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ABSTRACT

A program was conducted to study magnetic materials for use in

spacecraft t ransformers used in static inverters, converters, and

transformer-rectifier supplies. Different magnetic alloys best suited for

high-frequency and high-efficiency applications were comparatively investi-

gated together with an investigation of each alloy's inherent characteristics.

The materials evaluated were:

Trade name Magnetic alloys

Orthonol 50% Ni, 50% Fe

Sq. Permalloy 79% Ni, 17% Fe, 4% Mo

48 alloy 48% Ni, 52% Fe

Supermalloy 78% Ni, 17% Fe, 5% Mo

Magnesil 3% Si, 97% Fe

One of the characteristics in magnetic materials detrimental in

transformer design is the residual flux density, which can be additive on

turn-on and cause the t ransformer to saturate. Investigation of this prob-

lem led to the design of a t ransformer with a very low residual flux. Tests

were performed to determine the dc and ac magnetic properties at 2400 Hz

using square-wave excitation. These tests were performed on uncut cores,

which were then cut for comparison of the gapped and ungapped magnetic

properties. When the data of many transformers in many configurations

were compiled the optimum transformer was found to be that with the

lowest residual flux and a small amount of air gap in the magnetic material.

The data obtained from these tests are described, and the potential uses

for the materials are discussed.
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I. INTRODUCTION

Transformers used in static inverters, converters and t r ans fo rmer -

rectifier (T-R) supplies intended for spacecraft power applications are

usually of square loop toroidal design. The design of reliable, efficient,

and lightweight devices of this class for such use has been seriously

hampered by the lack of engineering data describing the behavior of both

the commonly used and the more exotic core materials with higher fre-

quency square wave excitation.

A program has been carried out at JPL to study this data. An

investigation has been made to ascertain the dynamic B-H loop character-

istics of the different core materials presently available from various

industry sources. Cores were procured in both toroidal and "C" forms

and were tested in both ungapped (uncut) and gapped (cut) configurations.

The following describes the results of this investigation.
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II. TYPICAL OPERATION

Transformers used for inverters, converters, and T-R supplies

operate from the spacecraft power bus, which could be dc or ac. In some

power applications, a commonly used circuit is a driven transistor switch

arrangement such as that shown in Fig. 1.

One important consideration affecting the design of suitable trans-

formers is that care must be taken to ensure that operation involves

balanced drive to the t ransformer primary. In the absence of balanced

drive, a net dc current will flow in the t ransformer primary, which causes

the core to saturate easily during alternate half-cycles. A saturated core

cannot support the applied voltage, and, because of lowered t ransformer

impedance, the current flowing in a switching transistor is limited only by

its beta. The resulting high current, in conjunction with the transformer

leakage inductance, results in a high voltage spike during the switching

sequence that could be destructive to the transistors. To provide balanced

drive, it is necessary to exactly match the transistors for V _ (SAT) and
C>XLi

beta, and this is not always sufficiently effective. Also, exact matching

of the transistors is a major problem in the practical sense.
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III. MATERIAL CHARACTERISTICS

Many available core materials approximate the ideal square loop

characteristic illustrated by the B-H curve shown in Fig. 2.

Representative dc B-H loops for commonly available core materials

are shown in Fig. 3. Other characteristics are tabulated in Table 1.

Many articles have been written about inverter and converter

transformer design. Usually, the author's recommendation represents a

compromise among material characteristics such as those tabulated in

Table 1 and displayed in Fig. 3. These data are typical of commercially

available core materials that are suitable for the particular application.

As can be seen, the material that provides the highest flux density

(silicon) would result in smallest component size, and this would influence

the choice, if size were the most important consideration. The type

78 material (see the 78% curve in Fig. 3) has the lowest flux density. This

results in the largest size transformer, but, on the other hand, this

material has the lowest coercive force and the lowest core loss of any other

core material available.

Usually, inverter t ransformer design is aimed at the smallest size,

with the highest efficiency, and adequate performance under the widest

range of environmental conditions. Unfortunately, the core material that

can produce the smallest size has the lowest efficiency. The highest

efficiency materials result in the largest size. Thus the t ransformer

designer must make t radeoffs between allowable t ransformer size and the

minimum efficiency that can be tolerated. The choice of core material

will then be based upon achieving the best characteristic on the most

critical or important design parameter, and acceptable compromises on

the other parameters.

Based upon analysis of past design performance, most engineers

select size rather than efficiency as the most important criteria and select

an intermediate core material for their designs. Consequently, square loop

50-50 nickel-iron has become the most popular material.

JPL Technical Memorandum 33-498, Revision 1



IV. CORE SATURATION DEFINITION

To standardize the definition of saturation, several unique points

on the B-H loop are defined as shown in Fig. 4.

The straight line through (Hn > 0) and (H , B ) may be written as:u s s

B = (!Hj](H - Hn) (1)

The line through (0, B ) and (H , B ) has essentially zero slope and may be
5 5 5

written as:

B = B * B (2)
£ 5

Equations (1) and (2) together defined "saturation" conditions as follows:

Bs = <Hs - H0>

Solving Eq. (3) for H ,

B
H = H + -£ (4)

s U

where

dB

dH

by definition.
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Saturation occurs when the peak exciting current is twice the average

exciting current as shown in Fig. 5. Analytically this means that:

HpK

Solving Eq. (1) for H,, we obtain

H = H +- (6)
1 U

To obtain the presaturation dc margin (AH), Eq. (4) is subtracted from

Eq. (3):

B - B
AH = H - H =-! - L- (7)

S 1

The actual unbalanced dc current must be limited to

IDC £ —N—(amperes) (8)

where

N = TURNS

1m = mean magnetic length

Combining Eqs. (7) and (8) gives

m - B.)lm
:DC i

JPL Technical Memorandum 33-498, Revision 1



As mentioned earlier, in an effort to prevent core saturation, the

switching transistors are matched for beta and V (SAT) characteristics.
O ill

The effect of core saturation using an uncut or ungapped core is shown in

Fig. 6, which illustrates the effect on the B-H loop when traversed with a

dc bias. Figure 7 shows typical B-H loops of 50-50 nickel-iron excited

from an ac source with progressively reduced excitation; the vertical scale

is 0. 4 T/cm. It can be noted that the minor loop remains at one extreme

position within the B-H major loop after reduction of excitation. The

unfortunate effect of this random minor loop positioning is that when con-

duction again begins in the transformer winding after shutdown, the flux

swing could begin from the extreme, and not from the normal zero axis.

The effect of this is to drive the core into saturation with the production of

spikes that can destroy transistors.

JPL Technical Memorandum 33-498, Revision 1



V. THE TEST SETUP

A test fixture, schematically indicated in Fig. 8, was built to effect

comparison of dynamic B-H loop characteristics of various core materials.

Cores were fabricated from various core materials in the basic core con-

figuration designated No. 52029 for toroidal cores manufactured by

Magnetics, Inc. The materials used were those most likely to be of interest

to designers of inverter or converter transformers. Test conditions are

listed in Table 2. Winding data was derived from the following:

N T ~ 4. 0 • B • F • A
m c

where

N~ = Number of turns

B = Flux density, Tm '

F = Frequency, Hz

A = Core area, cm
c

V = Voltage

The test t ransformer represented in Fig. 9 consists of 54-turn

primary and secondary windings, with square wave excitation on the

primary. Normally switch SI is open. With switch S 1 closed, the sec-

ondary current is rectified by the diode to produce a dc bias in the sec-

ondary winding.

Cores were fabricated from each of the materials by winding a

ribbon of the same thickness on a mandrel of a given diameter. Ribbon

termination was effected by welding in the conventional manner. The

cores were vacuum impregnated, baked, and finished as usual.

Figures 10, 11, 12, 13 and 14 show the dynamic B-H loops obtained

for the different core materials designated therein. Figure 15 shows a

JPL Technical Memorandum 33-498, Revision 1



composite of all the B-H loops. In each of these, switch SI was in the

open position so that there was no dc bias applied to the core and windings.

The photographs designated Figures 16, 17, 18, 19 and 20 show the

dynamic B-H loop patterns obtained for the designated core materials when

the test conditions included a sequence in which switch SI was open, then

closed, and then opened. It is apparent from these views that with a small

amount of dc bias, the minor dynamic B-H loop can traverse the major

B-H loop from saturation to saturation. In Figs. 16 to 20, it will be noted

that after the dc bias had been removed, the minor B-H loops remained

shifted to one side or the other. Because of ac coupling of the current to

the oscilloscope, the photographs do not present a complete picture of what

really happens during the flux swing.

JPL Technical Memorandum 33-498, Revision 1



VI. CORE SATURATION THEORY

The domain theory of the nature of magnetism is based on the

assumption that all magnetic materials consist of individual molecular

magnets. These minute magnets are capable of movement within the

material. When a magnetic material is in its unmagnetized state, the

individual magnetic particles are arranged at random, and effectively

neutralize each other. An example of this is shown in Fig. 21, where the

tiny magnetic particles are arranged in a disorganized manner. The north

poles are represented by the darkened ends of the magnetic particles.

When a material is magnetized, the individual particles are aligned or

oriented in a definite direction (Fig. 22).

The degree of magnetization of a material depends on the degree of

alignment of the particles. The external magnetizing force can continue

up to the point of saturation, that is, the point at which essentially all of

the domains are lined up in the same direction.

In a typical toroid core, the effective air gap is less than 10 cm.

Such a gap is negligible in comparison to the ratio of mean length to

permeability. If the toroid were subjected to a strong magnetic field

(enough to saturate), essentially all of the domains would line up in the

same direction.

If suddenly the field were removed at B , the domains would remain

lined up and be magnetized along that axis. The amount of flux density that

remains is called residual flux or B . The result of this effect was shown

earlier in Figs. 16 to 20.
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VII. AIR GAP

An air gap introduced into the core has a powerful demagnetizing

effect, resulting in "shearing over" of the hysteresis loop and a consider-

able decrease in permeability of high-permeability materials. The dc

excitation follows the same pattern. However, the core bias is consider-

ably less affected by the introduction of a small air gap than the magneti-

zation characteristics. The magnitude of the air gap effect also depends

on the length of the mean magnetic path and on the characteristics of the

uncut core. For the same air gap, the decrease in permeability will be

less with a greater magnetic flux path but more pronounced in a low

coercive force, high-permeability core.

10 JPL, Technical Memorandum 33-498, Revision 1



VIII. EFFECT OF GAPPING

Figure 23 shows a comparison of a typical toroid core B-H loop

without and with a gap. The gap increases the effective length of the

magnetic path. When voltage E is impressed across primary winding N.

of a transformer, the resulting current i will be small because of the

highly inductive circuit shown in Fig. 24. For a particular size core,

maximum inductance occurs when the air gap is minimum.

When SI is closed, an unbalanced dc current flows in the N? turns and

the core is subjected to a dc magnetizing force, resulting in a flux density

that may be expressed as

1. 25 N I X 10"4

B, = —, (teslas)
dc 1

g ldc

where

1 = Mean length, cm
m 6

1 = Gap, cm
&

B , = dc flux density, T

I, = Unbalanced direct current, A
dc

[j., = dc permeability

N = Number of turns

In converter and inverter design, this is augmented by the ac flux

swing, which is:

E • 10
Bac = K • F • AC . N (teslas)

JPL, Technical Memorandum 33-498, Revision 1 11



where

B = ac flux density, T
ac

E = ac voltage

F = Frequency, Hz

2
A,, = Core area, cm

{s

K = 4. 0 for a square wave

K = 4. 4 for a sine wave

N = Number of turns

If the sum of B , and B shifts operation above the maximum operat-
dc ac

ing flux density of the core material, the incremental permeability (M-ac) is

reduced. This lowers the impedance and increases the flow of magnetizing

current i . This can be remedied by introducing an air gap into the core

assembly, which effects a decrease in dc magnetization in the core. How-

ever, the amount of air gap that can be incorporated has a practical limita-

tion since the air gap lowers impedance, which results in increased

magnetizing current (i ). The magnetizing current is inductive in nature.

The resultant voltage spikes produced by such currents apply a great stress

to the switching transistors, and may cause failure. This can be minimized

by tight control of lapping and etching of the gap to keep the gap to a

minimum.

From Fig. 23, it can be seen that the B-H curves depict maximum

flux density B and residual flux B for ungapped and gapped cores, and

that the useful flux swing is designated AB, which is the difference between

them. It will be noted in Fig. 23a that B approaches B , but that in

Fig. 23b there is a much greater AB between them. In either case, when

excitation voltage is removed at the peak of the excursion of the B-H loop,

flux falls to the B point. It is apparent that introducing an air gap then

reduces B to a lower level, and increases the useful flux density. Thus

insertion of an air gap in the core eliminates, or reduces markedly, the

voltage spikes produced by the leakage inductance due to the t ransformer

saturation.

12 JPL Technical Memorandum 33-498, Revision 1



Two types of core configurations were investigated in the ungapped

and gapped states. Figure 25 shows the type of toroidal core that was cut

and Fig. 26 shows the type of C core that was cut. Toroidal cores as

conventionally fabricated are virtually gapless. To increase the gap, the

cores were physically cut in half and the cut edges were lapped, acid

etched to remove cut debris, and banded to form the cores. A minimum air

gap on the order of less than 25 p.m was established.

As will be noted from Figs. 27 to 31, which show the B-H loops of the

uncut and cut cores, the results obtained indicated that the effect of gapping

was the same for both the C-cores and the toroidal cores subjected to

testing. It will be noted however, that gapping of the toroidal cores pro-

duced a lowered squareness characteristic for the B-H loop as shown in

Table 3; this data was obtained from Figs. 27 to 31. Also, from Figs. 27

to 31, AH was extracted as shown in Fig. 32 and tabulated in Table 4.

A direct comparison of cut and uncut cores was made electrically

by means of two different circuit configurations. The magnetic material

used in this branch of the test was Orthonol. The operating frequency was

2. 4 kHz, and the flux density was 0. 6 T. The first circuit, shown in

Fig. 33, was a driven inverter operating into a 30 W load, with the tran-

sistors operating into and out of saturation. Drive -was applied continu-

ously. SI controls the supply voltage to Ql and Q2.

With switch SI closed, transistor Ql was turned on and allowed to

saturate. This applied E-V«(SAT) across the t ransformer winding.
O

Switch SI was then opened. The flux in transformer T2 then dropped to the

residual flux density B . Switch SI was closed again. This was done

several times in succession to catch the flux in an additive direction.

Figures 34 and 35 show the inrush current measured at the center tap of T2.

It will be noted in Fig. 34 that the uncut core saturated and that

inrush current was limited only by circuit resistance and transistor beta.

It can be noted in Fig. 35 that saturation did not occur in the case of the

cut core. The high inrush current and transistor stress was thus virtually

eliminated.

JPL Technical Memorandum 33-498, Revision 1 13



The second test circuit arrangement is shown in Fig. 36. The purpose

of this test was to excite a transformer and catch the inrush current using

a current probe. A square wave power oscillator was used to excite trans-

former T2. Switch SI was opened and closed several times to catch the flux

in an additive direction. Figures 37 and 38 show inrush current for a cut

and uncut core respectively.

A small amount of air gap, less than 25 p.m, has a powerful demagne-

tizing effect and this gap has little effect on core loss. This small amount of

air gap decreases the residal magnetism by "shearing over" the hysteresis

loop. This eliminated the ability of the core to remain saturated.

A typical example showing the merit of the cut core was in the check-

out of a Mariner spacecraft. During the checkout of a prototype science

package, a large (8 A, 200 (JLS) turn-on transient was observed. The normal

running current was 0. 06 A, and was fused with a parallel-redundant 1/8-A

fuse as required by the Mariner Mars 1971 design philosophy. With this

8-A inrush current, the 1/8-A fuses were easily blown. This did not happen

on every turn-on, but only when the core would "latch up" in the wrong

direction for turn-on. Upon inspection, the transformer turned out to be

a 50-50 Ni-Fe toroid. The design was changed from a toroidal core to a

cut-core with a 25-(jtm air gap. The new design was completely successful

in eliminating the 8-A turn-on transient.

14 JPL Technical Memorandum 33-498, Revision 1



IX. SUMMARY

Low-loss tape-wound toroidal core materials that have a very square

hysteresis characteristic (B-H loop) have been used extensively in the design

of spacecraft transformers. Due to the squareness of the B-H loops of these

materials, transformers designed with them tend to saturate quite easily.

As a result, large voltage and current spikes, which cause undue stress on

the electronic circuitry, can occur. Saturation occurs when there is any

unbalance in the ac drive to the transformer, or when any dc excitation

exists. Also, due to the square characteristic, a high residual flux state

(B r) may remain when excitation is removed. Reapplication of excitation in

the same direction may cause deep saturation and an extremely large cur-

rent spike, limited only by source impedance and transformer winding

resistance, can result. This can produce catastrophic results

By introducing a small (less than 25-[im) air gap into the core, the

problems described above can be avoided and, at the same time, the low-

loss properties of the materials retained. The air gap has the effect of

"shearing over" the B-H loop of the material such that the residual flux

state is low and the margin between operating flux density and saturation

flux density is high. The air gap thus has a powerful demagnetizing effect

upon the square loop materials. Properly designed transformers using

"cut" toroid or "C-core" square loop materials will not saturate upon

turn-on and can tolerate a certain amount of unbalanced drive or dc

excitation.

It should be emphasized, however, that because of the nature of the

material and the small size of the gap, extreme care and control must be

taken in performing the gapping operation, otherwise the desired shearing

effect will not be achieved and the low-loss properties destroyed. The cores

must be very carefully cut, lapped, and etched to provide smooth, residue-

free surfaces. Reassembly must be performed with equal care.
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Table 2. Materials and constraints

Core type

52029 (2A)

52029 (2D)

52029 (2F)

52029 (2H)

52029 (2H)

Material

Orthonol

Sq. Permalloy

Super ma Hoy

48 -Alloy

Magnesil

B , T
m'

1.45

0. 75

0. 75

1. 15

1. 6

NT

54

54

54

54

54

Frequency,
kHz

2.4

2. 4

2. 4

2 .4

2. 4

1m, cm

9.47

9.47

9.47

9.47

9.47

Table 3. Comparing B /B on uncut and cut cores

Code

(A)

(D)

(K)

(F)

(H)

Material

Orthonol

Mo- Permalloy

Magnesil

Supermalloy

48 Alloy

Uncut B /Br m

0. 96

0. 86

0. 93

0. 81

0. 83

Cut Br/Bm

0. 62

0. 21

0. 22

0. 24

0. 30
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Table 4. Comparing AH-AH._.p on uncut and cut cores

Material

Orthonal

48 Alloy

Sq. Permalloy

Supermalloy

Magnesil

B , Tm'

1. 44

1. 12

0. 73

0.68

1. 54

B , T
ac'

1. 15

0. 89

0. 58

0. 58

1. 23

B, , T
dc'

0. 288

0. 224

0. 146

0. 136

0. 31

Uncut

AHOP AH

Cut

AHOP AH

amp -turn/cm

0. 0125

0. 0250

0. 01

0. 0175

0. 075

0. 0

0. 0

0. 005

0. 005

0. 025

0. 895

1. 60

0.983

0.491

7. 15

0. 178

0. 350

0. 178

0. 224

1. 78
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2.4 KHz

Fig. 1. Typical driven transistor inverter

Fig. 2. Ideal square B-H loop
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B, T

SQ PERMALLOY 4/79

SUPERMALLOY 5/78

MAGNESIL

ORTHONOL
50/50

H, A-t/cm

Fig. 3. The typical dc B-H loops of magnetic materials
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SATURATION OCCURS WHEN B = 2A

Fig. 5. Excitation current

1.4 T
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Fig. 6. B-H loop with dc bias
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Fig. 7. Typical square loop material with
ac excitation
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POWER
OSCILLATOR

2.4 kHz

SQUARE WAVE

O

GND OSCILLOSCOPE

VERT TEKTRONIX
536

HORIZ

Fig. 8. Dynamic B-H loop test fixture

54T 54T Rl

Fig. 9. Implementing dc unbalance

VERT = 0.5 T/cm
HORIZ = 100 mA/cm

Fig. 10. Magnesil (K) B-H loop
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VERT = 0.5 T/cm
HORIZ = 50 mA/cm

Fig. 11. Orthonol (A) B-H loop

VERT = 0.5 T/cm
HORIZ = 50 mA/cm

Fig. 12. 48 Alloy (H) B-H loop

VERT = 0.2 T/cm
HORIZ = 10 mA/cm

Fig. 13. Sq. Permalloy (P) B-H loop

JPL, Technical Memorandum 33-498, Revision 1 25



VERT = 0.2T/cm
HORIZ = 10 mA/cm

Fig. 14. Supermalloy (F) B-H loop

VERT = 0.5 T/cm
HORIZ = 50 mA/cm

Fig. 15. Composite 52029 (2K), (A), (H), (P), and (F) B-H loops

VERT = 200 mA/cm
HORIZ = 0.3 T/cm

Fig. 16. Magnesil (K) B-H loop with and without dc
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VERT = 100 mA/cm
HORIZ = 0.2T/cm

Fig. 17. Orthonol (A) B-H loop with and without dc

VERT = 50 mA/cm
HORIZ =0.2 T/cm

Fig. 18. 48 Alloy (H) B-H loop with and without dc

VERT = 20 mA/cm
HORIZ =0.1 T/cm

Fig. 19. Sq. Permalloy (P) B-H loop with and without dc
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VERT = 20 mA/cm
HORIZ =0.1 T/cm

Fig. 20. Supermalloy (F) B-H loop with and without dc

Fig. 21. Unmagnetized material Fig. 22. Magnetized material
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Bm i

AB

WITHOUT GAP

A
WITH GAP

B

Fig. 23. Air gap increases the effective length of the magnetic path

im

Nl N2

Fig. 24. Implementing dc unbalance
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Fig. 25. Typical cut toroid

Fig. 26. Typical cut "C" core
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2.4 kHz

SQUARE WAVE

I
> 30 W

CURRENT MEASUREMENT

SI

Fig. 33. Inverter inrush current measurement

Fig. 34. Typical inrush of an uncut core
in a driven inverter

Fig. 35. Typical inrush current of a cut core
in a driven inverter
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T2

SI

2.4 kHz

•CURRENT MEASUREMENT

Fig. 36. T-R supply current measurement

Fig. 37. Typical inrush current of an uncut
core operating from an ac source

Fig. 38. Typical inrush current of a cut
core in a T-R
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