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Preface

The work described in this report was performed by the DSN Operations Divi-
sion of the Jet Propulsion Laboratory.
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Abstract

Expressions for the output signal-to-noise power ratio of a bandpass soft limiter
followed by a coherent detection device are presented and discussed. It is found
that a significant improvement in the output signal-to-noise ratio (SNR) at low
input SNRs can be achieved by such soft limiters as compared to hard limiters.
This indicates that the soft limiter may be of some use in the area of threshold
extension. Approximation methods for determining output signal-to-noise spectral
densities are also presented.

vi JPL TECHNICAL REPORT 32-1589



Signal-to-Noise Ratios in Coherent Soft Limiters

I. Introduction

In his classic 1953 paper Davenport (Ref. 1) found that
the ratio of the output to input signal-to-noise power ratio
of a bandpass hard limiter asymptotically approached
7T/4 and 2 as the input signal-to-noise ratio approached
zero and infinity, respectively. Since that time a number
of papers have appeared in the literature on the hard
bandpass limiter and its generalization to the soft limiter
(Refs. 2-9). All of these papers produced-results which
were consistent with the original Davenport finding.

More recently, however, Tausworthe (Ref. 10) and
Springett and Simon (Ref. 11) found that if a hard band-
pass limiter is followed by a coherent detector, the strong
signal asymptotic value no longer agrees with Davenport's
(incoherent limiter) result. The reason for this deviation
is that the relative phase relationship between compo-
nents at the limiter input is not preserved as the signal
passes through the limiter, and consequently quadrature
components of the output noise do not necessarily have
the same spectra (Ref. 10) It would be interesting to see
if the results of these coherent limiter studies can be gen-
eralized to the case of the soft limiter, and this is the sub-
ject of investigation herein.

II. System Model

Consider the coherent soft limiter model shown in
Fig. 1. The input to the system consists of a sinusoidal
signal of known parameters and additive narrowband
gaussian noise and is given by

x (t) = V~2A cos (co0t) + n (i) (1)

The noise process is assumed to be created by passing
white gaussian noise having a one-sided spectral density
N0 through an ideal narrowband filter having a band-
width B, centered at <o0. Using the narrowband expansion
for n (t), we can express Eq. (1) as

x(t)

(2)

SOFT
LIMITER

y(0 r
ZONAL
BANDPASS
FILTER

e)

Fig. 1. Coherent soft limiter model
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where

v (t) = V2 {[A (3)

and

where nc (*) and ns (*) are the orthogonal projections of
n (*) onto the cosine and sine axes, respectively. We
assume that n (*) is zero mean, so that

E[n e(*)]=E[n.(*)]=0 (5)

and Fig. 2. Error function transfer characteristic

:["*(*)]= y (6)

where

The input signal x (t} is applied to a soft limiter having
an error function transfer characteristic given by

(7)

where L is the peak limiter output, K is the slope of the
transfer characteristic at x ~ 0, and the error function is
defined by

eri(x) = — exP(- (8)

The limiter characteristic y (x) is shown in Fig. 2

The output of the soft limiter is passed through an
ideal bandpass filter which extracts only the fundamental
(first zone) components of y (t), denoted j/j (*); y^ (t) is then
mixed with a reference signal of the form

u(t) = (9)

and passed through an ideal lowpass filter which niters out
all double frequency terms. The phase angle 0 is a known
and fixed parameter and determines the type of demodu-
lation which is being used (0 = 0 for coherent amplitude
detection, 6 = ir/2 for phase demodulation). The final sys-
tem output is denoted £ (t).

The method for obtaining the output y^ (t) is to apply
an input x (t) and compute y (t). Then expand y (t) in a
Fourier series, if x(t) is periodic, and retain only those
components which are in the first zone. If the input is
assumed to be sinusoidal, this method becomes the tech-
nique of equivalent linearization (Ref. 12). Thus, if we
assume (for the moment) an input of the form

x (t) = A0 sin (o>t + 60}

then the output y^ (t) becomes

t/i (t) = Ci sin (tot + 90)

where

(10)

(ID

, = — / erf -ry^ A0 sin (<o* + <?„) sin (arf + 0
77 J-v/a> L ZLl J

,)dt

(12)

Integrating by parts gives

, /•' / K^A? . \
/ cos2 ̂  exp ( sin2 A ) iJ-v \ 4L2 y (13)

Now, if we substitute Ci into Eq (11) and divide by the
input (Eq. 10), we find that the equivalent linear gain
N (A0, <o) of the bandpass soft limiter to a sinusoid of am-
plitude AO and frequency o> is

K [
= — (14)
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Using this result with the input signal given in Eq. (2) we
are able to express the first zone output t/t (t) by

yi (*) = N [v (t), u>0] v (t) COS [o>0t + y (t)] (15)

Now, if we substitute x — nc + A, complete the square
the exponent and integrate, we have

in

/**• —

Now, if we multiply this output by the coherent reference
u (t) and retain only the lowpass components we have

V~2
z(t)=-*z-N[v (#> «„] v (t) [cos y (*) cos e + sin y (t) sin 0]

X { [A + nc (t)] cos 0 + ns (t) sin (16)

Equation (16) is the mathematical model to be used for
the coherent soft limiter. We are interested in evaluating
the signal-to-noise ratio performance based on this model.
To do this we must first compute the first two moments
of z.

where

and

r , ( 4R2/82

X / COS*exPW + -s (19)

R = —- (input signal-to-noise ratio) (20)

(21)

The parameter /? requires a little more explanation.
First, we note that /? can be interpreted as the ratio of the
peak limiter output to the peak signal output if the limiter
acts as a linear amplifier with gain K. More importantly,
however, we note that Eq (7) can be expressed as

III. Mean Value of z

We note that z is a random variable which depends
on the random variables nc and ns, both of which are
gaussian. Thus, if we denote the expected value of z by
/i2 we have

00

= -^ / / z (nc, n,) exp ( - "c ̂  "' j dn, dn, (17)

2Y~2A/?
(22)

Now, if we let j8 -> 0, then y (x) goes to ±L, depending on
the sign of x, or, in other words, the soft limiter approaches
a hard limiter Furthermore, as /? -> oo the asymptotic ex-
pansion for the error function yields

«/(*)
Lx

Y~2A/?
= Kx (23)

where z (nc, n,) is given by Eq. (16) with the time argu-
ments suppressed. If we interchange the order of integra-
tion, after integrating over n, we obtain

= KL f'/ 2* \M

7r2a J^ \2L2 + KVcr2 sin2 £ J

X cos2 * exp - - (A + nc)
2 sin2

X [(A + nc) cos 0] dnc (18)

which is the result for a linear amplifier of gain K. Thus
we can interpret ft as a measure of "softness" of the soft
limiter. Another "softness" parameter which we will find
useful is the parameter D defined by

D = (24)

Clearly, for a fixed R, D goes to zero or infinity with /?. We
shall have more to say about these parameters and their
corresponding limiting operations later.
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Returning now to Eq. (19) and scaling the variable of
integration gives

_ 2

^2 LR*/33 cos 0<r« I sm * exP {D + COS2
RD

If we substitute the quantity

COS2*)2
dx

/ \TDsind,
x — cos-1' — —

\ Dsin<j> \
E> + cos2^,/

(25)

(26)

Eq (25) becomes

_ 32V2LR2/?3cosfl
w3D3/2 •

(27)

Now, by using the identity

I,(x) = - ['exp(xcos£)cos(t?£)d£; v = 0,1,2,
ir Jo

(28)

where Iv(x) is the modified Bessel function of order v,
then Eq. (27) becomes

X

We note that this result is consistent with earlier results
for coherent limiters. For example as D -> 0 the soft coher-
ent limiter degenerates to the hard coherent limiter. From
Eq. (29) we have

(30)

which is precisely the result determined by Springett and
Simon (Ref. 11). For the linear amplifier case (D-> oo) we
note that the 70 and Ii Bessel functions reduce to 1 and 0,

respectively. Then, by using the definition of D we have

•\f2RLcos0 „.
=KAcos0

. .
(31)

which is, indeed, the answer one expects from an ampli-
fier of gain K followed by a coherent detector.

It is interesting to note that Eq. (29) can be rewritten as

R
cos 6 (32)

where

The function a (R) is called the hard limiter signal sup-
pression factor (see, for example, Lindsey in Ref. 13).
Thus, we see that the mean signal output of a soft limiter
can be regarded as the mean signal output of a hard
limiter operating at an "effective" input signal-to-noise
ratio of R/(l + D). This result was first noticed by
Tausworthe (Ref, 9) for the incoherent soft limiter.

IV. Second Moment of z

Recall from Eq. (16) the expression for z (nc, n,). If we
expand the trigonometric functions and use the defini-
tion of the modified Bessel functions (Eq. 28), we obtain
directly

z(ne,ns) = Kexp(--g [(A + nc)* + n2])

X [(A + nc) cos B + na sin 6] (34)

Thus, the second moment of z is given by

(35)
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where we have made the substitution x = nc + A. If we
change to polar coordinates, Eq. (35) becomes

1-2,

/
Jo

X / (cos2 4> cos2 0 + sin2 </, sin2 0
Jo

/2rA \ , ,
4- 2 sin $ sin 0 cos </> cos 9) exp I — — cos <£ I cty ar

(36)

The last term in the integrand of the <f> integral integrates
to zero, since we can shift <j> to produce a symmetric inte-
gral over an odd function Then if we use the definitions
of R and D we have

/-2T

X / [cos2 $ cos2 0 + sin2 <j> sin2 0]
Jo

X exp (2Ry cos <£) d<£ dy (37)

Now note from Eq. (28)

/

2JT
cos2 <j> exp (2Ry cos $) <i<£ I0 (2Ry) + 72 (2Ry)]

(38)

and

/

2»
sin2 <f> exp (2Ry cos <t>) d$ = -a [J0 (2Ry) - I2 (2Ry)]

(39)

Substituting these expressions into Eq. (37) and using the
recurrence relations for modified Bessel functions yields
the result

X 2yla (2Ry) cos2 0 - ^ 7t (2Rt/) cos (20) dy

(40)

The author has tried repeatedly to solve this integral
but with no success. Hence, we must resort to numerical
evaluation. However, the infinite limit in Eq. (40) makes
numerical integration somewhat cumbersome. By a series
of substitutions one can show that Eq. (40) can be ex-
pressed as

^ (Z ) —

X [f (y) + 2RD cos2 0] /„

[2RDcos20-/(y)cos(20)]71

[g («/) - 2] dyX exp I - (40a)

where

and

(40b)

(40c)

Equation (40a), although functionally more complex, can
be numerically evaluated with little effort.

To gain some confidence in the validity of Eq. (40) let
us examine its limiting behavior. For the hard limiter
(D -» 0) we can use the asymptotic expansion for modified
Bessel functions

e*
(41)
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to obtain E(z2
I /)-*oo

- ±j"exp (-Ry2) I, (2Ry) dycos (20) j

(42)

Now, from Gradshteyn and Ryzhik (Ref. 14) we have the
identities

' exp(-«y2) Iv(/Jy) dy =
I" tp\
Pexpt4
Re(a)>0
Re(v)>- l

,

and

y (1 + n, x) = n!

where y (a, x) is the incomplete gamma function.

Using these substitutions we obtain

(43)

(44)

(45)

(46)

Equation (46) is recognized as the result obtained by
Springett and Simon (Ref. 11) for the coherent hard
limiter.

For the linear amplifier result we note that Eq. (40)
reduces to

2R2

IT.

^-^<2 (Wy3exp(-Ry2)Z0(2Ry)dycos20
TV { Jo

- j r y2 exp (-Ry2) I, (2Ry) dy cos (20)1 (47)

Again, from Gradshteyn and Ryzhik, we have the
identities

/

co
a? exp ( - ax2) Iv (/3x) dx =

\ 1

Re (a) > 0, Re (^ + v) > -1 (48)

and

^(2;!,*) = tF^l;!;*) + x X ̂ (2,2;*) = e* +

(49)

where iFj (a, c; x) is the confluent hypergeometric func-
tion. With these results and the identity of Eq. (43) we
see that Eq. (47) becomes

E(z2)L = -^ f (1 + R) cos2 0-4- cos (20)1 (50)
•xu L z J

Now, note from the definitions of D, /?, and R that D can
be expressed as

2L2

(51)

If we fix K and a2 then D —> oo implies L -» oo. Thus, we
have

= K2A2cos20 (52)

Therefore, we see that as D -> oo the second moment of z
reduces to the second moment of the amplified signal and
noise terms after projection onto the coherent reference
axis, which is exactly as expected.

JPL TECHNICAL REPORT 32-1589



V. Signal-to-Noise Power Ratios
Armed with the first two moments of z we are now in a

position to consider signal-to-noise power ratios. The out-
put signal-to-noise ratio when the detection angle 0 is zero
is given by

(SNK)0 (53)

and if one is interested in the ratio of the output signal-to-
noise ratio to that of the input we have

(SNR)0

2 (SNR), (54)

where the factor of % is needed to account for the band-
pass to lowpass transformation. Note, however, that
Eq. (53) becomes meaningless when the detection angle
is TT/2; i.e., the limiter is followed by a phase detector.
Springett and Simon (Ref. 11) handled this case by re-
defining the mean signal output by

(55)

and then using juz (ir/2) instead of p, in the numerators of
Eqs. (53) and (54). Yet, even if we adopt this additional
definition, it is still not immediately clear how we would
handle cases involving other detection angles.

We can alleviate all of the problems associated with
output signal definitions for various detection angles if
we define the ratio of output-to-input signal-to-noise
ratios directly. To this extent we shall define the ratio of
signal-to-noise ratios for any value of 0 by

(SNR)0 A /*|
2(SNR),~R'[E(z2)-M i]

(56)

where

is the "actual" output signal-to-noise ratio and R' is the
signal-to-noise ratio at the input after projection onto the
coherent reference axis. (Equation 56 can also be inter-
preted as the ratio of the output SNR using the limiter to
the corresponding output SNR with the limiter removed.)

Clearly, we have that

R> = ̂  = 2RCOS*e (57)

so that

(SNR)0 = MiU
2 (SNR), 2R [E (z2) - for any 6 (58)

Note that when 8 = 0 we obtain Eq. (54) directly. Further-
more, if 6 = Tr/2, Eq. (58) reduces to the right-hand side
of Eq. (54) with the numerator replaced by Eq. (55).

We see from the expressions for the first two moments
of z that the ratio of SNRs depends on R, B, and the soft-
ness parameter D. In other words

(SNR}° - / m o m2 (SNR), -M«,*,D) (59)

However, from Eq (24) we know that D can be written in
terms of the second softness parameter /(?; to that

{SNR)° (60)

Thus, for a fixed value of 0, the ratio (SNR)0/2 (SNR), will
be a family of functions of R in terms of the parameters /?
or D. Let us first consider the parameter /8

A. SNRs and the Parameter /3

Figures 3-5 illustrate the behavior of (SNR)0/2 (SNR)t

for detection angles 0, ir/4, and Tr/2, respectively, for sev-
eral values of /?. We note first that for /? = 0 (hard limiter)
we obtain (Figs. 3 and 5), precisely the results reported
by Springett and Simon (Ref. 11). Furthermore, we see
from Fig. 4 with ft — 0 that our result is the same as
Davenport's incoherent limiter result (Ref. 1). The reason
for this is that for a detection angle of ir/4 the coherent
detector extracts equal percentages of signal power and
noise power, and hence neither is favored by the detec-
tor. Finally, we observe that for small input signal-to-
noise ratios all of the curves in Figs. 3 to 5 approach
Davenport's lower asymptotic limit of ir/4.

The interpretation of these results is as follows: Recall
the definition of /? as given in Eq. (21). If we assume that
the physical limiter parameters L and K are fixed, then
fixing |8 at some constant value establishes the rms signal
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z
42.

-2

Fig. 3. Ratio of signal-to-noise ratios, parameter ft, a — 0

3.0

2.5

2.0

1.5

1.0

-p °'5
02

-0.5

-1.0

-1.5

T i l l

10

-20 -16 - 1 2 - 8 - 4 0 4
R = INPUT SNR, dB

8 12 16

Fig. 4. Ratio of signal-to-noise ratios, parameter ft, e = ir/4

level at some fixed value. This is precisely what happens
if we precede the limiter by an automatic gain control.
Hence, we know that a variation in the input SNR corre-
sponds to a variation of the noise level only. Thus, allow-
ing the input SNR to approach zero implies an unbounded
increase in the input noise level, and hence the soft limiter

-1.5
-20 -16 -12 - 8 - 4 0 4

R = INPUT SNR, dB

12 16

Fig. 5. Ratio of signal-to-noise ratios, parameter ft, 6 — ir/2

will always approach the hard limiter, regardless of the
value of /8. Conversely, an increasing input SNR corre-
sponds to a decrease in the input noise level, and hence
the limiter tends to "soften." This softening continues
until the input noise level is insignificant relative to the
projected signal level. Thus, the softening will be termi-
nated at some input SNR (which depends on /8) for all
detection angles other than ir/2. For 0 — ir/Z we note that
the projected signal level is zero, and the softening con-
tinues indefinitely.

B. SNRs and the Parameter D

We have already seen the utility of the parameter D in
describing the characteristics of a soft limiter. Another
place where this quantity appears is in the paper by
Baum (Ref. 2), in which he found that the output auto-
correlation function \j/ (T) of an error function (incoherent)
limiter when driven by gaussian noise only was given by

where p(r) is the autocorrelation function of the input
noise process. We will see now that D has a profound
effect with regard to signal-to-noise ratios.

In Figs. 6 to 8 the behavior of (SNR)0/2 (SNR), is again
illustrated for detection angles 0, 7r/4, and w/2, respec-
tively, except this time for constant values of D. We note
first that the hard limiter result (D -» 0) still agrees with
the previous results. However, we see that there are two
significant differences between this set of curves and the
previous set. Note that as the input SNR decreases, the
curves no longer all approach Davenport's lower limit of
TT/4. Instead they approach a continuum of values from
TT/4 to 1. Secondly, we see that for increasing input SNRs
all of the curves have a tendency to converge to their cor-
responding hard limiter result. These characteristics can
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R = INPUT SNR, dB

12 16

Fig. 6. Ratio of signal-to-noise ratios, parameter D, e = 0

-1.5
-20 -16 -12 - 8 - 4 0 4

R = INPUT SNR, dB

8 12 16

Fig. 7. Ratio of signal-to-noise ratios, parameter D, e =

be easily explained by a closer examination of D. We note
that

D =
4R/82 2L2

(62)

0.5

-0.5

O. -1.0

-1.5

e-
20

0.2

0.02

-20 -16 -12 - 8 - 4 0 4

R = INPUT SNR, dB

12 16

Fig. 8. Ratio of signal-to-noise ratios, parameter D, e = ^/2

Thus, D can be considered (except for the factor 2/w) as
the ratio of the output variance of a hard limiter with
limit L to the variance of the input noise multiplied by K.
An alternate interpretation, due to Baum (Ref. 2), can be
obtained by noting that the error function characteristic
can be rewritten as

(63>
where <TO is the "variance" of the error function character-
istic. In this case we have

(64)

so that D is the ratio of the variance of the error function
characteristic to the input variance.

No matter which interpretation is used for D, it is
immediately clear that, for fixed values of L and K, if we
establish a value for D we have, in turn, fixed the input
noise variance. Thus, variations in the input signal-to-
noise ratio correspond to variations of the signal level
only. This means that as the input SNR increases, the
input signal will drive the limiter into saturation, causing
the limiter to "harden." Conversely, as the input SNR
decreases the limiter will continue to "soften" until the
point at which the signal level becomes insignificant rela-
tive to the input noise level From this point on, no further
softening will occur, so that the asymptotic softness of the
limiter will depend on D

It would appear that these latest characteristics could
be exploited to enhance the process of coherent detection.
When using such detectors it is necessary to limit the
input signal so that the detector (mixer) is not driven past
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its allowable input range. This limiting usually is imple-
mented as a hard bandpass limiter Yet we know that
hard limiters produce a degradation of about 1 dB in the
output SNR at low input SNRs. Notice, however, from
Figs. 6 to 8 that for D larger than about 1.0 this low SNR
degradation is all but eliminated. Let us, for example,
consider the case where 0 = 0. Figure 9 shows the SNR
curves for D = 0.5, 1.0, and 1.5. From this we see that for
D in the vicinity of 1.0 (that is, when the noise alone is on
the verge of driving the limiter into saturation), the low
input SNR degradation is effectively eliminated with only
a slight change in the large SNR enhancement. Note, also,
that the point at which enhancement ((SNR)0^2 (SNR),)
begins is at an input SNR of — 8 dB as compared to
— 4 dB for the hard limiter case This suggests that prop-
erly adjusted soft limiters might prove useful in the area
of threshold extension.

VI. Some Comments on Signal-to-Noise
Spectral Densities

Thus far we have considered only systems where the
coherent detector is followed by a lowpass filter having
a bandwidth equal to the output zeroth zone spectral
width. In most applications, however, the detector is fol-
lowed by a lowpass filter with a bandwidth much smaller
than the zonal bandwidth. For cases such as these we
must determine the detector output noise spectral density
at zero frequency.

16

12

10

,-P 6S"

e = o

I I I I I
-20' -16 - 1 2 - 8 - 4 0 4

R - INPUT SNR, dB

12 16

The usual technique for obtaining the output noise
density is to use Rice's characteristic function method
(Ref. 15). This method entails computing the output auto-
correlation function Rz (T) given by

H,(T) = lim
^ f -^
l Jo 47r

(/>,*) exp -

/

« / <72v2\
/(/v,t + T)exp( — )exp(-(T2

P(T)fiv)
00 \ " J

X exp [j/*xa (t) + jvx$ (t + T)] du dv dt (65)

where x, (t) is the noise-free input signal at time t, p (T) is
the autocorrelation function of the input narrowband
noise process, and / (;'«, t) is the Fourier transform of the
coherent soft limiter characteristic given by

/ (ju, t) = L V 2 cos (o,0* +0) erf£ erf (—^ * ) e->»* dx

cos (<a0t + 6) (66)

By expanding all of the quantities involving trigonometric
expressions, including p (T) since the input noise is narrow-
band, and retaining only those components in the vicinity
of T = 0, the output zeroth zone autocorrelation func-
tion is obtained. Unfortunately, the resulting expression
involves a doubly infinite series of confluent hypergeo-
metric functions and does not appear to have a more man-
ageable reduced form. The result (for those interested in
pursuing the topic further) is given by

i-2m, i-2m

(1 +2 cos2 0)/§-.,„.. 2-2

, gf . i + gi. 3 - 2gi. i g». 3 cos (20)
(n - m)l (n - in + 1)!

(n-m)!(n-m + 2)! PL(T'

Fig. 9. Ratio of signal-to-noise ratios, D = 0.5,1.0,1.5, 0 = 0 (67)

10 JPL TECHNICAL REPORT 32-1589



where

/

\

2n + 2m + k 2n + 2m + k
; 2m +1,-. D

(2m + fc - 1)! (1 + D)(2n+2m+*)/2 (68)

(2m + k - 1)
(69)

and pL (T) is the equivalent lowpass autocorrelation func-
tion of the input narrowband noise. The output noise
spectral density at zero frequency is then given by

S,(0)=f"[R,(r)|10I180-/ti]dT (70)
y-w

which is an even more complicated expression.

The evaluation of Eq (70) appears to be an insurmount-
able task. However, if we restrict out attention to the ratio
of output-to-input signal-to-noise spectral densities we
can approximate this ratio quite well by using the ratio
of signal-to-noise power ratios. To see this, let us define
1/r to be the ratio of signal-to-noise density ratios. Then
it is clear that

1 A (S/N0)0 (SNR)0 B0

, 2 ( S A / R ) , B ,
(71)

where B0 is the coherent detector zeroth zone output
bandwidth. In the paper by Springett and Simon it is
shown that this bandwidth ratio for the hard limiter
(when noise only is present) is bounded by

(72)

and that B0/B, goes to unity as the input SNR increases.
But we know that for a linear amplifier, which is the
opposite extreme case of a soft limiter,

B,
(73)

for all input SNRs. From this we see that the bandwidth
ratio for the soft limiter is "squeezed" between two curves:
one which is identically 1 and the other which is approxi-
mately 1 at low input SNRs and asymptotically equal to
1 at high SNR. Thus we have for the soft limiter

1 _. (SNR)0

T ~2(SNR),

for all values of input SNR.

(74)

As a final comment it would apear that an even better
approximation to 1/r might be obtained if we assume
that the soft limiter, and consequently B0/Bt, can be rep-
resented as a convex combination of their two extreme
cases (i.e., hard limiter and linear amplifier). Thus, if
0 ̂  £ ̂  1 then we have

'»/ soft
llmlter

'»/ hard
llmite

where we recall that Bo/B, = 1 for a linear amplifier.
Based on our previous results, the most logical choice for
the convex parameter | is

so that

(*L\ =
\Bj«f,

1
D V B ,

D

hard
limiter

(76)

(77)

An experimentally determined expression for the band-
width ratio of the hard limiter is given in the Springett
and Simon paper (Ref. 11).
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