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ABSTRACT

This three-part paper describes a theoretical and experimental
study of an ionizing laminar boundary layer formed by a very high
enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with
allowance for the presence of Helium driver gas. The theoretical
investigation has shown t;hat the use of variable transport properties
and their respective derivatives is very important in the solution of
equilibrium boundary layer equations of high enthalpy flow. The effect
of low level Helium contamination on the surface heat transfer rate is
minimal. The variation of ionization is much smaller in a chemically
frozen boundary layer solution than in an equilibtrium boundary layer
calculation and consequently, the variation of the transport properties
in the case of the former was not essential in the integration. The
experiments have been conducted in a Free Piston Shock Tunnel, and a
detailed study of its nozzle operation, including the effects of low levels
of Helium driver gas contamination has been made. Neither the extreme
solutions of an equilibrium nor of a frozen boundary layer-will adequately
predict surface heat transfer rate in very high enthalpy flows. This has
been attributed to non-equilibrium gas relaxation processes in the
boundary layer. A satisfaétory approximation. can be obtained with
what has been called a composite boundary -layer calculation. A level
in the boundary layer is defined where the gas is assumed to change
from primarily chemically frozen in nature to primarily equilibrium in
nature. The position of this changeover is determined by a simple
criterion based on the recombination rate-in the gas stream tubes that
are taken to-form the boundary layer. The solutioﬁ Vare joined by

matching the velocities and shear stresses.
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PART 1

INTRODUCTION AND BOUNDARY LAYER CALCULATIONS



1. Introduction

The Free Piston Shock Tunnel, as described by Stalker (1967) is
unique in its ability to produce very high enthalpy gas flows well in
excess of 12 eV or 7000 cal/gm. The object of this paper is to report
the results of a theoretical and experimental study into the nature of a
laminar boundary layer formed on an inclined flat plate in such a flow.

An important subsidiary investigation was made of the nozzle
operation of a reflected shock tunnel with special attention being given
to the possible effects of Helium gas contamination upon the flow
characteristics.

At hypersonic gas flow speeds, as produced by the Free Piston
Shock Tunnel, the dissipated kinetic energy will cause ionization of the
test gas. The presence of free electrons greatly modifies the viscosity
and thermal conductivity of the gas, and the solution of the boundary
layer probelm becomes difficult.

Taking the y-axis normal to the plate surface, the equations for
a reacting gas boundary layer (neglecting thermal diffusion) a.re1 on

two dimensions:

Conservation of Mass:

Beurj + Bevrj = o0, (1-1)
2]
) X 9y

Conservation of Momentum:

9 u du 9P 9
pu——ax+pv——ay= -—X+"—ay.(l¢"‘—"l;), (1-2)

See Dorrance (1962), Chapter 2.



Conservation of Species:

E)Ci 8C 5 8C
Pu g%t PV'g— = 7y Dy 3o ) b, (1-3),

Conservation of Energy:

pu 55+ P"ayzaay [1%%3*“(1' )iggJ
9 1 N 8 cC
_3y[(Le-l)pDiz 18y:|’ (1-4)
i=1
where

j = 0 for two dimensional flow, j = 1 for axisymmetric flow,

p = density of the total mi#ture,
' P = pressure of the total mixture,

o= \./iscosity of the total mixture,

Ci = the mass fraction of species i,

D, = coefficient of diffusion of species i through the mixture,

\'i/i = mass rate of change of species i per unit volume

(reaction rate),

H=%h2+h
h

zZC
5.dT+h,

h;) = Heat of formation of species i,
Pr = Prandtl number = g cp [k,

k = thermal conductivity of the total mixture,

[g)
1]

2

2 C.c .
i pi

Le = Lewis number = p Di Cp /k .


































































































































































































































































































































































































































































