/, DIRWID /DIRWID/

The underlined parameters are the only ones requiring alteration by the user.

4.1.2 Deck Setup for DIALOG Storage

The DIALOG executive programs are stored in source form and relocatable binary
elements (LGO file) on a data cell. The control cards, excluding the "accounting"
cards, are discussed in Appendix A. It is assumed the reader is familiar with
the above mentioned "accounting" cards. (See LRC computer usage manuals for
complete details.)

The deck setup for compiling and storing DIALOG is shown in Figure 4-1. This
deck setup assumes space on data cell has been pre-assigned.

The sequence of utility operations is:

. copy the source code to SCFILE

. compile the source code

. store the source code and binary elements

SCFILE and LGO are stored on a new data cell using the system utility STASH. All
programs stored on data cell must have a "label" supplied by the LRC computer
operations personnel. This label is read by the system utility STASH
as input data. The label nust be read by STASH or data cell storage
cannot be accomplished.

4.2 Compilation and Storage of a Library of Programs

Since the DIALOG executive controls the sequence of execution of a library of
independent programs, each program in the library must be stored in the computer
system. The library includes not only user supplied programs but also system
programs such as the compiler and the data cell storage and retrieval programs.

The manner in which the programs are stored is analogous to the storage of the
DIALOG program depicted in Figure 4-1. However, there are two additional points
to consider in preparing an analysis program for use with the DIALOG executive
system:

38

Q
cr
cr

CD
I
CD

CD

acrcr
CJ

CD
I
00

I
O

LJ
CD
cr

UJ
cj
cri —
cro

V

acrcr
CJ

oc1
r-*

1\

\

-\

UJ
CJ
cr
ID
o
CO

CD
0
-Jcri — i
a

^

a
cr
cr
CJ

CD
i
ooi
o

o
CD_j

UJ
— i• — i
u_
CJ
CO

m
COcr\—
CO

1

LiJ

U_
CJ
CO

CO

z:
ID
CT-
V

B

LU

i — i
u_
LJ
CO

*>

0
2
t— — <

IS

cr

*

LU

i— — r

u_
CO

«\

1 —
ID
Q_
Z
k— -4

CD

CL-

^

CD

CD

OO

s
ce:
o

oo

UJa

39

a. The program may require modification to provide a special output file
of data base information as briefly mentioned in Section 3.

b. The program may be stored in absolute element form for high speed
loading and reduced core requirements.

A.2.1 Program Modification to Provide Data Base Information

The communication of information from an applications program to the data base
generally, but not always, requires modification of that applications program.
There are a number of analysis programs available which generate files of
information suitable for use with the DIALOG executive system, either directly
or through an interface program. An interface program is often the most
convenient means of extracting data from an analysis program.

The interface program obtains its input from a file generated by another
program. The output will be precisely as specified in the following paragraphs.
In this sense, the interface program is simply another analysis program in the
program library.

Whether the original program is modified or an interface program is written,
the generation of the data base output file is usually trivial and involves
little programming knowledge to accomplish. If FORTRAN is the program language,
a mechanism is available which further simplifies the task. This mechanism is
the NAMELIST output feature of FORTRAN. The use of NAMELIST is briefly
discussed below.

4.2.1.1 Creating a Special Output File

The objective of the modification is to generate a special file of information
available to the DIALOG executive system, which contains the desired information.
This is accomplished with an additional file parameter on the program card of
the applications program.

PROGRAM PGMA (INPUT, OUTPUT, TAPE78)

In the above illustration, the TAPE78 file is the special file which is read by
the DIALOG executive program. The file number is optional and may be any
available unit. The information placed in this file is interpretted and then
transferred to the data base by the DIALOG executive program. The mechanism
by which the file is passed from the applications program to the DIALOG
executive, is referred to as file substitution. The file substitution is
accomplished with the control cards stored in the control card data base. As
an illustration of file substitution technique, consider the execution of PGMA
above. The execution control card for PGMA would be:

PGMA, MODIN, OUT, NMLIST.

The above card specifies the execution of PGMA. Additionally, it specifies
that the INPUT file for PGMA. will be MODIN, the OUTPUT file will be system file
name OUT and the TAPE78 file will be the system file name NMLIST. These files

40

are addressed internal to PGMA by the names on the program card, but addressed
externally by the system file name. They are sometimes referred to as internal
and external names respectively. DIALOG recognizes MMLIST as a file containing
potential data base information. In a sense, NMLIST is an input file to DIALOG.

4.2.1.2 Format of the Special Output File

NMLIST is interregated by DIALOG for name oriented information in the following
format:

$name name = value, value, $

Note the similarity between the above format and the ADD command described in
Section 3.2.1 Also it is identical with the FORTRAN NAMELIST feature.

In generating the NMLIST file within the applications program, the analyst has
the option of using NAMELIST (in FORTRAN programs only) or simply simulating
NAMELIST as discussed in Section 3.

Generally the name selected is one which is similar to the program name such as:

$PGMAOUT

for PGMA output. The advantage of using this naming convention is apparent in
the actual data base construction. The name PGMAOUT, is stored in the data base
identifying which program or "command" which last updated the value or values
stored.

4.2.1.3 Use of the NAMELIST Feature in FORTRAN

If the applications program is written in FORTRAN, the analyst can use the
NAMELIST feature to write the special data base output file. For example, to
transfer the variables ANAME, BNAME, CNAME, II, 12, JNAME and these variable
values to the data base, the following modification is required at the exit
point:

NAMELIST/PGMAOUT/ANAME, BNAME, CNAME, II, 12, JNAME

WRITE (78, PGMAOUT)

The format of TAPE78 for the above illustration is shown in Figure 4-2. The
DIALOG executive program interrogates unit 78 after the execution of the
applications program to find variable names and values to be entered into
the data base.

4.2.2 Storage of an Absolute Element Program

In performing a given analysis, the applications program user usually
compiles and loads the relocatable (LGO) binary elements. These operations
require the use of the operating system compiler, RUN and the operating system
loader, LOAD in the following manner:

41

$PGMAOUT

ANAME = VALUE,

BNAME = VALUE,

CNAME = VALUE,

11 = VALUE,

12 = VALUE,

JNAME = VALUE,

SEND

FIGURE 4-2 FORMAT OF THE NF1LIST OUTPUT FILE

42

RUN, S.

LGO.

The standard loader must reside in core while it loads the LGO file. Further,
the loader requires an additional space allocation for "loader tables." The
additional space requirements depend upon the particular program involved, but
the total space for loader and tables varies from 5000 (base 8) to 15000 (base
8). The space required by the loader must be added to the space required by
the resulting applications programs. The total space for both is the central
memory field length required for the job and must be specified on the job card.
The field length is automatically reduced after the program is loaded (i.e. the
loader space becomes available to the system for other uses).

The above method of analysis results in two disadvantages:

a. More central processing and peripheral processing time used to
compile and/or load.

b. Job turn around suffers from the increased field length requirements.

The disadvantages illustrated above both result in reducations in efficiency
and productivity of both computers and analysts. In the DIALOG executive system,
most programs are compiled and stored as absolute elements. An absolute element
program is one generated by the loader. It is a self contained program which
includes all the system routines called for by that particular program. The
advantages of storing the absolute element program are that it:

a. Reduces the field length requirement on the program card by the size
of the loader plus loader tables. The program is loaded by the
peripheral processor loader which takes no space in the central
processor.

b. Considerably reduces the load time required for the program. All
external references are resolved. This means all operating system
routines called by the program are stored in the absolute element.

One disadvantage of storing an absolute element program is the data cell space
requirements are increased by the space required for system routines. This is
not considered to be a serious disadvantage. Another disadvantage is that
updating of an absolute element program requires recompilation of the entire
source code or the auxiliary storage of binary program elements. In the
latter case only those elements requiring modification need be recompiled.
Complete recompilation of modified programs is the usual procedure at
LRC.

4.2.2.1 Absolute Element Files for Overlayed Programs

The generation of an absolute element requires a special control card procedure.

43

The procedure is discussed below. In overlayed programs, the absolute elements
have the same file names as the overlay names. The absolute element program
can be saved simply by copying the overlay files generated by the loader to a
permanent storage device. The sequence of operations and the deck setup involved
in compiling and storing the source code and an absolute element program on data
cell are shown in Figure 4-3. In this illustration the program is not actually
executed. It is located as a necessary operation in creating an absolute element
program.

The OVL file name is the same name as the overlay name indicated. Duplicate
names should not be used when naming overlay files. This can cause problems
in creating and using the control card data base.

The deck setup shown in Figure 4-3 assumes the data cell has been assigned
and never before used.

4.2.2.2 Absolute Elements Files for Unoverlayed Programs

The storage of an absolute element for an unoverlayed program can be accomplished
by using the same procedure as described above simply by placing an overlay card
as the first card in the deck. To the operating system loader, the simple
addition of an overlay card makes an "overlay program" out of one which is not
actually overlayed.

4.2.2.3 Creating Overlay Files Using AUTOLAY

AUTOLAY is a utility program provided as part of the DIALOG executive system
which is used in the construction of overlay files from relocatable binary
elements. It is not an operating system utility and therefore must be retrieved
from data cell storage (FETCH) before it can be used.

The use of AUTOLAY permits the construction of a new program file from one to
six library type files. The new program contains the selected main program or
programs together with all the subroutines (external references) which the main
program (s) call. The main program (s) are specified by the user in a text
file read by AUTOLAY. The control card required to execute AUTOLAY is:

AUTOLAY (NEW, LIB1, LIB2, LIB3, LIB4, LIB5, LIB6)

After execution of AUTOLAY, the NEW file will contain the specified main programs
and all the subroutines used by the main program. The NEW file is generated by
searching the LIB files for the names programs and the external references. The
LIB files are searched sequentially from left to right, resolving external
references by selecting the first subroutine encountered which has the correct
name. Subroutines which are not called are not placed on the NEW file. The LIB
files may themselves be overlayed program files.

Figure 4-4 illustrates the construction of an overlay program from the LGO
file. In the illustration, the program consists of a main program PGMA and
two subprograms SUBPGMA and SUBPGMB. Any overlay structure may be used. The
main program of each overlay is listed following the OVERLAY card. Block data

44

COPYBR, INPUT, SCFILE,

REWIND, SCFILE,

RUN, S,,.SCFILE.

LOAD, LGO, .

NOGO,

STASH, SCFILE,, OVL,

7-8-9

OVERLAY (OVL, 0, 0)

SOURCE CODE

7-8-9

DATA CELL LABEL

6-7-8-9

(OVERLAY FILE)

(OVERLAY NAME)

FIGURE 4-3 COMPILATION AND STORAGE OF SOURCE AND AN
ABSOLUTE ELEMENT PROGRAM

45

COPYBR, INPUT, SCFILE,

REWIND, SCFILE,

RUN, S,,,SCFILE,
FETCH, A , SPR BINARY,, AUTOLAY,
AUTOLAY, NEW, LGO,

LOAD, NEW,
NOGO,
STASH, SCFILE,, OVL,
7-8-9

SOURCE CODE

7-8-9
OVERLAY (OVL, 0, 0)

PGMA '
BLKDATA
OVERLAY (OVL,. 1, 0)

SUBPGMA
OVERLAY (OVL, 2, 0)

. SUBPGMB
7-8-9

DATA CELL LABEL

6-7-8-9

FIGURE 4-4 ILLUSTRATION OF THE USE OF AUTOLAY

46

programs must also be listed since they are, not, referenced by any program or
subroutine. The user need not be concerned with the order the routines
are placed in the source or LGO file since AUTOLAY will reorder them
according to which overlay element they belong.

AUTOLAY is a particularly useful tool for structuring a new program or
restructuring an old one.] It completely eleminates the need to order source
decks by overlay structure. More details on the use of AUOTLAY are given
in Appendix A.

4.2.2.4 Updating Absolute Element Programs on Data Cell '"

The previous discussion assumed the analysis program was a new program being
stored for the first time. The procedure for updating an existing program on
data cell is illustrated in Figure 4-5. Here the FETCH utility is employed to
retrieve the source code from data cell storage. Whether or not the absolute
element program was previously stored, the illustrated procedure will store
the absolute element and source program. The REPLACE utility is employed for
this purpose.

4.3 Assembly of the Control Card Data Base

The control card data base, CCDATA, contains all the control card sequences
required to retrieve and execute the library of independent programs. After
the independent program is stored and prior to creation of the DIALOG
executive system, the control card sequences must be assembled. It is also
desirable to assemble a series of utility procedures for ttje purpose of data
disposition. These procedures enhance the usability of the DIALOG executive
system.

The creation of a control card data base is a function of the DIALOG
executive. DIALOG reads the control card sequences from input cards and
stores them in CCDATA. The delimited control card directive which creates
the control card data base is:

'CREATE CCDATA'

One and only one space may appear between the words CREATE and CCDATA. This
directive is followed by a file of information containing the control card
sequences for the various applications programs and utility functions as
illustrated in Figure 4-6. The first entry name must have an opening delimiter
immediately before the name. A closing delimiter must appear after the last
entry on a separate card as shown. The file must be terminated by a 7-8-9 card.

The control card sequences stored in the CCDATA data base generally include
cards for both the retrieval and execution function. In queuing control card
sequences, the above functions are generally split by the DIALOG executive.
The retrieval function is performed at the beginning of the sequence and the
execution function is performed when the EXECUTE directive is encountered.

47

FETCH, AOOOO, SPRAOO, SOURCE,

RUN, S,,, SCFILE,

LOAD, LGO,

NOGO,

REPLACE, SCFILE, OVL,

7-8-9

SOURCE UPDATES

7-8-9

DATA CELL LABEL

6-7-8-9

FIGURE 4-5 UPDATE OF AN EXISTING ABSOLUTE ELEMENT
PROGRAM ON DATA CELL

48

I CONTROL \

\ CARD \
\ SEQUENCE }

x
I CONTROL 1

\CARD V
[SEQUENCE]

PGtC * ,
(CONTROL I

^SEQUENCE)

FIGURE 4- 49

The reason for splitting the functions is to avoid multiple retrievals in the
repetition of control card sequences. It avoids the repetitious retrieval
of applications programs when control card sequences are repeated. Therefore
the first card in a control card sequence is always the control card to
retrieve the applications program. If no applications program is involved
as in the execution of system programs only (i.e. the compiler) then the first
card must be a system comment card.

The following paragraphs describe the formation of a single entry in the
control card data base for a hypothetical applications program. Following
this discussion, a set of standard utility procedures will be discussed.

4.3.1 Construction of a Control Card Sequence for a Data Base Entry

An illustration of a data base entry is shown in Figure 4-7. The essential
features are:

a. A name for the control card sequence followed by an equal (=) sign.

. ' !
b. A FETCH (retrieval card) is the first card in the sequence.

c. An execution card.

d. CCLINK, DIALOG.

The name is selected by the analyst at the time the control card entry is
constructed. The name will be used to retrieve the control card sequence.
The EXECUTE directive is used for this purpose. - ,

'EXECUTE PGMA'

Common practice dictates the use of the acronym associated with an applications
program such as AESOP for Automated Engineering and Analysis Program. Most
applications programs have such an acronym associated with1 them.

Application program execution sequences require a FETCH card first. If no
application program is being used in the execution sequence, the first card
must be a comment card:

COMMENT.

Following the FETCH card any utility functions required by the applications
program prior to execution may be specified. One example could be a REWIND
for some file needed by the applications program.

The execution card begins with the overlay file name from the FETCH card.
The remaining parameters are the file substitution parameters. In the
illustration, the first three internal files are assumed to be INPUT, OUTPUT,
and TAPE78 where TAPE78 is the special data base output* file. These-'file
names are (and must be) replaced on the execution card with MODIN, OUT,

50

PGMA =

"FETCH, AOOOO, SPRAOO, BINARY,, OVL,
j

(OTHER PRE-EXECUTION CONTROL CARDS)

OVL, MODIN, OUT, NMLIST,

(POST-EXECUTION POST CARDS)

CCLINK, DIALOG,

EXIT,

CCLINK, ABEND,

FIGURE 4-7 SAMPLE CCDATA ENTRY

51

NMLIST, as illustrated. MODIN is the modified input generated by DIALOG.
OUT is the output storage file for the program. OUT is generally not printed
except when the control directive:

'EXECUTE PRINTER'

is used. PRINTER is the name of a special control card procedure which
prints the OUT file. Details of this and other procedures are discussed in
Section 4.3.2.

NMLIST is the file containing data base output information.

Following the execution card any utility function required as a result of
executing the applications program may be performed. An example could be
the DROPFIL utility for releasing of scratch files generated by the applications
program.

The last essential card is:

CCLINK, DIALOG.

This card causes the re-execution of the DIALOG executive programs at the
termination of the control card sequence. Two additional cards which are not
essential but usually desirable are:

EXIT.

CCLINK, ABEND.

These utilities are executed in case of a fatal error in the applications
program.

Among other things, the ABEND procedure causes the OUT file to be printed. The
ABEND procedure is discussed in detail in Section 4.4.

The construction of every control card procedure for each applications program
follows the same pattern as described above. Variations can occur as a result
of:

a. Different file parameter positions on the applications program
PROGRAM card.

b. Possible use of utility control cards before and/or after the
execution card.

There is no effectove limit to the number of control cards which can
be stored by a given name. Once stored, however, the number of control
cards cannot be changed without recreating the control card data base.

Appendix B is a table of control card sequences for a group of commonly
used applications programs and utility procedures at LRC. This appendix

52

is an actual status report on the control card data base from the DIALOG
executive system.

Any control card in any sequence may be altered temporarily or permanently
during the execution sequence. The method by which this is accomplished is
discussed in Section 5.

4.3.2 Standard Utility Sequences

During the development phase of the DIALOG executive system, a set of utility
procedures evolved for performing such functions as:

a. Disposition of data files.
i

b. Compilation and execution of interface programs.
i

c. Executing arbitrary control card procedures.

These procedures are stored in the control card data base and are called into
execution with the EXECUTE directive. The following paragraphs provide a brief
discription of each standard utility procedure and its use. Appendix B gives
a detailed list of the actual control card sequences for the Langley system.

4.4 Storage of the DIALOG Executive System

The final task in the installation of the DIALOG executive system is the
storage of the executive programs and special procedures. When this task
is accomplished, simulations can begin.

4.4.1 Elements of the DIALOG Executive System

The DIALOG executive system consists of two FORTRAN programs discussed in
Section 4.1, the control card data base discussed in Section 4."2 and 4.3
and the following special procedures:

ODIN DIALOG executive system initialization procedure

DIALOG DIALOG executive program execution procedure

ABEND Abnormal end procedure

PINIT Post initialization procedure

Details of these procedures are described in Appendix C.

The entire system is stored on a data cell as source and binary records as
illustrated in Figure 4-8.

The ODIN procedure is stored as source. The purpose is two fold.

a. Minimize the number of operating system control cards required
to start a simulation.

53

ODIN

DIALOG

ABEND

PINIT

ODBINIT

ODIALOG

CCDATA

SOURCE CODE

BINARY RECORDS

FIGURE 4-8 ILLUSTRATION OF THE DIALOG EXECUTIVE SYSTEM
STORAGE FILE,

54

b. Provide a convenient means for modification of the initialization
procedure (as in the use of a restart capability).

Two control cards (other than JOB and USER cards) are required to start a
simulation.

FETCH, A , SPR . BOTH, ODIN.

CCLINK, ODIN.

The ODIN procedure then 'boot straps' the rest of the DIALOG executive system
in from the binary file associated with the data cell. Modification of the ODIN
procedure may be accomplished by the usual methods at the LRC computer complex.

4.4.2 Deck Setup for Storing the DIALOG Executive System

Figures 4-9 and 4-10 are illustrations of the deck setup for storing the DIALOG
executive system. Figure 4-9 presents the control card sequences. Figure 4-10
gives the data files. In actuality the deck setup presented creates several
necessary files discussed in Section 4.4.1 and links to the DIALOG executive
system. The steps in creating the system are discussed below.

4.4.2.1 Modification of the DIALOG Program

This step allows the analyst to make modifications to the DIALOG program by the
FETCH procedure presented in Reference 14. One example of a DIALOG modification
would be the alteration of the data base parameters as described in Section
4.1.1. If no modifications are desired, the DIALOG modification file in
Figure 4-10 is left null (7-8-9 card only). Following modification of the
DIALOG source code, the DIALOG program is compiled. A relocatable binary
file (LGO) is created. This file will be used for generating the absolute
element programs ODIALOG and ODBINIT.

4.4.2.2 Creation of a Data Cell Location for the DIALOG Executive

A data cell storage location is created by the FETCH card shown in Figure
4-9. The actual storage (REPLACE) is accomplished by the execution of CCSAVE
described below. However, two files must be saved for use by the REPLACE
utility. The files saved are DCNS and ZOUNDS.

4.4.2.3 Creation of the Special Procedures for the DIALOG Executive System

The special procedures for the DIALOG executive system are shown in Appendix
C. These include the following procedures:

ODIN Initialization procedure - to retrieve the DIALOG executive
system programs and procedures and to perform the initial
execution of the DIALOG executive programs.

DIALOG DIALOG Execution Procedure - for the DIALOG executive program
used after each applications program execution sequence.

55

JOB, 1, 70, 7000, 4000. - - - -

USER, - - - - - - - - -

FETCH, A3974, SPRA—, SOURCE. (DIALOG Program)

RUN, S,,, SCFILE. (Compile DIALOG)

FETCH, A , SPR , BOTH,,,,X. (DIALOG Executive System)

DROPFIL, SCFILE, BNFILE, X.

REWIND, DCNS, ZOUNDS.

COPYBF, DCNS, ODINSA1.

COPYBF, ZOUNDS, ODINSA2.

COPYBR, INPUT, ODIN» (Initialization Procedure)

COPYBR, INPUT, DIALOG, (DIALOG Execution Procedure)

COPYBR, INPUT, ABEND. (Abnormal End Procedure)

COPYBR, INPUT, PINIT. (Post Initialization Procedure)

REWIND, ODIN, DIALOG, ABEND, PINIT.

FETCH, A3596, SPRZ04, BINARY,, AUTOLAY. (Retrieve AUTOLAY)

AUTOLAY, DBIN, LGO. (Construct OBINIT)

DBIN. (Execute DBINIT)

DROPFIL, AUTOLAY, DBIN.

FETCH, A3596, SPRZ04, BINARY,, AUTOLAY. (Retrieve AUTOLAY)

AUTOLAY, DLOG, LGO.

DLOG. (Execute DIALOG)

DROPFIL, DLOG. AUTOLAY, LGO.

CCLINK, NMLIST.

7-8-9

FIGURE 4-9 CONTROL CARDS FOR INSTALLATION OF DIALOG

EXECUTIVE SYSTEM.

56

DIALOG MODIFICATIONS

7-8-9

(ODIN Initialization Procedure)

7-8-9

(DIALOG Execution Procedure)

7-8-9

(ABEND Procedure)

7-8-9

(PINIT Procedure)

7-8-9

(AUTOLAY Text Cards for DBINIT)

7-8-9

(AUTOLAY Text Cards for DIALOG)

7-8-9

'CREATE DBASE1

7-8-9

'CREATE CCDATA1

(CCDATA entries)

7-8-9

'EXECUTE CCSAVE1

CHOOSE 82100000 83800000

7-8-9

'END ODIN'

6-7-8-9

FIGURE 4-10 DATA FILES FOR THE INSTALLATION OF THE DIALOG

EXECUTIVE SYSTEM

57

ABEND Abnormal End Procedure - for printing the output file from the
previous program and for saving CALCOMP plot files.

PINIT Post Initialization Procedure for eliminating unnecessary
scratch files used in the initialization of the DIALOG executive
system.

Each procedure is created on a separate file as illustrated in Figure 4-10 and
retained in the system until the end of the job. Upon execution of the CCSAVE
procedure, these files are saved together with the DIALOG executive programs
on the data cell described in Section 4.4.2.2.

4.4.2.4 Creation of Absolute Element Programs and Initializating the DIALOG
Executive System

Overlay elements for DIALOG and DBINIT are created with the special utility
AUTOLAY described in Section 4.2.2.3. All the essential subroutines for both
programs are stored in the LGO file described in Section 4.4.2.1.

The text cards indicated in Figure 4-10 for creating DBINIT are:

OVERLAY (ODBINIT, 0, 0)

DBINIT

Upon execution of the resulting program, an absolute element called ODBINIT
is created (by the loader). This absolute element program is available to
be saved on data cell when the CCSAVE procedure is executed. The execution
of DBINIT (DBIN. in Figure 4-9) also initializes the DIALOG executive system.
The text cards indicated in Figure 4-10 for creating DIALOG are:

OVERLAY (ODIALOG, 0, 0)

DIALOG

Upon execution of the resulting program, an absolute element called ODIALOG
is created (by the loader). This absolute element program is available to be
saved in data cell when the CCSAVE procedure is executed.

The execution of DIALOG (DLOG is Figure 4-9) also preprocesses the remaining
data files in Figure 4-10. In effect, the DIALOG executive system has control
and the following DIALOG functions are performed:

CREATE DBASE

CREATE CCDATA

EXECUTE CCSAVE

END ODIN

58

At the completion of the above sequence of control directives, the DIALOG
executive system is stored on the data cell described in Section 4.4.2.2.
Simulations using the DIALOG executive system may begin.

59

5.0 USE OF THE DIALOG EXECUTIVE SYSTEM

The discussion in Section 4 centered around the installation of the DIALOG
executive system including a control card data base. The present discussion
deals with the use of the DIALOG executive system with a library of independent
applications programs. Figure 5-1 illustrates how the use of the DIALOG
executive system is used. There are four basic steps in using the
system. First the task must be defined, which includes a consideration
of the technology areas to be included in the analysis. Further the
depth of analysis in each technology area must be selected. The depth
of analysis and subsequent program selection will have a direct bearing
on the computer resources which will be required. The second task
is the selection of the applications programs and the sequence which
will be executed. This requires some understanding of the basic data
required by each program and the information each program generates.
The above task may be a team effort if the simulation is large and/or
requires many programs.

A survey of the existing ODIN library programs will aid in the selection process,
If a suitable set of programs is not available, one of the following procedures
may be employed:

a. Locate the necessary programs from an outside source.

b. Develop the necessary programs to4 serve the purpose.

In either of the two above cases, the program modification for use with the
DIALOG executive system as discussed in Section 4 may be required.

The third task is the definition of the interprogram data which will be stored
in the data base. Included in this definition are the study parameters, those
elements of data which drive the study either through a parametric variation or
an optimization process. Additionally, the performance criteria must be defined.
The performance criteria is the desired study output information such as the
weight or cost of the system under study. Often there >x are study constraints,
those conditions which must not be violated in an acceptable solution. The
study constraints and performance criteria are the basic information used in
guiding the selection of values for the study parameters.

Interprogram data must also be defined in the data base. These data include
intermediate results produced by one applications program which are
used by other applications programs. Finally the data base may include
information which may be used for monitoring the study.

The fourth and final task is the actual deck setup. Deck setup is the
task which is addressed in this section. The implication is that the
other three tasks have been performed; the remaining objectives are
to set up the normal data for the selected applications programs then
insert the proper control directives and communication commands to perform

60

1, DEFINE THE SIMULATION TASK
TECHNOLOGY AREAS TO BE CONSIDERED
DEPTH OF ANALYSIS

2, SELECT THE APPLICATIONS PROGRAM SEQUENCE
SURVEY THE AVAILABLE PROGRAMS
UPDATE THE PROGRAM LIBRARY
DEFINE THE EXECUTION SEQUENCE

3, DEFINE THE DATA BASE INFORMATION
STUDY PARAMETERS
PERFORMANCE CRITERIA
STUDY CONSTRAINTS
LIBRARY INTERPROGRAM DATA
MONITORING INFORMATION

1, DECK SETUP
SETUP NORMAL DATA FOR ALL PROGRAMS

, INSERT THE CONTROL DIRECTIVES

INSERT THE COMMUNICATION COMMANDS

FIGURE 5-1 PROCEDURE FOR THE USE OF THE DIALOG EXECUTIVE SYSTEM

61

the desired simulation. This section is divided into discussions of
control directives and communication commands. Control directives
are instructions to DIALOG for the control of the sequence of execution
of the independent applications programs. Communication commands are
instructions to DIALOG for the merging of data base information with
applications program data. Finally, the use of standard utility procedures
will be discussed.

5.1 Control Directives

The use of the DIALOG executive system requires that the DIALOG executive
programs and procedures be available on disk before the DIALOG control
directives can be employed. Figure 5-2 is an illustration of the operating
system control cards at LRC required to access the DIALOG executive
system. Following the four control cards shown, all remaining information
is processed by the DIALOG executive. As such the rules governing
the use of the DIALOG executive system apply.

The general arrangement of the input data to the DIALOG executive system is
shown in Figure 5-3. Here a hypothetical simulation is setup which illustrates
the use of all control directives and alternates. Each control directive in
this illustration will be described in detail. Generally speaking, the control
directives have the following format:

'directive name'

The directive is enclosed by DIALOG delimiters ('). No space is permitted
between the first delimiter and the directive. One and only one space is
permitted between the directive and the name.

5.1.1 CREATE Directive

Initially the CREATE directive is used to establish a design data base.

'CREATE DBASE'

file of data
to initially
establish DBASE

7-8-9

The CREATE directive is followed by a file of data to initially establish the
design data base. Initial data is not essential to the operation of the system
as data may be added at any point in the execution sequence. However, the 7-8-9
end-of-file mark is required regardless of whether data is entered. Data is
always entered via the communication commands described in Section 5.2.

The CREATE directive is also used to create a controli card data base.

62

JOB, 1, 70, 56000, 2000,

USER,

FETCH, A , SPR . BQTH, ODIN,,, X,

CCLINK, ODIN,

7-8-9

DIALOG
CONTROL
DIRECTIVES

DIALOG

INPUT

6-7-8-9

NOTE; THE CONTROL CARDS ILLUSTRATED ARE THOSE USED AT
LANGLEY RESEARCH CENTER, OTHER INSTALLATIONS
USE A DIFFERENT SEQUENCE BUT PERFORM THE SAME
FUNCTION,

FIGURE 5-2 SYSTEM'CONTROL CARDS REQUIRED TO ACCESS THE

DIALOG EXECUTIVE SYSTEM,

63

'RESTART'
'CREATE DBASE' OR 'UPDATE DBASE'

[FILE OF DATA INPUT TO THE DESIGN DATA BASE]
7-8-9

'UPDATE CCDATA' OR 'CREATE CCDATA'
[FILE OF DATA INPUT TO THE CENTRAL CARD DATA BASE]

7-8-9

'DESIGN START' (OPTIONAL DESIGN IDENTIFIER)

'EXECUTE PGNA'
[FILE OF INPUT DATA FOR PGMA]

7-8-9

'LOOP TO START' (CONDITIONAL BRANCHING LOGIC)
'IF VI, LT, V2' X '
7-8-9

'EXECUTE PGMB'
[FILE OF INPUT DATA FOR PGMB]

7-8-9

'PRINT DBASE' (OPTIONAL PRINT COMMAND)

'END'

6-7-8-9

FIGURE 5-3 EXAMPLE OF A HYPOTHETICAL EXECUTION SEQUENCE
ILLUSTRATING THE USE OF ALL CONTROL DIRECTIVES,

64

'CREATE CCDATA'

file of control
card data base
entries

7-8-9

The control directive illustrated above creates a new control card data base,
overwriting any existing one. The creation of a control card data base is
described in detail in Section 4. Usually this directive is not used in a
routine simulation since a control card data base already exists.

5.1.2 RESTART Directive

The CREATE DBASE directive must be the first directive in the sequence unless
the simulation is the continuation of an earlier run. In the latter case, the
following directive is used in place of CREATE DBASE:

'RESTART'

For the illustrated command to be effective, the data base created in the
earlier run must have been saved by use by the ENDODN procedure described
below. Further, the DIALOG executive system initialization procedure
differs in case of a restart. Figure 5-4 illustrates the restart procedure.
Here the execution of DBINIT (See Appendix C) is replaced by a FETCH control
card for the retrieval of the previous design data base.

5.1.3 UPDATE Directive

The UPDATE directive is used for updating existing information in the data base
and has the following format:

'UPDATE name'

file of data
to update existing
data base

7-8-9

The name associated with the illustrated directive can be DBASE or CCDATA. The
directive may be used for DBASE after a RESTART directive for updating information
in an existing design data base. Often the UPDATE directive is used with CCDATA
to alter an applications program procedure. A card-by-card update may be
performed in the following manner:

'UPDATE CCDATA1

Following this control directive, the analyst lists the desired modifications.

65

JOB, 1, 70, 56000, 2000, —

USER, —

FETCH, A-—, SPR—, BOTH, ODIN,

CCLINK, ODIN,

7-8-9

CUTOUT 1400000 (COLUMNS 14-20)

FETCH, A-—, SPR—, BINARY,, DBASE

7-8-9

DIALOG
CONTROL
DIRECTIVES

6-7-8-9

FIGURE 5-4 ILLUSTRATION OF THE RESTART PROCEDURE

66

PGMA =

new control
card
sequence

The above example Illustrates the complete replacement of a control card sequence.
If however, the analyst desired to change only one card in the sequence, the
following cards might be employed:

PGMA (3) =

replacement control card

The above example illustrates the replacement of the third card in the sequence.
The third and fourth card could be replaced in the following manner:

PGMA (3) =

replacement for third card
replacement for fourth card

The requirement for updating the control card data base stems from the fact the
library programs are often modified or replaced as a result of revisions or new
versions. Often more than one version of the same program exists.
This is particularly true during periods of program development. During
these periods of development, the analyst may wish to evaluate a test
version of a program in the DIALOG executive system. The UPDATE directive
affords the individual analyst the opportunity to make temporary control card
modifications to the DIALOG executive system without affecting the other users
of the system.

5.1.4 DESIGN Directive <

The DESIGN directive is used to establish a point in the execution sequence to
which control may be returned (or skipped to) via a LOOP TO directive described
below. The DESIGN directive is analogous to a statement label in a FORTRAN
program. The format of the DESIGN directive is:

'DESIGN name'

The name may be any name up to 10 characters but must not duplicate an existing
design data base name.

5.1.5 EXECUTE Directive

The EXECUTE directive is used to execute a sequence of control cards from the
control card data base. The format is:

67

'EXECUTE name'

data file for the
applications program

7-8-9

The name may be any name assigned to a control card sequence in the control card
data base. This is the basic command for the execution of applications programs.
The data file is the data for the applications program involved. The 7-8-9 card
is required even if no data is involved with the execution.

5.1.6 LOOP TO Directive

The LOOP TO directive is used to transfer control to another point in the
execution sequence.

'LOOP TO name'

In the above illustration, control is transferred to name. Name must be the
name associated with a DESIGN directive described in Section 5.1.4.

5.1.7 IF Directive

The IF directive is a conditional branching directive used in conjunction with
the LOOP TO directive in the following, manner:

'DESIGN START'

'LOOP TO START'

'IF VI . LT . V2'

7-8-9

In the above illustration, control is transferred to START if VI is less than V2.
VI and V2 are design data base variables or constants. Multiple IF directives
may be associated with any LOOP TO directive. When multiple IF directives are
used, any condition specified will trigger the LOOP directive. If no conditional
IF directives are used, the LOOP TO directive is mandatory. A 7-8-9 card is
recommended after LOOP TO/IF directive sets.

68

5.1.8 PRINT Directive

The PRINT directive is used to print the design and control card data bases DBASE
and CCDATA. The format is:

'PRINT DBASE' <
or

'PRINT CCDATA'

This command may be placed at any point in the execution sequence but cannot be
intermixed with a file of applications program data.

5.1.9 END Directive

The END directive is used to signify the end of a simulation. It has the
following format:

'END '

All simulations must be terminated with the END directive. A summary of the
control directives is given in Appendix D.

5.2 Communication Commands

The communication commands provide a means of transferring information to and
from the data base. The following types of transfer are included:

a. Transfer of information from the analyst to the data base.

b. Transfer of information from the data base to the applications program.

c. Transfer of information from the applications programs to the data base.

In the transfer of information from the analyst to the data base, three commands
are used:

a. ADD command for adding or updating information in the data base.

b. DEFINE command for defining data base variables and reserving space
in the data base.

c. . (comment) command for identifying applications program data.

In the transfer of information from the data base to the applications program,
the basic command is the replacement command for replacing data base names and
data base name/value combinations with values from the database.

In the transfer of information from the applications program to the data base,
a special extension of the ADD command is employed. The "ADD-like" command is
used in generating the special output file described in Section 4.

69

Each of the above commands will be described in detail in this section.
Examples covering most objectives will be presented.

5.2.1 The ADD Command

The ADD command is the basic communication command available to the
analyst for adding or updating information in the data base. The
general format of the command is:

'ADD name 1 = value 1, name 2 = value 2,

name 3 = value 3, value 5, value 5,

value 6, name 4 = value 7,'

It may be used in creating data in the data base as well as for modifying
the data base at any point in the execution sequence. The ADD command must
appear within the file of information following one of the control directives:

'CREATE DBASE'

'UPDATE DBASE'

'EXECUTE name'

The ADD command may be used for adding any type of information to the data
base (i.e. real, integer, hollerith or logical) the data type being determined
by the actual data entry. The information may be a single element or an entire
array of information. Arrays may be of mixed types under certain circumstances.
Combinations of data base variables and constants using the five common
operators (+, -, *, /, **) may also be employed within the ADD command.
However, mixed mode arithmetic is not permitted in combining data base variables,
Specific rules and exceptions will be presented in the examples below.

The following list of rules of syntax or pattern of construction apply to the
ADD Command:

1. The opening delimiter (') may be in any column.

2. No spaces may appear in the character string 'ADD (including
the delimiter).

3. One or more spaces must appear between the ADD and the first name.

4. One or more name = value combinations may appear on each card.

5. The 'ADD command may be continued from card to card.

6. A card must be terminated with a comma (,) or a DIALOG delimiter (').

7. A continuation card may start with a name or value.

70

8. The 'ADD command must be terminated with a DIALOG delimiter (').

9. The closing delimiter may be on a separate card.

10. The last comma (,) before the closing delimiter is optional.

11. The maximum number of names and values (including the command) is
20 per ADD command.

The most common SYNTAX errors result from failure to comply with rules 2, 6 and 8.
Attention is specifically drawn to these rules.

The following pages present some examples. Each example is discussed. In
addition, a sample data base printout for all examples is given in Figure 5-6.
Discussion of the examples is presented in the following format:

OBJECTIVE: A concise statement of the analysis goal to be
achieved by the command.

SYNTAX: Pattern of formation of the command.

EXAMPLES: A list of one or more examples. Sometimes incorrect
examples are given and are noted as ILLEGAL. In
these cases the results are either incorrect or
unpredictable for the objective stated.

RESULT: A brief description of the data base entry which
will result from the use of the exemplified command.

RESTRICTIONS: In some cases restrictions in addition to those
described above will be given.

All of the ADD command examples presented in this section are illustrated in
Figure 5-5. These examples are listed from cards which were actually processed
by the DIALOG executive program. The delimiter (?£) shown in the illustration
results from the particular character set employed by the printing device.
The data base entries which resulted from the examples in Figure 5-5 are
illustrated in Figure 5-6.

5.2.1.1 Adding Fixed Element Information

OBJECTIVE: To add or update elements of information to the
data base,

SYNTAX: 'ADD name = value'

EXAMPLES: 'ADD A = 10.'

'ADD B = 2'

'ADD C = ALPHA'

71

* ADO STATEMENT EXAMPLES

''ADD A = 10. *
*AOr> 8 = ? *

c =AI_PHA #
*ADD 0 = .TRUE. *
*AOO E = A *
#Aon F = B *
*ADO G = A * 2. #
#ADD H = R + 3 *
#Ar>D I = A * G * 2, #
*ADO J = 10., 20.» 30. #

K = ?, <V, 6 ,
L = ALPHA, RETA, GAMMA

M = .TRUF.» 3 * 9. *
*
#ADO N = ?*3., 9., 9. # '

0 = ?, 5., 6. #
P = J<D *
0 = K(2) #
R = A*0(3) #
s = j(3> * o<a) *

NOTE: THE DELIMITER % RESULTS FROM THE LISTING
EQUIPMENT USED,

FIGURE 5-5 ADD COMMAND SUMMARY

72

oc
OC

z
O

01
3

UJ _l LU
3 < 3_j > -j

uj < <
3 > X >

<
> iu ae <

o iu o
LU _J «-

eg
*

>.
<

• ae
rgac
<
o

>•
«t
a
a:
<

oc
ai
o
ai

UJ
o

ai z O a
ac — x-j

ii M
oio

ii H ii
ox'-

>
<
OC
OC

a:
01

o
x

01
a
i

i
o
o

a
01
x

o
<
o

o
z

OC
o
00

Of
QC

UJa.

Q
UJ
X

CD
— o

•-* <M O Ifl
«- — » "
-J * < •?
II II II II
a o oc v> a

a
«=c

o
oc
o

QOQOQQQQQQ
QOQOQOQOOQ

O
O

O
a

O
O

O
O

O O O O
o a o o

«=c
X

UJ
3

UJ
oc
QC

o
o
o
o
o
o
o
o
o
o
o
o
o
o

• o
< 01 O
X 30
a oc •
_) H- O

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
• • • •o o o o

< < 01
X < 3C 3
a H ac oc
J 01 < H-

o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o

o o o
o o o
O 00
O 00
O 00
o o o
o o o
O 00
o o o
o o o
O 00
o o o
o o o
o o o
o o o
o o o
o o o
• • •

o o in

CD
Qi

00
UJ

oo

Z
UJ

o

o

oo
OQ

«=c
CO

in in «o

CO
I

LO

U O'OJ U. O I M -»
I

CD

LL!

73

'ADD D = .TRUE.'

RESULT: Four data base locations will be created or updated in
the data base. Each of the four basic data types are
represented. The data type is determined from the
actual number. There is no implicit type assumed from
the data base name (as in FORTRAN).

ADDITIONAL
RESTRICTIONS: 1. Hollerith information and logical variables which

are to be stored in the data base cannot be data
base names.

5.2.1.2 Adding Multiple Data Elements

'OBJECTIVE: To add or update a series of elements to the data base
by a single ADD command.

SYNTAX: 'ADD name 1 = value 1, name 2 - value 2'

EXAMPLES: 'ADD A = 10., B = 2,
C = ALPHA, See Restrictions
D = .TRUE.'

RESULT: Four data base locations xd.ll be created or updated in
the data base. The value stored will be those presented
by the information to the right of each equal (=) sign.

ADDITIONAL
RESTRICTIONS: 1. Hollerith information and logical variables which

are to be stored in the data base cannot be a data
base name.

5.2.1.3 Transferring Data Elements

OBJECTIVE: To create or update a data base variable by equating
(transferring) one variable name to another.

SYNTAX: 'ADD name = name'

EXAMPLES: 'ADD E = A'

1
'ADD F = B'

RESULT: The variables E and F are created or updated. The
information (real or integer) is transferred from A and
B to the new locations for E and F.

ADDITIONAL
RESTRICTIONS: 1. A and B cannot be hollerith or logical variables.

2. Neither E nor F can be an array name.

74

5.2.1.4 Combining Data Elements with Constants

OBJECTIVE: To create or update a data base variable by combining
a data base variable with a constant using an arithmetic
operation.

SYNTAX: 'ADD name = name * value1

EXAMPLES: 'ADD G = A * 2.' (real)

'ADD H = B + 3' (integer)

'ADD G = 2. * A' ILLEGAL - See Restrictions

RESULT: Two variables, G and H, will be created or updated in
the data base whose values will be the combinations
indicated. Any of the common arithmetic (+, -, *, /, **)
operations may be performed. Up to ten operations may
be performed.

ADDITIONAL
RESTRICTIONS: 1. The combination of a variable with a constant

cannot begin with a constant.

2. Neither G nor H can be an array name.

5.2.1.5 Combining Data Elements with other Data Elements and Constants

OBJECTIVE: To create or update a data base variable by combining
other data base variables and constants.

SYNTAX: 'ADD name = name + name * value'

EXAMPLE: 'ADD I = A + G * 2'

RESULT: The contents of A will be added to the contents of G.
The results of that combination will be multiplied by
2. The result of that combination will be transferred
to I. Up to ten operations may be performed.

ADDITIONAL
RESTRICTIONS: 1. The operations are serial in nature (like a hand

calculator). Each operation is performed on the
result of the previous operation (s).

2. The combination of variables must begin with a name.

3. The name, I cannot be an array name.

75

5.2.1.6 Adding Arrays

OBJECTIVE:

SYNTAX:

EXAMPLES:

RESULT:

ADDITIONAL
RESTRICTIONS:

5.2.1.7 Adding Constant

OBJECTIVE:

SYNTAX:

EXAMPLES:

RESULT:

ADDITIONAL
RESTRICTIONS:

To create or update arrays of information in the data
"base.

'ADD name = value, value, value1

'ADD J = 10., 20., 30.,

K = 2, 4, 6",

L = ALPHA, BETA, GAMMA, (hollerith constants)

M = .TRUE., 3, 5.'

Four new or existing arrays will contain the information
indicated. Mixed arrays of real and integer values may
also be used. Logical arrays (more than one element)
cannot be entered.

1. No data base name may appear on the right side of
the equation (= sign) as array elements.

2. Logical and hollerith variables may not be mixed
with any other type.

3. Hollerith may not be the first entry of an ADD card,
(i.e., 'ADD L = ALPHA, BETA, GAMMA,)

4. No more than one logical variable per array may be
entered.

Arrays

To add or update an array of constant information to
the data base.

'ADD name = n * value, value'

'ADD N = 2 * 8., 9., 9.'

'ADD N = 8., 8., 2 * 9.' (ILLEGAL)

N will be a new or updated array of four elements, each
containing values of 8., 8., and 9., 9.

1. The integer n must be next to the equal (=) sign.
Multiple entries can only be performed on the
first n elements.

76

5.2.1.8 Adding Mixed Arrays

OBJECTIVE: To add or update a mixed integer/real array of information.

SYNTAX: 'ADD name = value, value, ...'

EXAMPLE: 'ADD 0 = 2 , 5., 6.
i

RESULT: The 0 array will be added or updated. It will contain
the integer 2 followed by the real values 5., and 6.
This is useful in some applications programs for defining
table sizes in the same array as the tabular data.

ADDITIONAL
RESTRICTIONS: 1. The array elements cannot contain hollerith or

logical information with the integer and real
information.

5.2.1.9 Transferring Array Elements

OBJECTIVE: To update or create a data base variable from an
element of a data base array.

SYNTAX: 'ADD name = name (n)'

EXAMPLE: 'ADD P = J(l),

Q = K(2), '

'ADD Q = K(B),' (ILLEGAL)

RESULT: The contents of J(l) and K(2) are transferred to P and
Q respectively. The element number being transferred
must be a constant.

ADDITIONAL
RESTRICTIONS: 1. The element number cannot be a data base name.

2. The element cannot be hollerith or logical in type.

5.2.1.10 Combining Array Elements

OBJECTIVE: To create or update a data base variable combining data
base array elements.

SYNTAX: 'ADD name = name (n) * name (n)

EXAMPLES: 'ADD R = A * Q(3),

S = J(3)

77

RESULT: The data base variables R and S will contain the
combinations indicated. Any of the arithmetic operators
(+, -, *, /, **) may be employed, up to 10 operations
may be performed.

ADDITIONAL
RESTRICTIONS: 1. The element number cannot be a data base name.

2. Mixed mode arithmetic cannot be performed (i.e.
integer * real). Unpredictable results will occur.

5.2.2 The DEFINE Command

The ADD command described in the previous paragraphs is the most useful in the
communication command language. However, the DEFINE command described below will
be useful for two purposes:

1. To reserve space in the data base for data bases variable before the
data is actually entered.

2. To provide a brief description of the data base variables. This
description is stored in the data base.

As with the ADD command, the DEFINE may be used anywhere within the execution
sequence. However, it is most likely to be used in the creation of a design
data base for reserving space or providing definitions for new or existing
variables.

The format of the DEFINE command is: (

'DEFINE name = n, description,'

The following SYNTAX or formation rules apply to the DEFINE command:

1. The opening delimiter (') may be any column.

2. No spaces may appear in the character string 'DEFINE.1

, i
3. One or more spaces must appear between the DEFINE and the name.

4. The n is a number of data base locations to be reserved. If omitted
one will be assumed. If previously defined n will be ignored.

i
5. A comma must separate the name = n set and the description.

6. The description may be up(to 30 characters (see Section 4 to change
this number).

7. The description must be terminated with a comma (,).

8. The DEFINE command must be terminated with a DIALOG delimiter (').

78

More than one variable may be defined by a single define statement. Any number
of^continuation cards may be employed. Although more than one variable may
be defined on a single card, experiments have shown unpredicable results
can occur from this practice. The usual technique is to define one
variable per card and use many continuation cards. The most common
SYNTAX errors result from failure to conform to rules 2, 5 and 8. The
reader's attention is specifically drawn to these rules.

' , »•

Figure 5-7 illustrates the use of the DEFINE command. They define
the example variables used in Section 5.2.1. The definitions appear
on the sample data base printout of Figure 5-6.

5.2.3 The'Comment Command ' ' '

The comment command is used in applications program data for identification
only and as such, the comment performs no functional operation. The form of
the comment:

'. comment'

The SYNTAX rules for construction of a comment command are:

1. The opening delimiters and closing delimiter may appe'ar in any column.
i

2. No space may appear between the delimiter (') and the dot (.).

3. At least one space must appear between the dot (.) and the start of
the comment.

4. The comment may be any number of characters.

5. The comment may appear on the same card with data. "

6. The comment may not appear on the same card with another command (i.e.
ADD or replacement command).

7. The comment may be continued on many cards so long as the comment does
not start on the same card as data'.

8. A comma (,) may not be used in a comment.

9. The comment must be terminated with a delimiter (').

The SYNTAX rules which are most often violated are 2, 3, 6 and 8. The
attention of the reader is drawn specifically to these rules.

The DIALOG executive program replaces the comment and associated delimiters
with blanks as they are encountered. After processing the comment, DIALOG
checks to determine if the card is all blank. If blank, DIALOG "removes"
the card from the input stream.

Examples of comments are given in both Figures 5-5 and 5-7.

79

*. DEFINE STATEMENT EXAMPLES

REAL VALUE
INTEGER VALUE
HOLLERITH VALUE
LOGICAL VALUE

^DEFINE
^DEFINE
^DEFINE
^DEFINE
^DEFINE
^DEFINE
^DEFINE
^DEFINE
^DEFINE
^DEFINE
^DEFINE
^DEFINE
^DEFINE
^DEFINE
^DEFINE
^DEFINE
^DEFINE
^DEFINE
^DEFINE

A, R
B. I
C» H
0, L
E, E
F, F
G* G
H, H
I. I
J=3»
K = 3«
L=3»
M=3»
N=^f«
0=3 »
P, P
0« Q
R, R
S, S

H = R*3
I=A*G»?.

REAL ARRAY
INTEGER ARRAY
HOLLERITH ARRAY
MIXED LOG-INT-REAL
SHORTHAND LOAD
MIXED TYPE ARRAY

P=J(1)
Q=K(2)
R=A»0(3)

ARRAY

NOTE: THE DELIMITER #) RESULTS
FROM THE CHARACTER SET USED
ON THE LISTING EQUIPMENT,

FIGURE 5-7 DEFINE COMMAND EXAMPLES,

80

5.2.4 Replacement Command.

Data base information is entered into the applications program input data by
means of the replacement command. As the name implies the replacement command
replaces delimited data base names with the corresponding values. Any delimited
data base variable name may be placed on a data card of an applications program.
The DIALOG executive program will replace the delimited name with the value (s)
from the data base. Therefore, nearly any input procedure can be accommodated.
The general format of the replacement command is:

'name'

The namff is any data base name, combination of data base names and constants.
Further, the names may be names of single variables or arrays. The results from
the two types of replacement are different and will be treated by example.
Figure 5-8 illustrates the use of the replacement command. The general rules
governing the replacement are as follows:

1. The opening and closing delimiter (') may be placed in any column.

2. No space may appear between the opening delimiter and the first data
base name.

3. Any combination of data base variables, array elements and constants
may be used.

4. The first variable must be a name.

5. A maximum of 20 characters may be used between delimiters.

6. A maximum of 10 operations may be performed.

7. The number of significant places of the replaced number will be the
maximum allowed by the space between (and including) the delimiters.

8. The opening and closing delimiter must be on the same card.

The most common SYNTAX errors result from failure to comply with rules 2, 4 and
5. Attention is specifically drawn to these rules. One additional problem may
arise by not allowing enough space between delimiters to obtain the desired
number of significant places.

In the above illustration, the number of significant places of the replacement
value would be reduced to three places. The recommended replacement technique
would be:

'A '

with sufficient space between delimiters to provide the desired significant places,

81

1
0

0
n
?.
A

j
f.

0
3 !
ft
0
C
0
0
r
*
0
A

^

•}
«

NAME
A
B .
C
D
F
F
r, •
H-
I
J
K
L
M

N
0
P
0
P
s

ABCS OF MODIFYING APPLI
DATA BASE INF

COMBINATION VALUE(S)

^ fl ̂
r ^ O ^L

*C *
*D *

A *A ^
B *B *
A*?. *A*?.*
B*3 ^B*3 *
A+G*?. *a+G*2.<

*J *
K

< - *L*
#M*
N
#0*

J (1) *J (1) *
K(?1 *K(?) *
A*0 (3) ^A*0 (3) *
J(3)+0(2) *J(T)+0(

i (

'! J*A

A A*J
f A + J

0 A/J
C J/A
1

NOTE: THE DIALOG DELIMITER RESULTS FROM

THE CHARACTER SET USED ON THE CARD

LISTING EQUIPMENT,

FIGURE 5-8 ILLUSTRATION OF REPLACEMENT COMMAND,

82

Figure 5-8 is hypothetical input stream, each line represents a card input.
Delimited data base variables are placed on the card representing data base
variables or combinations of data base variables, arrays and constants. The
data base information comes from the data base of Figure 5-6. Figure 5-9 shows'
the results of the replacement commands in Figure 5-8. The following paragraphs
discuss each of the examples with regard to objectives and results. The format
of the descriptions follow the general format outlined below:

OBJECTIVE:

SYNTAX:

EXAMPLES:

RESULT:

ADDITIONAL
RESTRICTIONS:

A concise statement of the analysis goal to be
achieved by the command.

Pattern of formation of the command.

A list of one or more examples. Sometimes incorrect
examples are given and are noted as ILLEGAL. In these
cases the results are either incorrect or unpredictable
for the objective stated.

A Erlef description of the data base entry which will
result from the use of the exemplified command.

In some cases, restrictions in addition to those
described above will be given.

5.2.4.1 Simple Replacement of Data Base Names

OBJECTIVE: To replace a data base variable on an input card with
a data base value.

SYNTAX:

EXAMPLES:

'name'

'A '

'B '

'C '

'D '

RESULT: The delimited data base names will be replaced with the
values in the data base as follows:

10.000 '

2

ALPHA

.TRUE. '

4

83

ABCS OF MODIFYING APPLICATIONS PROGRAM INPUT

DATA BASE INFORMATION

NAME COMBINATION

A '

B

C

D

E A
1

F B

G A*2.

H B + 3
1

I A+G*2.

J
30. 00000000000000000 t

K
6*

L
GAMMA ,

VALUE(S)

10.000

2

ALPHA

.TRUE.

10.000

2

20.000

5

60.00000

10.00000000000000000,20.00000000000000000

2, 4

ALPHA .BETA

M .TRUE.
9.000000000000000000.

3,

N 8.000000000000000000,8.000000000000000000
9.000000000000000000,9.000000000000000000t

2,5.000000000000000000,
6.000000000000000000

p J(l) 10.00000000000000000,20.OOOOOOOOOOOOOOOOOt
30.00000000000000000,

Q K < 2) 4

FIGURE 5-9 RESULTS OF THE REPLACEMENT COMMAND,
84

R A*0(3)

S J(3)+0(2)

N*J
2 70. 0000000000000000 *

J*N
2 70. 0000000000000000 t

J*2.
60. OOOOOOOOOOOOOOOOOt

J*A
300.0000000000000000*

A*J
300. 0000000000000000 t

A+J
40. 00000000000000000 t

40. 00000000000000000 t

A/J
. 3333333333333321491,

J/A
3 .000000000000000000,

60.00000

35.00000000

80.00000000000000000,160.0000000000000000,

30.00000000000000000,160.0000000000000000,

20.00000000000000000,40.00000000000000000,

100.0000000000000000,200.0000000000000000,

100.0000000000000000,200.0000000000000000,

20.00000000000000000,30.00000000000000000„

20.00000000000000000,30.00000000000000000,

1.000000000000000000,.5000000000000000000,

1.000000000000000000,2.000000000000000000,

FIGURE 5-9 ' RESULTS OF THE REPLACEMENT COMMAND, (CONTINUED)

85

The values may be real integer, hollerith or logical.
The maximum number of significant places defined by
the delimiter will be used. Integers are right justified
in the field. All others are left justified.

ADDITIONAL
RESTRICTIONS: 1. The first element of an array cannot be used.

5.2.4.2 Simple Replacement of Data Base Combinations

OBJECTIVE:

SYNTAX:

EXAMPLES

RESULTS:

ADDITIONAL
RESTRICTIONS:

To replace a data base variable combination with the
computed value.

'namel + valuel * natne2'

'A * 2.'

'B + 3'

'A + G * 2.'

'A * 0(3)'

'J(3) * 0(2)'

The delimited data base variable or array element
combination will be replaced with the computed values
as follows:

20.000

5

60.000

60.00000

35.00000000

The arithmetic operations are performed in a serial
manner (as on a hand calculator) from the left.

1. The item adjacent to the opening delimiter must be
a name.

2. Mixed mode arithmetic is not permitted (i.e. real
* integer) unpredictable results will occur.

3. The first element of an array cannot be used.

86

5.2.4.3 Array Replacement by Name

OBJECTIVE: To replace an array name with an array of information
from the data base.

SYNTAX: 'name' or 'name (1)'

EXAMPLES: 'J' or 'J(l)'

'K'

'L'

'M'

The arrays are placed on the card starting at the first
delimiter using 20 characters per element, three elements
per card. Elements are separated by commas. Continuation
cards are created as required with data starting in
column 2. The position of the closing delimiter is
immaterial. 'J' or 'J(l)' produce the same result.
Integers are right justified in the field, all others
are left justified.

ADDITIONAL
RESTRICTIONS: 1. Array replacement is generally limited to NAMELIST

or special input procedures. It is probably not
suitable for formatted input.

5.2.4.4 Array Replacement of Data Base Combinations

OBJECTIVE: To replace a data base combination on an element by
element basis.

SYNTAX: 'namel * name2'

EXAMPLES: 'N*J' (array * array)

'J*2.' (array * constant)

'J*A' (array * data base variable)

'A/J1 (constant/array)

RESULTS: The operation is performed on an element by element
basis. If one factor is a data base variable or
constant, the one number is used as an operator on
every element of the array. If both are arrays, the
resulting array is equal in length to the shorter one.
Division of a constant by an array results in an

87

element by element division of the constant by the
elements of the array. For multiple operations, an
element by element serial arithmetic is performed.

ADDITIONAL
RESTRICTIONS: Reference to the first element of an array refers to

the entire array.

A summary of the communication commands is given in Appendix E.

5.3 Standard Utility Procedures

The purpose of maintaining a program library for use with the DIALOG executive
system is primarily for ready availability of applications programs. However,
during the development and subsequent applications of the system, a set of
utility programs or procedures has evolved for performing such tasks as:

a. Compilation and execution of interface programs.

b. Disposition of data files.

c. Report writing.

d. Executing arbitrary control card procedures.

Figure 5-10 summarizes the utility procedures available. These procedures
are stored in the control card data base in exactly the same manner as
applications program procedures. They are called into execution with the
EXECUTE directive. The following paragraphs provide a brief description
of the use of the standard utility procedures. Some have associated data
and some do not.

5.3.1 COLOGO: Compile, Load and Execute a FORTRAN Program

Usually the submission of a job using the DIALOG executive system involves the
execution of prestored applications programs. However, the need for
an interface program is often desired or required in order to augment or
transform the data obtained from existing applications programs. In
these instances the analyst can generate a FORTRAN program within the
execution sequence using the COLOGO procedure. This control card sequence
compiles a FORTRAN program, then executes the compiled program. The
execution of this procedure is implemented as follows:

'EXECUTE COLOGO'

FORTRAN Program

7-8-9

A brief summary of the rules of FORTRAN is given in Appendix F. It is not
the intention of this appendix to provide a complete reference to FORTRAN but

88

co
>-
OO

LU
1-

O
LU
X
_u
Q

^£o
_i

N

LU
_l
1— 1

Q.
S
O
_>

PR
OG

RA
M

o:
LU
CO~~)

LU
_l
i— •
a.
s
o

2:

CD
O
ce

Q
LU

OL
S
O

C_J

LU
1-

Ô
LU
X

LU

<
1-

s:
or
o
o
en

Q_

CO
•z.
O

H

O
i_i
_l
Q-
CL

«=c
CO
1-
•z.
t—t

on
Q_

CO
J-
O
c
LU

CO
12
1-
<

OO

LU
CO

CQ

^̂~
^^f~~\

CO
K
•z.
1— 1
o:

Q_

LU
1-
1— 1

00

_1
<
1-
•z.
LU

o

<
1-
^f)

CO
LU
h-
Z3
Q

Qi

s
RE

PO
RT

S
TO

 T
ER

MI
NA

L

=3
1-

«^
1—

OO

CO
LU
1—
r>
o

C£.

LU

1—4

I—
o
0
LU
X

LU

CD

3
<c
S
o
K

LU
1-

Q
Q.
rD
f-
•z.
LU
Z
<
•SL
on
LU

Q_

1-
o

Q
LU
1-
_1
:i)
•s:13
o
o

<=c
CO
LU
>

OO

CO
Q
Od

_l
o
Od
1-
z
o

Q
LU
1-̂
_J
Q_
Q.

OO

C£
LU
CO

ZD

CO
LU
1-
r>
o
LU
X

LU

PR
OG

RA
MS

^«(— —
»««i

1
I— »

1—
rD
5^
LU
1—
OO

OO

_

LU
X

CD •—•

3 ^
CD CD

CDsQ_ CDQ_

a_x

OO

OO

3Q_

CD
O

CD
t—I

I
LTV

CD

89

rather to provide the user of the DIALOG executive system who has FORTRAN
experience a ready reference to the FORTRAN statement formats. To avoid
confusion, complex FORTRAN statements have been omitted. Only those
FORTRAN features which are commonly used are presented. Detailed information
on the use of FORTRAN is provided in standard FORTRAN reference manuals.

The use of COLOGO does not permit reading of data from cards. However, data
base interfaces may appear in the source code such as:

A = 'DBA '

The above illustration is a FORTRAN statement which equates the FORTRAN variable
A to the data base variable DBA. DIALOG preprocesses the entire FORTRAN program
searching for delimited data base names and systematically replacing them with
data base values. After processing, the illustrated statement might read:

A = 4.7562

In. the illustration, the value of the data base variable DBA was 4.7562. The
resulting statement is a legal FORTRAN statement. In effect the data base
replacement commands are "input" to the FORTRAN program.

The use of the COLOGO procedure requires that the PROGRAM card for the user
supplied FORTRAN program have a specified format.

PROGRAM MAIN (TAPEl, OUTPUT, TAPE78,)

TAPE1 can be used for reading or writing a file of information for use within
the simulation but no provision is made for reading data from cards. Other
file parameters may be added beyond TAPE78. The OUTPUT file is the normal
output file which can be printed with the PRINTER procedure (see Section 5.3.3).
TAPE78 is the special output file for placing data base information. The
file need not be TAPE78 but any convenient unused file specified by the user.
This file can be a NAMELIST or simulated NAMELIST file as described in Section 4.

5.3.2 COMPILER/MYPROGRAM: Compile a FORTRAN Program/Execute the Compiled Program

Usually the COLOGO procedure provides all the FORTRAN capability needed by the
analyst. However, COLOGO does not allow the reading of data from input cards.
This capability is provided by combining the COMPILER and MYPROGRAM procedures
in separate executions. COMPILER compiles the program while MYPROGRAM executes
the compiled program. The data associated with COMPILER is the FORTRAN source
code. The data associated with MYPROGRAM is the input data for the compiled
program. The execution sequence is as follows:

'EXECUTE COMPILER'

FORTRAN Source Code

7-8-9

90

'EXECUTE MYPROGRAM'

Data for Compiled Program

7-8-9

The use of the COMPILER/MYPROGRAM execution sequence requires that the
PROGRAM card for the user supplied FORTRAN program have a specified format:

PROGRAM MAIN (INPUT, OUTPUT, TAPE5 = INPUT, TAPE6 = OUTPUT, TAPE78,)

INPUT and OUTPUT are the normal read/write files. TAPE78 is the special data
base output file as described in Section 4. Other file parameters may be added
for special purposes but must be positioned beyond the TAPE78 file.

There are two advantages to using the above execution sequence rather than the
COLOGO procedure:

a. Card input capability is available in the execution of MYPROGRAM.

b. The compilation can be physically separated from the execution.

The COMPILER/MYPROGRAM sequence may be useful for parametric studies and
optimization problems where a single compilation can suffice for multiple
executions of the same compiled programs. The use of the branching logic
described in Section 5.1 is useful in this regard. Further, the COMPILER/
MYPROGRAM procedures are useful for interface programs or testing new
programs with the DIALOG executive system. These procedures together
with COLOGO provide full FORTRAN capability as a subset of the DIALOG
executive system.

5.3.3 PRINTER: Prints Output Generated in the Previous Execution

In the DIALOG executive system, the normal output from an applications program
is stored temporarily on a file called OUT. This file is regenerated
for each execution of an applications program. Therefore, the normal
applications program output file is generally destroyed as a new applica-
tions program is being executed. However, the PRINTER procedure may
be employed to alter the normal course of events by printing the OUT
file. The format is:

'EXECUTE PRINTER'

7-8-9

The affect is to rewind the OUT file and copy it to OUTPUT. If the previous
applications program or utility procedure generated output in the normal manner
(WRITE (6,100)A), the PRINTER procedure will transfer the information
to the output file.

91

5.3.4 PLOTSV: CALCOMP Plot Save Procedure

Many applications programs generate plotted information as a part of the normal
calculations. The most common system for generating plotted information is the
CALCOMP plotter system. CALCOMP consists of a set of FORTRAN callable software
(subroutines) for generation of a file of plot commands. These plot commands
are read from a physical tape by the CALCOMP hardware and are interpreted as pen
movements on an x-y plot device.

For computational efficiency, submission of a plot generating program usually
results in the generation of a disk file of plot commands called CALTPE. These
commands must be transferred to a physical tape in order to be plotted.

The PLOTSV procedure mounts a physical tape and copies all CALCOMP plots
generated previously in the execution sequence from disk to the mounted tape.
The CALTPE file is dropped after it is copied to tape. Any number of
executions of this procedure may be employed. A CALCOMP tape will be
generated for each execution. The format is:

'EXECUTE PLOTSV

7-8-9

5.3.5 REPORT: Generates Data Base Status Report

Usually the submission of a computation to the digital computer results in
the generation of detailed information about the process involved.
The results as well as intermediate information are printed by the
normal output channels. The submission of the same computation using
the DIALOG executive system involves the generation of the same information
plus some summary type information which is usually a small subset
of the total output of the applications program. The summary information
is placed on the special output file discussed in Section 4 and the
normal output is disposed in the manner illustrated in Section 5.3.3.

The information on the special output file may be placed in the data base
after which it is generally available for printing through the REPORT
procedure.

'EXECUTE REPORT'

report data

7-8-9

The report data is a sequence of punched cards much like the input data to
an applications program. However, the report data is not processed by any
computer program but simply printed by the DIALOG executive program.

The report data is formatted by the analyst to provide any descriptive information
desired. Further the report data may contain data base information through the

92

use of the communication commands described in Section 5.2. An example card in
the report might be:

WEIGHT OF THE SYSTEM IS 'WGT' POUNDS

In the above illustration, WGT is a data base variable. The DIALOG executive
program replaces the data base name and delimiter 'WGT' with the information
stored in the data base. The report is printed after processing the report
data. The result is a "stylized report" specifically tailored to the needs of
the analyst. The report may contain "carriage control characters" in column 1
of the report data cards.

1 - eject a page before printing

0 - skip a line before printing

Any number of reports may be generated during a simulation. Usually during the
initial phase of coordinating of large simulation using the DIALOG executive system,
the staff selects subsets of the data base information to be communicated to each
staff member for analysis. The format of the individual reports is tailored to
the needs of the individual receiving the information. Once the format is
established, it is keypunched on data cards with data base information being
identified by name in the manner described in Section 5.2. These data cards
become a report file.

A mini-report exemplifying this technique is shown in Figure 5-11. Any of the
features of the DIALOG language including scaling and adding data base information
are used in a completely free field report format. The first column of each
card is reserved for printer carriage control providing a convenient means of
paging and spacing for report clarity. Figure 5-11 also shows the printed
results of the report file with data from the data base.

5.3.6 ROUTECC: Route Normal Output to the Central Site

This procedure was developed for use at any remote terminal. It routes the
OUT file (containing the normal output from the previous execution sequence) to
central computer facility. The output will be returned by the normal delivery
service.

The ROUTECC procedure is quite useful for the disposition of voluminous data
generated by some applications programs, when the analyst wishes to limit the
printed output at a terminal. The format is:

'EXECUTE ROUTECC1

7-8-9

93

1
#hXECDTE Rt-PO-?T *
/. DATA FOP SUMMARY REPORT *

PAGE 1

SUMMARY PEPOPT FOW OOIN/WLV
C / K U * T Y C L F f S) ELAPSED TIME = *ELTIME* CPU SECONDS

a = TCOSTM»TCO?;T t l#

'' PftYLOAO
HOOSTE0 ".'EIGHT

*W°AYLO * LBS
#''JGK)S4 i- LBS
#'-/GROSO # LBS

-STAG]

COST
COST

.P COST
VELOCITY

VACMIT-' THRUST
MASS PATIO

KILOGRAMS
KILOGRAMS
KILOGRAMS

• • • * <

• * • • <

•t- MILLIONS
MILLIONS
/ MILLIONS

LBS
#VSTGB/KN# KNOTS

= *JJDFST#f THF RECOKO ON FILE ODTSAV. N=

END OF ODIN/WLV SUMMARY
*
i
roooooonooocoooocooooo

REPORT

S'HMARY

f'AX I'-'.|)>1 PAYI OAO
POOSTFK ' ̂IGHT

TOT/»L CO^T
POOSTEP COST

R COST

PAGE 1

FO'̂ OOF^/RLV

ELAPSCO TIME = sa.aesoo CPU SECONDS

»S.M"^6 L«S I«*4^4.w500 KILOGRAMS
MLOGPAMS
KILOGRAMS

c; BILLIONS
.-'ILL IONS
BILLIONS

STA'JK'G V E L O C I T Y KNOTS

CYCI f = 1, THF ITH trfi;o^D O.J FILL OUT^AV. N= 1

of 0')IN:/->I.V

FIGURE 5-11 ILLUSTRATION OF REPORT GENERATION CAPABILITY

94

5.3.7 ROUTEXP: Dynamically Prints'Report at the Originating Terminal

This procedure allows the analyst to print status reports (as described in
Section1 5.3.5)>on the simulation dynamically while the job is executing. The
user composes the status report in any desired format. Information may be
drawn from the data base by delimiting data base names in the same manner as
with.applications program input.

'EXECUTE ROUTEXP'

status report '

7-8-9

Immediately upon execution of this procedure, the user supplied status report,
as modified by data base inforamtion, is printed even though the simulation may
still be executing.

5.3.8 CCSAVE: Permanent Storage of the DIALOG Executive System Including CCDATA

This procedure copies the DIALOG executive system to data cell using the REPLACE
utility. The execution of the CCSAVE procedure results in a new data cell
location for the system. The DIALOG executive system consists of a number of
files which CCSAVE copies.

ODIN Initialization procedure

DIALOG Execution procedure

ABEND Abnormal end procedure

PINIT Post initialization procedure
t

ODIALOG Absolute element program for DIALOG

ODBINIT Absolute element program for DNINIT

CCDATA Control card data base

These files are discussed in detail in Section 4.4.

The procedure is activated with the following two cards:

'EXECUTE CCSAVE1

7-8-9

95

5.3.9 NEWPROC: Execution of an Arbitrary Sequence of Control Cards

The NEWPROC procedure allows the analyst to execute an arbitrary sequence of
control cards in the following manner:

'EXECUTE NEWPROC'

sequence of

control cards

CCLINK, DIALOG

7-8-9

The affect of the NEWPROC procedure is to give job control to the operating system
for a sequence of control card executions then to return control to the DIALOG
executive system. In affect, the operating system utilities become a subset of
the DIALOG executive system through the use of NEWPROC.

5.3.10 ENDODN: To Save a Design Data Base for Future Use

Usually the execution of the DIALOG executive system requires the creation of a
design data base which is used and modified during the simulation process but
not saved at the end of the run. It is sometimes desirable to save the design
data base and restart the simulation at a later date. Examples of this
requirement would be a very long simulation involving many program executions
or an optimization involving repetitive evaluations through a series of
application programs.

The ENDODN procedure allows the analyst to save the data base in the precise
configuration required to restart the simulation. The control card sequence
follows: j

ENDODN =

COMMENT.

FETCH, A , SPR , BINARY,, DUM.

DROPFIL, DUM.

REPLACE, DUM, DBASE.

It is not essential (nor required) to execute this provedure using the EXECUTE
directive. If the ENDODN procedure is stored in the control card data base, it
will be executed at the proper time (after the END directive). The data cell
location must be specified by the analyst and retrieval as part of the
initialization procedure. The retrieval is discussed in Section 4.

96

5.4 Special Options in DIALOG Executive Program

Generally any name, except communication command names, may be used to identify
data base information. However, there are a few additional exceptions. The
excluded names are:

BUILD

DBDUMP

ELTIME

INDUMP

OUTDMP

PAGDMP

which represent special commands to DIALOG. The data base variables are stored
with the ADD command (i.e. 'ADD BUILD). If present in the data base, DIALOG will
perform special functions as described in the following paragraphs.

The BUILD option is associated with the dynamic construction of the design data
base by the applications programs. Two values have significance to the DIALOG
executive program.

BUILD = 0

BUILD = 1

The zero value specifies that previously undefined variables will not be defined
by an applications program. A value of one specifies that all information from
the previous program will be stored in the data base regardless of its previous
data base status. The value of BUILD may be changed from program-to-program by
use of the ADD command:

'ADD BUILD = n'

in the input data of the applications program. The change in the BUILD option
becomes effective for the program where it occurs and remains effective until
changed again.

The BUILD option only affects data coming from applications programs. It has no
affect in ADD commands or other user communication commands.

DBDUMP is a DIALOG option which specifies that the entire data base be printed
after each applications program execution. An example of this printed output is
shown in Figure 3-11. It should be noted that this option is mandatory when
selected. Selective printing of the data base is accomplished by the PRINT
directive:

97

'PRINT DBASE'

The directive illustrated above is discussed in Section 3.1. r i

ELTIME is a timing option. It is selected by a setting ELTIME to an initial value:

'DEFINE ELTIME = 7, description,'

When selected, a timing routine in DIALOG will be activated. This routine
monitors the individual and cumulative computer processing parameters
for the applications programs. The parameters are identified on the
printed output.

INDUMP is an optional data base name which specifies the printing of the modified
input stream for the applications programs. The modified input stream represents
the input file in exactly the form the applications program will read it. The
INDUMP option is useful in the early phases of linking programs for debugging
purposes.

OUTDMP is an optional data base name which specifies the printing of the special
data base output file, NMLIST, which contains all the information available for
entry into the data base. Details of the NMLIST file and how it is used are
discussed in Section 3.2.4. The OUTDMP can be used to determine what information
is available from a given applications program or simply as a debugging aid in
the early phases of the analysis.

PAGDMP is an option available to the programmer for detecting errors within the
DIALOG executive system. It has little use to the analyst using the system. It
is mentioned only because PAGDMP is an excluded data base name which has special
significance to the DIALOG executive system.

A summary of special options and additional restrictions is given in
Appendix G.

98

6.0 APPLICATIONS

The DIALOG executive system was developed to provide the program linking
capability required in the Optimal Design Integration (ODIN) procedure of
Reference 9. Two applications were used to demonstrate the ODIN capability
and are presented here to illustrate the use of the DIALOG executive system
in linking independent programs. The ODIN application program library is shown
in Figure 6-1. This library was used to perform the analysis presented in this
section. The results indicate that the DIALOG executive system has unlimited
potential in solving a wide variety of engineering problems.

6.1 Orbiter Landing Skin Temperature Study

An example of a small ODIN problem is shown in Figure 6-2. A study was required
to determine if landing performance or stability and control might be effected
by the presence of excessive skin temperatures on the Space Shuttle Orbiter.
This problem was formulated in ODIN to determine skin temperature time histories
using the various ODIN technology programs. The MINIVER (a mini-version of
the MDAC JATO Aerodynamic Heating Program) and ABLATOR (Reference 11)
programs required were quickly integrated.in the ODIN system. MINIVER
was used to obtain convective heat rates along the entry trajectory
and ABLATOR enabled calculations of the associated skin temperature
variations over the orbiter surface. Formulation of the problem required
the combined efforts of a group of engineers with technological backgrounds
in materials, flight dynamics and aerothermodynamics. The deck setup for the
problem is shown in Figure 6-3. The problem was solved approximately one
week after its conception. The results, shown in Figure 6-4, indicated that
no excessive temperatures were present on the orbiter skin during approach
and landing using either reusable pr ablative material.

6.2 Shuttle Orbiter Wing Design Study

A somewhat more complex demonstration of the ODIN system is summarized in Figure
6-5 for a shuttle orbiter wing design study. The purpose of this study
was to provide an orbiter wing which would achieve hypersonic/subsonic
compatibility. Study guide lines were chosen in accordance with those
from NASA's Shuttle Request for Proposal in February, 1972. The orbiter
wing geometry was perturbed over a matrix which yielded design data
for 37 possible configurations. The ODIN design sequence progressed
downward in the figure for each wing design and ended with aerodynamic
data plots, a configuration drawing and a summary report of geometric
and aerodynamic performance data. The technique allowed the users to converge
rapidly on a viable orbiter wing design which was subsequently proven
with the aid of minimal wind tunnel development. Figure 6-6 illustrates
the type of results from the orbiter wing design study.

99

SiO

01

co

CD
CD
0,Q_

CO

CD

CD
CD
O,
O_

CO

CD

o_Q_

<c
0,
rD
CD

LU

CD LU

CD
LU
CD

CD
1— Q_
<_> CD

<C LU h-
Q_ —} <C

00 I—
LU CO
Q± OQ_ Q_

<C LU

Q_
<a: cc:

CO
CD

C_) Q_

<C CO
co co
»̂ co

LU
CD I— LU
s: I— CD
.—i CD <C
I— —I SI
I— D_ —•
CD

Q_
Q_
<c

CO

I
CD

CD
CO
C_J

SI SI 0_
<C Ll_ CD C_> Q CD

>- •—. 1— 03 CD 0,
f=> ̂ <C <C 0, Q
CD CO Q m I— S

CO
LU

CO Q,
CO I— Q- =3
I— «=C SI h-

CD

0,0, 2
LU CD I—
> I— <C Q_

SI Q_ CD i—• <t l\l CD
<C co s: ̂ : —i •—• co

c_j co LL_ i—i i—i rn si 11'
co <c i— si <c •—i <c

CO
o_
CD

100

s
u

3

ce:

o

CD
LJ_

>-

CO

<u
•jo

to
0}

a>
a_

s
a>
a.
a> •i

3 .£=
±2 -aro cO co

a>

c E?s|
S§a. v.

.S5
c

a
o
ca
O

GO

CD

>
LU
>

z
s

. — ,_>

Ml

or
UJ

t=
3
o.

6ua

>

1 Xpoq uo d

z
o

<
CO
<

00|

>. ÛJ

3
Q.

-f
CNIi
LD

CD

101

^6-7-8-9 CRRTT
y?-8-9 CPRD

X7-B-9 CRRD
END ODIN

7̂-8-3 CRRD
EXECUTE PLOTSV

IF JJJ , LT • 2

,0-8-9 CflRD
LOOP TO POINT _L

EXECUTE REPORT

^7-8-9 CflRD

.^7-8-9 CRRD
EXFCUTE PRINTER

7-8-9 CflRD
EXECUTE PLOTTER

EXECUTE RBLRTOR

y7-8-9 CBRD
-

f 7-8-9 CRRD
EXECUTE PRINTER

7̂-8-9 CRRD
EXECUTE PLOTTER

EXECUTE MINIVER
DESIGN POINT 1

7̂-8-9 CRRD

09 W

7̂-8-9 CflRD
CREflTE DBRSE

CCLINK,ODIN.
/"FETCH,R ,SPR—.BOTH.ODIN.,.X'.

^USER.GLHTT.C.R.
\JOB,1.200.77000,3000.

FIGURE 6-3 DECK SET UP FOR ORBITOR'LANDING SKIN
TEMPERATURE STUDY

102

GO

LU

<c
ce:

GO
CD

HSMI U 0301 31UUVIIMJI

LU
n-u.

II

s*0

CO

OO

GO
LU
cc:

CJ3

nninuwu

103

h- >-
•—• (=)
O_ 13

C£ CO

o IE
CO

LU •—•

CO

LO
I

CD

LU

e
a.
•B r

i
s
a

I
i
I•s
s
s
a
a

I
1

g
J

I
3

1

i
I

s
i—12

104

* I

13
u
S S
* A

*i
i;
Sm
ga
|«

•J S
if S

* i ill

Z

I
U

cc
(O

t—i—i

et /

oo

(_)
<c
oo

OL

ct:

oe

s

8 *
a: £
tf 3

O

oo
LU

-_ •;
O »

£
>- CO

I
UD

105

7.0 CONCLUSIONS

A very large scale synthesizing system for engineering processes has been
described. The elements of the system are a library of independent applica-
tions computer programs, an executive computer program and a data base which
forms the common information link among the independent applications program.
The programs can be used by individuals for small problems or the operation
can employ the design team approach. In the latter case, the design team
defines the program sequences, data interfaces and matching loops required to
achieve the desired design objective. The system provides the users with the
ability to formulate the computer aided design problem at the task level in
much the same manner as is employed in the industrial design process.

The executive computer program DIALOG controls the sequence of execution of
the independent program elements and performs the data management function
through the maintenance of the data base of common information. Each program
is executed sequentially and as such is "unaware" of its contribution to a
larger engineering process. DIALOG interrogates the data into and out of the
independent programs and performs data manipulations according to "instruc-
tions" embedded in the data. The "instructions" are user supplied and form
the control and communication language which are input to the DIALOG executive
program. DIALOG restructures the input stream based on the instructions. The
result is a flow of information which is not unlike the normal flow of
individual jobs.

The greatest single advantage of the DIALOG executive system is that it allows
full use of virtually all past developments in engineering technology for the
synthesis of engineering processes. Any existing checked out computer code
can be easily incorporated into the system library and the developer of new
technological modules is unconstrained by requirements of the DIALOG executive
system. Little or no programming knowledge is required to incorporate a pro-
gram into the system for the first time.

The control and communication language consists of a simple and easily under-
stood set of instructions which provide the capability o_f creating a network
of computer programs for analysis at any level of detail. All synthesis
processes and data intercommunication are performed at the program input level.
Conditional branching logic is provided for creating sizing and/or optimization
loops within the synthesis. There is no effective limit to either the number
programs used or the complexity of design loops created.

The manual data transfer from technology to technology may be drastically
reduced using the DIALOG executive system. Further the chance of data error,
data misunderstanding or data misrepresentation is virtually eliminated. All
factors dealing with "engineering judgment," "design margins" and "non-optimum
analysis" may be employed and are visible to the design team.

Data visibility has been a key requirement in the development of the DIALOG
executive system. Report generation is an integral part of DIALOG. User
generated reports based on data base information can be generated at any point

106

in the sequence of program executions. A variety of graphical capability is
available in the program library.

Finally the DIALOG executive system provides a true building block approach to
the synthesis of engineering processes. Applications programs may be added,
deleted or replaced to suit the design objective. This provides a responsive-
ness of computer aided design techniques never before available to the designer,
All or any part of the design process may be synthesized but when using the
DIALOG executive system, the designer never relinguishes his option to perform
the analysis by alternate means, including hand calculation.

The software associated with the DIALOG executive system is written in the
FORTRAN source language and is relatively machine independent. Machine
dependent and system dependent code is used only when absolutely essential
to the proper function of the DIALOG executive system. Where used the
machine dependent code is isolated for quick conversion to other machines
and other systems. Versions of the DIALOG executive system for CDC 6000
series and Univac 1100 series computers have been developed.

107

8.0 REFERENCES'

1. Gregory, T. J.: Peterson, R. J.; and Wyss, J. A.: Performance Trade-Offs
and Research Problems for Hypersonic Transports. AIAA Journal of
Aircraft, July-August 1965. >

2. Peterson, R. H., Gregory, T. J. and Smith C. L.: Some Comparisons of
Turboramjet-Powered Hypersonic Aircraft for Cruise and Boost Missions.
Journal of Aircraft, September-October, 1966.

3. Gold, R. and Ross, S.: Automated Mission Analysis Using a Parametric
Sensitivity Executive Program. AAS Paper 68-146, presented at the
AAS/AIAA Astronautics Specialist Conference, September 1968.

4. Wennegal, G. J.; Mason, P. W. and Rosenbaum, J.D.: IDEAS, Integrated
Design and Analysis System. SAE Paper 68-0728, presented to SAE
Aeronautics and Space Engineering Meeting, October 1968.

i

5. Adams, J. D.: Vehicle Synthesis of High Speed Aircraft, VSAC, Volume 1.
USAF AFFDL-TR-71-40, 1971.

6. Oman, B.: Vehicle Synthesis for High Speed Aircraft, VSAC, Volume II.
USAF AFFDL-TR-71-40, 1971.

7. Lee, V. A.; Ball, H. G.; Wadsworth, E. A.; Moran, W. J. and McLead, J.D.:
Computerized Aircraft Synthesis. AIAA Journal of Aircraft, September-
October 1967.

8. Herbst, W. B. and Ross, H.: Application of Computer Aided Design Programs
for the Management of Fighter Development Projects. AIAA Paper 70-364,
presented at the AIAA Fighter Aircraft Conference, March, 1970.

9. Hague, D. S. and Glatt, C. R.: Optimal Design Integration of Military
Flight Vehicles - ODIN/MFV. AFFDL-TR-72-132, 1973.

10. Morris, Robert: Scatter Storage Techniques, Communications of the ACM.
Volume II, No. I. January, 1968.

11. Swann, R. T., et al: ' One-Dimensional Numerical Analysis of the Transient
Response of Thermal Protection Systems. NASA TN-D-2976, 1965.

108

APPENDIX A - CONTROL CARD SUMMARY

The use of the DIALOG executive system requires input of many forms to perform
a complete analysis. The common forms of input include normal data to the
applications programs but may include source language input or operating system
control cards. This appendix provides a brief summary of control card functions
at the Langley Research Center (LRC) Computer Complex.

Common requests that can be issued to the SCOPE operating system at Langley
Research Center on control cards are noted in the following summary. Parameters
issued as part of each request are briefly described. In this summary, constants
are capitalized and variables are in lower case; the variables are defined
below the illustrated format. In the formats shown, commas are used as separators
and periods are used as terminators in all cases. Parentheses may be substituted
for the opening comma and trailing period.

Following the definition of each control card, the function executed by that
request is given. For more details of each control card, the reader is referred
to the LRC computer reference manuals. ,

AUTOLAY,NEW,LIB1,LIB2,LIB3,LIB4,LIB4,LIB6. *

Combines library subroutines into a new program file.

NEW = new program file

LIB1 - LIB6 = Up to 6 library files

AUTOLAY is not a system control card; therefore, the program must be
retrieved from storage as follows:

FETCH,A3596,SPRA04,BINARY,,AUTOLAY.

*This control card is described in more detail in Section 4.

CCLINK,lfn,xx,n

Ifn = the logical file name of the linkage file

xx = a conditional operator (one of the following)
LT (less than) link if CCIR LT n (See SETIDEX)
LE (less, equal)
GT (greater than)
GE (greater, equal)
EQ (equal)
NE (not equal)
omitted (unconditional linkage implied)

n = the comparison integer

109

COMMENT.n...n

Inserts comments in the day file.

n = comment characters ,

COPY,lfnl,lfn2.

Copies all files from Ifnl to Ifn2

Ifn = logical file name

COPYBF,Ifnl,Ifn2,n.

Copies n binary files from Ifnl to Ifn2

Ifn = logical file name

n = number of files (decimal)

COPYBR,lfnl,lfn2,n.

Copies n binary records from Ifnl to Ifn2

Ifn = logical file name

n = number of records (decimaCOPYCF,lfnl,lfn2,n.
i

Copies n hollerith or external BCD files from Ifnl to Ifn2

I
Ifn = logical file name

n = number of files (decimal)

COPYCR,Ifnl,Ifn2,n.

Copies n hollerith or external BCD records from Ifnl to Ifn2

Ifn = logical file name

n = number of records (decimal)

COPYSBF,lfnl,lfn2.

Copies Ifnl to Ifn2 formatring binary file for single space printing

Ifnl = input file :

Ifn2 = output file

110

DROPFIL, If nl, If n2 If nn.

Releases files and associated devices from job and decrements tape unit
required count.

Ifn = logical file names

EXECUTE,Ifn,pi,p2,...pn.

Completes loading and linking of elements for execution, then executes
this program

I

Ifn = name of file containing program

p = parameters passed to program

EXIT.

Establishes exit path in event of selected errors.

FETCH,FILEN,DCNO,TYPE,SCFILE,BNFILE,DAFILE,XXX,Y.

To fetch a data cell file from the data cell to disk, thus making it
available for use.

FILEN = name of data cell file, taken from label and1 printed in dayfile
when program stashed or replaced.

i t '

DCNO = data cell name on which FILEN was written, given in dayfile when
program stashed or replaced. If the word WEDGE is given for this
parameter, FETCH will read from file TAPE95 to obtain the wedge
name. '

TYPE = SOURCE - Fetch only the source of FILEN

BINARY - Fetch only the binary of FILEN

BOTH - - Fetch both source and binary '

BINSEL - Fetch only selected BINARY routines

BOTHSEL- Fetch the source and selected BINARY routines

' DATA - Fetch a BINARY data file

• DATACRD- Fetch a BCD data file

SCFILE = disk file name on which FETCH stores source file, Default = SCFILE

BNFILE = disk file name on which FETCH stores BINARY routines, Default =
BNFILE

111

DAFILE = desk file name on which FETCH stores data file, Default = DAFILE

XXX = NOCOM = control word which tells FETCH whether to read this file
from the data cell or to use the COMMON file

Y = no MOD parameter - if TYPE file is fetched which expects mods from
INPUT, but no modifications are to be made, any value may be put
in this parameter instead of a 7-8-9 card in the INPUT deck.

The INPUT file is the 12th file parameter.

Ifn,pl,p2,...pn.

Loads and executes program

Ifn = name of file containing program

p = parameters passed to program

LINECNT.n.

OUTPUT line count limit card

n = DECIMAL.number of lines to limit the job. Copied files are not counted
in the line count.

LOAD,Ifn.

Loads program on Ifn into central memory.

Ifn = logical file name

MAP.

Core map produced by the loader.

MODEn.

Defines halt conditions.

n - type of halt

NOGO. '

Directs loader not to execute loaded program.

NOMAP.
NO MAP is produced by the loader.

NORFL.

Directs loader not be reduce field length after loading.

112

REPLACE,SCFILE,LGO,LIST,CATALOG.

To replace the present version of a file on a data cell with an updated
version.

SCFILE = disk file from which REPLACE picks up source routine to put on data
cell, Default = SCFILE.

LGO = disk file from which REPLACE picks up BINARY version of SCFILE
to be put on data cell, Default = LGO.

LIST = if this parameter is LIST or left blank, a new sequenced listing
of the replaced source program is printed, if any other characters
are put in this field, a listing is not produced.

CATALOG = SCAT, a catalog of the BINARY (without listing COMMON) is produced.

LCAT, a catalog of the BINARY, including the name and length of
each COMMON variable in each routine, is produced.

For DATA:

SCFILE = disk file from which REPLACE picks up the new data file to be
stored on data cell. There is no default file. This parameter
is used for both types, DATA and DATACRD.

LGO and
CATALOG = irrelevant to data

LIST = irrelevant for type data, has same meaning as for programs if
type DATACRD.

The sixth parameter is the INPUT file. The eighth parameter is the OUTPUT
file.

REQUEST,Ifn,DEN,X. REEL,RWY,USER,LABEL,NO.

Magnetic tape request card.

Ifn = logical file name

DEN = density LO = 200 BPI
HI = 556 BPI
HY = 800 BPI

X = designates external (stranger) tape

COLUMNS 25-70

113

REEL = actual real number

SAVTP
CALTP
CALSV
GERTP
DDITP
SCRATCH

RW = RI = ring in (write)

RO = ring out (read only)

Y = S = short (approximately 200 ft.)

M = medium (approximately 1100 ft.)

L = long (approximately 2300 ft.)

USER = user initial (must be three characters)

LABEL = up to 20 character description

NO = employee number (for save tapes only)

REWIND,Ifnl,Ifn2,...Ifnn.

Rewinds files named.

Ifn = logical file name

ROUTE,lfn,0,n,4,0.

Prints at specified location.

Ifn = logical file name

n = 1 = central site

25 = originating terminal

RUN,cm,fl,bl,if,of,rf.

Compiles FORTRAN source,

cm = G = compile, load and execute.

S = compile with source list.

L = compile with source and object list.

114

fl = object program field length, (not applicable)

bl = buffer lengths (2022 base 8). (not applicable)

if = compiler input file (INPUT).

of = compiler output" file (OUTPUT) .

rf = relocatable binary file (LGO).

SETCORE.

Sets core to zero at load time.

SETIDEX.n.

Increments the CCIR index register for use by CCLINK.

n = CCIR increment.

SKIPFF,lfn,n.

Skips file forward by n logical files.

Ifn = logical file name.

n - number of files (decimal).

STASH,SCFILE,LABEL,BNFILE.

Stores information on data cell for the first time.

SCFILE = file containing source code.

LABEL = file containing the label information.

BNFILE = file containing binary information.

SWITCH,n.

Sets switch to on or off

n = sense switch number

115

UPDATE,ident=lfnl,...identn=lfnn.

Calls UPDATE to perform program library maintenance (directive record required).

ident = type of file.

Ifn = logical file name.

list = optional parameters specify update modes, comments, rewind, format, etc.

UNLOAD,Ifnl,Ifn2,....Ifnn.

Same as DROPFIL but does not decrement tape unit count.

Ifn - logical file names.

116

CO

o
CO

PQ

X
1—4

a

cua_
«=£

*
*

*

*

*
*
*

* CO

CO O
UJ _)
HI _J

CC 0
K U.
2
UJ CO

UJ
UJ 1-1
co cc

or 2
UJ

»- 0
<I O
o H*
00 h-
(Vl CO

4
_J
U.

> o
_1
^_ ^K^" ^*

2 CO
UJ HI

CC -J
cc
3 CD
0 U_

tsj
UJ »M

CC »-
< cu

00
UJ <I
CC X
i.i ct

t- <

*
*

*
if

if

S
G

R
lP

T
IO

M

UJ
c

Z

O
H- 1

Ct
c

.̂
CO
^^

UJ

_J
•a
5>

^_
Z
UJ
cc
cc
(j

•y
O

CO
2
UJ

V̂I

C.

Z
o
H-l

»-
^J
U
o

1•J

UJ
s:
<t
2

»».
CC
K
<j
J
tr
c
£

^»
a
2
»— i
CP

0
,_|

(S^

CC
Q.
to
pî

f̂o.

ro4
«•*
X
o
t-
Lul
U.

xO

1— 1

cc
o
t—
<r
_i
CD

•

x»
a
o
to
UJ

c
£ •
CO >
»-« cc
_J <
^r z
2 HH
•• or
» »
» OJ
» O

»- <.
D a
c • — a
2 UJ O 0 »
H- CL -J 2 0"
C <r «I LL.' OC
o K H- cc in
z: •• o < o
•*»_]•«» •— • <i
CC HH ;̂ VT ^
»~ U. 2 • 2 I
< Q_ hH K- HH O

_J C «J I— _JH-

ac cc ox ouj
O O O U. O It

>D

^
^>

a
o
CO
UJ
<t

/

*.

^x
CO
H->

_J
s:
2

a
o
3_i
••
» •
» CM
• U!
» a.

K <r
r> »-
o »
2 UJ
H- a
c <i
0 1-
s »
"^ -J
Q. •— i
O U.
co a
lL! O
<l CC
0 C

H-l
H«
H^
a
o
»-
<t
»

>*
CC
<
2
H-t

£E
•>

»-<
(— «
N)
Ct

~ a
o -~ to
O 0 »
_j 2 in
<r Lu O
H- CT LT
o < «*»
.̂ — «3

v^ v ^^
2 • 2 X
HI H- HI O

_l «-i _1 H-
0 X 0 UJ
(j. UJ O U.

N

r~-
o~

CL
o
h-
<

<
h-
••
n
U)
a
i~«

. <VJ

UJ
a.
t-•>
<— i
«-4

UJ
Q.

V-
•>

>• O

to uj
t-Q.
_J <r
X t-
z »
• ̂ T
» UJ
» tx
• H

» ro
» UJ
* a» <i •
•• ^— \c
» » |M

• C\J U.
» LU a

K a <t
r> <i K
O f- •••- •• in
2 ^- —HI UJ UJ

c a Cu
c < <
3: K K
•w •> »
•- u -J
^4 H^ t*»<

H-U. U.
a Q. a
o o o
H- CC CC
< o o

!

«^
o «•»
0 C
-J Z

H- or
O <t
"~ «—
V^ V
2 «Z
HM >— HI
-J t- -I
O X O
U UJ O

117

fVJ
<t
If!

O
O

o
o
X

UJ

to

2
I-H

O
o
UJ

<r

UJ

o
o

o
_J
<.
»—I

K O
X »
UJ <
I- t-or. <
•• o

UJ O UJ

o o
to _i
f- t-t
O Q
•c o
a ••
a H-
CO 1—4

» 2
(V •—i
r*- a
o- c
n c

u.
2 •
OCS LiJ

2 Z
•- CD
CL »» c
o o
2 -J
UJ «a
OC •-

I Za »-
i- 3
UJ UJ
U. a

c cc

_ a.
UJO
a o

UJ UJ
• • -J _l

Uj LU _ M

_J _J U. U.
H-M 2 2
LL U. CC OC
2 Z » »
CD CC H- O
» » HM O
CV- 2 _J
2 i-- i- <l
uj 2 or •-
OC i- O C
«l CL O O

CC CC CC Ct
CD CC CC CD
>- >• X >
CL a OL CL
o o o o
o o o o

UJ

<
to
2

• o
c c
2 •
UJ 1-
OC X
< UJ
* ^~e cc
o •

»- tr
O 2
» H-t

o
o

O UJ
<J _J
O i-» u.
C 2
o a

o c
o o
» »

o c
2 2

3 3
UJ UJ
CC Ct

» M
* <3

t— 'J~l
X -Z.

*- Q
Ct O
» »

•—i H-
<r x
to LU
Z K
»-iCC
o •
o •—> •
» «i 2
» tO H-

_J 2 O
_j I-.Q
3 C ••
2 O >-
» fr ^4

LU —J 2
!!•-'•-4 3 a
Lv 2 »
z » t-
CO UJ i- •
* _J 2 O

2 »-1 »-4 O

•-« u. cc _i
C 2 O <
O CC O i-
•• » • o

UJ ~J _J •-
C_ i ^M ^»* ^"

< u. u. z •
_j CL a *- »~
a o o _j HH
uj cc or a x
CC C C O UJ

cc
c
z

Q

o

LU

a
•Si
o
o

ÛJ

2:
o
o

3 •
U-l-2 in
» k-^

o z

«-> 3 • o
• CO 31 _1

2 Q » UJ <
UJ S ^ 2 *->
2 • a » C
» 4 UJ _) »

c, •> tn •- v:

<3
CC
c
o
a
o.

UJ
z

UJ

• a
c z:
Z O

»2
2
UJ

Q T C t t Z C O L u C O

0,
3
UJ
2

3T 2 O ^*
O f< O Q
CL C -J 2
3 O < UJ
UJ 3- »-i CC
2 •• o <r

C » X *
2 (^ 2 »2
l_4 ««• *H (— h-l

3 2 _) «-*_J
LU D O X O
CC CC O Uj O

CD

IT
CVJ n

UJ
>
<r
ID
O
u

o
CO
o
_J
o
o

a:
UJ

CL
s:
c
u

118

<
oa<
o
c
»
»

>-
CC
<.
z

M
Ct
a
in
n
(>
IT

i
u

IT

o -*
» o
z o
•-1 _J
O <r
O H-

2: o

D
A

T
C

O
M

.
A

R
Y

oc
»
o
PH
M
cc
a.̂ in

o »
Z CO
UJ O
or a-
< ro

r;
c • •
• 1-1 O

Z UJ O
HH a _j
c <i <
o H- »-
2: » c

C
C

8
IN

A
R

Y

M
CC
a

• en
o »
z <f
UJ f
or \c
< n

< ̂ :
O Z
a *H
< _j i- _i K
o o x o uj
o o u c u.

• Z T
- b- (J

O U. Z • Z T
O CL »-i »— HH O
t- O _) i- _l t-
<r cr o x u UJ
C O O UJ O U.

UJ
<~ a
\~ <i
in \-
»— * 9-

-1 0
z -"
Z UJ
» a
• «3
» H-
• »>

•a a
t- LU
«t a
c <.
Z ^^r^
cr »
* -3-

K UJ
z a
LU <x
_J V-
UJ *

r>
UJ
a.
>̂—
»

h- *•«
O UJ
o a

*• 4T
Z 1-»••* »
C -i
o ••*
z: u.
<~ Q.
K 0
O Ct
O C

0*

UJ
e>
2
HH

O

*

>-
cr
<r
•z.
H- 1

CC
*•

<T
o
M
Ct

^ a
o — en
o o »
_/ z r-
^ U.' t̂"
»— or \o
c < r>
^ —' <i
^ it "^
Z • Z I
*-•»- ^- o
_l H- _J 1-

O X <J UJ
o uj a u.

^^
^~
cr»_ <
i

3f
Z

rh~
z
UJ
_)
UJ •
» o
•• t\j
• U.'
» a

\~ <
^> h-
0 ••
» n

Z UJ
»~ a
C* ^
0 K
Z »
•^ _J
Uj 1— <
0 U.
< a
Z 0
1-1 CC
C 0

*•*a
>
i— i
z
H-
Z
0

•>
>
or
<
zi— i
or«
r--
o

ĉc
— a
o — to
o c »
-J Z CO
^ ^J ^"
»- or r̂ -
c < n
- ' ,» '«
it ' ^ *~
Z • Z X
»--l t- "-< (J
_J HI _| H-
U X O UJ
a u. o u.

Z U.1
HH Q.
O <t
O K

• ^i O
* UJ O
t Q- -J

O t- H-

Ct _J —
> ** x:
»-i U- Z
z a m
HI O _J

z cc o
o c o

a
z
UJor

• z

X O
UJ O

a
o

in<r
in

o
Q.

5.
C
O

U l

CD
<t
X

119

in
GO
P-
CVJ
r>-
o
o
o
••

01
K
o
_J
a

C:
a:

ct
\
2
i— i
O
O

•>
ct
a:

o
a
a

UJ
2
in
UJ

o
UJ
X
UJ

2
UJ
s.
•3.
O
o

X
2
»
•
»

>-
:D
O

•>
2

o
O

UJ ••
a z
OO
(j a.
i- 3
UJ UJtr, 2

c
— '
*2 •
i-i»—
_j»-«
OX

O
or

o
o
UJ

O
UJ
x
UJ

o
2
<

>-

o c
2 O
UJ 2:
or

C
O
X

or
^
o
UJ
o
O

in

co
2_J
UJQ.
OC

2 UJ»H z
-j a:
O O
o o

2
trt
_J
O

or
»

Q

• co cc
x o1 a
» UJ UJ

»-i a a
x «t <
•• K t- *-
c o » * . ~ u j
ou ju jooa
u jo-aa i -
Q.f-»-UJ_)
< _ i _ J a < r

a.
O

>
QC
<
2

z
cc

o in < o nj o
O » t- » UJ O
_j c < 2 a _i
<r cc c »- <r «*
^« vC 2 C h- HH
on CD o «~ o

- « - « , * »
« 2 U J U J 2 C C < U . 2 (r ' 2 I

x a o uJ S o 2 ct uj o o uj
u.1 u u a c t o o c a o u u .

2 H- U. 2 •
hi O Q. ++ H-
3 «J O _l H^
ua ct o x
a o c o uj

o
a
c

a

cr
o
M
cr
a

*~ en
o »

^ •
2 I
hH O
_J I-
O U,1o u.

UJ
a

in
oa

o»

C
o

•
o
o o

2

1-4 CC

c <

K 2 • 2

C
a
O

o x
O UJ

CO OJ
n

Ct
Oocra

o
o
a-
a
3
U.I

>
in
i-
o
_i
CL

a:
UJ

o
_J
CL

O
h-
tr,
o
CL

120

a
o 9

P
O

S

UJ
a

UJa.

OJi— i
UJa

UJ
a

AP
E.

0
»

T
A

P
E

O
P

R
IC

E

IX
O
o<x
a
I/)

UJat.
a.

o
cx

CO

«3
Ct

UJ
o

a>-
6

3"
cx
UJ

S
RE

PO
R

or
<
2
H-I
or*
cH
•*4

F
E

T
C

H
, A

3
9

6
6

,S
P

R
A

!

UJ
a
<r •
>— K
V) tO
0 »-
a _j
» 5

RE
W

IN
D,

 P
O

ST
AP

E.
O

PL
T,

M
O

DI
N»

O
UT

,,
r>

R
O

P
F

!L
,T

A
P

E
9

9
,N

l
C

C
L

IN
K

, D
IA

L
O

G
.

Ct
<
2
>-4

or
»

rvj
»— i
M
Ct
a
tn•
in
r«-
o
n
<
»

* X
K O
>-< K
X UJ
UJ U-

tn u;
o a
a <i
» H*
» »
» (VI
» UJ
» CL

R
E

W
IN

D
, P

O
S

T
A

P
E

.
PO

ST
, M

O
D

IN
, O

U
T

,,
D

R
O

P
F

IL
»

T
A

P
E

1
»

T
A

'
C

C
L

IN
K

, D
IA

L
O

G
.

(X
<
2
HH

CC
^>f
o

E
X

IT
.

C
C

L
IN

K
,
A

B
E

N
D

.
C

C
L

IN
K

, A
B

E
N

D
.

F
E

T
C

H
 (

A
3

5
Q

?
»

S
P

R
Z

in
i— <
_i
Y
«L

2
*»
••

O
P

R
IC

E
(M

O
D

IN
»

O
U

T
C

C
LI

N
K

 ID
 T

A
LO

G
J

o
_j
<
2"
Q;

O
2

C
C

L
iN

K
(A

R
E

N
D

)
C

O
M

M
E

N
T

.
P

R
IN

T
S

_j
<r
2
IX
o
-z.

CO
PY

, O
UT

, O
UT

PU
T.

D
R

O
PF

IL
»N

M
LI

ST
.

C
C

LI
N

K,
 D

IA
LO

G
.

CO
M

M
EN

T.

RO
UT

E?

.
o

R
O

U
T

E
,
O

U
T

, 0
»

1
»

4
<

D
E

T
A

C
H

, O
U

T
.

D
R

O
P

F
IL

,N
M

L
IS

T
.

cx
a
V
_j
_j
<r

C
C

L
IN

K
,
D

IA
L

O
G

.
C

O
M

M
E

N
T

.
D

Y
N

A
M

K

•
O

• *1 — .*•

C
O

P
Y

B
F

,
M

O
D

IN
,
O

U
1

RE
W

IN
D,

 O
UT

.
RO

UT
E,

 O
UT

, o
«a

s,
^

D
E

T
A

C
H

,
O

U
T

.
D

R
O

P
F

1
L

,N
M

L
IS

T
.

C
C

L
IN

K
,
D

IA
L

O
G

.

o
o

ro
r-
o

o
_ja
>-tn
oa

o
a.

UJ
ui—,
Cta.

cr
LU

(X
(X

O
O
UJ

O
Ct

a.
x
UJ

o
cc

121

Y
,,

T
T

S
S

)

or
ẑ
H

CC

0
1-4

cc

F
E

T
C

H
(A

3
6

8
1

»
S

P

IT

*
vO

-

in
_j
p̂z

;
»
H- —r> o
0 O
» -J
z <
1— • I—*o oo •—
2 ̂ :

— Zin *•<
in _j
1- O
1- 0

0
z
Lu
CC
h-
O
»

a
z
H"4

CO

o
cc

E
X

IT
.

C
C

L
IN

K
(A

B
F

N
D

)
F

E
T

C
H

(A
3

5
9

0
»

S
P

IP

o
Oj

tn
HH

_J
2:
z

K

^

O
T

R
E

N
D

(M
O

D
IN

,0
C

C
L
IN

K
 (

D
IA

L
O

G
)

Y
»

»
O

V
A

M
P

3
.

or
z
.̂

CC

i—i
O
N
Cc

E
X

IT
.

C
C

L
IN

K
(A

R
E

N
O

)
F

E
T

C
H

, A
3

6
8

3
,S

P

vC

o-
CM

>— i

0
1-4
UJ
Q.
• ̂

-Lu
• a»- <t

O
V

A
M

P
?

,M
O

D
IN

»
0

r>
R

O
P

F
IL

(T
A

P
F

8
»

C
C

L
IN

K
(D

IA
L

O
G

)
in
2
UJ

X
or
z
oc
00
o
PM
cc

E
X

IT
.

C
C

L
IN

K
 (

A
R

E
N

D
)

FE
TC

H
, A

39
69

,s
p

in

&̂•
OJ

F
M

S
»

M
O

D
IN

,O
U

T
.

C
C

L
IN

K
, D

IA
L

O
G

.
E

X
IT

.

a:
z
cc.
(V!
O

Ct
C

C
L

IN
K

, A
B

E
N

D
.

F
E

T
C

H
,
A

3
9

8
3

»
S

P

IT

P*-
n
n
1-4

»

K

O
W

A
T

S
,M

O
D

IN
,O

U
C

C
L

IN
K

,
D

IA
L

O
G

.
E

X
IT

.

o
cc
o

cc
z
HN

cc
or
o
&

C
C

L
IN

K
,

A
B

E
N

D
.

F
E

T
C

H
,

A
3

9
1

5
»

S
F

sD

r̂̂
f;

f ' v
t

• •
1- fV
in ̂
•-. UJ
-j a
2: <
Z H-

C
B

C
»

M
O

D
IN

»
O

U
T

«
D

R
O

P
F

IL
»

T
A

P
E

9
,

C
C

L
IN

K
, D

IA
L

O
G

,

*
*
*

*
«
«
*

*
*
*
*
*
*
«
«
*
#

*
*

^
*
«
• *
oz *
Lu
CC *

•• #

• Z *

H--J *X O
UJO *

*
«
4

*

*
*

*

a.
in
in
in

o
z
UJ
cc

(J
<r
in

in U.I

UJ

122

APPENDIX C SPECIAL PROCEDURES FOR THE DIALOG EXECUTIVE SYSTEM

INITIALIZATION
COMMIT. ODIN / ATS SYSTEM JAN 4* 1Q73
NQMAP.
NORFL.
REWIND (DCNS, ZOUNDS »
COPYRF(DCNS;OOINSA1)
COPYBF (ZOUNDS, ODTNSA?)'
COP Y BR • BNF I LE» DIALOG.

COPYRP»dNFILE,PlNlT.
COPYPR»BNFILE.OOBTNIT.

CQPY c i f ? »BNFILE»CCOATA.
REWI\!D»ODBINIT»OD!ALOG«CCDATA»niALOG,ARFND»PlNIT.
OD8I\'IT.,OUT.

CCLTNJK,IMMLIST.
E X I T .

COPYBF.OUT,OUTPUT.

DIALOG EXECUTION SEQUENCE
REWiND»DIALOG,OUT.
GDIALOG,COPY5.
COPY3F»CONTROL*NULL.
CCLIMK,CONTROL.

ABNORMAL END PROCEDURE
COMMENT. ABNORMAL END PROCEDURE
REWIND* OUT.
COPYRF, OUT. OUTPUT.
REQUEST,! APE98»Hi«x. CALTP,RTL«TRR,ODIN/RLV

COPYBF,CALTPE»TAPE98.
UNLOAD.TAPE98.

POST INITIALIZATION PROCEDURE
DROPFILtLFNPERM.DCNO*OAFILF*SCFILE.
DROPFIL,NOCONOC.HYEELSL,ZOOKS,ZOUNDS,TAPE95.
CCLINK,CONTROL.

123

APPENDIX D CONTROL DIRECTIVE SUMMARY ,

* 'EXECUTE name'

* 'CREATE name1

* 'UPDATE name1

'DESIGN name1

'LOOP TO name1

'IF name.OP. name1

RESTRT'

•PRINT name1

A directive for executing a sequence
of control cards by name. Any name
for which a prestored set of control
cards has been defined is legal.

File handling directive for initializing
files; the two acceptable names are:

DBASE - design data base

CCDATA - control card data base

File handling directive for updating
files. The two acceptable names are:

DBASE - design data base

CCDATA - control card data base

Control directive defining a point in
the execution sequence for which control
may be returned. The name cannot be
the same as a data base variable.

Branching instruction referring to a
design name. It can be conditional or
unconditional.

Condition for branching. Any number
of conditions may be specified on
separate cards after a LOOP directive.
If more than one condition is specified,
the logical .OR. is implied. That is,
any one of the conditions satisfied
will trigger the branch instruction.

Means use the existing data base. It
must have previously been defined and
stored.

File handling directive for printing
files DBASE and CCDATE are optional
names.

OP is a conditional operator (LT,LE,EQ,GE,GT)

* Data is expected; end of record (789) is required.

124

APPENDIX E COMMUNICATION COMMAND SUMMARY

'ADD A = B,

'DEFINE A = n, description/

1.comment1

Used to create a new data base
entry or alter the information
associated with an existing
data base entry.

A is a new or existing data base
entry, scalar or vector.

B is the update information
which can be real, integer
or logical constants,
variables or scaled combina-
tions of scalar or vector
elements.

Multiple commands can be
executed with a single ADD
statement.

Used to define new or existing
entries in the data base.

A is the new or existing data
base entry.

n is the desired number of data
base locations. It is ignored
if the entry exists, the
default is 1 if omitted.

t

description is the hollerith
information associated with
the variable A.

Used for placing descriptive
information in the data stream.
DIALOG replaces the comment
and associate delimiters with
blanks in the applications
program data deck.

125

'A ' (Used to replace data,base names
and delimiters on an input card
with data base information.

A may be a sealer or vector data
base entry of real, integer,
hollerith or logical type.

A may be a combination of real or
integer data base variables,
array elements or constants.

126

APPENDIX F - FORTRAN STATEMENT SUMMARY

This appendix provides a summary of statements in the
FORTRAN scientific language for programming under
control of the SCOPE system on Control Data 6400/6500/
6600" c'omputers.

i_ * •

'The information presented is not intended to be complete
The objective is to provide the user of the DIALOG
executive system with a ready reference to the con-
struction or syntax of commonly used FORTRAN features.
As 'such, no definition or descriptive information is
given about individual statements.

The information presented should be useful to those
analysts who make use of FORTRAN through the use of
the COLOGO and the COMPILER/MYPROGRAM procedures in
the DIALOG executive system.

FORTRAN CODING FORM

Each line of a FORTRAN coding form represents the four
fields of a punched card.

Field Columns

Statement Number 1-5

Continuation 6

Statement 7-72

Identification 73-80

Statements may be identified by an integer from 1
through 99999. If a C, *, or $ appears in column 1,
the remainder of the card is ignored by the compiler,
but printed with the source listing as a comment.

A punch other than zero in column 6 identifies a
card as a continuation of the statement from the
preceding card.

A statement is written in columns 7 through 72,
blanks are ignored.

Columns 73-80 may contain identification and serial
numbers. These columns are ignored, but printed
with the program listing.

The entire 80 columns may be used for data input. * '

127 ,

FORTRAN PROGRAM EFFICIENCY HINTS

Same mode variables and constants in an arithmetic
expression.

Reduced use of subscripts.

Constant subscripts rather than variable.

Arguments in common rather than calling list.

Non-varying values computed before entering DO loop.

FORTRAN ELEMENTS

Constants

Integer

Real

Hollerith

n

Form

, n0 . . .n1 2

Km<18

m

Km<15

nHf,f,
J. ^

nLflf2

nRflf2

"n

"n

n

Examples

2

247

314159265

3.14

.0749

314.EOS

7HGOGET1T

3HSON

lOLABENDbbbbb

1RPl<n£lO for a replace-
ment statement; l<n<_136
for a format statement;
maximum 19 continuation 5HTHANX
lines for a DATA statement

Logical

f=alphanumeric character

.TRUE. .T. -1, Integer

.FALSE. . F. All zero bits

128

FORTRAN ELEMENTS

Subscripts

The DIALOG data base stores only elemental variables
and single subscripted arrays. Multidimensional
arrays must be stored as single subscripted arrays.
The following information is useful for referring an
element of a multidimensional array as an element of
a single subscripted array.

For DIMENSION A(L,M,N) the location of A(i,j,k) with
respect to first element of A is:

(i-l+L*(j-l+M*(k-1)))*E

E is the number of words occupied by each element of A.

A subscript may be:

Integer constant

Simple integer variable

Arithmetic expression, not complex or double precision

Examples:

(1,J)

' (l+3/J+3,2*K+l)

(3*K*l+3)

FORTRAN STATEMENTS

Subprogram Statements

PROGRAMS (f1f2,...,fn)

SUBROUTINE s U-^ , . . . , aR)

FUNCTION f (a1a2 , . . . ,an)

ENTRY s

BLOCK DATA

EXTERNAL v , ,v 2 , . . . ,v

END

Inter-Subroutine Statements

CALL s (a , a 2 / . . . , a)

RETURN

129

FORTRAN STATEMENTS

Data Declaration and Storage Allocation

REAL v, , Vp, . . . , v

INTEGER v, , v2 , . . . , v

LOGICAL v,,v2,...,v

DIMENSION V1(i1) ,v2(i2) , . .. /vn('in)

COMMON/x-ĵ /a-ĵ . . «/x /a

EQUIVALENCE (^ , k^ , . . . , (kn , k)

DATA k1/d1/,k2/d2/, . . . >kn/dn/

Intra-Program Transfers

GO TO k :

GO TO i, (klfk2, . . . /kn)

GO TO (^ ^ , . . . ,k) ,e

IF(e)k1/k2

IF(e)s

Miscellaneous Program Controls

ASSIGN k TO i PAUSE STOP

CONTINUE PAUSE n STOP n

Loop Control

DO n i=m, ,m2,m3

130

WRITE (u) k

WRITE(u,f)

W R I T E (u , f) k

PRINT f,k

PUNCH f,k

BUFFER IN(u,k)(A,B,)

BUFFER OUT(u,k)(A,B,)

FORTRAN STATEMENTS

Input/Output

I/O Control Statements

READ f,k

READ(u)k

READ(u)

READ(u,f)k

READ(u,f)

Internal Conversion

ENCODE(n,f,A)k

DECODE(n,f,A)k

Tape Handling

ENDFILE u

REWIND u

BACKSPACE u

Miscellaneous

NAMELIST/Y1/a1/Y2/a2 . . • AR/an

Format Declaration

FORMAT{q1t1z;Lt2z2. . -tĵ q̂

q series of slashes (optional)

t field descriptor or groups of field descriptors

z field separator

n may be zero

FIELD DESCRIPTORS

srEw.d single precision floating point with
exponent

srFw.d single precision floating point without
exponent

srGw.d single precision floating point with
or without exponent

131

FORTRAN STATEMENTS

Format Declaration

FIELD DESCRIPTORS

rlw

rLw

rAw

rRw

rOw

nHh,h_,

nX
* *

.hn

decimal integer conversion

logical conversion

Alphanumeric conversion

Alphanumeric conversion

Octal integer conversion

Hollerith character control

Intraline spacing

Hollerith string delimiters

Format field separators and
formatted records demarcation

Printer Carriage Control

Character in first column

0

1

Blank or other than above

FORTRAN FUNCTIONS

Resulting PRINT Operation

Double space after printing

Eject page before printing

Suppress spacing after
printing

Single space after printing

Intrinsic Function

ABS(x)

AINT(x)

AMAXO(ilfi2/...)

AMAX1(x,,x~, . . .)

I'i2/

l'"2

Argument/Function

Absolute value Real/real

Truncation, integer Real/real

AMINO(i-

AMIN (x, ,x_, .

Maximum argument

.) Minimum argument

)

AMOD(x1,x2)

FLOAT (i)

TABS(i)

INT(x)

IFIX(x)

INT(x)

x,modulo x~

Conversion

Absolute value

Conversion

Conversion

Truncation

Integer/real

Real/real

Integer/real

Real/real

Real/real

Integer/real

Integer/integer

Real/integer

Real/integer

Real/integer

132

FORTRAN FUNCTIONS

Intrinsic Function

ISIGN(i ,1)
J-. &

MAXO(i1,i2, . . .)

MAXI(xlfx2,...)

MINO(i1,i2, . . .)

MINI(x1/x2,...)

MOD(ilfi2)

External Function

ACOS(x)

ALOG(x)

ALOG10 (x)

ASIN(x)

ATAN(x)

ATAN2(x , ,x)
JL £

COS(x)

Argument/Function

Sign.i- times i. Integer/integer

Maximum argument Integer/integer

Real/integer

Integer/integer

Real/real

Integer/integer

Real/real

Minimum argument

module i_ -I ALLV^^A "-* J- >~» J- A

Sign x2 times x.

Arccosine

Natural log

Log base 10

Arcsine

Arctangent

Arctangent 3

Cosine

Argument/Function

Real/real

Real/real

Real/real

Real/real

Real/real

Real/real

Real/real

EXP (x)

SIN(x)

SQRT(x)

TAN(x)

e to the xth
power

Sine

Square root

Tangent

Real/real

Real/real

Real/real

Real/real

133

APPENDIX G EXCLUDED NAMES FOR DATA BASE VARIABLES

Generally, the user of the DIALOG Executive System is free
to specify names for data base variables and arrays. How-
ever there are certain names which are excluded. The
excluded names are those used by the DIALOG executive
system for option specification and by the analyst for
'DESIGN identifiers.1 Certain other miscellaneous names
are excluded.

DIALOG Executive System Options

BUILD

DIVIDE

DOLLAR

ELTIME

EQUAL

EXPON

MINUS

MLTPLY

NOTEQL

IN DUMP

OUTDUMP

PAGDMP

PLUS

Option for dynamic construction of the
data base.

Symbol used for divide (/) in the
operator directory.

Symbol used for DOLLAR ($) in the
operator directory.

Total elasped simulation time used in
timing option.

Symbol used for equal (*) in the
operator direction.

Symbol used for exponentiation (**)
in the operator directory.

Symbol used for subtraction (-) in
the operator directory.

Symbol used for multiplication (*)
in the operator directory.

Symbol used for a data base delimiter
(:£) in the operator directory.

Option to print the modified input for
every program

Option to print the special data base
output file from each program.

Option to print the internal string
processing information

Symbol used for addition (+) in the
operator directory.

134

DESIGN Identifiers

The specification of a DESIGN identifier by the control
directive:

'DESIGN identifier'

results in the identifier being stored in the data base.
Once used the identifier is excluded from use as a data
base variable name.

Miscellaneous Exclusions

Generally, the names listed above are the only exclusions
the analyst need be concerned with. However, it is
recommended that the communication command names and
control directive names be excluded also.

ADD Add command.

DELETE Delete command.

DEFINE Define command.

comment 'command'

CREATE Create directive.

DESIGN Design directive.

EXECUTE Execute directive.

IF If directive.

LOOP TO Loop To directive.

RESTART Restart directive.

UPDATE Update directive.

<KJS GOVERNMENT PRINTING OFFICE. 1973-739-152/35

135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON. D.C 2O546

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE (3OO SPECIAL FOURTH-CLASS RATE
BOOK

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION
431

POSTMASTER If Undellverable (Section 158
Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expanston of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the wtdest practicable and appropriate dissemination
of information concerning its activities and the results thereof."

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS
TECHNICAL REPORTS Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES. Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge

TECHNICAL MEMORANDUMS-
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS- Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS. Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N
Washington, D.C. 20546

