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SUMMARY

This report describes a method and a digital computer program for
prediction of the distributions of fluid velocity and properties in
axial-flow pumpconfigurations. A mathematical model of the flow is
developed for calculation planes in which the flow is assumedto be
steady and axisymmetric. Flow patterns in these planes are determined
by an iterative numerical procedure. The calculation planes are
located at the configuration entrance and exit, and between blade rows.
Correlated results of pumpconfiguration experiments are used to gener-
ate alternative methods for estimating the turning and loss character-
istics of the blade elements intersected by approximate steam surfaces.

Detailed descriptions of program logic and use are followed by
example input and output data sets, plus typical computed results.
Strengths and weaknessesof the method are outlined. In general, it is
found that the flow model and computational procedures are satisfactory.
The results are useful for both qualitative and quantitative purposes.
Limitations are related to the quality of the empirical estimation of
blade section performance. These limitations are characteristic of all
axial-flow compressor and pumpperformance prediction systems described
in the literature to date.



INTRODUCTION

This report reviews an extended study of the problem of prediction
of distributions of fluid velocity and properties in axial-flow pump
configurations. This study was begun in 1960 as one response to the
need for fundamental improvement in performance levels and reliability
of turbopumps for liquid-propellent rocket systems and has been carried
on in cooperation with the research staff of the NASALewis Research
Center. Principal objectives were to select a satisfactory flow model
and a logical sequence of steps for computation of the required flow
patterns, and to incorporate these steps into an efficient digital com-
puter program. In addition, necessary correlations of experimental
information were to be developed to support the program.

In the first part of the report, the scope of the project is out-
lined and comparedwith related investigations in the fluid mechanics
of turbomachinery. The second portion is a detailed description of a
method and computer program for axial-flow pumpperformance prediction.
The method and program are based on numerical solution of equations
representing a model of the real flow in an axial-flow turbomachine.
The third part reviews the results of utilization of the programfor typical
axial-flow pumpgeometries.

Computedresults are comparedwith experimental measurements from

NASA research involving water tunnel tests of these geometries. These

comparisons are useful in defining areas in which the performance pre-

diction method is successful and valid. It is also possible to identify

characteristics of the method which are not satisfactory at present.

The performance prediction problem for turbomachinery, as it is

defined in this report, is one of the most difficult unsolved problems

in applied fluid mechanics. It is, therefore, a primary objective of

this review to provide a foundation for future studies in performance

prediction and related areas.



PERFORMANCEPREDICTIONFORAXIAL-FLOWTURBOMACHINERY

Two fundamental problems occur in selection of a geometrical con-
figuration for a turbomachine. The first is the design or indirect
problem and is concerned with the determination of a satisfactory pas-
sage and blading configuration. For this problem, the given information
includes the nature and characteristics of the working fluid, the fluid
properties at the entrance to the turbomachine for the design operating
point of the system, the flow rate and a required change in one or more
fluid properties between the entrance and exit. In addition, there may
be other initial requirements or limits, related to rotational speed,
size, efficiency, and other operating characteristics of the machine.

After a possible design point configuration is determined, it is
essential to consider what will happen to the performance of the config-
uration when it is operated at flow rates or rotational speeds, or with
entering fluid conditions other than those used as design point values.
This second problem, called the analysis or direct problem, can be, for
reasons which will be madeevident in the report, considerably more dif-
ficult than the design problem. The level of difficulty is, however,
substantially dependent on the nature of the information to be provided
by the solution. Someof the methods which have been proposed will be
reviewed briefly in the following paragraphs to indicate clearly their
character.

Performance Prediction Systems Background

Although this section considers somework related to the most gen-
eral forms of solution of the analysis problem, primary emphasis is on
turbomachines in which energy is transferred from the rotor to the work-
ing fluid and in which the result is an increase in the fluid pressure
or head, that is to compressor and pumpconfiguration analysis. In addi-
tion, because of the objectives of the current program, detailed consid-
eration is restricted to work applicable to the class of turbomachines
(axial-flow) in wl_ich the main flow is essentially parallel to the rota-
tional axis. Within these limits, there is a considerable volume of
information available on methods for solution of the analysis problem.
These methods maybest be classified by reference to the scope and nature
of the results obtained.

One category of performance prediction systems produces only over-
all performance characteristics. This class is exemplified by references
1-4 and its use is discussed by Robbins and Dugan in reference 5. Ordi-
narily, these methods are based on one-dimensional (e.g. meanradius)
calculations, on "stacking" of the estimated performance curves for



individual stages, or on assumedanalogous behavior between the config-
uration of unknownperformance and previously-tested configurations.
Suchmethods are useful for component-matching and systems studies, and
to a limited extent can be used for locating mismatches between stages
in multistage compressors and pumps.

A second and far more difficult type of performance prediction
method is based on computation of the fluid velocity and properties at
selected points in the flow path of the turbomachine. A mathematical
model of the flow is developed and solution of the resulting equations
permits determination of flow patterns in the turbomachine and, by
appropriate averaging techniques, the overall performance characteristics.
The solutions are iterative and, for all practical cases, are feasible
only if accomplished using a large-scale digital computer.

The significance of such methods can readily be understood. If
the local velocity and properties could be calculated with someaccuracy
at desired points in a proposed configuration, alternate geometry choices
could be evaluated during the design process without experimentation.
Furthermore, the availability of both overall performance and detailed
velocity distributions for off-design operating conditions would contrib-
ute substantially to reducing required design and development time for
the system in which the turbomachine is a component.

The performance prediction method described in this report is of the
second type and all subsequent uses of the term "performance-prediction
method" herein refer to methods of this type. As background information
for the work discussed, it is appropriate to review someof the related
prior studies.

Someof the earliest reported work on the analysis problem was done
bySerovy (refs. 6and 7) andby Swan(refs. 8 and9) for axial-flow compressorcon-
figurations. Both investigations werebasedona finite-difference solution
of the nonisentropic radial equilibrium and continuity conditions at
stations between blade rows. The steady, axisymmetric model of the flow
used has been described and justified thoroughly in references i0, II
and 12. In each method, correlations of experimental data were developed
and used for predicting the radial distribution of the fluid turning
angle and of the total-pressure loss for each blade row. Trial solutions
were presented for single-stage geometries, and comparison with experi-
mental data was not good. Principal discrepancies appeared to be the
result of inadequate data correlations for flow angle and loss. Never-
theless, the two studies demonstrated the feasibility of numerical solution
systems in generating both detailed flow passage distributions and over-
all compressor performance.

Jansen and Moffatt (ref. 13) usedasimilar approachin developinga
program for computation of multistage axial-flow compressor performance.



The steady, axisymmetric model was again used as formulated by Novak
(ref. 14), andthis formulation included improvedschemesfor iterative loca-
tion of the axisymmetric stream surfaces and for computation of local
values of stream surface slope and curvature. Example solutions for
two multistage compressor configurations were, as in the earlier inves-
tigations, less than satisfactory. It is likely that experimental data
correlations and computedannulus wall boundary layer displacement thick-
nesses were responsible for muchof the observed difficulty.

Davis (refs. 15and 16) hasdescribedaprogramanddatacorrelations for
compressor analysis and design problem solutions. This program was pri-
marily based on the flow model of Novak (ref. 14), combinedwith correlations
available from earlier studies. Davis provides extensive flow diagrams
and descriptions of program logic, together with explicit definition of
the correlation equations used. Creveling and Carmody(ref. 17) also have
developed an analysis program for multistage axial-flow compressors.
Again, the documentation of the program is reasonably complete for both
data correlations and the flow model.

MorerecentlyDaneshyar (ref. 18) andGrahl (refs. 19and 20) used flow
modelssimilar toNovak (ref. 14) andtheirowndatacorrelations to predict com-
pressor performance. Daneshyar discusses in somewhatmore detail than
any earlier work, the numerical problems which are encountered in flow
passage solutions. This useful discussion is supplemented by papers of
Marsh (ref. 21) andWilkinson (ref. 22), whogive a gooddeal of insight into some
of these numerical difficulties. These stability, convergence, and loss-
of-solution problems are important, and this will be madeevident in the
discussion of the current analysis program development.

All of the preceding referenced work is concerned with analysis
for axial-flow-compressor geometries. The methods are also similar in
that they assumea steady, axisymmetric flow. All reported calculations
are at stations located in the axial spaces between blade rows. The
basic flow model is, therefore, that identified as the blade-element
model and described in reference I0. Fundamental differences in strat-
egy exist between these methods in the numerical solution techniques
applied, including the meansfor estimating local values of stream sur-
face position, slope and curvature. It is clear, even in those instances
where program documentation is not included, that program logic is not
similar in the various systems. Finally, there is evidence in all cases
that the experimental data correlations required are a major source of
program trouble. Becausethese correlations, which permit calculation
of blade row relative exit flow angle and blade row relative total-
pressure loss as a function of spanwise location, are present in every
method, they may be isolated as a possible source of difficulty in the
work reported herein.

A somewhatdifferent means for formulation of the analysis problem
for axial flow turbomachines has been proposed and used by Marsh,



Gregory-Smith andothers (refs.23and 24). Thematrix through-flowmethodhas
been reasonably well documented, but unfortunately has not been tested
by application to an adequate number of realistic flow situations. It
does not avoid the requirement for input of key empirical data correla-
tions and in example solutions currently available, does not appear to
offer a clear improvement in any area of performance calculation.

Additional examples of related research on turbomachine analysis
are contained in references 25 to 28. Aprocedureand computerprogram
for axial-flow turbine analysis is described in reference 25. Another
is discussed Renaudin and Somm(ref. 26). Anovelmethod for avoiding
solution convergence problems is used in reference 26, which should be
applicable to other turbomachine cases. Novaket al. (ref. 27) haveattempted
adaptation of the earlier system reported in reference 13 to the esti-
mation of effects of inlet flow distortion on axial-flow compressor per-
formance. Ribaut (ref. 28)has outlineda systemfor avery general analysis
of the through-flow field, but unfortunately, the problems of applica-
tion appear to be substantial.

The analysis system described in this report differs essentially
from earlier efforts in a few areas. First, the blade-element model is
applied to axial-flow-pump analysis. As a result, it avoids problems
that derive from changes in fluid density and from the loss phenomena
associated with shock waves where acoustic velocity levels are reached
or exceeded in compressor blade passages. Second, the influences of
stream surface slope and curvature on the radial distribution of velocity
are omitted. Third, a program logic is used that is believed to be some-
what unique and very efficient. Finally, somenew ideas in data corre-
lation are developed, which can only be proven by comprehensive applica-
tion and testing. In every area, it is the intent of the report to disclose
the reasoning leading to choices amongalternate options and to expose
the segmentsof the program that presented the greatest difficulty.

Problem Analysis For Axial-Flow PumpConfigurations

Figure 1 is a typical plot of the experimental performance of an
axial-flow pumpstage. The data points were obtained by measuring fluid
properties and velocities at the pumpinlet and downstreamfrom the stage
at stations as shownin figure 2. Operating at constant rotational speed,
while controlling the flow by meansof a downstreamthrottle, data sets
were measuredat specified volume flow rates. The actual points plotted
were obtained by averaging the radial distributions of measuredproper-
ties. Corresponding to each data point on figure i are radial distribu-
tions of various flow parameters and reduced data such as those shown
in figure 3.

Becausemost system analysis and design evaluation requirements
are based on the use of curves such as those in figures i and 3, it is



logical to makegeneration of such curves a major goal in a performance
prediction method. It is less apparent, but equally important to note
that the modeof operation and data acquisition for the pumpis based
on the assumption of certain characteristics of the flow that are in
keeping with the nature of the flow model described in the following
paragraphs. These considerations have an important influence on the
development of procedures and logic.

Flow Model

The analysis method described here is directed toward the problem
of prediction of the flow patterns in axial-flow pumpconfigurations.
In proceeding toward this objective, a number of decisions were made
which called for the use of parameters or techniques drawn from estab-
lished axial-flow compressor and pumptechnology. Wherever possible,
attention will be called to these decisions and to the limitations which
they might place on the method.

All calculations are madein planes perpendicular to the rotational
axis of the configuration. These planes must be located in the axial

spaces between blade rows and are analogous to measuring stations shown

in figure 2. Aside from the computational convenience resulting from

use of such stations, the computed velocities and properties may readily

be checked against experimentally measured data obtained from the radial

survey probes. The local flow in all of these calculation planes is

assumed to be steady and axisymmetric. Again, this is consistent with

data acquisition methods, in which most rotor data have been taken using

steady-state instrumentation located at a limited number of circumferen-

tial positions. _ehind stationary blade rows, circumferential property

surveys have typically been made at constant radius values and averages

have been taken at each radius to compute velocity diagram quantities

for that radius. The result for rotor and stator measuring planes is a

series of local velocity diagrams for selected radial positions.

A coordinate system which is consistent with typical data acquisi-

tion is used for the analysis program. The system is a cylindrical type

with r, _, and z coordinates. The z axis is coincident with the rota-

tional axis of the pump and is positive in the direction of inlet flow.

Local velocity diagrams for all calculation planes follow the sign con-

vention shown in figure 4. The reason for omission of the radial compo-

nent of velocity will be given later.

The flow through all blade rows is assumed to follow stream surfaces

of revolutions which are fixed by the flow continuity condition at the

calculation planes upstream and downstream from the blade row. No attempt

is made in the performance prediction method to trace the assumed stream

surface within the blade row. For calculation purposes, these surface

of revolution may be thought of as shown in figure 5. These surfaces



intersect the blades to form a cascade of blade sections. A "cascade
plane" view of the intersection surface, as seen by an observer looking
along a radial line, is the basis for estimation of changes in flow
angle and total pressure through eachblade row (ref. 29). Figure6 repre-
sents such a cascade plane projection and defines a number of blade
section geometry and cascade flow parameters.

For the calculation system, radial componentsof local velocity in
all calculation planes are assumedto be negligible. At the same time,
all stream surface slope and curvature effects are eliminated in estab-
lishing the equations governing the flow. This aspect of the flow model
differs from the treatment of flows in most axlal-flow compressor analysis
systems, in which stream surface slope and curvature influences may be
significant factors. In the current study, examination of experimental
data from a large numberof axial-flow pumpgeometries showedthat stream
surfaces for a range of flow conditions were very nearly cylindrical,
with near-zero radial velocity components.

For all calculations, local effects of fluid shear stress are
neglected in setting up the equations representing the flow model• This
does not meanthat the cumulative effects of shear stresses do not affect
the local flow, becauseupstream total-pressure losses are accounted for
in determining the flow patterns in each calculation plane. This is an
important distinction, because it will becomeevident that the accumu-
lated losses in total pressure which occur on the assumedstream surfaces
are amongthe most significant factors in influencing velocity distribu-
tions.

The equations representing the flow are all formulated for a fluid
with a constant density. Nowherein the analysis system is provision
made for two-phase flow or for effects of cavitation.

For a steady, axlsymmetrlc flow neglecting local fluid shear stress
terms, the radial componentof the differential equation of motion is

2 _V _V
_h V @ r r

g _ = 7- - V -- - V ---- (I)r_r z _z

For constant-density fluid flows, a historically significant parameter
has been the local total head defined as

V 2

H = h + 2g (2)

Differentiating equation (2) with respect to radius and substitut-

ing in equation (I), gives

2 _V@ z_V _V
vs+ ve + v -

_H
g =r z Vz r_ z" (3)



This is the radial equilibrium condition and is the equation used to

determine the radial variation of axial velocity component in each cal-

culation plane. The last term is omitted as a result of the assumption

of negligible radial components of velocity.

In each calculation plane, the flow must also be consistent with

the designated pump entrance flow rate. For an axlsymmetric flow of a

constant-denslty fluid, the flow rate equation in integral form is

_rtip

q = 2_J V z rdr .
(4)

rhub

For flow through a rotating blade row, in which energy is added to

the fluid, the change in total head along a stream surface between en-

trance and exit calculation planes is

H 2 = H I + U2Vs, 2 - UIV@, I - Hloss • (5)

For a stationary blade row, in which no energy transfer occurs, the

corresponding equation is

H 2 ffiH I - Hloss . (6)

These equations, together with equations defining the various pas-

sage and cascade flow parameters, are those which represent the flow in

the calculation planes for the axial-flow pump analysis system. In the

following section, these equations will be written in finite difference

form as they have been programmed for digital computer solution.

With the exception of the assumptions concerned with radial velo-

city components and stream surface shape effects, the flow model proposed

is essentially the same as that presented in reference I0 and used in

numerous axial-flow compressor design and analysis situations. The equa-

tions presented are particularly adapted to the study of constant-denslty

fluid flows. It should also be noted that no arbitrary factors are de-

fined to account for passage wall effects. Specifically, no boundary-

layer blockage factor enters the continuity condition. This point should

be recalled in connection with comparison and interpretation of experi-

mental and computed results as presented in later sections of this paper.

Computing Sequence

As described in the following section, the performance analysis

program computes fluid velocities and properties for discrete values of

inlet flow rate at a constant pump rotational speed for fixed and speci-

fied passage and blade row geometries. Beginning at a base flow rate,

the program marches up and/or down in flow rate in much the same way



the pump configuration would be experimentally evaluated. Results avail-

able to the user include those which would be most significant in design

evaluation.

Numerical Solution of Governing Equations

The simple radial equilibrium equation for determination of the

radial distribution of axial velocity V z in the leaving flow from a

blade row Is given in equation (3). Solution of this equation for arbi-

trary blade row geometry and operating conditions has to be performed

numerically in conjunction with requirements of the continuity equation

and empirical approximations for head losses and leaving flow angle

deviation in the flow. The development of a finite difference approxi-

mation to equation (3) for the numerical solution is given below.

Consider the meridlonal section through a blade row as shown in

figure 5. A finite number of finitely spaced streamlines given by the

traces of the axisymmetrlc stream surfaces in the meridional plane are

used; intersections of these stream surfaces in the blades are the blade

elements defined by the flow through the blade row. The computing stations

just upstream and downstream of the blade row are constant z-planes iden-

tified as i and i + i, respectively. As seen in figure 5, two adjacent

streamlines in the analysis are called streamlines J and j + I, with the

streamline J = I the hub streamline, and j = Jlim the tip or outer casing
streamline.

The flow conditions satisfying radial equilibrium and continuity at

the upstream axial station i are known. To be determined, of course, is

the radial equilibrium and continuity solution for the flow leaving the

blade row at station i + i, and the radial positions there of the stream-

lines used in the solution.

The finite difference approximation to equation (3) is obtained by

integration of the equation between streamlines j and j + i at axial

station i + I. Note again that the final term in equation (3) is omitted

because of the assumption of negligible radial velocities. Thus,

V V 6z i+l, j+l Hi+l, j+l ri+l, j+l i+l, j+l

fv v ff" 'fv  vo-- g dH - -_- dr - (7)

Vz i+l,j Hi+l, j ri+l, j V@ i+l,J

i0



or

2 . V2 _2
Vz i+l,j+l z i+l,j I|_ i+l,j+l

- 2 = g(Hi+l,j+l - Hi+l,j) 2\ ri+l,j+ I

2+ V@ri+l,ji+l,j(ri+l,j+ I _ ri+l'J )

2
- 31 (v2e i+l,j+l ve i+l,j) (8)

Solving this equation for the velocity V z i+l i+1 in terms of the known

velocity V z i+l,j on the adjacent streamline an_ remaining variables yet
to be determined, we obtain,

V 2
z i+l, j+l

_-V 2
z i+l,j + 2g (Hi+l, j+ I - Hi+l,j)

fV_ i+it j+ I-(
\ ri+l, j+l

2ve i+l,j
+ (ri+l j+l - ri+l,j)

ri+l, j /

2

- (v_ i+l,j+l - ve i+l,j) (9)

The head difference term in equation (9) can be written in terms

of the ideal head rise and head loss for the (j+l)th streamline or blade

element as,

Hi+l,j+ I - Hi+l, j = Hi,j+ I + (_Hideal)j+ I

- Hloss,j+l - Hi+l, j . (I0)

This, with substitution of the ideal head rise from equation (5), along

with the velocity triangle relation

V8 i+l,j+l " Ui+l,J+l - Vz i+l,j+l tarL _i+l,j+l (II)

for the leaving whirl velocity component, becomes

II



I
Hi+l,j+ I - Hi+l, j = Hi,j+ I + g [Ui+l,j+l (Ui+l,j+l

- Vz i+l,j+l tan _+l,j+l ) - Ui,j+IV@ i,j+l]

- Hloss,j+l - Hi+l, j (12)

Finally, with substitution of equations (II) and (12) into equation (9)
it is readily apparent that the unknownvelocity Vz i+l,i+l is reintro-
duced on the right-hand side of the equation. With further extensive
but straight-forward rearrangement of the equation, the following qua-
dratic equation for Vz i+l,j+l results:

AV2z i+l,j+l + BVz + C = 0 (13)i+l, j+l
where

A =i + tan2 $1+l,j+l[l + _ri+l'j+l - ri+l'])]
\ ri+l, j+l

(14)

, _ri+l,j+l - ri+l,jlB = -2Ui+l,j+ I tan 8i+l,j+l \ ri+l,J +I ,
(15)

C = -V 2
z i+l,j - 2g(Hi,j+l - Hi+l,j - Hloss,j+I )

_U 2 (ri+l,J

+ 2Ui,j+ I V0 i,j+l i+l,j+l \ri+l,j+i/

2 (ri+l,j+l-2).
+ V@ i+l,j _ ri+l, j

(16)

Solution of equation (13) is iterative due to the fact that V_ _I _i

is dependent on the leaving streamline radial positions, the blade'el_em_t

head loss and flow deviation, and on the leaving flow total head H ....
.l+i,J

and velocity components Vz i+l,j_ V_ i I " on the adjacent streamlines
as well. A plot of the left-hand s_d_+o_Jequation (13) as a function of

Vz i+l,j+l is a parabola; the correct root of equation (13) is at the
intersection of the parabola with the V z axis yielding the greatest V z.

The iteration process to obtain the V z distribution leaving a blade row

continually revises the coefficients in equation (13) for any one stream-

line, and hence the solution, until convergence is obtained. In the case

of divergent iterations, the parabola is altered and readjusted until an

intersection of the parabola (for the streamline) with the Vz axis fails

to exist.

12



Initialization of head losses at zero and streamline radii at con-

stant radial increments are therefore used at an initial flow rate assign-

ment. Also, the axial velocity component at a starting or base streamline

in the leaving flow (Vz i+l,jbase) is assumed for the initial flow rate.

With this starting information, deviation angle can be calculated in

order to determine relative leaving flow angle _1 _1. and leaving flow
h ..... -- • --/_, J/_"total ead an_ wNirl velocity on the adjacent streamline. This incremen-

tal procedure is followed to solve for the blade element radial distribu-

tion of axial velocity, working adjacent streamline to the next, from the

base streamline outward to the outer casing and inward to the hub.

With the Vz i+l distribution known, the continuity requirements

from the assigned flow rate can be checked to revise the base streamline

velocity and iterate as necessary. This is done using simple quadrature

across the annulus to obtain a measure of the flow rate according to

Jlim -I

= >j (Vz + V )
2 2

Qi+l,Jli m __ i+l,j+l z i+l,j (ri+l,j+l - ri+l,j) "

j = I
(17)

Upon convergence of the base streamline axial velocity value, radial

positions of the leaving streamlines are determined according to conti-

nuity and the entering streamline radii; the leaving radii are revised

and iterated on until convergence is obtained. Finally, exterior to the

radial equilibrium and continuity iterations, head losses are estimated

on the basis of the determined flow. This procedure for solution is

followed, of course, at the exit axial station for each blade row through

the pump, with the determined leaving flow for a blade row becoming the

known inlet flow for the following blade row. (Details of the radial

equilibrium and continuity solution are given in the later discussion

of subroutine RADEQC of the pump performance computer program. The basis

of blade element head loss and deviation angle calculations is in the

following section.)
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BI_DE-ELE_IEh_fLOSSANDDEVIATIONANGLEPREDICTION

As will be illustrated in the RESULTSsection, the method for pre-
dicting axial-flow pumpoff-design performance proposed in this report
can only be as successful as the blade-element total pressure loss and
deviation angle estimation procedures required. The simplifications
that led to the tractable mathematical formulation of the axial-flow
pumpoff-design analysis problem must eventually be compensatedfor via
realistic loss and deviation angle prediction.

To date, totally satisfactory general meansfor obtaining axial-
flow pumpor compressor losses and deviation angles, even in terms of
empirical correlations, are not to be found in the literature. Several
options for loss and for deviation angle prediction in pumpshave been
madeavailable with the present computer program. The background asso-
ciated with each technique is described in the following paragraphs.
Stationary plane cascade results are discussed first followed by an
explanation of how these results were extended to apply to three-
dimensional pumpflow.

Becauseof the short time available for developing general three-
dimensional pumpflow blade-element loss and deviation angle calculation
procedures, an empirical approach using reasonably orthodox ideas was
pursued. Realizing that completely satisfactory loss and deviation
angle estimation procedures would probably not result from empiricism,
the goal established was to seek procedures that represented improvement
over use of Carter's rule for deviation angle estimation and two-
dimensional cascade data for loss calculation. Correlations are based
on axial-flow pumprotor blade-element loss and deviation angle data.
For stationary blade rows, pumpconfiguration data werenot available in
sufficient quantity to permit correlation studies.

Stationary Plane CascadeFlow

In view of the widespread use of the blade-element method, it is
not surprising to find that most current loss and deviation angle pre-
diction methods are traceable to stationary two-dimensional cascade flow
ideas. In many instances, more or less empirical "correction factors"
have been used to make two-dimensional methods applicable to turboma-
chinery flows. Thus it seemsappropriate to discuss briefly someof
the two-dimensional cascade loss and deviation angle research relevant
to the options available with the present performance prediction method.

Loss prediction. - As fluid flows over the suction and pressure
surfaces of an airfoil representing a cross-section of a turbomachine
blade, boundary layers develop on these surfaces and meet at the trailing
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edge to produce a wake. Consequently, a decrease or "loss" of relative
total pressure is suffered by the fluid as it flows past the airfoil.
Depending mainly on the surface pressure gradients involved, large or
small wakes and consequent losses may occur. Large losses are generally
related to boundary layer separation on either the airfoil suction or
pressure surface.

Results of the two-dimensional cascade loss-related research con-
ducted by S. Lieblein and co-workers (refs. 30 to 34) in the 1950's remain
influential today. Three data correlating parameters, namely, diffusion
factor, blade-wake momentumthickness to chord ratio, and equivalent
diffusion ratio that evolved from this work form the basis for manycur-
rent axial-flow turbomachine loss prediction techniques.

Diffusion factor: Chronologically, the diffusion factor was devel-
oped first (ref. 30). It wasmainly intended and developedas alimiting-
blade-loading or separation criterion for design point operation that
could be easily calculated from blade row inlet and outlet velocity dia-
gram values. The Buri shape factor (ref. 35),

r=Ud- -- ' (is)

was selected as the fundamental basis for the diffusion factor. Applica-

tion of the Buri shape factor to the blade suction-surface velocity dis-

tribution of a blade element operating at minimum loss in a two-dimensional

cascade led to the derivation of the diffusion factor or parameter

v2
D = 1 - _i + --aOVl+ b (19)

where a is empirically determined to be equal to 2.0 and b is considered

to be negligibly small. This diffusion factor was used with data for

NACA 65-series compressor blade sections in two-dlmensional low speed

cascade and found to be satisfactory in terms of defining a limiting

value of diffusion. The diffusion factor was also applied to selected

conventional (65-series and circular-arc blade section) single stage

compressor rotor and stator data. No significant variation of minimum

(design) loss coefficient with diffusion factor was noted for the hub

and mean radius regions of the rotors and the hub, mean and tip regions

of the stators over the range of data considered, A marked and practi-

cally linear variation of minimum (design) and even off-design (positive

incidence) loss coefficient with diffusion factor was noted for the tip

region data of the rotors for a relative inlet Math number less than

O.75.

Momentum thickness to chord ratio: Further developments by Liebleln

and co-workers (ref. 32) appeared to be motivated by the idea that low-speed

two-dimensional cascade losses are mainly attributable to the blade
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suction and pressure surface boundary layers. It was pointed out by
"Lieblein (ref. 36) that according to the results of references 32, 37, and

38, the contribution of conventional blade trailing-edge thickness to
the total loss is not generally large for compressor sections. He also
observed, on the basis of the data of references 37 and 39, the effect
of blade thickness is small for conventional cascade configurations.
The approach to developing a viable loss prediction method consisted of
developing a relationship between loss and blade wake characteristics
and then identifying parameters that significantly influence these wake
characteristics. The following relationship between total-pressure
loss coefficient and blade wake characteristics was developed (ref. 32) for
the outlet measuring plane (up to 1.5 chord lengths downstreamof the
blade trailing edge) of a constant density flow two-dimensional cascade
of compressor blades:

2H2

2(0_ _ (c°s _._.2)2 3H2 - 1
= \_/co--_ _2 \'_'_os

[ OH 2 ]3 (20)

The important assumptions associated with this equation are that

I. the cascade outlet flow can be divided into a wake region where

total pressure varies and a free stream region where total

pressure remains constant,

2. the inlet flow is uniform across the blade spacing,

3. the outlet static pressure and flow angle are constant across

the entire blade spacing,

4. the outlet free-stream total pressure is equal to the inlet

total pressure.

The term involving shape factor

2H 2

3_ -I

oH 2 ] 3

was judged to be essentially equal to 1.0 for conventional unstalled

configurations. The parameters primarily influencing the boundary layer

growth and subsequent losses on low speed cascade blade sections were

identified (ref. 36) as a) blade surface velocity gradients, b) blade-chord

Reynolds number, and c) the free-stream turbulence level.
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Considering the suction surface boundary layer and thus the suction
surface velocity distribution as being the major contributor to wake
momentumthickness and consequently loss, Lieblein (ref. 36) successfully
correlated sometwo-dimensional cascade minimum-loss data with (B/c)
and D. Recalling that the shape factor term in the relationship between
loss coefficient and wake characteristics is secondary, it was also
determined that approximate values of 0/c calculated from

O0 COS

2o

and

2o

resulted in strong correlation of the cascade minimum loss data of ref-
erence 40.

Equivalent diffusion ratio: Subsequently, Lieblein (refs. 33 and 34) showed

that two-dimensional cascade data for minimum-loss incidence angle, as

well as incidence angles greater than the minimum loss value, could be

generally correlated with @/c and V_ov o/V9 _===e_==m as correlating

parameters. Since the diffusion ra_i_:OVm_-lTV_-_'=e_=,m is diffi-

cult to evaluate for turbomachine flow, a_uivalent-diffu-s"ion ratio,

that could be calculated in terms of blade row inlet and outlet charac-

teristics, was sought. The following semi-emplrical relationship was

developed for two-dimensional cascade flow:

c°s _2 [ C3 )IDEQ - cos _I CI + C2 (i - i*) + C4(C.P.

(21)

where

C,P.
F

= cV-_ cos _I'

C1 = 1.12,

C2 = 0.0117 for NACA 65(AI0 ) blades,

= 0.007 for C.4 clrcular-arc blade,
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C3 = 1.43,

C4 = 0.61,

and

i = minimumloss incidence angle.

Reynolds number effect: As shownby Lieblein in reference 36,
laminar boundary layer separation associated with low Reynolds number
flow significantly affects the blade element losses involved. At low
Reynolds number, turbulence level markedly influences the laminar bound-
ary layer and thus loss. As Reynolds number increases, the extent of
laminar boundary layer separation decreases and the influence of Reynolds
number and turbulence level on loss diminishes. Schlicting andDas(ref. 41)
suggest that "low" Reynolds numbersare of order 105, while "high"
Reynolds numbers are of order 106. The evidence presented by Lieblein
(ref. 36) supports these numbers. Becausethe NASAaxial-flow pumpdata
used for determining loss correlations involved minimumblade-chord
Reynolds number of the order of 106, Reynolds number and turbulence
effects on loss were not considered further during the present study.

Deviation anIf_.eprediction. -- The average flow angle of the fluid
leaving a cascade of identical blades differs from the blade outlet
angle by an amountdefined as the deviation angle. Cascadegeometrical
and flow parameters thought to influence stationary plane cascade devia-
tion angles are as follows:

blade setting angle,
solidity,
profile shape,
total camber,
m_ximumblade thickness,
thickness and camberdistribution,
trailing-edge thickness,
surface finish,
incidence angle,
axial velocity ratio,
inlet velocity level (Machnumber),
Reynolds number,
turbulence level,
unsteadiness, and
cavitation.

Two-dimensional geometric parameters: Two-dimensional cascade
results, and to a lesser extent potential flow theory, have been used
to establish the values of deviation angle for various two-dimensional
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cascade geometries. The plausibility of the dependence of deviation

angle in two-dimensional flow on geometric parameters can be established

by considering the cascades drawn in figure 7. The cascades in figure 7a

each have the same chord length, solidity and camber, but the cascade on

the right has a higher blade setting angle than the other cascade, and

hence has a significantly shorter length of passage bounded on both

sides by blade surfaces. Thus, for a fixed incidence angle, increasing

blade setting angle tends to decrease guidance of the flow and hence

tends to increase deviation angle. Decreasing solidity, _, also tends

to decrease guidance of the flow and increase deviation angle as seen

by the difference in channel length of the two cascades in figure 7b.

Although it is not so graphically obvious (figure 7c) deviation angle does

increase with increasing camber, and according to Lieblein (ref. 36) the

relationship between deviation angle and camber is linear for potential
flow.

One frequently-used deviation angle prediction equation, Carter's
rule (ref. 42) reflects these ideas as

o
c

8 = -i7 
(3

(22)

where m c is a function of blade setting angle and the position of maxi-

mum camber. Curves of m as a function of blade setting angle that arec
based on theory and experimental data are given by Carter and Hughes

(ref. 43) for circular arc and parabolic arc (maximum camber at 40% of the

chord from the leading edge) camberline blades. Howell (ref. 44) ascribed

to Constant (ref. 45) an early version of equation (22) in whichm c = 0.26

was used. Equation (22) applies specifically to the "nominal" incidence

angle which Howell (ref. 44) defines as the incidence angle for which the

turning angle, (c), is equal to 0.8 of the turning angle at which the

loss is twice the minimum value, however, it is frequently applied

throughout the low-loss incidence angle range under the assumption that

deviation angle does not change appreciably with incidence angle in the
low-loss range.

Lieblein's method: A deviation angle prediction method, which

includes more geometric parameters, was presented by Lieblein (ref. 36).

The method was based on two-dimensional cascade data for NACA 65-series

compressor blades which were presented by Emery et al. (ref. 40). Correla-

tions were made for performance at a reference incidence angle (iref)
defined to be midway between the incidence angle at which the total

pressure loss across the cascade was equal to twice the minimum-loss

value (see figure 8). At the reference incidence angle, iref, devia-
tion angle is expressed as

o
5 = 5° + me (23)
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where 6o is the reference deviation angle for zero camber, G° is camber,
and m is the slope of the deviation angle function with camber. Curves
are presented by Lieblein (ref. 36), giving the slope factorm as a function
of inlet air angle and solidity for circular-arc-mean-line blades.
Inlet air angle was used instead of blade setting angle because the cas-
cade date of Emery et al, (ref. 40) were obtained at aconstant inlet air
angle rather than a constant blade setting angle. The zero-camber devia-
tion angle is given by Lieblein (ref. 36) as

where (6o)10 represents the zero-camber deviation angle for a 10%thick
NACA65-series distribution, (K6)sh is a correction for blade shapes
with thickness distributions different from the 65-series, and (K6)t is
a correction for maximumblade thickness other than 10%of the chord.
Empirical curves are given for (6o)10 as a function of inlet air angle
and solidity and for (Ks) t as a function of maximumthickness ratio,
tmax/C. A value of i.I for (K6)sh is recommendedfor C-series circular-
arc blades and 0.7 for double-circular-arc blades. Both of these values
were based on limited data. Plots of deviation angle versus camber,
comparing values from equation (23) with cascade data of Emeryet al.
(ref. 40), are given byLieblein (ref. 367. Equation _ approximates the data
quite well. However, at high cambers where D-factors exceed 0.62, the
experimental data tend to fall above the predicted values. Blade sec-
tions operating at D-factors greater than 0.62 evidently have blade
surface boundary layers thick enough at ire f to cause the flow to differ
significantly from the potential flow for which a linear relation between
deviation angle and camber angle is predicted. A quantitative evaluation
of deviation angle as a function of camber for D-factors greater than
0.62 is currently lacking.

Both methods previously described assumedthe incidence angle to
be fixed at some"design" value. In the following paragraphs, methods
to predict the deviation angle at "off-design" values of incidence angle
are reviewed.

Incidence angle effects: The deviation angle of a plane cascade
is a function of the incidence angle in addition to blade geometry. A
typical curve of deviation angle as a function of incidence angle for a
cascade with a fixed inlet flow angle is shownin figure 9. The devia-
tion angle curve can be roughly divided into two parts, one corresponding
to the so-called low-loss incidence angle interval and the other corre-
sponding to incidence angles outside the low-loss interval. Whenthe
incidence angle is in the low-loss interval, the blade surface boundary
layers are probably quite thin, so that the flow closely approximates
potential flow. Therefore, in the low-loss region, the functional rela-
tionship between deviation angle and incidence angle for a two-dimensional
cascade is quite similar to the relationship for potential flow. Lieblein
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(ref. 46) concluded, basedon calculations using the potential flat plate
fd6_

flow theory ofWeinig (ref. 47), that_)ref is positive for potential flow
and that it is a function of solidity and blade chord angle. Smith (ref. 48),

discussion of reference 46, indicated that _--_{d--0_is also ain a strong
function of camber. \diJref

Using the low-speed cascade data for 65-(AI0)I0 blades of reference
40, Lieblein developed an empirical method to estimate the variation of
deviation angle in the low-loss incidence interval. He assumedthat
since operation could be considered to be in the low-loss region for
only a small incidence angle interval, the following linear function
could be used to compute deviation angle:

6 = 6ref + i Iref _ ref

d 6) Lieblein presentedwhere 6ref and _ ref are determined at/_i = ire f.
of curves from which values of (d_,l may be obtained forfamilya

\di/ ref

solidities ranging from 0 to 1.8, and for inlet air angles ranging from

0 to 70° . These correlations are also presented in reference 36.

Because the 65-Series cascade data (ref. 40) were obtained with inlet

Id_ from curves is appli-air angle fixed, the ref
obtained Lieblein's

cable to a constant inlet air angle cascade, while, as Smith (ref. 48) pointed

out, in practical applications the blade setting angle, y, is fixed and

the inlet air angle varies. Smith (ref. 48) developed relations to obtain

--'d(_z)refapplicable to fixed-_ blade rows from Lieblein' s correlations

and gave a numerical example in which the fixed-_ derivative was larger

than the fixed-E1 derivative by a factor of three for NACA 65-(12)10

blades with o = 1.0 and _I = 60o. Figure i0 shows the variation of

deviation angle with incidence angle from reference 40 for the NACA

65-(12)10 blades of Smith's (ref, 48) example at aconstant inlet air angle,

E1 = 60o" Date from reference 40 were crossplotted to obtain a second

curve shown in figure i0 for the same blades with a constant stagger

angle of 47.6 ° , which is the stagger angle of a cascade of NACA 65-(12)10

blades with 91 = 60° , o = 1.0, and i = ire f computed using the cor-

relations of reference 46. Graphically determined values of ref

are compared with values fromLieblein's (ref. 46) correlation and Smith (ref. 48)

calculation. Based on the differences in this example, it appears that

the fixed-? derivative should be used in preference to fixed-_l deriva-

tives in analysis applications when computing the change of deviation

angle for a change of incidence angle in the low-loss incidence angle
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interval. Smith (ref. 48) also pointed out that because the fixed-yderivative
was strongly dependent on camber, the fixed-_l derivative should be also.

Howell (ref. 49>presenteda single curve for (6- 6nom)/_nomas a func-
tion of (i - inom)/enom where the nominal conditions occur at 0.8 of the
turning angle at which the loss is twice the minimumvalue.

Apparently no method (empirical or analytical) has been published
as yet to predict the functional relation between deviation angle and
incidence angle outside the low-loss incidence angle interval, even for
a plane two-dimensional cascade flow.

Axial velocity ratio effects: It is well knownthat the deviation
angle in a rectilinear or plane cascade depends on the ratio of the
leaving to the entering axial velocities (AVR). Katzoffet al. (ref. 50)
amongothers reported the phenomenonin 1947. Becauseof this effect,
discrepancies exist between deviation angle data measuredunder two-
dimensional conditions in cascades with side and end wall suction and
data measuredin similar cascades with solid walls. The leaving axial
velocity in a solid wall cascade is usually higher because of the general
increase of boundary layer thickness and particularly because of regions
of separation in the corner where the blade suction surface intersects
the side wall. These regions of separation reduce the effective flow
area, which raises the general level of axial velocity leaving the blade
row. Elimination of these regions of separation and establishment of a
constant axial velocity through the cascade can be accomplished by con-
tinuous boundary-layer removal through porous walls, as described in
Erwin and Emery (ref. 51). Aconstant axial velocity isaconsequence of
continuity for the two-dimensional flow of an incompressible fluid.

The changes in flow through a cascade as axial velocity ratio
changes maybe described by considering the accompanyingchange in
pressure distribution. If the losses are assumedconstant for a small
change in AVR, then the static pressure rise across a blade in a cascade
decreases (increases) as AVRincreases (decreases), assuming incompres-
sible flow. The resulting change in pressure distribution is illustrated
in figure ii. In general, the airfoil circulation may also be expected
to change as AVRvaries. The magnitude of the change in circulation has
a direct effect on the change in deviation angle. Evaluating circula-
tion using the path EFGHof figure 12, assuming sI = s2, yields the
result

F = ( _,I - V0,s VA 2) " (26)

From the velocity diagrams in figure 12 it is apparent that the devia-
tion angle will decrease as AVRincreases, if circulation increases
(i.e. V@,2 decreases) or decreases less than an amount that allows V@,2
to increase by more than d units. Similarly if circulation decreases
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or increases less than a critical amount, deviation angle will increase
asAVRdecreases. In fact, available experimental results (refs° 50 to 53) indi-
cate that deviation angle does decrease with increasing AVRand increases
with decreasing AVR, although the data of reference 51 indicate that
circulation decreases slightly as AVRincreases. A reasonably complete
summaryof empirical, semi-empirical and potential flow methods for cal-
culating axial velocity ratio effects is presented in reference 54.

Thickness and camber distribution: Factors are presented in refer-
ence 36 which compensate for the differing thickness distributions of
65-series, C-series circular-arc, and double-circular-arc blades.
Though this correction is rather small, the data of reference 55 (e.g.,
figure 57 of that reference) indicate that camber distribution mayhave
significant effects on deviation angle, at least at off-design incidence

angles. For double-circular-arc blade sections, however, predicting

this effect does not seem especially important.

Trailing-edge thickness effect: Minor geometric parameters, such

as trailing-edge thickness, apparently have negligible effect on devia-

tion angle for normally specified values (refs. 37, 55 and 56).

Miscellaneous effects: The effect of fluctuation of circulation

and other unsteady flows on deviation angle is unknown. Cavitation and

Mach number effects are listed for completeness, but are beyond the

intended scope of the present method and will not be considered further.

Surface finish, turbulence level and Reynolds number did not signifi-

cantly affect the pump data available for correlation and hence were not

considered in detail.

Extension of Stationary Plane Cascade Methods and

Results to Pump Rotor Flow

If the previously mentioned two-dimensional cascade loss and devia-

tion angle prediction methods are to be extended to serve usefully in

axial-flow pump design and analysis, the significant differences exist-

ing between stationary cascade and axial-flow pump flows need to be

identified and considered. Many of the complicated features of pump flow

are inherently absent in the cascade environment. Whereas the flow

through a typical axlal-flow pump blade row is three-dimensional and

unsteady, the flow through plane cascades is mainly steady and two-

dimensional. The three-dimensionality and unsteadiness associated with

typical pump flow stem mainly from blade divergence and twist and rotor

relative motion with respect to the fluid and stationary annulus walls

and blades, features usually not found in plane cascades. At constant

speed, a typical pump rotor blade section operates with unchanging blade

setting angle as incidence changes with flow rate. Most plane cascades

have been operated with incidence variation accomplished by changing

cascade blade setting angle while maintaining constant relative inlet
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angle. In a large portion of the plane cascade work, end wall boundary
layer effects on the resulting flow were minimized by fluid removal.
The flow through an axial-flow pumpblade row on the other hand is appre-
ciably influenced by end wall boundary layers.

Within the time available for developing loss and deviation angle
prediction methods, it was decided that axial-flow pumpexperimental
data correlation would be most practical and therefore should be pursued.
Available for this purpose was a substantial amount of axial-flow pump
rotor experimental data obtained at the NASALewis ResearchCenter (ref. 57).
Pertinent information related to these rotors is given in Table I. To
minimize analysis time and cost, five rotor configurations were selected
as representative of the range of geometry and design variables present
in the twelve rotor configurations for which data were initially avail-

able. The five selected, indicated by asterisks in Table I, were used

exclusively to obtain the correlations explained below. Configurations

07 and 09 differ only in the number of blades and the chord length.

The hydrodynamic design is identical for configurations 5, 6, 8, 9 and

i0, but configurations 5 and 6 have 9-in. diameters while configurations

8, 9, and I0 have 5-in. diameters. The only other differences among

these five configurations are the tip clearance values. Configurations

13 and 16 have the same blade angles but different blade section pro-

files. The double-circular-arc profile of configuration 13 is the more

conventional profile and thus configuration 13 was chosen instead of

configuration 16. Configuration 15 data were reserved to "test" the

resultant correlations. Although the two-parameter correlation philos-

ophy served well in working with plane cascade data, the minimum number

of axial-flow pump data correlation parameters necessary was felt to be

three. An explanation of the development of the various parameters

associated with the three-parameter loss and deviation angle correlation

options available with the present off-design analysis computer program

follows.

Loss _rediction. - Swan (refs. 8 and 9) claimed reasonable success in corre-

lating axial-flow compressor blade-element profile and secondary losses

using Lieblein's DEQ (modified slightly for use with compressor rotor

flow) and %/c as calculated from _ = _ cos 82
c 2_ as correlating para-

meters. Additionally, spanwise location was used as a third correlating

parameter for minimum-loss data and inlet relative Mach number was used

as the third correlating parameter for off-minimum-loss data. In view

of this fact, it was felt that appropriately modified versions of

Lieblein's DEQ and e/c relationships, plus at least one other independent

correlating parameter, might serve as the base for an axial-flow pump

blade-element data correlation method. The modification of DEQ for use

with pump rotor and stator flows is outlined in Appendix A. The results

are :
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v_ cos_ (i iref)c3DEQ r = -- -T C I + C 2
Vz, 2 cos 81

cos281

+ C4 _I Vz,I
(27)

and

f

Vz i cos 82 | C3

DEQs =--_------- 1CI + C2 (i - iref)Vz,2 cos 81

+

2

c4cosrl1O2 Vz, I V@'2 " _2 ve'
(28)

Several parameters related to Lieblein's ($/c) parameter for plane
cascades were identified as possible candidates for use with the axial-

flow pump data. These were:

A 2(j '
(29)

B - 2o \cos _]v/\Vz,2/ \ 2H2 ' (30)

__o__ ivi__

coo 
= 20 \_os _i/ '

(_) = __ _cos _

(31)

(32)

(33)
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Note that (_/c) A and (O/c)D are abbreviated forms of Lieblein's rela-
tionship for _/c for plane cascade flow that was shownearlier (equation
20) to be suitable for correlating plane cascademinimumloss data (ref. 36).
Derivations of (_/c) B and (G/C)c have been included in Appendix B. The
derivation of (_/c) E is given in reference 58.

A "blade-loading" parameter used extensively in compressor design
and sometimes for correlating compressor off-design loss data is the
D-factor modified for 3-dimensional flow, as shownin Appendix C:

V_ rlV$_ - r2V_I 2

= 1---+- (rl+r2)V iDr VI' Oav
(34)

V2
D = 1 ---
s v I

+ r2V____2 - rlV@_l

av (rl+r2)Vl
(35)

In order to "test" the various relationships for blade wake momentum

thickness parameter for suitability as experimental data correlators,

each was used with the pump data provided by NASA. DEQ and D as expressed

by equations (27-28) and (34-35), respectively, provided an indication

of blade loading level. In order to ascertain possible effects associated

with spanwise location that are not strongly reflected in the expression

for wake momentum thickness and loading, suitability tests were performed

on data from similar spanwise locations only. As indicated in figures 13,

(0/c) A and (@/c) E appeared to be about equally more suitable than the
other @/c relationships as experimental data correlators. Similar trends

were indicated when D-factor was used as the abscissa variable. Neither

(_/C)A or (@/c) E seemed to be entirely satisfactory. Nevertheless, since

(0/C)A is the simpler relationship, it was selected as the wake momentum

thickness parameter to use in constructing the three-parameter loss

tables involving (Q/c) A, spanwise location and DEQ or D. The tables

are represented graphically in figures 14 and 15. The curves shown are

indicative of the trends demonstrated by the NASA axial-flow pump rotor

data in figures 16 and 17.

In order to ascertain the worth of the three-parameter loss tables

mentioned above, with respect to a two-dimensional cascade data related

method for calculating losses, an option involving equations (27) or (28)

for DEQ, equations (20) for loss coefficient and the two-dimensional

cascade loss data indicated in figure 18 was made available.

Deviation an_le__redi___ction. - In addition to those items influencing

deviation angle previously discussed in the Stationary Plane Cascade

Section, the following can be identified for the three-dimensional flow

through a typical axial-flow pump rotor:
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corner stall,
tip clearance,
annulus wall boundary layers,
radial gradients of circulation,
radial flow of blade boundary layer fluid,
blade row interaction parameters, and
blade sweepand dihedral angles.

Corner stall and tip clearance flow, while important locally, pro-
bably directly affect the deviation angle for only a small percentage
of the total span. For this reason, and because data are lacking for
empirical correlations, the influence of corner stall and tip clearance
flow was not directly accounted for in the present correlation.

Presence of annulus wall boundary layers in the flow approaching a
blade row tends to result in local overturning or decreased deviation
angles. This phenomenonhas been discussed for the simpler case of
curved channels in reference 59 and for two-dimensional cascades in
reference 60. It is also included in the more general analysis of ref-
erence 61. However, in all cases, the flow model is highly idealized,
and the theory does not appear to be directly applicable to real flows
where skewedboundary layers and tip clearance flows exert significant
influence on flow patterns. In any case, the percentage of fluid
involved is small and the errors involved in neglecting cascade secon-
dary flow are not expected to be large (see data presented in reference
6o).

The effects of radial gradients of circulation on deviation angle

have been considered in reference 62 for inlet guide vanes and in a more

general context by reference 61. A conclusive evaluation of this effect

was not completed, but it may be worthwhile in the future to apply the

analysis of reference 61 to a typical pump rotor for a quantitative

indication of the magnitude of the effect.

Radial flow of boundary layer fluid may have both a direct and

indirect influence on deviation angle. Deviation angle would be directly

affected when radial movement of the boundary layer either triggers or

retards flow separation from a particular blade section. Indirect

effects could result from the axial velocity ratios required to satisfy

radial equilibrium for a flow with loss profiles that include effects of

low momentum fluid moving radially in the wake behind the blade. In both

cases, the movement of boundary layer material could be expected to be

reflected in the downstream axial velocity profile. This suggests that

an empirical correlation based on three-dimensional data, which accounts

for axial velocity ratio effects, might also partially account for the

effect of radial boundary layer flows.

27



!

yields a quadratic equation in V2,c° The corrected diagram can then

be computed from the appropriate root V 2 c' U2' and V z I" The expecta-

tion was that 6c from elther of the iteratzve approaches would more

closely approximate the measured deviation angle than a value computed

directly from Carter's rule using the actual blade section camber. How-

ever, the comparison of results in figure 22 shows that the corrected

deviation angles are generally smaller than the deviation angles from

Carter's rule which are in turn much too small over most of the blade

span for the high loaded rotors in figures 22b and 22c. These results

are typical for all the rotor configurations and for other flows. Based

on these results these correlation approaches are also discarded.

An approach similar to the iterative, constant circulation one dis-

cussed above with a variable exponent on the camber term in the function

used to compute _, namely

(_° _b/g I/26c = m _ c J ' (43)

was tried next. In this case, the exponent was chosen so that

b = b . (44)
c exp

Values of b computed at all radial positions for operation at reference

incidence angle are given in figure 23. The exponents show a consistent

trend except at the hub and tip for configuration 02. This configura-

tion is a low hub-tip ratio, lightly loaded rotor intended to typify a

transition rotor, located between a lightly loaded inducer and high

loaded main stages. With the subsequent development of higher loaded

inducers (ref. 65), this type of rotor is not likely to appear inamultistage

pump. Therefore, the fact that the exponents from configuration 02 fall

outside the band in figure 23 is not considered a major deficiency in the

method, although it indicates a lack of generality.

As another approach, the method just described was simplified by

using the actual blade camber instead of a corrected camber in the func-

tions for _c:

- . (45)

The exponent was again chosen so that the following expression was

obtained:

8 = b . (46)
c exp
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Yhe resulting exponents are shownas a function of percent passage height
in figure 24. The band of data is about the samewidth as that in figure
23, except at the tip section where the exponent for configuration 07
showsmore scatter. This was considered the most promising approach for
predicting deviation angles at reference incidence angle operation. A
preliminary check on the method wasmadeby calculating deviation angles
for the five configurations using equation (45), wherebwasobtained as
the meanline of the band in figure 24. The results are given in Table II.
Excluding configuration 02, the deviation angles, 6c, computedfrom
equation (45) are within + 2.6 ° of the measured angles, which is a sig-

nificant improvement over Carter's rule. Note that because the camber

of configuration 07 is small at the 10% station, the large scatter in

the exponent (figure 24) resulted in only a 1.3 ° discrepancy in deviation

angle. However, this is still a large percentage of the relative turn-

ing angle.

Incidence angle: Prior efforts to predict deviation angles at off-

reference incidence angles are mainly represented by Lieblein's correla-

tions (ref. 36) of two-dimensional low-speed air cascade results. In this

correlation, values of dS/di are presented as a function of solidity and

inlet flow angle. The dS/di is always positive and only applies to inci-

dence angles near ire f. However, in the analysis problem it is necessary
to predict deviation angles over the entire range of operation and not

just near ire f. Furthermore, as illustrated by data in figure 25, the
slope dS/di is not always positive for pump rotor blade sections even

at ire f. The incidence angle corrections of reference 36 are clearly

inadequate and the characteristics of data in figure 25 preclude any

possibility of a simple functional relationship of the form

The method involving equations (43) and (44) described earlier was

also applied at off-reference conditions to obtain values of camber

exponent b. The results are shown in figure 26 for five spanwise posi-

tions. If configuration 02 data are excluded, a consistent trend is

exhibited near the tip and hub but considerable scatter exists in the

midspan data at low incidence angles.

Very similar results were obtained when the camber exponent was

computed using the actual camber equation (equation 45). These results

are presented in figure 27. At the tip section the exponents for con-

figuration 07 fall above the others, which is consistent with results

in the previous section. In spite of the greater scatter in figure 27

as compared to figure 26, the simplicity of using actual blade camber

instead of an equivalent camber obtained by an iterative calculation

suggests its use. Lines fitted through the data of figure 27 are shown

in figure 28. These variations of the e_ponent b and the relationship

expressed by equation (45) together form a method for calculating devia-

tion angles that is available as a program option.
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Reference incidence angle. - Associated with the loading parameter,

DEQ, and the three-parameter off-design deviation angle correlation

method involving the camber exponent b, i ire f and spanwise location

(fraction of passage height from the tip), is a reference incidence

angle, ire f. Two possible reference incidence angles were considered:

(i) a reference incidence angle based on the experimental rotor data

for a given blade element; and (2) the reference incidence angle which

would be predicted for the given geometry using the two-dimensional cas-
cade correlations of reference 36. Basing the reference angle on the

experimental rotor data seems attractive at first, but is not possible

because of the complicated nature of flow in rotors. For example, the

loss coefficients measured for blade elements at 50, 70 and 90% of pas-

sage height from the tip often are very low and change very little over

the entire test incidence angle interval, making it impossible to deter-

mine a reference angle as defined in reference 36. Typical examples of

flat loss-coefficient distributions for these blade elements are shown

in figure 29. Sometimes the loss coefficients increase or decrease as

a function of incidence angle with no minimum value defined, as illus-

trated in figure 30. In either case, the reference incidence angle

cannot be defined as in reference 36. Even in the few cases where the

experimental loss coefficient curves allow the reference incidence angle

to be defined (figure 31), the incidence angle so obtained may be mis-

leading because the loss indicated from measurements downstream of the

rotor is probably a distorted indication of the loss generated by that

element. It may be more or less than the actual loss generated by the

flow around the blade section because of the migration of low momentum

fluid along the blade and annulus surfaces (ref. 66). For these reasons a

reference incidence angle based on the experimental rotor data was not

used.

Instead, a reference incidence angle based on the correlations of

reference 36 was chosen. These correlations were derived from cascade

data obtained with fixed inlet flow angles, i.e., the incidence angle

was varied by re-setting the blades, and hence the correlation incor-

porates inlet flow angle as a parameter rather than stagger angle.

Since rotor blades have fixed setting and variable inlet relative flow

angles, the correlations of reference 36 do not directly yield a single

reference incidence angle for rotor blade elements. However, a unique

reference angle can be obtained by an iterative procedure as follows

(ref. 67):

I. an initial estimate of ire f is made;

2. from the known blade angle and the estimated ire f, a corre-

sponding inlet relative flow angle is calculated;

3. using the calculated relative flow angle and the correlations

of reference 36, a new value of ire f is obtained and compared

with the estimated value; and

4. if the calculated and estimated values of ire f are different,

the estimated value is revised and steps 2, 3, and 4 are re-

peated until convergence is obtained.
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This procedure contains the implicit assumption that the same
reference incidence angle would be measured in a constant blade setting
angle cascade (y = constant) and a constant inlet flow angle cascade
[_I = _re_ + _I, where _I is the inlet blade angle corresponding to
v = constant]. This assumption is not strictly correct as noted in
reference 36 and illustrated by cross-plotted data (ref. 40) in figure 32.
For this example, the reference incidence angle for a constant setting
angle cascade is 1.2° less than for a constant inlet flow angle cascade.
Applying the reference incidence angles obtained from reference 36 also
involves the assumption that the reference incidence angle is not depen-
dent on the axial velocity change across the cascade because the axial
velocity ratio was about 1.0 for the data correlated in reference 36,
while axial velocity ratios ranging from 0.55 to 1.40 were measured
across the rotor blade sections. No attempt has been madeto evaluate
the possible change of reference incidence angle caused by the change
in diffusion accompanyingaxial velocity ratio changes. While the
assumptions involved were recognized, the ire f obtained from reference
36 was considered to be the most consistent and best estimate available
for the reference incidence angle.

Specific experimental data correlations. - A less general data

correlation method for individual pump rotors was also determined. As

mentioned previously the blade chord Reynolds numbers associated with

the axlal-flow pump experimental data were high enough to justify

neglecting Reynolds number effects. It seems reasonable then to assume

that the experimental data blade-element non-dimensional velocity dia-

grams (all velocities non-dimensionalized with tip speed), and therefore

loss coefficients and deviation angle, will be mainly dependent on aver-

age flow coefficient in addition to spanwise location and blade row

geometry. Based on this assumption, tables of experimentally determined

loss coefficients and deviation angles as functions of exit streamline

spanwise location (radius) and effective average inlet flow coefficient

can be constructed for specific rotor configurations. In such loss and

deviation angle correlations, appropriate effective inlet flow area to

annulus area ratios as a function of flow rate are required. These

ratios permit the calculation of effective average flow coefficients

from theoretically computed ones determined in a radial equilibrium

solution.

In all of the other loss correlation methods discussed, the result-

ing predicted loss is strongly dependent on the calculated exit flow

conditions via the loadingparameter D or DEQ. Inherent with the speci-

fic loss correlation method presently described is a weak relationship

between predicted loss and calculated exit flow conditions via exit

radius. This difference accounts partly for the solution stability

associated with using the specific loss correlation method.
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COMPUTERPROGRAMCAPABILITYANDUTILIZATION

As already outlined in the solution method, the performance pre-
diction program is based on numerical solution for radial equilibrium
and continuity requirements in the meridional flow at axial stations
between blade rows in a given pumpconfiguration. Blade-element head
losses, deviation angles, and reference incidence angles are estimated,
based on available correlated data tables. Simple radial equilibrium,
accounting for streamline shift across a blade row but ignoring stream-
line slope and curvature at computing stations, is employed. Blade
elements in a blade row defined by streamlines as determined in the
solution are the basis for the computedblade-element performance.

Input to the program includes pumpannulus and blade geometry,
rotational speed, flow rate, and reference data tables for head loss
and deviation angle calculations. Numberof streamlines at which the
numerical solution is madeis also prescribed by the user. The geometry
data describing the annulus inner and outer radii and blade element
geometric parameters are inputed in tabular form forbetweenblade-row
stations. Flow rates are also given in the form of tables assigning
radial distributions of flow velocity and total head at the inlet
station to the pump. Using these input tables for the flow at the inlet
station, the program computes flow rate and establishes streamlines
which are followed in calculation of the flow solution through the blade
rows. Extensive use is madeof interpolation procedures in the program
to obtain blade-element results from the various data tables. Both
blade-element and mass-averaged rotor or stage performance is computed
and outputed by the program.

Overall operation of the program for a given pumpperformance
problem is formed in two nested iteration loops. These are a head
loss iteration loop, and a radial equilibrium and continuity iteration
loop nested within, both of which require initializations. Blade-
element head losses are initialized zero prior to solution at the be-
ginning flow rate for a given rpm, while a base streamline velocity is
assigned an approximating average value corresponding to the beginning
flow rate. The samebasic calculation schemeis used for any blade
row, rotating or stationary, for any given rotational speed and flow
rate of the pump. However, the program input and calculations are
arranged so that successive values of flow rate are computedalong lines
of constant rpm. (Beginning flow rate for a constant rpm line is
generally high relative to the design flow, since loss of radial
equilibrium solution maybe encountered at lower assigned flow rates).
In this process, the solution, including head loss distribution ob-
tained at the preceding flow rate,is used as initialization of iterations
at the next flow rate.
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In the following sections, explanation of program input load prepara-
tion is given along with a detailed discussion of the program. Descrip-
tions, including flow diagrams and glossaries, are given for the main
program and each subroutine. A complete listing of the program and
sample program loads and outputs are contained in Appendices D and E.

Input Load Description

In this section a working description of input load preparation is

given to enable the program user to estimate off-design performance for

arbitrary pump configurations and operating conditions.

Input is identified by card packets which carry an identification

number (ID) in the first two columns of each card. The ID is read by

the program as the data are loaded into the computer to check the ordering

of input cards. If incorrect ordering is detected, an error message is

printed and calculations terminated.

The card packets and their arrangement in particular card packet

sets are described below. The numerous options that exist within an

input data load are explained. Also sample data loads are presented

for purposes of illustration.

Card packet sets. - Input is ordered in terms of six basic sets of

card packets. These card packet sets, referred to for convenience by the

initial card packet in each set, are as follows:

a) Card packet set I0 -- limit specifications card for pump con-

figuration

b) Card packet set 18 -- head loss and deviation angle specifica-

tions per blade row of configuration

c) Card packet set 30 - geometry data per blade row of con-

figuration

d) Card packet set 50 -- assigned rotational speed (rpm) per

blade row of configuration

e) Card packet set 70 -- base streamline axial velocity initiliza-

tion card corresponding to first flow

rate
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f) Card packet set 80 - assigned flow rate, inlet conditions, and
axial station effective flow area factors

Card packet sets 18 for all the blade rows of the pump configuration

are loaded before proceeding to packet sets 30. The same is true for

packet sets 30, before proceeding to packet sets 50. Multiple rpm

calculations are made by successively loading packet sets 50, each

followed by packet sets 80 for the appropriate flow rates. Finally,

multiple pump configurations may be loaded, each starting with packet

set I0, followed by sets as described above.

Card packets:

ID Card Col.

i0

Format

1,2 12

3,4 12

5,6 12

7,8 12

9-14 16

15-20 F6.4

18 1,2 12

5,6 12

7-13 F7.4

19 1,2 12

3,4 12

20

5,6 12

1,2 12

3,4 12

Data Input

identification number, ID

number of blade rows plus I, ILIM

number of streamlines, JLIM; _ 3, _ 20

base streamline number, JBASE; > I, < JLIM

(but generally taken near mld-radlus-of the

annulus)

problem run identification, IRUN

tolerance value for head loss iteration, THL

(ratio of change in computed head loss to

previously computed head loss)

ID

blade row number

blade row reference radius, RSTAR, ft

ID

blade row option for head loss calculation,

IEXLOS

blade row option for deviation angle calcula-

tion, IEXDEV

ID

number of elements in PHIBB array (packet 21)

for blade row; > 3, < 20
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ID

21

22

23

24

25

26

Card Col.

5,6

1,2

3-7

68-72

1,2

3-7

68-72

1,2

3,4

5-9

70-74

1,2

3,4

5-9

70-74

1,2

3,4

5,6

1,2

Format

12

12

F5.4

F5.4

I2

F5.4

F5.4

I2

I2

F5.4

F5.4

12

12

F5.4

F5.4

12

12

12

12

Data Input

number of elements in XPB array (packet 22)

for blade row; > 3, < 20

ID

reference table of inlet flow coefficient for

blade row, PHIBB

ID

reference table streamline radius at outlet

of blade row, XPB, ft

ID

card identification (visual checking only)

reference table (for blade row) of head loss

coefficient, OMEGBB, function of PHIBB, XPB

ID

card identification (visual checking only)

reference table (for blade row) of flow

deviation angle, DEL2B deg., function of PHIBB,

XPB

ID

number of elements in XDBB or DEQBB array

(packet 26) for blade row; _ 3, j 20

number of elements in RPBB array (packet 27)

for blade row; _ 3, < 7
n

ID
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ID

27

28

30

31

32

Card Col.

3-8

69-74

1,2

3-8

69-74

1,2

3-8

69-74

1,2

3,4

1,2

3,4

1,2

3,4

5,6

7-13

14-20

21-26

27-33

34 -40

Format

F6.4

F6.4

12

F6.4

F6.4

12

F6.4

F6.4

12

12

12

12

12

12

12

F7.4

F7.4

F7.4

F7.4

F7.4

Data Input

reference table of D-factor or equivalent

D-factor, XDBB or DEQBB, for blade row

ID

reference table of fraction of passage height

from outer casing, RPBB, for blade row

ID

reference table (for blade row) of wake momentum

thickness/chord, THACBB, function of XDBB or

DEQBB and RPBB

ID

blade row number

ID

number of elements in geometry arrays (packet

32) for blade row

ID

blade row identification (visual check only)

number of radial position, J

reference radius at blade row inlet, X, ft

blade element leading edge camberline tangent

angle, ALFB, deg., function of X

reference angle radius at blade row exit, XP, ft

blade-element trailing edge camberline

tangent angle, ALFPB, deg., function of XP

blade-element solidity, SGMAB, function of XP
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ID

5O

70

80

81

82

Card Col.

41-47

48-54

55-62

63-69

1,2

3-8

1,2

3-8

1,2

3-8

9-14

15-20

21-26

Format

F7.4

F7.4

F7.4

F7.4

12

F6.4

12

F6.4

12

F6.4

12

12

12

F6.4

F6.4

F6.4

F6.4

F6.4

F6.4

Data Input

blade-element maximum thickness/chord, TMXCB,

function of XP

blade-element reference incidence angle minus

cascade rule incidence angle, FI2DB, deg.,

function of XP

blade-element wake form factor, FHB, function

of XP

Shape correction factor, FKSHA, function of XP

ID

blade row rotational speed, rpm

ID

initializing base streamline axial velocity,

ft/sec

ID

flow rate calculation identification number,

PHIRUN

ID

number of elements per array (packet 82),

> 3, <20

ID

reference radius at inlet station, Xl, ft

fluid axial velocity at inlet station, VZB,

ft/sec, function of Xl

fluid whirl velocity at inlet station, V-UB,
ft/sec, function of X1

total head at inlet station, HB, ft, function
of Xl

reference radius at inlet station, Xl, ft

total head at inlet station, HB, ft, function
of Xl
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ID Card Col. Format

83

51-56 F6.4

69174 F6.4

1,2 12

3-8 F6.4

69-74 F6•4

Data Input

reference radius at inlet station, XI, ft

total head at inlet station, HB, ft, function

of XI

ID

effective flow area/annulus area, ARFAC, per

successive axial calculation station

Blade rows are numbered sequentially through a pump configuration,

starting with the first blade row as blade row I. Axial stations are

also numbered sequentially through the configuration, starting with the

inlet station to the pump as station I.

Card packets 20-24 (optional) constitute user supplied reference

tables of head loss coefficient and flow deviation angle as a function

of inlet flow coefficient and leaving streamline radius for the blade

row. This is true also regarding packets 25-28, in which tables of wake

momentum thickness/chord are inputed as functions of D-factor (or

equivalent D-factor) and fraction of passage height from the outer casing.

As many cards as necessary are used in packets 21-24 and 26-28 to fill

out the specified arrays.

In packet 21, the reference flow coefficients given are to

be consistent with flow coefficients based on blade speed computed

by the program using the supplied reference radius in packet 18 and the

given rotational speed. For a stationary blade row, the reference

blade speed is based on the reference radius for the blade row and the

rotational speed of the rotor of the pump. In the case of no rotor,

reference blade speed is taken as unity, and reference radius is ignored.

Radius values given in packets 22, 27, 32, and 82 should range

across the entire annulus at the axial station considered to include

hub and casing locations•

User supplied blade-element geometry data in packet 32 are to

conform with the sign convention previously noted• Wake form factor

and blade section geometry correction factors are as presented in the

section BLADE-ELEMENT LOSS AND DEVIATION ANGLE PREDICTION.

In packet 50, rotational speed - 1 indicates a new pump configura-

tion follows immediately (starting with packet I0).
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Packet 70 accompanies only the first flow rate to be calculated
for a pumpconfiguration.

Packet sets 80 for all assigned flow rates for a given rotational
speed follow packet 50 (or 70). PHIRUN< 0 in packet 80 signals new
rotational speed follows immediately (starting with packet 50).
PHIRUN= 0 in packet 80 signals termination of calculations.

Calculation options for head loss and deviation an$1e. - A total of
six program options are available for calculation of blade-element

head losses. These options involve correlated wake momentum thickness

parameter and diffusion factor or equivalent diffusion factor, and

blade-element radial location; or they involve correlated loss and

flow coefficients and radial location. Three options are available

for deviation angle calculations. These involve Carter's rule, a

camber exponent modification of Carter's rule, or correlated deviation

angle with flow coefficient and blade element radial location.

The options are specified by the user per blade row of the pump

configuration in terms of input values of IEXLOS and IEXDEV (card

packet 19) as follows:

IEXLOS = I specifies that the user is supplying a reference table

of loss coefficient as a function of flow coefficient and radial posi-

tion (card packets 20-23) for basis of head loss calculations. Card

packets 25-28 for head loss are omitted.

IEXLOS = 0 specifies that reference table of wake momentum thickness/

chord as function of equivalent D-factor from the BLOCK DATA routine is

used for basis of head loss calculation. Card packets 20-23 and 25-28 for
head loss are omitted.

IEXLOS = - 1 specifies reference table of wake momentum thickness/

chord as function of equivalent D-factor and fraction of passage height

from outer casing from the BLOCK DATA routine is used for basis of head

loss calculation, Card packets 20-23 and 25-28 for head loss are omitted.

IEXLOS = - 2 specifies reference table of wake momentum thickness/

chord as function of D-factor and fraction of passage height from outer

casing from the BLOCK DATA routine is used for basis of head loss

calculation. Card packets 20-23 and 25-28 for head loss are omitted.

IEXLOS = - 3 specifies that the user is supplyingareference table

of wake momentum thickness/chord as a function of equivalent D-factor

and radial position (card packets 25-28) for basis of head loss calcula-

tions. Card packets 20-23 for head loss are omitted.
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IEXLOS= - 4 specifies that the user is supplying a reference table
of wake momentumthickness/chord as a function of D-factor and radial
position (card packets 25-28) for basis of head calculations. Card
packets 20-23 for head loss are omitted.

IEXDEV=1 specifies that the user is supplying a reference table
of flow deviation angle as a function of flow coefficient and radial
position (card packets 20-22, 24) for deviation angle calculations.

IEXDEV= 0 specifies that Carter's deviation angle rule based on
reference table from BLOCKDATAroutine is used for basis of deviation
angle calculations. Card packets 20-22, 24 for deviation angle calcula-
tion are omitted.

IEXDEV= - I specifies that reference table of deviation angle

rule camber exponent as a function of incidence angle minus reference

incidence and fraction of passage height from outer casing from BLOCK

DATA routine is used for basis of deviation angle calculations. Card

packets 20-22, 24 for deviation angle calculations are omitted.

Sample input loads. - Two sample input loads are given in Appendix E.

Listings of the input card decks are shown, with the ID numbers in the

first two card columns for identification. These two sample problems

were run on the Iowa State University IBM 360 Model 65 computer Operating

System Release 21. Running time, including input and output, was less

than one minute for each problem. The program outputs for each are in

Appendix E. Discussion of program output is given in the following

section.

The first sample load is for a single stage composed of a rotor

followed by a stator row. The annulus has constant hub and outer casing

radii of 0.1500 and 0.3750 ft, respectively. The input load is set up

to calculate performance for one rotational speed (3910 rpm) at two

flow rates. As can be seen in packets 82, inlet data for each of the

flow rates are given in terms of nine different radial positions across

the annulus. Geometry data for the two blade rows are given in packets 32,

each involving seven radial locations. No head loss or deviation angle

calculation reference tables are inputed, since the IEXLOS and IEXDEV

specifications in cards 19 show that reference tables from BLOCK DATA

are to be used.

The second sample is for a single rotor blade row in a straight

annulus with hub and outer casing radii of 0.2625 and 0.3750 ft,

respectively. With this input, performance is to be computed for two

rotational speeds. The first is 3620 rpm as indicated by the first 50

card, followed by the 70 card for base streamline velocity initialization

and two 80 packet sets for the assigned flow rates at this speed. A
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third 80 card follows, carrying the value - I and signaling that a
second rotational speed follows. This rpm value (2890) is shownon the
second 50 card. Onemore flow rate is then indicated by the one 80
packet set. The final 80 card indicates termination of the calculations.
The IEXLOSand IEXDEVhead loss and deviation calculation options in
card 19 for the second sample load are each indicated as I. The cor-
responding user supplied reference tables are included in packets 20-24.

Program Output Description

Sample program outputs. - Sample output listings from the program

are given in Appendix E. These were produced using the two input

loads just described.

An output listing from the program begins with identification of

the problem run, designated base streamline, and number of streamlines

used in the solution. Data tables for reference incidence angle analysis

(from BLOCK DATA routine) are printed out next. The additional data

load to the problem is printed out at the starting flow rate for a rpm

line on a blade row by blade row basis. This includes blade row rpm,

reference radius, deviation angle and head loss calculation options

specified, blade row geometry, and specified deviation angle and head

loss reference data tables (these tables are printed whether obtained

from input cards or from BLOCK DATA). Variables can be identified by

referring to the glossaries contained in the program descriptions of

subroutines INOUT or INPUT.

Output of computed results for a given flow rate begins with the

listing of the inlet conditions. Flow rate identification (PHIRUN NO.)

is based on the combined IRUN (card packet i0) and PHIRUN (card packet

80) numbers. Calculated flow rate and entering and leaving blade-element

radial equilibrium results follow, blade row by blade row. Blade-element

results are printed in order from the outer casing in toward the hub.

Mass-averaged results for a rotor or for a stage, and blade row identi-

fication (I) follow the blade-element results.

Column heading identifications in the input are the following (refer

also to LIST OF SYMBOLS).

BETA flow angle,

BETAP

CMBR

relative flow angle, _'

camber angle, @o

DEV deviation angle, 6
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EFFIC

EQD-FAC

HDLOSS

INCID

J

LOSSDIFF

OMEGABAR

%PHF T

PHI1

PHI2

PSI

PHI I

R/R(TIP)

R/RT(1)

REFINC

STAG

STATHD

(THTA/C)

TMAXIC

TOTHD

V(REL)

VU

VZ

efficiency,

equivalent D factor, D
eq

head loss, Hloss

incidence angle, i

streamline or blade element number, j

head loss relative difference, HLDP(see subroutine OUTPUT)

loss coefficient,

percentage passage height from tip

flow coefficient,

flow coefficient,

head coefficient,

ideal head coefficient, _i

radius ratio, r/r t

radius ratio, r/r t

reference incidence, ire f

blade setting angle,

static head, h

wake momentumthickness to chord ratio, (e/C)A

maximumthickness ratio, t /c
max

total head, H

relative velocity, V'

velocity, V@

velocity, V Z

In the first sample output given, the results are shown for a stage

(a rotor, followed by a stator row) for one rpm and two flow rates.
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Twenty streamlines were used in the solution, and as indicated by the
IEXLOSand IEXDEVparameter values, reference data tables from BLOCK
DATAwere used in computing blade element head losses and deviation
angles in the rotor and in the stator. The extrapolation warning mes-
sages given in the output are due to high stagger angle (> 70 deg.) in
the rotor near the outer casing, and to high Deq (> 2.2) toward the
hub in the stator.

In the second example in Appendix E, the results are for a single
rotor blade row. Twovalues of rpm were computed for, with two flow
rates at the first rpm and one at the second. According to IEXLOS
and IEXDEV,user supplied reference data tables for head loss and devia-
tion angle calculations were read in from cards.

Abnormal problem completions. - The following error or warning

messages may be produced by the program in the case of abnormal problem
completion:

"Error in input data card order, MAIN program"

An error has been detected by MAIN in checking ID on input

cards. Problem is terminated. Refer to Section, Input Load
Description to correct error.

"Error in input data card order, subroutine INPUT. ID = xx I = xx
K = xx L = xx J = xx"

An error has been detected in subroutine INPUT in checking

ID. Current values of ID, I, K, L, J are printed out to help
in correcting error. Problem is terminated.

"Error in input - xx must be greater than 2 for interpolation,
I = xx, ID = xx"

Number of elements in an input data table has been detected

as too small. The table delimiter and values of I, ID are

printed out. Problem is terminated.

"Warning - FITID called in xx-- extrapolation of table xx"

An extrapolation of a reference data table has occurred in

FITID. The calling routine and table involved are identified.
Problem calculation continues.

"Warning - FIT2D called in xx-- extrapolation of table xx"

An extrapolation of a reference data table has occurred in

FIT2D. The calling routine and table involved are identified.
Problem calculation continues.
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"IREF at streamline xx required extrapolation of tables because
BTPI = xx deg"

Analysis in subroutine IREF required extrapolation of reference
incidence angle data tables from BLOCKDATA. Relative entering
flow angle BTPI exceeds 75 deg. Problem calculation continues.

"ALFI = 0 not allowed"

Entering blade tangent angle ALFI has been computedas zero
for a blade element in subroutine RADEQC.Problem calcula-
tion continues with next inputed flow rate.

"Radial equilibrium solution failed"

Negative radicand encountered in iterations for radial equil-
brium solution in subroutine RADEQC.Headloss iterations
prior to failure are repeated and results printed out.
Problem calculation resumeswith next inputed flow rate.

"Solution failure due to negative radicand during loss iteration"

Messagefollowing "Radial equilibrium solution failed".
Failure encountered during head loss iteration as indicated.

"Solution for several loss iterations preceding failure are printed
next"

Messagefollowing radial equilibrium solution failure.

"Solution for the loss iteration preceding failure is printed next"

Messagefollowing radial equilibrium solution failure.

"Loss solution not achieved in 40 iterations"

Convergenceof head loss iterations not achieved in limit of

40 iterations. Problem calculation continues with next

blade row or inputed flow rate.

"Radial equilibrium and streamline radial adjustments not achieved
in I0 iterations"

Iterations for blade element leaving streamline positions in

subroutine RADEQC did not converge in limit of I0 iterations.

Problem calculation continues.
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"Radial equilibrium at continuity not achieved in 20 iterations"

Convergencenot attained in continuity loop in limit of 20
iterations in subroutine RADEQC.Problem calculation
continues.

ComputerProgram Description

The complete calculation procedure for off-design performance estima-
tion is under the control of program MAIN. Several subprograms or sub-
routines (as shownin Flow Chart I) are called upon by MAINto accomplish
certain specific tasks or calculations in the overall program execu-
tion. Flow Charts 2-5 give a detailed outline of MAIN. Additional
description of MAIN is given below, along with the Fortran symbol
definitions. The sameprocedure is repeated, involving Flow Charts 6-21,
in the sections following for the subroutines.

In the Flow Charts, program segments have been identified by
horizontal dashed lines for convenient reference. These segments are
identified in the program listing (Appendix D) by inserted commentsin
the appropriate locations. In those instances where program calls of
fitting routines FITID and FIT2D are made, the purpose of the call is
indicated in the Flow Charts by the parameter returned from the sub-
routine, with those parameter(s) it is a function of in parentheses.
Purposes of other subroutine calls are evident in the description and
Flow Charts for the particular subroutine.

Prosram MAIN. -- The subprogram BLOCK DATA has been included

here as a part of the description and symbol definitions, and as a part

of Flow Chart 2 for program MAIN. This subprogram initializes blade

element standard reference tables for head loss, deviation angle and
incidence reference angle analyses.

A direct responsibility of MAIN is the initialization of the radial

equilibrium solution at all axial computing stations for head loss and

streamline radii (at equal radial increments) according to the assigned

number of streamlines for the solution through the pump. Also MAIN

initializes the base streamline axial velocities at all axial computing

stations according to the inputed base streamline value at the inlet.

(It should be noted here that input card identifications (ID) are checked

by the program, in MAIN or in subroutine INPUT during read operations.

This checking has not been shown, however, in the Flow Charts. Also,

checking of IWARN, and print out of warning messages in MAIN and the
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subroutines noting extrapolation in fitting procedures (IWARN= 2)
have not been included in the Flow Charts.)

Also program MAIN is responsible for identifying the Run No. for
the pumpoperating point. Pumpinlet flow conditions are set up for
the solution according to the given pumpoperating point conditions and
number of streamlines; flow rate, average flow coefficient, and stream-
function values are computedby simple quadrature of the inlet station
axial velocity profile. Effective flow coefficients per axial computing
station for loss and deviation analyses are computedfrom given effective
area factors and blade speeds.

Successive axial calculation stations through the pumpare controlled
by MAIN; loss and deviation angle reference tables are set up according
to the input options per station. Flow conditions entering a blade

row are set up prior to the head-loss and radial equilibrium solution

for the flow leaving the blade row. Iterations (with a maximum of 40)

for head losses are monitored by MAIN with actual loss calculations

performed in subroutine LOSS. Convergence of head losses according to

a given tolerance value, and revised head loss distribution per head

loss iteration are determined by MAIN. Radial equilibrium, continuity

and streamline radial adjustment calculations are performed in subroutine

RADEQC interior to the head loss iteration loop.

In case of loss of radial equilibrium solution during any one head

loss iteration, iterations are re-initialized and then repeated, but

only up through the head loss iteration immediate to the unsuccessful

one. The calculated results for the final repeated iterations (maximum

of three, for four iterations and beyond) are outputed, even though a

valid converged solution has not been obtained.

Program parts of MAIN in the accompanying Flow Charts 2-5 are
identified as follows:

Flow Chart 2 Program segments "Input problem geometry and reference

tables," "Initialize streamline radii, head loss and base

streamline velocity" and "Input pump inlet conditions,

axial station blockage factors and compute stream function

distribution" of program MAIN.

Flow Chart 3

Flow Chart 4

Program segments "Compute station annulus area and effec-

tive flow coefficient," and "Transfer loss and deviation

angle reference tables per loss and deviation angle op-

tions" of program MAIN (continued).

Program segments "Compute blade row inlet conditions,"

"Save blade row initial head loss," "Interpolate profile

msximum thickness and incidence angle correction factor,

compute radial equilibrium and continuity solution and

determine head loss" of program MAIN (continued).
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Flow Chart 5 Program segments"Check head-loss convergence and output
computedresults," "Revise head loss," "Output message
head losses not converged, and output computedresults,"
"Initialize head loss to zero," Reassign head loss and
repeat iterations to loss of solution and"Output intermediate

iteration results prior to loss of solution" of program MAIN

(concluded).

Program MAIN variables:

FZ

ID

II

IL

ILIM

IO

IRUN

IWARN

IZ

J

fraction of annulus passage JL

height from hub to initial

streamline radius JLIM

axial station; blade row

number, determined by inlet

station to blade row

input card identification
number

K

KHLOSS

card read reference number

ILIM-I

maximum value of I, the

number of blade rows plus

one

KK

KLK

KILIM

printer reference number

problem run identification
number

L

LINDEX

fitting extrapolation

warning indicator (- I, no

extrapolation; = 2,

extrapolation of reference

data table)

index

LL

LOK

LOKI

streamline number (= 1 at hub)

JLIM-I

number of streamlines, casing

streamline

index

loss of radial equilibrium

solution indicator (= O,

solution not lost; = I,

solution lost)

index delimiter

head loss iteration loop

index

number of elements in ar-

ray X1

index

head loss calculation option

indicator (IEXLOS + 5)

index delimiter

KLK

LOK°3, or LOK-I, with loss

of radial equilibrium solu-

tion occurring on head loss

iteration number LOK

JBASE base streamline number from

which radial equilibrium

calculations proceed outward

to casing, or inward to hub

LOKLIM LOK-I, with loss of radial

equilibrium solution oc-

curring on head loss itera-

tion number LOK
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PHIB

PHIRUN

QRUN

THL

average flow coefficient at
inlet station

XJOE

flow rate calculation identi- XR
f[cation number

computed flow rate

tolerance value for conver-
gence of head loss iteration

Z

ZL

damping factor in reas-
signment of head loss

IRUN

J

JL

Program MAINarrays:

ALFI leading edge blade-element
camberline tangent angle

FIDIFB

ALPHZ diagnostic alphameric word

ANGSTB reference table of blade
setting angle (YANGS)

FIIOGB

AREA

ARFAC

axial calculation station
annulus area

axial station effective
flow area/ annulus area

FNCI

H

BTAPI blade-element relative
entering fluid flow angle

HB

CS

DEL2B

product of blade-element

wheel speed and fluid whirl

velocity

reference table of deviation

angle (DEL2), function of

PHIBB, XPB

HI

HLOB

HLOSS

DEQBB

EMB

reference table of blade-

element equivalent diffusion

factor (DEQ) HLOSS i

reference table of deviation

angle rule slope factor (EM), IEXDEV
function of YANGSB

EXPBB reference table of camber ex- IEXLOS

ponent (EXPB) in deviation

angle rule, function of

FIDIFB, PPHB

reference table of blade-

element incidence angle minus

reference incidence angle

(FIDIF)

reference table of blade-ele-

ment zero-camber incidence angle

(FIOIOG), function of YANGSB,

SGMGBB

blade-element incidence angle

blade-element total head

total head at inlet station,
function of XI

blade-element total head

at inlet station

computed blade-element head

loss

computed blade-element head

loss in preceding head loss

iteration

initial value of blade-

element head loss

option designation for

deviation angle calculation

option designation for head

loss calculation
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KLZ

K21_4

LLZ

L2LM

OMEGBB

PHIBB

PHIEFC

PPFTI

PPHB

QB

R

RN

RPBB

RPBBI

number of elements in

reference table PHIBB, XDBB,

or DEQBB

RPBB2

number of elements in

reference table PHIBB SGMGBB

number of elements in

reference table XPB or RPBB SLPIGB

number of elements in

reference table XPB

reference table of head loss

coefficient (OMEGB), function

of PHIBB, XPB

reference table of PHIEFC

SLP2GB

THACBB

blade row inlet average

flow coefficient

streamline location at inlet

to blade row as percent of

passage height from outer

casing

THCBBI

THCBB2

reference table of percent

passage height from outer

casing at blade row exit (PPFT2) TMAXC

blade-element quadrature

value of flow rate (from hub) USTAR

streamline radius

blade row rotational speed

UI

reference table of percent VUB

passage height from outer

casing at blade row exit

(PPFT2) VUI

reference table of percent

passage height from outer

casing at blade row exit

(PPFT2)

VZ

reference table of percent

passage height from outer

casing at blade row exit

(PPFT2)

reference table of blade

element solidity (SGMA)

reference table of linear

camber coefficient (SLOPIG),

function of YANGSB and SGMGBB

reference table of quadratic

camber coefficient (SLOP2G),

function of YANGSB and SGMGBB

reference table of wake momen-

tum thickness/chord (THAC),

function of DBB or DEQBB, and

RPBB

reference table of wake momen-

tum thickness/chord (THAC),

function of YXDBB and RPBBI

reference table of wake momen-

tum thickness/chord (THAC),

function of YDEQBB and RPBB2

blade-element maximum profile

thlckness/chord

blade tip speed or reference

speed

blade-element velocity at in-

let to a blade row

reference table of VUI,

function of XI

blade-element fluid whirl

velocity at inlet station

blade-element fluid axial

velocity
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VZB

VZl

X

XDBB

XP

XPB

X1

YANGSB

YDEL2B

YDEQB

reference table of VZI,
function of XI

blade-element fluid axial
velocity at inlet station

reference table of R at
inlet to blade row

reference table of blade-
element diffusion factor
(XD)

reference table of R at

outlet of blade row

reference table of R at

outlet of blade row

reference table of R at

inlet station

reference table of bla4e-

element stagger angle

(ANGST)

reference table of DEL2B

DEQBB

YDEQBB

YFKIB

YOMGBB

YPHIBB

YRPB

YTHACB

YTMACB

YTMAXC

YXDB

YXDBB

YXPB

reference table of blade-

element equivalent diffuser

factor (DEQ)

reference table of blade-

element incidence angle

connection factor (FKI),

function of YTMACB

OMEGBB

PHIBB

RPBB

THACBB

reference table of blade-

element maximum thickness/

chord (TMAXC)

TMAXC

XDBB

reference table of blade-

element diffusion factor

(XD)

XPB
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Flow Chart 2.
I

I BLOCI_ DATA ]

[AnOSTBg,JloVAnOSBIJt]__ ___

FZ = (Z - I 17ZL |

R(ILIM, J) : FZxXPflL,KLJM_

f- XP IL,I1; _ ×PIIL,I /
HLOSS(ILIM,J) 0 J

JHLOSS(,,J_R(I'Jl_Z_:×(r.KLrMI-:0_ x.._l,*×_,,l_J
i ........ J

[READ: VZ(1,JBASE)I

(b

[WRITE: PHIRU N
(

L
_EAD: X1 (1 t K),VZB(1

J READ:,

.i.
_o .... ---I CALLr_PUT

-]
K),VU_(1,K),HB(1,K)I ( DO_:_1,K1LImI
............. ]J

,K),VUB(I,K),HB(I,K)] J O0 K= I,KIL[M J

.... j_

J WRITE: XI(I,K),VZB{'

to: "Com_ute station a_nulus ..."
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to: "Compute b|ade row inlet ..."

From: "input pump ;ntet., ."

r

AREA(I) = 3.1416 x_R(I,JLIM) wR(I,JLIM)

- Rfl,1) _ R(I,1)_

PHIEFC(|) = PHIB ×['AREA(1)/AREA(I)]

x ARFAC(1) _(_'USTAR(1)/USTAR(1)]

WRITE: la PH|EFC(1)m LSTAR(1),ARFAC(1)

1

LL : L_LM(1) l

JYDEL2B(K,L):

ii.

PHiee(1, K)J

i_Flow Chart 3.

xrKl=_

DEL2B(I, K.L)J

JLINDEX IEXLOS(t) + 5J

(a_= LINDEX)

,i

PHiee(i,K)iIYPHiBe(K)'

r
I YOEC_a(K)=D_.(_,K)J

J YRPB(1.) = RPBB(I,L) [

.J
r t

lY'THACB(K, L) = THACBB(I, K, L) J

J YXP_(L)= XPII(I,L) I

L

J YOMGBB(K,L) = OMEGBB(I,K,L)J
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IDOJ= IrJLIM j

IDO KLK'= 1140 j

from: "Transfer loss and ... "

CALL FIT1D to interpolate: I

ALFlJR(I)] I

-t
PPFT1(J) = [.R(I,JLIM) - R(I,J)]

/ [R(I,JLIM) - R(I, I)]

ul(J) : .10472 _RN(I) xR(I,J)

BTAP1 (J)= tan -1 I[Ul(J) - VU(I,J)]

/ VZ(I,J)}
ALF1 (J) = .017453 x ALF1 (J)

FNCl(J) : IBTAPI(J)I-IALFI(J)I
cs(J) : ul(J) xvu(bJ)

KHLOSS = 0

I HLOSSI(J) = HLOSS(I,J) I

=t
I LOK = KLK

CALL FITID to interpolate:

TMAXC[R(K)]

JYI"MAXC(I ,J) = TMAXC(J)J

Flow Chart 4.

J DO J: lrJLIM j
l

IDO j= IrJLIM l

CALL FIT1D to interpolate.' IFKI0q'MAXC) I

ALF1 = 0 not_ -_CALL RADEQC l-- .__(Radial equilibriumS.
allowed / \ solution failure / "--1

I

CALL FIT1D to interpolate:
FIS2D[R(K)]

FH_R(K)]

1
t

I CALL LOSS I

to: "Check head loss ..."
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Flow Chart 5.

from: "ltetpolate peofile .,."

t--

AX : IHLOB(J) - HLOSS(I,J) t- THL '_ HLOSS(I,J)

;,0

J CALL !UTPUT J T

> 40_L C

]
IDOJ = 1,JLIM I

4O

HLOSS (I, J_-.-HLOSS(I, J ) I

+ X JOE _{-HLOE(J)

- XLOSS/hJ )]

__<__
CALL OUTPUT I

WRITE: LOK J

IOOJ = ltJLIM I

J

LOKLIM = LOK - 1

LOK1 = LOK - 1

I HLOSS(I,J)=HLOSSI(I.I)]

k

p

_4

LOKLIM = LOK - I

LOK1 = LOK - 3

| HLOSS(IrJ ) : HLO_;SI(J) I

, I
JOO J= I_JLIM I

l
J DO J= IrJLIMI
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Subroutine DEV. -- The purpose of DEV is to compute blade-element

flow deviation angles according to the given option value IEXDEV per

axial calculation station. In these options, deviation angle is

computed based on an inputed correlation of deviation angle, flow

coefficient, and radius, or on Carter's deviation angle rule, or on

the camber exponent deviation angle rule, using blade-element reference

incidence angle and percent passage height location. Details of these

methods have been given in the section BLADE-ELEMENT LOSS AND DEVIATION

ANGLE PREDICTION.

DEV variables:

I0 printer reference number J streamline number (= i at hub_

IWARN fitting extrapolation warning JLIM

indicator

number of streamlines, casing

streamline

DEV arrays:

ALFI leading edge blade-element FNCI blade-element incidence

camberline tangent angle angle

ALF2 trailing edge blade-element IEXDEV

camberline tangent angle

option designation for devia-

tion angle calculation

ALPHZ

DEL2

diagnostic alphameric word

blade-element flow deviation

angle

PPHT2 streamline location at outlet

of a blade row as percent of

passage height from outer

casing

EM

EXPB

blade-element deviation

angle rule slope factor

blade-element camber expo-

nent in deviation angle
rule

R

SGMA

STARI

streamline radius

blade-element solidity

blade-element reference

incidence angle

FIDIF FNCI -- STARI THTA blade-element camber angle
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Flow Chart 6.

I

J
I DO J=l ,JLIM I

f

2
_t

PPHT2(J) = [R(K,JLIM) J

I- R(K,J)yI[R(K,JLIM) - R(K, I)

THTA/J ) : IALF;(JI • ALF2(J)I

Joo J: IIJLIM ]

f

DO J= IIJLIM

t

I CALL FITID to interpolate1• EM(ANGST) I

FIDIF(J) = 57,296 v FNCI (J) J- STARI(J)

I CALL FIT2D to interpolate

EXPBIFIDIF,PPHT2) J

=t

JDO J=_rJLIMI

[

cE
_ E

B

EXPB(J) I

EM(J_)_r57.296_THTA(J________)JI
DEL2(J) = 57.296, _ ]

CALL FIT1D to interpolate
EM(ANGST) J

KK= K2L_(0 I
LL = L2LM(I)

CALL FIT2D to interpolate

DEL2(YPHIEFt YR)
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Subroutine FITID. -- Interpolations for Y(X) are made based on

3-point Lagrange polynomials. Reference data tables are YB, XB, where

elements of XB are in monotone nondecreasing order, and KP is the

number of point pairs (XB, YB). A total of JP interpolations Y(X)

is made. The interpolate X is bracketed (if possible) in each interpola-

tion by three neighboring elements of XB. IWARN = 2 indicates extrapola-

tion of XB array.

I

IWARN

J

JP

K

KP

L

M

XO

XI

X2

FITID variables:

index

extrapolation indicator

index

number of fittings made

index

number of point pairs (XB, YB)

M

index

XB value bracketing X

XB value bracketing X

XB value bracketing X

FITID arrays:

X

XB

Y

YB

interpolate

reference table of independent variable

interpolated value

reference table of dependent variable
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Flow Chart 7.

IDOJ = lrJPJ

X0 = XB(I,L - 2)
Xl = XB(I,L - 1)

X2 = XB(I,L)

I IWARN--11

I IW,CRN= 21

I IWARN = 2 I

[X(K,J) - Xl] x [X(K,J) - X2] YB(I,L - 2)
Y(J) = (X0 - Xl) x (X0 - X2)

+ [X(K,J) - X2] x [X(K,J)- X0]
(X1 - X2) _( (X1 - X0) YB(I,L - 1)

+ [X(K,J) - X0] x [X(K,J) - Xl] YB(I,L)
0(2 - XO) x 0(2 - Xl)

I RETURN I
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Subroutine FIT2D. -- Interpolations for Y(X, Z) are made based on

tnree-point Lagrange polynomials. Reference data tables are XB, YB,

ZB, where elements of XB, ZB are in monotone nondecreasing order.

IP is the number of elements in XB, JP the number in ZB. A total of

JL interpolations Y(X, Z) is made. The interpolates X, Z are bracketed

(if possible_ in each interpolation by three neighboring elements of

XB and ZB, respectively. IWARN = 2 indicates extrapolation of XB or

ZB arrays.

FIT2D variables:

I

IQ

IWARN

J

M

dimension size of YB

fitting extrapolation warn-

ing indicator

M

XO

X1

X2

XB or ZB value bracketing

Xor Z

XB or ZB value bracketing

Xor Z

XB or ZB value bracketing

Xor Z

JQ

K

L

dimension size of YB

index

I + K

YO

YI

YB element at bracket

point (XB, ZB)

YB element at bracket

point (XB, ZB_

M

N

index

index

Y2 YB element at bracket

point (XB, ZB)

X

XB

Y

YB

FIT2D arrays:

interpolate

reference table independent

variable

interpolated value

reference table of depen-

dent variable

YST

Z

ZB

intermediate interpolated

Y value

interpolated value

reference table of indepen-

dent
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JDO =I,JLI

[DO K = 1,3'I

J

IDO 1!3,1PI

t

IDO J = 3,JPi

I

j L=I+K
Y0 = Yg(t. - 3, J - 2)
Y1 =YB(L-3,J-1)
_2 = YB(L - 3, J)

J IWARN = 11

I

@-°

IWA!

I IWARN = 2J

I'WA"N=21

I_ .._

x0 = ZB(J - 2) J
xl= zs(J I)

x2 =.:jB(J)

-t

Flow Chart 8.

YST(K) = [.Z(N) - X1] x _Z(N) - X2] xY0/T.(X0 - Xl) x (X0 - X2:
+ [Z(N) - X21 x[:Z(N) - XO] x Y1/_.(X1 - X2) x(X1 - X0:
+ r,.Z(N)- X0] x[Z(N) - Xl_ xY2A.(X2- X0) x0(2 - Xl

xo =xB(I- 2)
xl = xB(t - I)
x2 = xm(t)
Y(N) = r_X(N) - Xl"] x r,.X(N) - X2_ x YST(1)/'_.(X0 - Xl) x 0(0 - X2)]

+ = EX(N) - X2_ x[X(N) - X01 xYST(2)/_XI -X2) x (XI - X0)]
+ IX(N) - X0] xEX(N) - X1] xYST(3)/E(X2 - X0) x 0(2 - Xl)]
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Subroutine INOUT° - In this subroutine, the input data to the

program for the particular problem are printed out for reference.
Problem run number is identified, followed by output of reference

incidence angle tables supplied by the BLOCK DATA program (see descrip-

tion of program MAIN). On a blade row by blade row basis, rotational

speed and reference geometry tables, and reference deviation angle and

loss tables (per designated options) are printed out.

Program parts of INOUT in the accompanying Flow Charts 9 and I0

are identified as follows:

Flow Chart 9 Program segments "Output reference incidence angle tables,"

"Output blade row RPM, reference radius and loss and

deviation angle options," "Output reference blade row

geometry tables," "Output reference deviation angle tables"

of subroutine INOUT.

Flow Chart i0 Program segment "Output reference blade wake momentum

thickness/chord or loss coefficient tables of subroutine

INOUT (concluded).

INOUT variables :

axial station; blade row K

number, determined by inlet

station to blade row KK

index

index delimiter

IL

ILIM

1OUT

IRUN

ILIM-I KLIM

maximum value of I, the num-

ber of blade rows plus one

KI

printer reference number
L

problem run identification
number LINDEX

number of elements in blade

row geometry reference

tables

index initial value

index

IEXLOS + 5

J

JBASE

JLIM

streamline number (= 1 at LL

hub_
LLI

base streamline number

LI

number of streamlines,

casing streamlines

index delimiter

index delimiter

index
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ALFB

ALFPB

DEL2B

DEQB

DEQBB

EMB

EXPBB

FHB

FIDIFB

FIIOGB

INOUT arrays:

reference table of leading

edge blade-element camber-

line tangent angle (ALFI),

function of X

reference table of trailing

edge blade-element camber-

line tangent angle (ALF2),

function of XP

reference table of blade-

element flow deviation

angle (DEL2), function of

PHIBB, XPB

reference table of blade-

element equivalent diffu-

sion factor (DE_

reference table of blade-

element equivalent diffu-

sion factor (DEQ)

reference table of devia-

tion angle rule slope fac-

tor (EM), function of YANGSB

reference table of camber

exponent (EXPB) in devia-

tion angle rule, function

of FIDIFB, PPHB

reference table of blade-

element wake form factor

(FH2), function of XP

reference table of blade-

element incidence angle

minus reference incidence

angle (FIDIF)

reference table of blade-

element zero-camber inci-

dence angle (FIOIOG), func-

tion of YANGSB, SGMGBB

FI2DB

FKSHAB

IEXDEV

IEXLOS

K 2LM

KLZ

LLZ

OMEGBB

PHIBB

PPHB

RN

RPBB

reference table of blade-

element reference incidence

minus cascade rule inci-

dence angle (FIS2D), func-

tion of XP

reference table of shape

correction factor (FKSHA),

function of XP

option designation for devia-

tion angle calculation

option designation for head

loss calculation

number of elements in reference

table PHIBB

number of elements in reference

table XDBB, YXDBB, DEQBB,

YDEQBB, or PHIBB

number of elements in reference

table RPBB or XPB

reference table of head loss

coefficient (OMEGB), func-

tion of PHIBB, XPB

reference table of blade

row inlet average flow coef-

ficient (PHIEFC)

reference table of percent

passage height from outer

casing at blade row exit

(PPFT2)

blade row rotational speed

reference table of percent

passage height from outer

casing at blade row exit

(PPFT2)
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RSTAR

SGMAB

SGMGBB

SLPIGB

SLP2GB

THACB

THACBB

TMXCB

blade row reference radius

reference table of blade-
element solidity (SGMA),
function of XP

reference table of blade-
element solidity (SGMA)

reference table of linear
camber coefficient (SLOPIG)
function of YANGSB,SGMGBB

reference table of quadratic
camber coefficient (SLOP2G),
function of YANGSB,SGMGBB

reference table of blade-
element wake momentumthlck-
ness/chord (THAC), function
of DEQB

reference table of blade-
element wake momentumthick-
mess/chord (THAC), function
of RPBB,and DEQBBor XDBB

reference table of blade-
element maximumprofile
thickness/chord (TMAXC),
function of XP

XDBB

XP

XPB

YANGSB

YFKIB

YTMACB

reference table of stream-
line radius (R) at inlet to
blade row

reference table of diffusion
factor (XD)

reference table of stream-
line radius (R) at outlet
of blade row

reference table of stream-
line radius (R) at outlet
of blade row

reference table of blade-
element stagger angle (ANGST_

reference table of incidence
angle correction factor (FKI),
function of YTMACB

reference table of blade-
element maximumthickness/
chord (TMAXC)
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Flow Chart 9.

I "WRIT£_ IRUt" JfiA$1_tJLl_ [

JWRITE: YT _CBI3_KI! __ ._

IWRnE_Y_KIEg,_){

J WRITE: S ._MGBB_-)I

_RITE_ YANGSI {K'_,FI10GR(K,L) I _

IWRIT E: YANGS I!K ,, SLP1G'0C, L_I E_/__E]

(PBB KIL /

[w_nE: Y_NGSB{K)I

(_ITE:

• _ .

I_'T"_;_'_,'._._ii __
_DEL 2B(I, K,L}---.017453 • OEL2B(I,K,L_I

to_ "Output reference blade v_/_e ,.."
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Flow Chart 10.

fTom: 'C_l_ut reference devlaHon "

_r
ILINOEX = IEXLOS(I)* 5J

{ al • LINDEX)

I

J WIRI_EI PHIBB(I.K) [
J WRITEz i _-gg(I,K)I

WRITEI RPtTH,
,CJlS(lr K t L

F--,
JWIt(T E: RPII._I, L), I

[ THACE.B(I, K, L)J

-l
F
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Subroutine INPUT. -- Input data are read in on a blade row by blade

row basis from cards, or are transferred as necessary from arrays ini-

tialized in the BLOCK DATA subprogram. Input data comprise limit

parameters and computing run identification, loss and deviation reference

tables, blade row geometry reference tables and balde row rotational

speed Cflow rate, inlet conditions, and area blockage factors are read

in by MAIN per flow rate calculation). Multiple rotational speed

calculations are handled by ENTRY INPUTI, in which only rotational

speeds (per blade row) are read in. Also, reference blade speeds are

computed in INPUT, based on blade row rotational speed and reference

radius. Subroutine INOUT is called to output the data load for each

assigned rotation speed.

Program parts of INPUT in the accompanying Flow Charts II and 12

are identified as follows:

Flow Chart II Program segments "Input limit values and run identifica-

tion," "Input loss and deviation option values," "Input

reference loss and deviation tables" of subroutine INPUT.

Flow Chart 12 Program segments "Input reference wake momentum/chord

(THACBB) tables," "Input reference blade row geometry

tables," "Input blade row RPM and compute reference blade

speed," "Output problem data load" of subroutine INPUT

(concluded).

INPUT variables:

ID

axial station; blade row J

number, determined by inlet

station to blade row JBASE

input card identification

number

I, K, L

base streamline number from

which radial equilibrium

calculations proceed outward

to casing, or inward to hub

IIN card reader reference number JL JLIM-I

IL

ILIM

1OUT

IRUN

IZ

ILIM-I JLIM

maximum value of I, the

number of blade rows plus K

one

KK

printer reference number

KLIM

problem run identification

number

index K2LIM

number of streamlines, casing
streamline

index

index delimiter

index delimiter, number of

elements in input blade

element geometry arrays

KLZ
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L

LINDEX

LL

L2LIM

ALFB

ALFPB

ALFPZ

DEL2B

DEQBB

FHB

FI2DB

FKSHAB

IEXDEV

index RRN

head loss calculations option THL
indicator (IEXLOS+ 5)

index delimiter

LLZ

INPUTarrays:

reference table of leading
edge blade-element camberline
tangent angle (ALFI), func-
tion of X

IEXLOS

KLZ

reference table of trailing
edge blade-element camberline
tangent angle (ALF2), func-
tion of XP

diagnostic alphameric word

K2LM

LLZ

reference table or blade- L2LM
element flow deviation angle
(DEL2), function of PHIBB, OMEGBB
XPB

reference table of blade-
element equivalent diffusion
factor (DEQ)

PHIBB

reference table of blade-
element wake form factor
(FH2), function of XP

reference table of blade-
element reference incidence
minus cascade rule incidence
angle (FIS2D), function of XP

reference table of shape
correction factor (FKSHA),
function of XP

option designation for devia-
tion angle calculation

RN

RPBB

RPBBI

RPBB2

RSTAR

RN

tolerance value for conver-
gence of head loss itera-
tion

option designation for head
loss calculation

numberof elements in
reference table XDBB,DEQBB,
or PHIBB

KLZ

numberof elements in
reference table RPBBor XPB

LLZ

reference table of head loss
coefficient (OMEGB),function
of PHIBB, XPB

reference table of blade
row inlet average flow
coefficient (PHIEFC)

blade row rotational speed

reference table of percent
passage height from outer
casing at blade row exit
(PPFT2)

reference table of percent
passage height from outer
casing (PPFT2)

reference table of percent
passage height from outer
casing (PPFT2)

blade row reference radius
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SGMAB

THACBB

THCBBI

THCBB2

TMXCB

reference table of blade-
element solidity (SGMA),
function of XP

reference table of blade-
element wake momentum
thickness/chord (THAC), func-
tion of RPBB,and DEQBBor
XDBB

reference table of wake
momentumthickness/chord
(THAC), function of YXDBB
and RPBBI

reference table of wake
momentumthickness/chord
(THAC), function of YDEQBB
and RPBB2

reference table of blade-
element maximumprofile
thickness/chord (TMAXC),
function of XP

USTAR

X

XDBB

XP

XPB

YDEQBB

YXDBB

blade tip speed or reference
speed

reference table of streamline
radius (R) at inlet to blade
row

reference table of diffusion

factor (XD)

reference table of streamline

radius (R) at outlet of blade

row

reference table of streamline

radius (R) at outlet of blade

row

reference table of blade-

element equivalent diffusion

factor (DEQ)

reference table of blade-

element diffusion factor (XD)

71



Flow Chart 11,

{ READ:

J_
-- -- 1. -- -- --

I

READ: ILIM,JLIM,JBASE,

IRUN,THL

IL : ILIM - 1

JL:JLM-1

I DOI= 1,1L J

JREAD: IEXLOS(I)JIEXDEV(I)|

,
JREAD:KLZO/,(

LLZ(1) |

K2LIM : KLZ(I}J

2LIM = LLZ(I)I

I_

JREAD: PHIBB_I, K)J

_PB(r,K)I
I

JDo m r,L2LIM I

>0

JREAD: OMEGBB(I, K, L)]

IREAD: DEL2B(I,K, L)I
(

LK2LM(I) : KLZ(I) j

2LM(1) = LLZ(1) _J

to: "Input reference wake ... "

IDa L: ],L2LIMJ

JOO L= 1,L2LI_

L
lDO K:_,K2LIMJ

[DO K= I,K2LJM I
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Flow Chart 12.

READ: KLZ(I),LLZ(I) I READ: KLZ(I),LLZ(t)J

KK =KLZ0) / KK - KLz(r_ J
iLL = LLZ( ) j LL =LLZ(I) |

- t
,REAO,_...._,. I._AD:oio.l,,_tl _
J READ: | PIIB(I,L) ]

"8B(I, K,L) I _
J READ: TH,

from: "l_'puf reference Iou . .. "

._,.
J LINDEX = ,E×LOS(,) 5J _

l
(,, : UNDEX) _

1LLZ( ).L:___I

J XDBB(I, K)

ITHACBB(If KIL )

J THACBB(I.K.LI

r:Y)(DBB(K)I

: Y'D EQBB(K )J

'RPBB2_)J

= THCBB2(K,L)]

)

..,i-

I READ: K'X(L' K)'ALFB_' K)' I
XP(L, K),ALFPB(L, K),SGMAB(L, K)

TMXCg(L i K)f FI_DB(L, K ), FHB(L, K}, FKSHAB(L, K )

FE_T_ l_U_ ] _ _ . .=_ _

I READ_ RN(K) I ]

÷
K)_O

_ouTI

f

J CALL

7
IOO K:1,KLIMl _

L_ ..

I USTAR[I): ._72, RSTAR(I)_ReN]
I
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Subroutine IREF. - Blade-element reference incidence angles are

computed from camber angle, stagger sngle, maximum thickness/chord,

solidity, and thickness distribution correction factor. Interpolations

for factors FI010G, SLOPIG and SLOP2G from reference tables as functions

of YANGS and SGMA are required. Extrapolations of the data for relative

inlet angle (BTPI) above 75 ° are noted by the subroutine.

IREF variables:

BTPI blade-element relative J streamline number (= 1 at

entering fluid flow angle hub)

IZ

IO

index

printer reference number

JLIM number of streamlines, casing
streamline

IREF arrays:

ALFI leading edge blade-element FKSHA

camberline tangent angle

blade-element shape correc-
tion factor

ALPHZ diagnostic alphameric word SLOPIG linear camber coefficient

ANGST blade-element stagger angle SLOP2G quadratic camber coefficient

FIOIOG blade-element zero-camber STARI

incidence angle

blade-element reference

incidence angle

FKI blade-element incidence

angle correction factor for

maximum thickness/chord and

thickness distribution

THTA blade-element camber angle

YANGS ANGST

YANGS I YAN GS
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Flow Chart 13.

I
Ioo J=1,JLIMI IYANGSIIJ ) = YANGS(K,J) J

CALL FIT2D to interpolate:
FI010G(YANGS1 ,SGMA)

CALL FIT2D to interpolate:
SLOP1G(YANGS1 ,SGMA)

CALL FIT2D to interpolate:
SLOP2G(YANGS1 ,SGMA)

!
Ioo j--1,JLIMI

JDOJ= lrJLIM,]

STARI(J) = FKSHA(J) × FKI(J) × FI010G(J)

+ SLOPIG(J) x THTA(J) ×57.296 ,;

+ SLOP2G(J) x [THTA(J) x57.296] _
I

-t
IBTP1 = 57.296 ,xALF! (J) + STARI(J)i

I

I RETURN]
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Subroutine LOSS. - Blade-element head losses are computed for all

streamlines, hub to casing, in rotors or stationary blade rows. Head

losses are computed from reference tables according to specified loss

calculation option. These tables consist of (I) blade-element wake

momentum thickness/chord and correlated diffusion factor (or both dif-

fusion factor and blade-element radial position), or (2) loss coefficient

and correlated effective flow coefficient and radial position.

LOSS variables:

C0117 coefficient in equivalent I
diffusion factor calcula-

tion

axial station; blade row

number, determined by inlet

station to blade row

CI

C2

C3

C4

C61

FLIPS

ratio of blade-element I0

entering and leaving stream-

line radii IWARN

reciprocal of blade-element

relative entering fluid

velocity

parameter in blade-element
head loss calculation

parameter in blade-element

head loss calculation

coefficient in blade-ele-

ment equivalent diffusion

factor calculation, rotor

or stationary blade row

IZ

J

JLIM

KK

KSI

absolute value of difference

between blade-element inci- LL

dence angle and reference

incidence angle LINDEX

printer reference number

fitting extrapolation warning

indicator

index

streamline number (= 1 at

hub)

number of streamlines, casing

streamline

KLZ

coefficient in blade-ele-

ment diffusion factor cal-

culation, rotor or stationary

blade row

LLZ

IEXLOS + 5

LOSS arrays:

ALPHZ diagnostic alphameric word DEQB reference table of DEQ

BTAPI

BTAP2

DEQ

blade-element relative enter- DEQDD

ing bluid flow angle

FH2

blade-element relative

leaving fluid flow angle

blade-element equivalent

diffusion factor

FNCI

DEQB

blade-element wake form

factor

blade-element incidence angle
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HLOB

IEXLOS

KLZ

LLZ

OMEGB

PPFT2

R

RN

SGMA

computedblade-element head
loss

STARI

option designation for head
loss calculation

THAC

numberof elements in THACB
reference table of blade ele-
ment diffusion factor (YXDB
or YDEQB),or blade row inlet THACDD
flow coefficient (YPHIBB)

UI
number of elements in
reference table of percent
passage height from outer VU

casing at blade row exit

(YRPB), or streamline radius

at outlet of blade row (YXPB) VZ

blade-element head loss

coefficient XD

percent passage height from

outer casing at blade row exit XDD

streamline radius XVPI

blade row rotational speed

blade-element solidity

XVP2

blade-element reference

incidence angle

blade-element wake momentum

thlckness/chord

reference table of THAC,

function of DEQB

THACB

blade-element velocity at

inlet to blade row

blade-element exit fluid

whirl velocity

blade-element fluid axial

velocity

blade-element diffusion

factor

DEQ

blade-element relative

entering fluid velocity

blade-element relative

leaving fluid velocity
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Flow Chart 14.

,I
DO J= lrJLIM 1

coE¢'¢_

q I

___ (== LINDEX)

C1 = R(I,J)/R(K,J)

C2 = co_ETAPI(J)_/VZ(I,J)

C3 = 4/[3 y FH2(J) - I _

FLIPS = 57.296 = ]FNCI(j). STARI[J)/57,296
DEQ(.J) = 1.12 + C0117 = FLIPS 1.43

D EQ (J _ (JC61 _ C2 _ cos[ BTAP1 (J)yS GMA(J)

,, lcl __u_I,J)- uI(ar_* u_(J)/C_- vu(K,j)l
+ DEQ(J)_ , _o_BTAP2(J)_/rC2 _ VZ(K,J)]

I
J XDO(1 ,. = DEO(J) I

O[_O0(I,J = DEQf(J}
THAC DD(1,J) = THACB(J}

CALL FITID to interpolate:_

THACEXDD(1 ,J ] J

C4 = SGMA(J x THAC(J) xFH2(J)/cos[BTAP2(_]]

HLOSU) = C3 _ CI _ _VZ(I,J)/co_BTAP2(J ]iz_J

0 - c4y/_,._e j

HLOBU = (OMEGS_J)/64.348) 2
J _r !V,_- (I, J)/c_TAPI{J )] I I

ic4 =vzIf,J),/=o,rBTAP1 (I)] 2 l

ITHAC0) = 32.174 _ HLOB(J) _ coI[BTAP2{J_l _c4 _ SG_,A(j)] j

[DOJ ! JLiM]

= ,

F

J XVPI(J) = VZ(I,J),/¢o_BTAPI(j)] ]

J XVF2(J) = V'Z(K,J)/coI_TAP_(J)] J
JXD(J) = I - EXVP2(J)/XVPI (J)] + KS( /

I = rR(K,J) _ VU(1(rJ) - R{IeJ) _ VU(I,J)y J

.... J J XVPI{J) _ JR(i J) + R(I'J)] x SG/v_J)_

CALL FIT2D to lnt_olotel ICALL FIT2D to inteq)olate_

THAC(D_IpPFT2} [ THAC(XO PPFT2 J

JHLO_{J)=SG_A_)_T_,_C(J)J IDOJ= 1,JLIM 1

[_ C4_32.174 _ cos[BTAP2(J)] I

1 ' t
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Subroutine MAVE. -- Mass-averaged performance results are computed and

outputed for a rotating blade row, or for a stage consisting of a rotating

and a stationary blade row. Mass-averaged results are based on quadratures

of blade-element inlet conditions and determined radial equilibrium out-
let conditions.

MAVE variables:

AFLCO average flow coefficient at

blade row inlet

RHRCO rotor total head rise

coefficient

AFLCOI average flow coefficient at

blade row exit
RHRI rotor total head rise

quadrature function

DENOM quadrature function of R

times VZ across annulus

RMAE rotor mass-averaged

hydraulic efficiency

IL

I0

axial station; blade row

number, determined by inlet

station to blade row

maximum value of I (ILIM)
minus one

printer reference number

RMAHR

SEFFI

SHRCO

rotor mass-averaged total
head rise

stage hydraulic efficiency

quadrature function

stage total head rise

coefficient

J

JL

JLIM

QRUN

streamline number (= I at hub) SHRI

JLIM-I

number of streamlines, casing
streamline

computed flow rate

SMAE

SMAHR

stage total head rise

quadrature function

stage mass-averaged hydraulic

efficiency

stage mass-averaged total
head rise

REFFI rotor hydraulic efficiency

quadrature function

MAVE arrays:

DELH blade-element total head

rise

REFFP rotor blade-element

hydraulic efficiency product

DELHI blade-element ideal total

head rise

RHRP rotor blade-element total

head rise product

H blade-element total head RN blade row rotational speed .

R streamline radius
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RVEL

SDELH

SEFFP

SHRP

product of blade-element
leaving radius and axial
velocity

stage total head rise along
a streamline

stage hydraulic efficiency
for a streamline

stage total head rise
product for a streamline

TISPD

UI

U2

VZ

W

rotor inlet blade tip
velocity

blade-element velocity at
inlet to a blade row

blade-element velocity at
blade row exit

blade-element fluid axial
velocity

DELHI
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Flow Chart 15.

SDELHCI) = H(K,J) - H(I - 1,J)

SHRP(J) = R_,J) x VZ(K,J) _ SDELH(J)

RHP,.I_RHRI + I[ RHRP(J + 1) + R'HRP(J)'_
x 'rR(K J + 1) - R(K,J)_t/2

REFFI_,_REF_: I +I[REFFI 1) + REFFP(J)]

×[R(_,J+ 1)-R(K,J)11/2
SEFFI-.-.SEFFI + I_SEFFP(J + 1) Jr SEFFP(J)]

[R(K,J + I) - R(K,J)

_LSMAHR = SHRi/DENOM

SMAE = SEFFI/DE, NOM H_ _
SHRCO = 32.174 _ SMA R/|

Tl_;iO0 - 1)2 •

I-wRrr_:SM,,.R.s_E,i
L SHRCO,_ J

MAHR = RHRI/DENOM

MAE : REFF/oENOM 2
FLCO : .000709 '_QRUN/_=(I,JLIM.). ,"

FLCO1 : .000709 _ QRUN,/[R(K,JL/M)

HRCO = 32.174 x RMAHR./U2(JLIM)

UIgLIMLI
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Subroutine OUTPUT. -- Additional blade-element results are computed

and outputed, based on the blade row entering flow conditions and deter-

mined radial equilibrium leaving conditions. Dimensional unit conver-

sions are made for several blade-element results prior to outputing.

Subroutine MAVE is called to compute and output mass-averaged blade row

results.

Program parts of OUTPUT in the accompanying Flow Charts 16, 17 and
18 are identified as follows:

Flow Chart 16 Program segment "Compute equivalent D-factor and head
loss difference" of subroutine OUTPUT.

Flow Chart 17 Program segment "Prepare blade-element results for output"

of subroutine OUTPUT (continued).

Flow Chart 18 Program segments "Output blade-element results," and

"Output mass-averaged results" of subroutine OUTPUT

(concluded).

OUTPUT variables:

CI

C2

ratio of blade-element

entering and leaving stream-
line radii

reciprocal of blade-element

relative entering fluid

velocity

IL

ILIM

I0

ILIM-I

maximum value of I, the

number of blade rows plus

one

printer reference number

C61

FLIPS

coefficient in blade-ele-

ment equivalent diffusion

factor calculation, rotor

or stationary blade row

absolute value of differ-

ence between blade-element

incidence angle and refer-

ence incidence angle

JLIM

K

KJ

streamline number (= 1 at

hub)

number of streamlines, cas-

ing streamline

I + i

index, streamline number

I axial station; blade row

number, determined by

inlet station to blade row

QRUN computed flow rate

OUTPUT arrays:

ANGST blade-element stagger

angle

BTAPI blade-element relative

entering fluid flow angle
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BTAP2

DELH

DELHI

DEL2

DEQ

FNCl

H

HLDP

HLOB

PPFTI

PPFT2

HLOSS

R

RN

RRT

RRT2

SGMA

blade-element relative
leaving fluid flow angle

STARI

blade-element total head rise THAC

blade-element ideal total
head rise THTA

blade-element flow deviation
angle

blade-element equivalent
diffusion factor

TMAXC

UI

blade-element incidence U2
angle

blade-element total head VU

relative difference in
computedand estimated blade- VZ
element head loss

computedblade-element head
loss

XBETA

percent passage height from
outer casing at blade row
inlet

percent passage height from
outer casing at blade row
exit

computedblade-element
head loss in preceding head
loss iteration

streamline radius

XBETA2

XBTAPI

XBTAP2

XD

XDEL2

XEFF

blade row rotational speed

streamline radius ratio at
inlet to blade element

XFNCI

XHSTTI

streamline radius ratio at
blade-element exit

XHSTT2

blade-element solidity XOMEG

blade-element reference
incidence angle

blade-element wake momentum
thickness/chord

blade-element camber angle

blade-element maximumprofile
thickness/chord

blade-element velocity at
inlet to a blade row

blade-element velocity at
blade row exit

blade-element fluid whirl
velocity

blade-element fluid axial
velocity

blade-element entering fluid
flow angle

blade-element leaving fluid
flow angle

BTAPI, deg.

BTAP2,deg.

blade-element diffusion factor

DEL2, deg.

blade-element hydraulic
efficiency

FNCI, deg.

blade-element static head
entering blade row

blade-element static head
leaving blade row

blade-element total head
loss coefficient
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XPFTI

XPFT2

XPHII

XPHI2

XPSI

XPSII

XTHTA

PPFTI, percent XVI

PPFT2, percent

blade-element flow coefficient XV2
at blade row inlet

blade-element flow coefficient
at blade row exit XVPI

blade-element head rise
coefficient

blade-element ideal head
rise coefficient

XVP2

THTA,deg.

blade-element fluid flow
velocity at blade row
inlet

blade-element fluid flow
velocity at blade row
exit

blade-element relative fluid
flow velocity at blade row
inlet

blade-element relative fluid
flow velocity at blade row
exit
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Flow Chart 16.

i DO J= ,JLIM J

0

r

I ,I
!_ I

-I
CI = R(I,J)/R(K,J)
C2 = cos[BTAP1(J)]/VZ (I,J)
c3 : 4/[3 _ FH2(J)- 1]
FLIPS= 57.296 x JFNCI(J) - STARI(J)/57.296T
DEQ(J) = 1.12 + COl17 xFIIPS 1"43
DEQ(J) .- ({C61 xC2 xcos_TAPI(J)I/SGMA(J)}

x {CI x[yU(l,J) - U1(J)] + UI(J)/CI - VU(K,J)}
+ DEQ(J)) x cos[BTAP2(J)]_C2 x VZ(K,J)]

HLDP(J) = [HLOB(J) - HLOSS(I,J)]I/HLOSS(I,J) l

L.
t-

to: "Prepare blade-element ... "

85



FlowChart 17.

DO J = ,JLIMJ

from. "Compute equivalent ..."

RRT(J) = R(I,J),/R(I, JLIM)

RRT2(J) = R(K,J)/R(K,JLIM)

XPFTI(J) = 100 x PPFTI(J)

XPFT2(J) = 100 × PPFT2(J)

XTHTA(J) = 57.:)96 _'IHTA(J)

XVPI(J) = VZ(I,J)/cosES, TAP1 (J)]

XVP2 (J) = VZ (K,J)/cosEBTAe2(J)l

XBETA(J) : 57.296 x TAN-! ['VU(I,J)/'VZ(I,J)]

XBETA2(J) = 57.296 xTAN -_ rVU(K,J),A/Z(K,J)]
XOMEG(J) = 64.348 x HLOSS(I,J) x Icos['BTAPI (J)],/VZ(I,J)I 2

XBTAPI (J) = 57.296 x BTAPI (J)

XFNCl (J) = 57.296 x FNCl (J)

XBTAP2(J) = 57.296 x BTAP2(J)

DELHI(J) = [U2(J) _ VU(K,J) - U1(J)xVU(l,J)]/32.174

DELH(J) = H(K,J) - H(l,J)

XEFF(J) = D ELH (J),/[:)ELH I(.I)

XPHI1 (J) = VZ(I,J)/UI(JLIM)

XPHI2(.I) = VZ(K,J)/U2(JLIM)

XPSI(J) = 64.348 x DELH(J),/_J2(JLIM)]_

XPSII(J) = 64.348 x DELHI(J),/ru2(JLIM)]"

XD(J) = 1 - T_XVP2(J)PXVP1 (J)]

+ [R(K,J) xVU(K,J) - R(I,J)

xVU(I,J)]/{ XVP1 (J) x [R(K,J)

+ R(I,J)] xSGMA(J) 1

I XVl (J) = [VZ(I,j)2+ VU(I,J)2_2 I

XV2(J) = [VZ(K,J) L + VU(K,J)Zy2 I
XHSTT1 (J) = H(I,J) - [XVI (J )22/64. 348] l
XHSTT2(J) = H(K,J) - [XV2(J) /64.348] I
XDEL2(J) = 57.296'.' DEL2/J1 1

XEFFO) = 0

XPHII(J) = 0

XPHI2(.I) = 0

xPsl(J)= o
xesllo) = o
XD(J) = 1 - _'XVP2(J)/XVPI(J)]

- [R(K,J) xVU(K,J) - R(I,J)

x VU(I,J)]/I XVP1 (J) x TR(K,J)

+ R(I,J)] x SOMA(J) I

I

to. "Output blade-element ..."
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from: "Prepare blade-element ..." Flow Chart 18.

Ioo KJ--1,JUMi

t

(DO KJ =IIJLIM j

t

JDO KJ =11JLIMJ

JDO KJ =lrJLIM' j

t

IWRITE: QRUNJ

-I
IJ= JLIM - KJ + 11

WRITE..J, RRT(J),U1(J),XVl 0),
VZ (I, J), VU (I,J), XVP1 (J),
H0,J),XHSTT_ObXBETAO),
XBTAPI(J)

4
Jj = JLIM - KJ + l J

WRITE.J, RRT20),U20),XV2(J),
VZ (K,J), VU(K,J), ×VP2(J),

H(K,JbXHSTT2ObHLOSSfl,J),
XBETA20),XBTAP2(J)

-t
D _juM- KJ, 11

WRITE: J ,RRT(J),XPFT1 (J),XPHI1 (J),XFNC1 (J'),J
STARI(I), RRT2(J), ANGST(K,J), IXTHTA(J), SGMA(J), TMAXC(J)

|J : JLIM - KJ + 1i

WRITE.. J, RRT2(J),XPFT2(J), XPH 12(J),
XO EL2(J), XPSI(J), XPSII(J ),
XEFF(J), XOMEG(J),XD(J), DEQ(J),

THAC(J)_ HLDPiJ)

J CALL: MAVE J

[ RETURN J
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Subroutine RADEQC. -- Blade-element radial equilibrium and continuity

flow solutions are determined for the flow leaving a given blade row.

Iterative adjustment of streamline radii based on radial equilibrium solu-

tion and flow continuity requirements are made. Maximum number of adjust-

ments is I0, and a convergence tolerance of + 1.0% change in streamline

radius is used. Maximum number of radial equilibrium and continuity solu-

tions and base streamline axial velocity adjustments is 20, with convergence

tolerance set at + 0.5% of the assigned flow rate.

Abnormal return to the calling program (MAIN) is executed in case

of failure of the radial equilibrium solution for leaving axial velocity

(VZ) at any blade-element. Also an abnormal return is executed in case

a leading edge blade-element camberline tangent angle (ALFI) equal to
zero is encountered.

Program parts of RADEQC in the accompanying Flow Charts 19, 20, and
21 are identified as follows:

Flow Chart 19 Program segment "Determine blade-element geometry para-

meters, wheel speed and relative leaving flow angles" of

subroutine RADEQC.

Flow Chart 20 Program segment "Determine leaving whirl velocity, total

head and axial velocity satisfying radial equilibrium"

of subroutine RADEQC (continued).

Flow Chart 21 Program segments "Compute stream function distribution

for leaving flow and revise base streamline velocity"

and "Revise leaving flow streamline radii based on stream

function distribution of subroutine RADEQC (concluded).

RADE QC variables:

A

B

C

D

E

factor in radial equili-

brium equation

factor in radial equili-

brium equation

factor in radial equili-

brium equation

streamline radius factor

streamline radius factor

IO

IWARN

IZ

J

printer reference number

fitting extrapolation

warning indicator (= I, no

extrapolatlon; = 2, extra-

polation of reference data

table)

index

streamline number (= I at

hub)

axial station; blade row

number, determined by
inlet station to blade row

JBASE base streamline number from

which radial equilibrium

calculations proceed outward

to casing, or inward to hub
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JL

JLIM

K

KJ

KKK

KNT

ALFI

AFL2

ANGST

ALPHZ

BTAP2

CS

DEL2

FKSHA

H

HLOSS

IEXDEV

IEXLOS

JLIM-I KNTT

number of streamlines, casing

streamline

I + i

J + l, or J - 1

KR

RAD

index

integration direction indi-

cator from JBASE streamline

(= I, outward; _ I inward)

RADEQC arrays:

leading edge blade-element

camberline tangent angle

PHIEFC

trailing edge blade-element

camberline tangent angle

Q

blade-element stagger angle

diagnostic alphameric word QB

blade-element relative

leaving fluid flow angle

product of blade-element

wheel speed and fluid whirl

velocity

blade-element flow devia-

tion angle

QR

R

RB2

blade-element shape correc-

tion factor RN

blade-element total head SGMA

blade-element total head U2

loss

option designation for devia- VU

tion angle calculation

option designation for

head loss calculation

VZ

radial equilibrium solution

failure indicator (= 0, no

failure; = I, failure)

index

factor in radial equili-

brium equation

streamline radius factor

blade row inlet average

flow coefficient

blade _lement quadrature

value of flow rate (from

hub) based on normalized

radial equilibrium solution

blade-element quadrature
value of normalized flow

rate (from hub)

conversion factor in normal-

ized flow rate (Q) calcula-
tion

streamline radius

interpolated blade-element

leaving streamline radius

blade row rotational speed

blade-element solidity

blade-element velocity at

blade row exit

blade-element fluid whirl

velocity

blade-element fluid axial

velocity
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YANGS

YPHIEF

IANGSTI

PHIEFC

YR R
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Flow Chart 19.

CALL FIT1D to interpolate:
ALF2ER(K)]
FKSHA[R(K)]
SO/V_rR(K)]

U2(J)= .10472xRN(1)xR(K,J)

I

,I
ANGST(K,J) = .5)_[57.296xALFI (J)+ ALF2(J)]

ALF2(J)..,,--.017453x ALF?(J)..
YANGS(K,J) = IANGST(K,J)!

_1 >o _1_°

JYPHIEF(J)= PHIEFC(1)YR(J)= R(KrJ) J

ICA_LOE';I

IBTAP2(J) : ALF2(J

J DO J =I,JLIM J

¼

<o o

)- DEL2(J)I 1>0 I WRITE: errort message

IBTAP2U): ALF2(J)+DEL2U)IjRETURN11

to: "Determine leaving ..."

I DO J =I,JLIM I

I
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from: "Determlne bl xle-element ..."

4-_-IDO KR"=-1:2_

,_ _)

J VU(K,J)= U2(J) - VZ(K,J) _slnrBTAP2(J)!/cosFBTAP2(J)] J

I I(K_J) = H(I,J) + .03106 _'U2(J) xVU(K,J)- CS(.J)] - HLOSS(I,J)J

t
S = [R(K,KJ) - R(K,J)yR(K,KJ)

E = S xR(K,KJ)/R(K,J) - I
D=S-I

C = - VZ(K,J) :_VZ(K,J) - 64.348 x_H(I,KJ)
-HLOSS(I,KJ)- H(K,J)]+2 xCS(KJ)

+ O x U2(KJ) x U2(KJ) + F y VU(K,J) _< VU(K,J)
B = sir_BTAP2(KJ)]/cos[BTAP2(KJ)7

A=I.+(S+t )xBx B
B.---- 2xU2(KJ) xS x B
RAD_BxB-4 xAxC

_ITE: error mo_eJ

IVZ(K,KJ) = (-B_RAO)/(2 x A)I [_

_JL _' 1

2

r

J VU(K,KJ) = U2(KJ) - V'Z(K,KJ) x sin[BTAP2(KJ)]/co_[BTAP2(KJ)]
I

H(K_KJ) = H(I,KJ) + ,0_1106 x[U2fKJ) _VU{K,KJ) - CS(KJ)] - HLOSS(I,KJ) .

to: "Compute stream Function ... "

Flow Chart 20.
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Flow Chart 21.

Ioo J :I,JLI

from "Determine leaving ..."

>0

N21

"t
Q(K,J + 1) = Q(K,J)÷ QR _ [VZ(K,J + 1) ÷ VZ(K,J)] |L'R(KIJ + 1) x R(KtJ + 1) - R(KtJ ) x R(K,J)]

lVZ (K, J BASE)-',- VT-(K, J BAS
:) _ QB(I,JLIM)/Q(K,JLIM]i ?

_ _ ....

JCALLFlT1Dtointemolate: I J WRITE: message IRB2[QB(I )] "not conve_ed"

_1 J

>_ RB2{J) l

I
"not converged"

l

IDOJ: 2,JLJ

I
IDO J = 2,JL I

J

IRN I
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RESULTS

The following examples were selected from a large number of cases

considered to represent typical results and to illustrate the significant

strengths as well as weaknesses of the proposed pump performance pre-

diction method. Insofar as the primary results shown are computer

calculated ones, the calculated mass-averaged flow coefficient without

blockage, i.e. _rog, is used throughout the section as the flow level

parameter. The experimental flow coefficient values used for comparison

were thus appropriately adjusted to reflect the difference between

calculated, _rog, and measured, _, flow coefficients.

As mentioned in a previous section, specific correlations of experi-

mentally determined values of blade-element loss and deviation angle

were obtained on a three-parameter basis for each rotor geometry and

were made available for use in the present program as options associated

with IEXLOS > 0 and IEXDEV > 0. For loss, the three correlating para-

meters are average blade-element loss coefficient, 5, exit flow stream-

line spanwise location (radius from machine axis), and average inlet

flow coefficient. For deviation angle the three parameters are devia-

tion angle, 6, exit flow streamline spanwise location (radius from

machine axis), and average inlet flow coefficient. These correlations

were precise enough to yield estimated average blade-element loss coef-

ficients and deviation angles that are very close to measured values

thus providing a means for assessing whether or not the present computer

program would produce meaningful results if losses and deviation angles

could be estimated accurately. Typical computed results are compared

with measured results for a particular rotor, configuration 13A (Table I),

in figures 33 and 34. The close agreement between calculated and mea-

sured values of mass-averaged hydraulic efficiency, _, head rise coef-

ficient, _, axisymmetric blade-element outlet flow angle, _2, and axial

velocity, Vz, 2, suggests that aside from the procedures used for estimat-

ing losses and deviation angles, the basic programming and the axisym-

metric, steady-flow, radial equilibrium flow model are as reliable as
the available measurements.

Work on the development of semi-empirical and relatively general

rotor blade-element loss and deviation estimation procedures based on a

large collection of NASA isolated pump rotor data was outlined earlier
in the BLADE-ELEMENT LOSS AND DEVIATION ANGLE PREDICTION section of this

report.

The recommended procedures for calculating rotor blade-element

loss and deviation angles evolving from this work are based on NASA

axial-flow pump rotor data (rotor configurations 02, 07, 5, 13A, 14A)
correlations. These involve version A of the wake momentum thickness

to chord ratio parmneter, (9/C)A, modified equivalent diffusion ratio,
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DEQ,and spanwise location (percent of passage height from the outer
wall) as loss data correlating parameters (see figure 14) and camber
exponent, b, incidence angle difference, i - ire f, and spanwise location
(percent of passageheight from the outer wall) as deviation angle data
correlating parameters (see figure 28). These recommendedloss and
deviation angle estimation procedures are available as the options asso-
ciated with IEXLOS= - 1 and IEXDEV= - 1 and were used in computing
the performance of a NASAaxial-flow pumprotor, configuration 15, for
which measureddata are available but were not used in the above-
mentioned correlations. Since the major objective of the blade-element
loss and deviation angle estimating procedures development was to
realize significant improvement over two-dimensional flow methods
(Carter's rule and two-dimensional cascade loss correlation), results
obtained using the recommendedprocedures as well as the two-dimensional
flow methods were comparedwith measureddata. Overall-performance
results are indicated in figure 35 while blade-element comparisons are
shown in figure 36. In general, the overall as well as blade element
results related to the recommendedprocedures for loss and deviation
angle prediction were significantly better than those obtained using
the two-dimensional flow methods. Note, however, that when using the
recommendedprocedures for calculating blade-element losses and devia-
tion angles, the radial equilibrium condition could not be satisfied
for flows corresponding to flow coefficients equal to or less than 0.372.
_aen using the two-dimensional procedures for calculating blade-element
losses and deviation angles, the radial equilibrium condition could be

satisfied at @7n_O_0.372 but not at _pro = 0.338. As demonstratedin figures 37 , using the more speci_c _ and 6 vs _ and radius
correlations (IEXLOSand IEXDEV> O) results in the radial equilibrium
condition being satisfied at even the lowest flow coefficient, _prog =
0.338. These results point out that a failure to satisfy the radial
equilibrium condition at lower flow rates in the case of configuration 15,
when using either the recommendedor the two-dimensional loss and devia-
tion angle estimation procedures, should be interpreted mainly as an
indication of the imprecision of these calculating procedures. The
more precise loss and deviation estimation procedure did not result in
radial equilibrium failure at the lower flow rates. Any statement
relating radial equilibrium failure and a reversed flow condition near
the hub or tip wall should only be madeif the precision of the loss
and deviation calculating procedures has been ascertained.

As shownin Appendix F, the radial equilibrium solution loss related
to loss and deviation angle estimation procedure imprecision is probably
mainly due to a failure to predict loss gradients accurately. Thus,
while the (_/C)A , DEQ,passage location loss calculation method led to
more realistic magnitudes of losses for rotor configuration 15 than the
two-dimensional cascade data method did, the predicted gradients were
too large at lower flow rates, thus leading to premature radial equilib-
rium failure. It is interesting to note the computer results of itera-
tions just before a loss of solution occurs. In figure 39, the computed
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results of each of three iterations before a radial equilibrium solution
failure occurred are shownfor configuration 15 operating at a flow coef-
ficient, @.... = 0 338, with the recommendedprocedures for estimating_Lu_
losses and deviation angles. The predicted deviation angle spanwise
variation remained essentially unchangedduring iterations 2, 3 and 4,
due mainly to the weak dependencebetween predicted deviation angle and
the calculated outlet flow field.

TheNASAaxia_flow pumpexperimental research program (see reference 57) in-
volved only one single-stage configuration (ref. 68 to 70). Although
measureddata from the rotor of this stage were not used in the (0/C)A,
DEQand passage location, camber exponent, incidence angle difference
and passage location correlations, data from a 16-bladed (the stage
rotor had 19 blades) version of the stage rotor (configuration 02) were
used. As mentioned previously, no attempt was madeto develop an im-
provement over two-dimensional loss and deviation angle calculation pro-
cedures for a stator blade row. The computedresults associated with
using the recommendedloss and deviation angle estimation procedures
for the rotor and the two-dimensional procedures for the stator are com-
pared with measureddata in figures 40, 41 and 42. The early failure
to satisfy the radial equilibrium condition in the stage occurs specifi-
cally in the stator row and it most likely is an indication of the inade-
quacy of the two-dimensional stator loss calculations used. As indicated
in figures 43 and 44, the radial equilibrium condition could be satisfied
at all flows in the rotor alone.
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CONCLUDINGREMARKS

The results presented in the current report represent typical
examples of computation of axial-flow pumpconfiguration performance
using the program described and given in the text. Numerousprelimi-
nary versions of the program and its componentswere modified, combined,
and discarded in the process of reaching the format now in use. In
retrospect, it is evident that the development of such a computation
system is a major undertaking in terms of time and funds that must
involve continuity of effort. It is also an undertaking that, consid-
ered in a broad sense, is not likely to be completed in the foreseeable
future.

At present, it may be concluded that the program logic and the
flow model are consistent and adequate in terms of current experimental
procedures and design requirements. There does not appear to be a
reasonable way to avoid the requirement for introduction of experimen-
tal correlations to support the system. This requirement represents a

limitation that should be considered in the planning and coordination

of future research on axial-flow pump and compressor components.

97



APPENDIXA

DERIVATIONOFRELATIONSHIPSFORAXIAL-FLOWPUMPROTOR

ANDSTATOREQUIVALENTDIFFUSIONRATIO

Rotor

For a plane cascade blade element, the equivalent diffusion ratio
is an expression intended to serve as a measure of the velocity ratio,
Vmax,s/V2,freestream. For a rotor, it is assumedthat the appropriate
equivalent diffusion ratio to use is one that approximates the velocity

! !

ratio, Vmax, s/V2, which can be expressed as follows:

V' V I

_= max, s

v{

V I i

V I __Vz__z!l cos _2

v_ v I vz, 2 cos _I
(A-l)

! !

Further, it is assumed that for a rotor, the velocity ratio, Vmax,s/Vl,

can be expressed in a form similar to that proposed for plane cascade

flow by Liebleln (33), namely,

' [C * c3= + C2 (i - i )
v 1 1

(A-2)

The relative circulation parameter, C.P._, deserves further explanation.

For axial-flow pump rotor flow, the blade element circulation referenced

to a rotating coordinate system is

Vr = V ds = rlV ,I - r2V@,2
(A-3)

With respect to the rotating coordinate system, the circulation para-

meter, C.P.' isr'

F' cos I_. =_[(rl/r2)V_,l- V_,2]cos 8{
C.P.' =

r cV.' nc V i
i 1

2_ r2
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! ," |

, - oo,
C'P'r = - °2W'{ "

(A-4)

Since

V
, ztl

Vl cos 81

then it is true that

2
cos 8_

C'P''=r 02 V [(rl/r2)V; 1
z,l

The velocity ratio, V'max, s/V2, can thus be expressed as

V' V COS ' I

max, s =_V2 z_l R82 /Clt V COS w
Z, 2 _I

+ c2 (i - i*) C3

+ C4 cos 81 rp__ , - V'

02 Vz, 1 8,I 8,

(A-5)

(A-6)

Finally, it can be seen that

I °3DEQr = Vz. 1 COS _2 C1 + C2 (i - iref)
Vz,2 cos _

C4 cos 2 ,
81 rl V'

+ c_2 Vz, 1 L_2 8, I
(A-7)

Stator

For a stator, it is assumed that the appropriate equivalent diffu-

sion ratio to use is the one that approximates the ratio, Vmax,s/V 2,

which can be expressed as follows:
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V V V 1 V V cos _2max,s = ______z_s __ =max, s z___J_l
V 2 V 1 V 2 V 1 Vz, 2 cos _1 "

(A-8)

It is further assumed that the velocity ratio, Vmax,s/Vl, can be expressed

as

v Is >]max,s = + C2(i i ) + C4(C.P. . (A-9)
V I i s

The circulation for a stator row blade element can be expressed as

2TT

rs=_v_s:(_2ve,2- =_v0,_)_ (A-10)

So the stator circulation parameter, C.P. s, is

C°P,
s

cos 81 [ r I

c2 Vz,l 8,2 - r_ V@, .

(A-11)

The resulting stator equivalent diffusion ratio is

DEQs =
Vz,2

cos _2 / C3

cos _I ICl + C2(i - Iref)

+

2

C4 cos

C2 Vz, I r 2 V@,l .
(A-12)
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APPENDIXB

DERIVATIONOFVERSIONB ANDC OF THEMOMENTUM

THICKNESS-TO-CHORDRATIORELATIONSHIP

Version B

For plane cascade flow (32):

o Coo._[_-_ _ i_- c _ cos ff2J

3H 2 - I

(B-l)

and

1-(_)[_ _2 =Vz,2" (B-2)

in

Combining these relationships and using relative flow angles results

_ _, i_l_c _ {_)_@ffi UJ cos _2 3/'{2 - .

_ -
C 20" cos 2 81 \ z,2/ B

(B-3)

Version C

If it is assumed that

2H2
3H 2 - I

NI.0

I01



and

V = V
z,l z,2

or

cos 82 VI

cos _I = T2 '

then equation (B-I) becomes

(B-4)

With relative velocities and exit flow angle for a rotor blade element,

the parameter becomes

o-_o\v_)=o,B2- c (B-5)
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APPENDIXC

DERIVATIONOFAXIAL-FLOWPUMPROTORAND

STATORBLADEELEMENTDIFFUSIONFACTORS

as

Rotor

For a plane cascade blade element, the diffusion factor is expressed

V2 F
D = i - _i + acV----_

(c-i)

where a is empirically determined to be equal to 2.0. For a rotor blade

element, an appropriate diffusion factor might be

' F'

D r = I V2- + . (c-2)

The relative circulation, Fr, could be expressed as

, , 2_
r;=_Vs_=(_v0._-_ve,_)n " (c-3)

Thus

' /r V' -"" _/2nh
V2 ( I o,l - r2vo,2

Dr = I -"_v1+ \ acv{
(c-4)

and

V_ rlV'_ - '
Dr I - .'77+ .I r2V@_2 (c-5)

if a= 2.0.
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Stator

For a stator blade element,

Fs ___vsd8 = (r2Ve,2- rlV0,0 2_ .
(c-6)

V 2 r2Ve_2 - rlVg_ I

D s = I - _I + a_av(rl + r2)Vl

(C-7)

if a= 2.0.
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C
C

O
C
C
C
C
C

C
C
C
C
C
C

A_PEhTDIX D COMPUTER PROGRAM LISTING
BLCCK DATA

COMMCN/BLCCKAIALFB (5,20) ,BIA2(20) ,BTPLB (I0) ,DEQ (20) ,DEQB (I0) ,FHB

1 (5,2C) ,FF2(20},F 1S2C(20 ),FI lOG8 (8,9),FI2C8( 5,20),FKI (20),FKSHAB

2(5,2Cl,HLCe(20),c.LPIGB(8,_) tSLP2GBI8,gI,THAC(20),THACB(IO),X(5,20)

COf'P'CN/eLCEK_IALFI(20)tALF2(20),ALFPB(5,20),ANGST(5,20),ANGSTB

[(5,8},CS(20),EM(20),EMB(5,8),FKSHAI20),PPFTL(20),PPFT2[20),O(5,20)

2,QE(5,20),RB2(20)tRN(5) ,SC-MA(20) tSGMAB[5t20),SGMGBB(9I,THTA(20),
3TM AXE (20 ),TMXCe (5 •20), XP (5,20), YANGS8 (8) ,YANGS (9, 20)

CCMI_CN/BLCCKI/EXPB_(7,7),FICIFB(7),PPHe(?)tSTARI(20)

COPMCN/BLCCKM/KLZ(5),LLZ(5) ,YXOBBI20),RPBB[ (7),THCB81(20,7),

IRPEE2(7) ,TI-ZB82 (20,7 ),YEECBB( 20 )

COMPChlBLCCKP/YF&(I e (5,7 ) ,YTMACB (5,7)

DIMENSION FIIOIX(40),FIIOI2(32)tSLPXA(401,SLPIB(32),SLP2A(40),
1SLP28(32)

DIMEKSICh THCA(4C),THCB (4C),THCC(40),THCD(20)vTFCE(40),THCF(40) ,
1THCG(40},TFCH(20 }

EQLIVALEhCE (FIICGE(II,FIIOII(I))•(FIIOGB(4I},FILOI2(I)),(SLPIGB

[(!)•SLP[A(II)•(.cLPIGB(4]),SLPIB(II),(SLP2G8(1), SLP2A([) ),(SLP2GB
2(41),SLP2E(1))

EGLIVALENCE (THCEBt(I),THCA(I)),(THCBBI(41),THCB(1)),(THCBBI(81),

ITHCC(I)),(THCBBIII21),T_CC(1)) t(THCBB2(1),THCE(I)),(THCBB2(41),
21HCFIII),(THCe_2(81),TFCG(1)),(THCBB2(I2I),THCH(I))

ELACE-ELEME_T REFERENCE EATATABLES=

REFERENCE TABLES INCIDENCE ANGLE CORRECTION FACTOR FOR
MAXIMUM TFICKNESS

DATA YTMACe(I,I),YTMACB(I,2),YTMACB(I,3),YTMACB(I•4),YTMACB(Z,5),

1YTMACB(L,6),YTMA(B(1,7)/C.O,O.02,0.04,0.06,0.08•0.10,O. 12/

DATA YFKIe(I,I),IFKIB(1,2),YFKIB(I,3),YFKIB(I,4),YFKIB(lv5I•YFKIB

l(I,6),YFKIe(I,7}IG.OtO.334,0.589tO.772,0.903,Z.O,I.08/

REFERE&CE TABLES CONSTANT STAGGER ANGLE ZERO--CAMBER IN-

CIEENCE INGLE AND CAMBER QUAERATIC COEFFICIENT AS FUNC-
II[NS CF STAGGER _NGLE AhD SOLIDITY

EAT_

DATA

CATA FIIOII/

I C.042, 0.413,

2 C.012, C._54•

3 C.0C3• C.721•
4 -.041, 0.853,

5 -.074, I.C72,

DATA FIIOI2/

I -.C57, 1.203,
2 --.124, 1.3£7,

3 -.132, 1.7_4,

YAN£Se/O.O,IO.,20.,30.,40.,50.,60.,70./

SGMGBS/0.4,C.6,0.8,I.O,I.2,I.4,1.6,2.0,2.6/

0.738, 1.043, I .360, 1. 662, 1.864, 2. 042,

1.085, 1.571, 2.050, 2.485, 2.834, 3.099,

1.405, 2. 105, 2.759, 3.386, 3.835, 4.145,

I°735, 2.636, 3.488, z*.283, 4.919, 5.2(6,

2.146, 3.136, 4.219, 5.215, 5.955, 6.377/

2.476, 3.751, 5.029, 6.214, 7.016, 7. 390,
2.844, 4.346, 5.827, 7.255, 8.100, 8.517,

3._63, 5.606, 7.591, 9.3SSt 10.200, 10.850,
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C

C

C

C

C

C

C

4 -.IE6, 2.3C], 4.6%4, 7.694, 10.460, 12.54C, 13.550, 14.500/

OAI_ SLPIA/

I-. 042758,-.C87534,-.I38C43,-- 190901,-.250442,-. _21693,-.392_70,

L-.4£4C41,
2-.C22447.-.C58126,-. i00154,-- L4E _-12,-.20605g,-.272889,--352378,

2-.4_]6C3,

3-.Cf3620,-.C32CCC,--C67203,-" I13722 ,-. 166661,-.234563,--317756,

3-. 448353,

40. C15655,-.CC816_,--037S2£,--079030,-.130964'-'200632'-'291484'

4-._33447,

50. 041494,0.019C01,--013239,--043754,--096356,--173708'-'267640'

5-. 4CE423/

DATA SLP1E/
10. CE_gC1,C.C46E@ (.,0.025376,-.c09586,-.066273'-- 150270,-.249121,

1-.376220,

20. C£21E5,C.C73CgC,O-055278,0-OI8505,-'040472'-" 13385T,-.236335,

2-. 356545,

30. 116359,0.12361_,0-I13367,G.079266'0"003457'-" I07843,-.194811,

3-. 2S6_72,

40. 162877, C.18S40],0-19342C,C- 147714,0.046888,--C71540,-- 156740,

4-. 247CC8/

DATA SLP2A/

i-. CC I435,-.00I 38 E,-. 001268,-.G0 ii61,-.001010,-. 000744,-. 000538,

1-. CCCII3,

2-.CC1321,-.CC1342,-.001_._I,-.001289,-.001178,--001022,--000814,

2-. CCC337,

3-. CC 1225,-. CO 1325 ,-. 001395 ,-. 001370,-. 001347,-. 00 1256,-.001107,

3-.C00463,

4-.CC1164,-.00129__,-.001424,-.001497,-.001533,-.001489,-.001376'

4-. CCC6C7,

5-. COl 171,-.00134 i,-.001418,-.00 ib53,-. 001749,-. CO 1639,-.001551,

5-. CCC£46/

CATA SLP2B/

I-. CC iO 58,-. C0133 C,-. OO1604,-.001843,-. 001940,-. O0 I797,--00 I6 17,

I-.CCI048,

2-. C01C45,-.001386 ,-.001 744,-.00200I,-.0C2120,-. 001904,-.001656,

2-. CCI2CC,

3-.COC875,--C0146_,-'CCI C_7,-.c02403,--C02377,-. C01919,-.001769,

3-. CC1514,

4-. CCC71C,-.COIfi64,--CO2445,--G02851'-'002623'-'[02108'-'002036'

4-.CC2749/

DATA

CAT,_

DATA

I

REFERENCE TABLES CEVIATION ANGLE RULE CAMBER EXPCNENT AS

F_NCTICN OF INCICENT ANGLE MINUS REFERENCE INCIDENT

ANGLE ANC FRACTICN OF PASSAGE HEIGHT FRCM CUTER CASING

(IEX_EV<O}

F[CIFB/-12.,-8.,-4.,C.,4.,8.,IO./

PPH_IO.,.I,.3,.5,.7,.9,1./

EXPBBI

1.17 , 1.13 , 1.1C , 1.14 , 1.20 , 1.28 , 1.32 ,
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C
C
C
C
C

C

C
C

C

C

C

C

C

C

C
C

C
C
C

C
C

2 1.15 , i. I0 ,

3 1.11 , 1.07 ,

4 1.07 , 1.06 ,

5 1.07 , 1.06 ,
6 1.06 , 1.03E,

7 1.04 , 1 .el ,

I.OE_ , I.II , 1.17 , 1.26 , 1.31 ,

1.05 , 1.07 , 1.13 , 1.22 , 1.28 ,

1.05 , 1.06 , 1.08 , I. [ | , i. 13 ,

1.05 , 1.04 , 1.03 , 1.02 , 1.015,
1.016, 0.9_4, 0.c. 72, 0.95 , 0.939,

C._8 , 0.95 , 0.92 , 0.90 , 0.88 I

REFERENCE TAELE SLOPE FACTOR CARTER DEVIATION ANGLE RULE

AS FUNCllCN CF ST_GGER (YANGSD) (IEXDEV.=O)

DATA EMBI 1,1) ,EME(I,2), EMe(I, 3), EMBI 1,4),EMBI I, 5) ,EMB(I,6) ,

IEMB(I,7},E_B( I,e|/.ZLT,.Z27 ,.245,.Zb8,.295t.328,.368,.425/

REFERENCE TABLES _AKE MCMENTUM THICKNESS/CHORD AS FUNC-
TICN CF ECUIVALEN1 g-_ACTgR (IEXLOS=O)

DATA DEQB/ I._-,I.4,1.5,1.6,1.T,1.8,1.9,2.0,2.1,2.2/

OAT_ THACB/.OCS, .C06,.CC7,.CC8,.0094,.011,.013,.0153,.019,.023/

REFERENCE TABLES _AKE MCMENTUM THICKNESS/CHORD AS FUNC-

TICN CF C-FACTCR AND FRACTION OF PASSAGE HEIGHT FROM

CLTER CA<.ING (IEXLCS=-2)

DAT_ YX_BB/.05, •I,.15,. 2, .25, .3, .35, .4, •45,. 5,. 55,.6,.65,.7, .75,

1.8 ,. E5,._,.95, I. C/

DAI_ RPBB1/.O, .IC, .30, . 50,. 70,. _0, I. O/

CAT_ THCAI

1 .C16 ,.016 ,.C16 ,.016 ,.016 ,.016 ,.017 ,.022 ,.027 ,.032 ,

1 .C37 ,.C42 ,.647 ,.0_2 ,.057 ,.062 ,.068 ,.073 ,.CTB ,.083 ,

2 .C16 ,.C16 ,.C16 ,.Olb ,.016 ,.016 ,.017 ,.022 ,.027 ,.032 ,

2 .037 ,.042 ,.C47 ,.052 ,.057 ,.062 ,.068 ,.073 ,.078 ,.083 /
CAT/} TI-CPI

I .Cl ,.01 ,.El ,-01 ,.01 ,.01 ,.01 ,.01 ,.01 ,.014 ,

I .023 ,.C32 ,.041 ,.05 ,.c5g ,.068 ,.077 ,.086 ,.095 ,.104 ,

2 .CC5_,.C062,.CC65,.3C0_,.0071,.0074,.0077,.008 ,.0085,.009 ,

2 .CGq5,.CI ,.CI05,.011 ,.0115,.012 ,.0125,.013 ,.0135,.014 /
CAI_ TFCCI

L .CG6 ,.CC65,.CC7 ,.0077,.0084,.0091,.0398,.0105,.0112,.011_,

I .0126,.0133,.014 ,.0 ]47, .0154,. CI6 I,.0168, •0 175,. 0182,. Ol 89,

2 .01 ,.Of ,.el ,.01 ,.01 ,.011 ,.012 ,.014 ,.016 ,.018 ,

2 .02 ,.022 ,.024 ,.026 ,.028 ,.03 ,.032 ,.034 ,.036 ,.038 /
GAlA TFC_/

I .01 ,.CI ,.CI ,.01 ,.01 ,.011 ,.012 ,.014 ,.016 ,.018 ,
I .02 ,.022 ,.024 ,.C26 ,.028 ,.03 ,.032 ,.034 ,.036 ,.038 I

REFERENCE TABLES WAKE MCMENTUM THICKNESS/CHORD AS FUNC-

TICN OF EQUIVALENT {:,-FACTOR AND FRACTION OF PASSAGE HEIGHT
FREM CUTER CASIhG (IEXLCS=-I}
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C

CAI_ YCECPelI.2,]

12. _.,2.e,2.3,2.e,2

DAI_ RPBe2/.O,.[C

CATA THCEI

I .CI4 ,.014 ,.C

1 .048 ,.653 ,.C

2 .Of4 ,.C14 ,.C

2 .C48 ,.C53 ,.C
DAlJ TFCF/

1 .01 ,.Of ,.C

I .042 ,.0465,.C

2 .606 ,.CC6 ,.C

2 .0074,.C078,.C

CAIA IFCG/

.3,1.4,1.5

.g,3.0,3.4

, .30, • 5C,.

,1.6, 1.7, t.8, 1.9,2.0,2. I, 2.2,2.3,2.4,
/

?C,. qC, I. CO/

16 ,.018 ,.022

58 ,.063 ,.068

16 ,.018 ,.022

58 ,.C_3 ,.068

I ,.0105,

51 ,.0555,

C6 ,.0£6 ,

082,.00e£,

I .006 ,.CC6 ,.0665,.0(7 ,

1 .Of2 ,.C[3 ,.014 ,.015 ,

2 .C66 ,.CC6 ,.0065,.0C75,

2 .C155,.C17 ,.{185,.02 ,

DAT_ TFCF/

I .006 ,.606 ,.CC65,.007=_,

t .0155,.C17 ,.C185,.02 ,

ENC

,.026 ,.OBO ,.034 ,.038 ,.043 ,

,.075 ,.083 ,.Cq3 ,. 108 ,.165 ,

,.026 ,.030 ,.034 ,.038 ,.043 ,
,.075 ,.083 ,.0£3 ,.10B ,.165 _'

.0145,.0195,.024 ,.0285,.053 ,.0375,

•06 ,.0645,.C09 ,.0735,.078 ,.096 ,

.0061 ,.0061 , .006 I, .0062, •0066, .0070,

.O09C, .30£4, .CC98 ,•0102, .0106, .O122/

.0075,.008 ,.0085,.009 ,.01 ,.011 ,

•016 ,.017 ,.018 ,.Olq ,.020 ,.024 ,

.0085,.0095, .0105,.0 [15,.012 5,. 014 ,

•0215,.023 ,.0245,.026 ,.0275,.0355/

•0085,.0095, .0105, .0115, .012 5,.014 ,
•0215,.023 ,.0245,.026 ,.0275,.0335/
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MAIN PROGRAM

COM_'CNIBLOCKA/ALFEIS,20),BTA2(2C)tRTP18(tO) tDEQ(20) tDFQB(tO) ,FHB
I(5,2C) tFP2120),FIS2C(20)tFItOGB(8,9)tFI2CB(5,20),FKI(20),¢KSHA£
2(5,2C),HLOB(20)t _LPIGE(8,5},SLP2GB{8tg) tTHAC(20)vTHAC_(I0),X(5,20)
C3Mf'CN/BLCCKB/_LFI{20), _LF2(20}tALFPBIS,20)tANGST(5,20),A'4GST6

i(5,E ) ,CS{ 2C), EM(2C) ,EPe(5 _8) _FKSHA120),PPFTI (20 }, PPFT2(20) ,_(5,20)
2,Q_IE,20),RB2(20),RN(5).SCM_[20),SGMABI5,20),SGPGBB(g),THTA(20),
3T_AXE(2C) ,IMXCE ( _.,2C ),XP (5,20 ),YAkGSe (B ),YANGS (5, 20)

CCIVMCN/BLCCKCIPTAPI(2C},BlAP2(2.3),DELH(201,DELHI(20),DEL2(20),

1FNCI(20),I-I5,2CI,HLCSS[5,20},R(5,20),UI(20),U2( 20),VUI5,20},VZ(5,
220)

COMMCI4/BLCCKD/I,J_ASE,JL, JLIM,K,KLI M,KPRI ,QR,QRLN, THL

CCMMC_/BLCCKE/XI(5,20),VZE(5,20),VZ] 120),VUB(5,20),VUI(20},
1HB(5,2C) ,HI(2C)

COi'MC_IBLCCKF/ILIN, IRUN,IEXLCS(SI,IEXDEV(5),K2LM(5],L2LM(5)

I,I. STAR(5) ,PHIBe (5,20),XFBI5,20) ,CMEGBB(5,20,20) ,DEL28(5,20,20)
2,PHIEXI 20) ,RSTAR [5) ,AREal 5) ,ARFAC(5)

CCIVMCN/BLCCKG/K2L IM, L2L IM,YPHI BB (20] ,YXPB (20 ),YCMGBB (20,20) ,YDEL2
IB(20,2C),¥PHIEF(2C),YR(20),PHIEFC15)

COIVMCN/BLOCKHI IC, IL, IPR I, JPRI ,K ILIM

CI]_'_CklBLCCKI/ FXPBBI?,?),FICIFB(7),PPHB[T),STARII20)

COM_,CN/BLCCKJ/EMEeI8),FI101 I(40),FIIOI2132),FKI_(7),SLPIII(16),

ISLF 112 116) ,SLP 113 [16 ), SLP ] 14( 16 ),SLP 115 (8), SLP211 {16) ,SLP21 2( 16),
2 SLP213(16) ,SLP214([6), _LP215 18) ,TMAXCB (7)

CCIv P'C_/BLCCKK/YC ECB (20) ,YRPB( 7 ), YTHAC_ ( 20,7] ,YXDB (20) ,DEQBB l5,20)
X,RPeel5,7) ,TPACBE(5,20,?I,XCBBI5,20),HLCP(20)
COPI'Ch/BL(]CKL / I I, TO

COMMCN/BLCCKP/KLZ(5) ,LL 2(5) ,YXDeB (20), RPBBI {7) ,THCBBI( 20,7),
1RPBB2(?),THCBB2(20,7),YCECBe(20)

CCI.i,Cfw/BLCCKP/YFK IB I5,7 ), YTMAC8 (5, ? )

DI MEi_S ICN YTMAXC {5t 20 ), HLOSS I (20 )
D) MEhSICN ALPHZ (;,C)

DATA ALPHZ/' VZe_,=IXt)=,' VUB',=(X1}I,, HB',' (Xl)m,
I 'B{X)'," T','MXCB' ,' (XP)=,= ye, = FKIPJ=,

2 'ACB) ',' F'_'I20B',' (XP)',' FHB_,' (Xp)_/
IT=5

IO=_

DO 340 J=l,8
340 ANCS IBI I, J )=YAhG.C_(j)

INFLT PECBLEM EEEIVETRY _NC REFERENCE TABLES.

CALL IkP_T(_5)

INITIALIZE STREAMLIkE RADII, HEAD LOSS AND BASE STREAMLINE

DO 5 J=I,JLIP
Z=J

ZL=JL

VELOCITY.
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C
C
C
C

FZ:(Z-I.)/ZL
R( ILI_,J):FZ_(XP[ IL,KLI_I-XP( [L,II)+XP(ILtl)
HLCSS | ILIN ,J}=C.

90 g I=i, IL
R( ItJ)=Fz_(X( I,KL IN)-XI |t I) )+XC It [)
HLCSS( [ ,J|.=C.
RE_E ( I I, 6CC) IC, _,Z( I,J_ ASF- )
IF {I[-70)I_,11,14

_._ DO 12 I=2,1LI_
12 VZ II,J_-aSE }=VZ II,JB_SE}

INFLT PU_P IKLET CGNCITICNS, AXIAL STATICN BLCCKAGE FACTCR ANO
CC_FLTE STREA_FUKCTICN CISTRI_UTION.

13 RE A[ | I I, 6CC) ID,PF IRUN

IF (FFIRUN] 131,45,133

131 WR IIE(IC,(16)

CALL INPUTI(gS)
133 XR=IRU_

PH IRLN=XR+PHIRUN

IF(IC-80)I4,ll3, 14
I13 WRIIE llC,519)

WRITE[ IC,6OI]9HIRtN

RElC(II,EISIID,KILIM

[F (IC-_l) 14,7C1,14

701 RE_[ [II,6CCIIC,IXIII,K),VZP(I,K},VUBII,KI,HBII,KI,K=I,KILIM}

IF ( IE-82 ) 14,70C, 14

700 REAC [II,6CC)IC,(_RFAC{ l),I=l,II)

IF (IC-83114,15, 14
15 _RIIE {IC,520)

WRIIE [IC, _.21) {Xl(I,K), VZE[ I,K) ,VUBII,K) ,HB( l,K )t K:I,KILIM)

16 CALL FITIC(R,_ZI,XI,VZS,JLI_,KILIM,I,I,IWARN)

GO TC (1CC2,1CC]),IWAFEN
tOOt WRIIE(IO ,9CC} (ALPHZ( IZ} ,I Z=I,2)

1002 CALL FITIC[R,_LI,XI,VUP,JLIIV,KILIM, I,I, IWARN)

GO TC (ICOA,1CC-),IWARN

I003 ,RITEIIG ,900) |,etPhZl I Z) ,I Z=B, 4)

LC04 CALL FITIC(R,HI,_I,HB,JLIP,KILI_,I,I,IWARN)

GO TC (IOC6,1CC5),IWARN

1005 WRIIEIIC ,gO0 )( _LPI"Z [I Z) , IZ=5,6)

ICC6 DO 16C J=l,JLIM

VZ I I ,J }=VZ llJ )

VUII ,J)=VUI{J}

160 HI 1,J)=HI(J)
GB{I,I)=O.

90 161 J=2,JLIM

I01 QB {l,J )=QB (I, J-t) +705.0217" (VZ (l,J-l) +VZ( I, J) )* (R (I, J}X_R{ l,J I

Lo2

I-RII,J-I)*R(I,J-II)

QR LIx=C.,8(I ,Jtlk )

90 162 J=Z,JLIl V

CR,(I,J)=C_ (1,JI/CRUN

QR =705. C21 ?IC_LN
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62

C
C
C

63
66

6IX
6[0

67
C
C

C
C

18
233

230

235
232

40g

23O t

2302

401

4O2

40 6

4O3

404

PHIB=GRU_/IIR(I,JLIM)*R(I,JLIM)-R(I,I)*R(I,I)}*I410. I*USTAR(1))

DO E7 I=I,lL

IF(IEXLOSIII)62,E2,b3

IF(IEXDEVII)}67,67,63

COMPUTE STATICh AhNULUS AREA AND EFFECTIVE FLOW COEFFICIENT.

AREA[I)=3.1416_{I_[I,JLIP)*RII,JLIM)-R(I,1)*R(I,1) )
PH[EFC(I )=PHIB_[tREA{I}/AREAIII }4'ARFACII)_'(USTARI 1)/USTAR([) )
IF[I-I)610,611,61C
WRITE(IC,612)

WRITEIIO,614II,PI'IEFC(I ),LSTAR(I),ARFAC{I)
CONTINUE

TRANSFER LOSS ANC DEVIATION ANGLE REFERENCE TABLES PER LOSS AND

DEVIATICN AhGLE EPTICNS.

DO 42 I=l,IL
IFIIEXDEV(I) )232,232,233
KK=K2LM{ I )

LL=L2LM {I )

DO 230 K=I,KK
YPhIBE IK)=PHIBe(I,K)

DO 235 L=ItLL
YXPE{LI=XPE {I,L l

DO 235 K=ltKK

YD EL2B (K, L }=DEE2 e (I,K,L )
LINDEX= IEXLOS{ I )+5

GO IC {40I ,k03,401,403,408,409 ),L INDEX

KK=KLZ(I )

LL=LLZ(I )

DO 2301 K=I,KK

YPHIBB (KI=PHI Be (I,K)

DO 2302 L=l,LL

YXPE (LI=XPE (I ,L)

DO 2302 K=I,KK

YOMGeB (K, L }=OlU EGE E I I,K,L)
GO TO 408

KK=KLZ (I )

LL=LLZ{I )

DO 402 K=I,KK

YXCE(K)=XCBB(I,K)

DO 4C6 l=l,lL
YRPE {L )=RPEE ( I,L )
DO z*C6 K=I,KK

YTHACB (KtL)=TI_ACeB( I ,K,L)
GO TC 408
KK=KLZ i I )
LL=LLZ[] )

00 4C4 K=].,KK
YDE{B [ K]=DEQB8 II ,KI
DO 4C7 L=I,LL
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4C_ T
C
C

c

19

C
C
C

850

C

C

C

C
C

851

IC09

I010
250

I011
1012

34

1013

1014

1015

1016

I

C

C

C
801

36

YRPP[L)=RPE_II,LI

DI] qCl K=I,_K

YTF_CeIK,L)=IP_CEB{ I,K,L)

CCMFUTE RLADE RCk INLET CENEITIENS.

CALL F IIIDIR, ALFI,X,ALFE, JLIM_KLIM, I, I, IWARN)

GC, TC (ICCS,ICG?),IWARN

_,R[TE(IO tgo0) (ALPHZ( I Z),I Z=7,8)

DO 1S J=l,JLIM

PPFII(J}=(RII,JLIM]-R{I,J))/(R{ I,JLIM}-R(I, 1})

UI (J) =. IC412"_t_ ( I}*R[ I, J)

BT_P![J)=AIAN! [tI(J)-VL[I,J))/VZ{ I,J))

ALFI(J)=.CI7453*_LFI|J)

FNCI (J)=ABS(BIAP I [J) )-A ES (ALFI [J }}

CS(J)=BI|J)*VU{ I,J)

K=I+l

KHLESS=O

SAgE BLACE ROW IkITIAL FE_D LOSS.

DO 850 J=I,JLIM

HLCSSI(J}:Ht.,CSS[ l,J}

INTERFCLATE FROFILE MAXIMUM THICKNESS AND I'_CIF)ENCE ANGLE

FACICR, C[_PLIE BAOIAL ECLILIBRIUM ANE CCNTINUITY SOLUTICN

CETERMINE _EAC LESS.

DO QI KLK=I,4C
LOK=KLK

CALL F IT IE [R, TMAXC,XP, TNXCB,JLI _,KL IM, I ,K, IWARN)

GC IC (ICIC,1CCS),IhARN
WRIIE[IO ,90C }(aLPHZ( IZ) ,I Z:9, Ii)

DO 25C J=l,JLIV

YTMaXC [1, J )=TMAXC [J)

CALL FITIC {YTMA_C,FKI,_]MACB,YFKIB,JLIM,T,I,I,IWARN)

GC TC {ICI2,1CII},IWARN

WRITE(IC ,SCC} (ALPHZ( IZ) ,I Z=12,15}

CALL R_DEC((gI3, EE52)

CALL F IIID(R,FIS2D,XP,F 12[B, J1 IM,KLI M, I,K, IWARN)

GO TC (IOI4,1CI_.I,[WARN

WRIIE(IO ,OOC) ( _I.PHZ[ I 2} , [Z= Ib, 18)

CALL F ITID {R,FP2,XP,FHB ,JLI M,KLI M, I ,K, IWARN)

GO TC (1016,1C15},IWA_N

WRIIEIIO ,gOC )[ _LPHZ( IZ) ,I Z=Ig,20)

CALL LESS {R,VZ, _L ,BTAP I,BTAP2,FNC I,UI, U2,FH2,

F I $2 g, gEE f.,TF ACE ,I ,K ,JL [Iu,H LOB ,DEQ, T HAC )

CHECK FEAC LOSS CCNVERGENCE AND OUTPUT COMPUTED RESULTS.

00 37 J=I,JLIM
IFIAeS{HLOe(JI-HLCSS(I,J))-THL*ABS(HLCSS{I,J)))37,37,400

CORRECTI

AND
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C
C
C

C

C
C

C
C
C

C
C

C

37 COI%T INUE
CALL CLTPLT
GO TE A2

REVISE FE_[ LCSS.

400 IF(IEXLCS(II.GI.C) G'-; 1[ z;13

GC TC (411,411,412,413) ,LCK

413 XJCE:L.C
GO fC 414

4it X JOE= .5
GO TO 414

412 X JOE= .65

414 IFJKFLCSS.EC.CI C C TO 860

860
40

41

84 I

852

872

871

853

874

873

REASSIGN I-EAC LESS ANC REFEAT ITERATIONS TO LESS

IFILCK.LT.LCKII CC TO 86C
CALL Of, TPUT
WR ITE(IC,880) LCK
IF(LCK.GE.LCKL[f") GC TO 870

IF (LCK-4C) 40,841,84i
00 41 J=I,JLIM
HLO.cS [[,J) =HLCSS (I, J) +XJCE* (HLC_ (JI-HLCSS( I, J ) )

CbIFLT MESSAEE I-EAO LESS NCT CCNVERGEC AND OUTPUT

_RITE (I0,513)

CALL ObTPLT
GO TG ETC

OUTPLT INTERMECI_TE ITEP_TICN RESULTS PRIOR TO LOSS

WRITE(IO,854) LCI(

IF (LCK-41E12,871,871

IF(LCK.GT.I! GC TC 874
GO TC 870
WRITE([C,E56)

KHLCSS=I

LCKLI F'=LCK-[

LCKI=LCK--3

CO 8_3 J=1,Jllf _
HLESS I,I, J) =HLCS S l {J)

GO TC E51

WRITE (10,855)

KHLCSS=I

LOKLIM=LCK-I

LOKI=LCK-!

DO E'/3 J=I,JLIM

HLCSS(I,J)=HLCSSI(J)

GO I[ E5I

OF SOLbTION.

COMPUTED RESULTS.

OF SOLUTION.
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C
C.

INITIALIZE t-E.aC LESS TC ZERC,

870 DF_ 43 J=L,JLI_

43 HLESS(ItJ)=O
42 CCKIINUE

G(-] TC 13

L4 WR[TE (IC,5 TO) ID,..,KtL

45 STCF

510 FORMAT(//' ERRER IN INPLT DATA CARD ORDER, MAIN PROGRAM.t,2X,

I°IC:',I3, I J=',I3,' K=',I3, I L=',I3)

513 FDRMATIIPI////44_-CLCSS _OLbTICN NOT ACHIEVED IN 40 ITERATIONS)

519 FOF_I[17HIINLET CONDITIONS}

520 FORMAT (]_HC R _Z VU H)

52I FORMAT (4FI0.4)

600 FOR_T (12, (T3,12F6.4))

601 _ORMAT(1CX,' PFI_N NO.'tFLO,2)

612 F(]RM_T (II' I PHIEFC LSTAR ARFAC'/I)

_14 FORN_T(5X,I2,3FL2.41

615 FO_AT(212I
eLO FOf:M_T(//' FLEW RATES CCMPLETEO-NEXT READ NEW RPM OR NEW GEOMETRY

IDATA')

854 FORM_TIIHO,'SCLt;IION FAILURE OUE TO NEGATIVE RACICAND DURING LOSS

IIIER_TIC_' ,13}

_55 FOReAT(IHO,'._.[LLIION FOR THE LOSS ITERATION PRECECING FAILURE IS P

IRI_TEC NEXT')

_55 FU_NAT(If_C,'SCLLIICNS FCR SEVERAL LOSS ITERATICKS PRECEDING FAILUR

IE ARE PRIkTED kEXT t)
P8C FOrMaT(' LCSS ITERATIC_ _{].',14)

900 FOR_AT(//'_',_'_, kARNING - FITLD CALLED IE MAIN -- EXTRAPOLATICN OF

I _'AEL E t,4A4)
ENC
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C
C

C

C

C

C
C
C

C

C

C

Z5
16

SU_RCLI" I_E FITIE

(X,_,X_,YB,JP,KPyI,K,IW_Rk)

CC_Ck/BLOCKL/II,IO

DIPEhSICN X(5,I),_(1),X_(5,1),YB(5,1)

3-FEINT L_CRA_GI_N INTERPCLATION FOR Y(X) FRCM DATA

XB-_RRAY ELEMEKIS ARE ARBITRARILY SPACED, MONOTENE

IWARh=2 INCICAIES EXTRAFCLATICN CUISINE RANGE CF XB

TABLES YB(XB).

INCREASING.

ARRAY.

IWARh=I

IF (X|K, I)-XB! I, I) )

IWAB_,=2

DO 3 J=ItJP

DO I M=3_KP
L=M

15,1_,16

BRACKET IhTERPCLATE X WITH THREE NEIGHBORING POINTS IN XB ARRAY.

IF(X(K,J)-XB[I,L)}2,2,I
CONTINUE

IW_Rh=2

XO=XB(I,L-2}

XI=Xe(I,L-1)

X2=XB(I,L)

CCMFLTE INTERPCLATED Y(X).

3 Y[J)=(

I+(XlK,

2÷(X(_,
RET_R_

END

XIK,J)-XI)*(X[K,J)-X2)_YB(I,L-2)/((XO-XI)_[XO-X2))

J)-X2}_IX(_,J)-XO)_YBII,L-I)/((Xl-X2)_(XI-XO))

J)-_C)_{_(K,J)-XI)_B(I,LI/([X2-XO)_(X2-X1))
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C

C

C

C
C
C
C

C
C

C

C
C

C
C
C

C
C

C

C

SUEROUT INE FIT2B

I(X,Y,Z,XB,YE,Ze,IP,JP,JI,IQ,JQ, IWARN)

COMMChlBLCCKLIII,IC

OIMENSION X(1),Y{I),Z{I),XBtI),ZBtl),YST{3}

OIMEkSICN Ye(IQ,J_|

3-FEINT LAGRA_GI_K INTEFPCLATION FOR Y(X,Z) FRCM DATA TABLES

YBIXR,ZB). XB,Z_ ARRAY ELEMENTS ARE ARBITRARILY SPACED, MONOTONE
INCREASING. IW_R_=2 INDICATES EXTRAPOLATION OUTSIDE RANGE CF

Xe, ZB ARRAY.

i6

17

IB

19

IFIXII}-Xe(1))

IWARN=2

IF(Z(1)-ZE(1))

IWAR_=2

DO _ N=I,JL

DO I M=3,1P
I:M

BRACKET INTERFGLATE X WITI- THREE NEIGHBORING POINTS IN XB ARRAY.

IF[X(N)-XE(1))2,2,1
I CC_IINUE

IWAR_=2

2 DO 3 M=3,JP
J=P

BRACKET INTERPCLATE Z WITH THREE NEIGHBORING POINTS IN ZB ARRAY.

3

4

IF(ZIN)-ZB(J)}6,4,3

COkTI_bE

IWARh=2

XO=Ze(J-2|

XI=Ze(J-I)

X2=ZB(J)

CO 5 K=I,3

t=I+K

YO=_E[L-B,J-2)

YI=_E[L-3,J-I)

Y2=YB[L-3,J)

COPFUTE IhTERPCLATED YSTIXB,ZI AT THREE NEIGHBORING POINTS IN
XB ARRAY.

5 YS
I+(

2÷{

XO

I{K}=(Z[_I-XI)t{Z{N)-X2)*YO/{(XO-XI}*{XO-X2})
Z(K)-X2}*(Z[_)-_O)*Y1/(tXI-X2)*(XI-XO)]

Z(h)-XO)*(Z(K)-X1)*Y2/((X2-XO)*{X2-Xl))

=X2|I-2)
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Xl=XelI-1)
X2=XEI[)

COMPLTE It,,IERPCL_TED Y(X,Z).

6 Y( t_): (X(k)-Xl) = (X (N}-X2)*YST( 1 )/((XO-X1)'I,(XO-X2))

1+ (X (N)-X2) ,i,(X(t_)-XO) _'YS I(2)/( !XI-X2),_ | XI-XO) )
2+!)_(h)-XO)_'|X(k)-Xl)t'YSIl_)/{ [X2-XO)t,(X2-Xl))
RE ILRN

EkC
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C

C
C

C

C

C

C

C

C

SL,OI4CL T INE CEV

CGN_CN/BLCCKA/ALFE(5,20), _TA2(2

L(5,2CI,FF2[20),F IS20(2C),FIIOGB

2(5,20),HLCB(2C)t-_LPIG- _ {8,£) ,SiP

CCIVMCK/BLCCKB/ALF [ {20), _LF2 {20)

I{5,E),CS(2C)tEM(2C),EMB (5,8),FK

2,OB(5,20),RB2[2C),RN{5) ,SCM_[20

3TMtXC [20) ,Tf_XCE [5,20), XP| 5,20 ),

COf'IvEIX/BLCCKC/ETtPI {20) ,BIAP2 (2

IFNCI(2C]fF(5,2G),HLOSS(_,20),R(
220)

CCMNE_/BLCCKD/ItJFASE,JL,JLIMtK

COMMCN/BLCCKF/ILIM,IRU_,IEXLOS(

O},BTPIR(IO) ,OEQI20},DEQBIIO),FHB

(8,£),FI 205( 5,20),FKI |20),FKSHAB

2GB(B,g),THACI20)tTHACS(I0),X(5,20)

,ALFPB(5,20) ,ANGST 15,20l ,A_4GSTE

SH_.I20),PPFTI{20)tPPFT2[ 2C),Q{5,20)

),SGMAE {5,20 ) ,SGMGBB [9) ,THTA[ 20) ,

YANGSB(8),YANGS(5,20)

0 ),DELh {20) ,OELH I( 20 ),DEL2( 20 },

5,20),UI(20) tt,2(201,Vb15,20),VZ15,

,KL[MtKPRI,OR,QRLNvTHL

5),IEXDEV(5),K2LMIS)tL2LM[5)

I,L _IAR (5) ,PHI eP.(5,20), X PP_{5,20) ,E/_EGBP. [5,20,20 ] ,DEL2B[ 5,20,20}

2,PFIEX(20),RST/_RIS),AREZIS),ARFAC[5}

CC/'/'[t_/BLCCKG/K2L IM, L2L IM,YPHIB B (20) ,YXPB (20) ,YEMGOB [20,20 ),YDEL2

IB{20,20),YPFIEF(2C),YR{2CI,PHIEFC(5|

COMPCN/BLCCKI / E_P_e (7, ?) ,F IOIFO(7}, PPHB (7) , STARI (20 }

COtvlvCN/BLCCKJ/E_eO(BI,FIICI I(40),FI[OI2(321,FKI_(7), SLPIII(IG},

ISLPII2[t6),SLPII3(LGI,SLPlI4(IbI,SLPII5(8},SLP21I(IG|,SLP212(IG],

2 SLF213[Ie],SLP214(IGI,_LP215(8I,TMAXCe(T)

COI_MCIk/BLCCKK/II,IC

DI MENSIEf_ EXP8 (2C),FIDIF[20)

DIMENSION ALPHZ(10)

CAI_ _LPRZ/' YCE','L2B{','YPHI','BB,Y','XPB)', ' EX','PBB( ',

l 'F ICI ' ,'FB, P ', 'PHB) '/

CALCIjLATE REFEREI_EE INCIDENCE ANGLES,

CC 45 J=I,JLIM

PPFT2{J)=(R(K,JLIM)-R|K,J}I/(R|K,JLIMI-R(K,I})

45 THT_(J)=ABS{ALFI(J)-ALF2{J})

CALL IRFF

IF(IEXCEVII))43,40,42

CALCLLATE CEVI_TI6N ANGLES USING CARTER'S RULE.

z,O CALL FITIC(YAt_GS,EM,ANGSTB,EMB,JLIM,8,I,K,IWARN)

GO IC (51,50],IWCP_

50 WRIIE(IO,ICOI

51 CC 4t J=I,JLIW
4t OEL2 (J )=EM (J)*TF T/_(J)/SCRT{SGMA(Jl)

RE IURN

CALCLLATE CEVIATICN ANGLES FROM INPUTED REFERENCE TABLE.

42 KK:KZLM(1)

LL:L2LM| I )
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C
C
C

CALL FIT2C|YPHIEftDEL2,YRtYPHIBBeYDEL2BIYXPBtKK

L 2CtIWAR_)

GO I0 (55tS4),IWARN

5_ WRIIE(IO_IOI}|ALFHZIIZ) tlZ=l,E)

S S RE TLRN

,LL tJLIM,20,

CALCbLJTE CEVI_TICN ANGLES USING CAMBER EXPONENT RULE.

43 CALL FITICIYANGS_EMtANGSTBtEMBtJLIM_8vltK,IWARN}

GO 1C i53,52),IW_RN

52 WRIIEIID,ICO)

53 DO 47 J=ItJtIM

#7 FI CIF(J)=FNCI (J) _57,29578-SIARI {J)

CALL FIT2D(FIDIF tEXPB,PPFT2_FIDIFBt EXPBBtPPHB_7 _7,JL IM_ 7v7, IWARN)

GD TC (57_56)_IW_Rh

56 WRIIEIIO,IO1}IALPHZ!IZItIZ=6tlO)

57 DO 46 J=ItJtIM.
#6 DEL2|J)=EP|J)*((IHTAIJ)*57.29578)**EXPBIJ})/|57.29518*

I SQRT(SGMAIJ) } )

RE ILBN
LO0 FORM_T(I/_**_* WARNING- EXTRAPOLATION OF TABLE EMB(ANGSTB) IN FI

ITIE-CALLEC IN CE_ s)

101 FORM_T|//_#_** WARNING - FIT2D CALLED IN DEV - EXTRAPOLATICN OF T

IABLE *95A4)
END
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C
C
C

C
C

C

C

SUBRCUTINE TNCLI

COPf,'CN/BLOCKA/_LFB(5,2C},BTA212OI,BTPIBIIO),DEQ(20),DEQBIIO),FHB

llS,2CI,FF2(20),FIS2C(2OI,FIIOGB(8,g),FIZDBI5,20)'FKII20)'FKSHAB
2(5,20) _HLCE(2C)t _.LPIGB(8_ c) ,SLP2GB(8pg} _THAC(20|,THAC-_(IO),X(5_20

COPPCf_/_LCCKE/_LFI(20), ALF2(20)tALFPB(5,20) ,ANGST{5,20) tANGSTB
l(5_E) tCS(2C)tE_(2(]),EMP_ (5,8|,FKSHA(20),PPFTI(20)_PPFT2(20),Q(5_20
2tQE(5,2C)tRB2(2C),RN(5} ,SCMA(20),SGMAB(5_20) _SGPGBB(g) _l'hTA(20),
3TM_)_C(20),TPXCE (5,20),XP(5,20),YANGSB(8),YANGS(5, 20)

COM_CN/BLCCKG/[ _ JEASE,JL,JL [M,K,KL[ P,KPRI,QR_QRUNt THL
COPMCN/BLCCKF/ILIM, IRUN_IEXLOS{ 5}_ IEXDEM(5)I, K2LM[5)tL2LM(5)

I,I;SIAR (5 } ,PH I_E (5,20 ),X FB {5,20 ),OMEGBB (5,20,20 } ,DELZB( 5,20, 20)
2,PFIEX(2C),RSTAR IS),ARE_(5) ,ARFAC(SI
CCPt'CN/BLCCKH/I B, IL ,IPR [, JPRI ,KILIM

COP_Ck/_LCCK[/ E_PBB (7, 7), F IDIFB(7), PPHB (7) ,STARI (20)

COPMCN/BLC CKK/_CE CB (20 ) ,YRPEIl),YTHAC_(20,7),YXCB{20),DEQBB(5,20)

X,RFEE(5,_),TP. AC_E(5,ZC,_),XCBB(5,20),HLDP[20}

CCM_Ch/BLCCKL/IIIX,IOUT

COI_MCN/BLCCKM/KLZ(SI,LLZ(5) _YXCeB(20),RPBB[(T),THCBBI(20,?)•

IRP E _2 (71 ,TI'CB_ 2 (_O, 7 ),YCECB_ (20 )

CCMI_CI_/BLCCKP/YFK I B(5,7 ), YTMAC B (5,7)

WR lIE (lOUT,SI25)

WRITE ( IOUT, 5074)

WR IIE ( IOLT,503 }IRI,N, JBASE,JLI M

WR lIE ( IOl;l.,5076 )

OUIPLT REFERENCE INCIDENCE ANGLE TABLES.

WRITE|IO1,T,5031) (YTMACEII,K)eK=I,7)

WRITE(IOI_T,5078} (¥FKIB(I,K),K=I,'I)

WR liE( lOUT, 5077 }

WR liE ( IOl_T ,5034)

WRIIE(IObl.,5032) (SGMGB_(L),L=I,g)

CO 61 K=I_8
WRITE (I0_T,5033) YANGSB (K} _ (FIIOGB(K, L) ,L=I_9)

61 CO_IINLE

WRITE(IOUT,QI24)

DO (2 K=I,_

WRITE(IOUT_5033) ¥ANGSB(K), (SLPIGB(K,L),L=I,g)

62 COklINUE

WR tIE ([OUT,_I24)

_O 63 K=I,8
WRIIE(ICUl',5033) "_ANGSBIK), (SLP2GB(K_L),L=I,9)

63 CO_TINCE

OUIPLT BLADE BCW

ANELE CPTICNS.

RPM_ REFERENCE RADIUS AND LOSS AND DEVIATION

DO _3 [=I,IL

WRIlE(IOCT,5038)
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C
C
(i.

81

C
C
C

g8I
C
C

C
C

900

WRITE(IOUT,5C5)

_RIIE(IC_.T,5C6)

_ lIE( ICLT,507 )

!,RN[ I ),RST_R([), IEXDEV(I), IFXLCS(! }

OUTPUT REFERENCE @LADE RO_w GECMETRY TABLES.

WRITE([CCT,508) (J,X(I,JI,_LFe(I,J),XP(I,J),ALFP@( I,J),SG_h_R(T,J),

ITM_C_.(I,J)tFI2CB(I,J),FH_(I,J),FKSHAB(I,J) ,J=I,KLIM)

(]UIFI.T REFEREhCE CEVIATIC& aNGLE TABLES.

IF(IEXCEV(1)) 9113,911,0112

9113 WRITE(IOLT,5C81)

WRITE(IOUT,5C_I)

WRIIE(I(]LT_6OG)IFTDIF_{K) ,K=IyT)

WR lIE (I0bi,9124)

DE] 360 L=1,7

360 WRITE(IOLT,630) FPHB[L),(EXPBB(K,L)vK=I,7)

GO TC TOO

911 WRITE (TCUTt5082)

WRIIE(TOUTt60CT) (_ANGS@(K)pK=I,8)

WRIIEIIOLT,60C2) (EMB(I,K) ,K=1,8)

GO IC 900
911,2 K].=l

IF (K2LM( I )-10)912,912,9_I

921 KK=IO

LLI=2

GO TC 9211

912 KK=K2LM(I)
LLI=I

9211 LL=L2LM(I)
WR lIE( lOUT, 5083)

WRIIE(IOUT,9122)

DO _81 LI=I,LLI

WRIIE(10UT,9123) (PHIBB[ ItK),K=KItKK|

WR TIE ( TOUT,9124 )

DO c.8 L=I,LL

WR [TE(IOUT,542) )PB{ I, L), (DEL2B (IvK ,L) ,K=KI, KK}

DC 98 K:KI,KK

98 Z)EL_8(I,K,L}=C.CI'7453W_DEL2@II,K,L)

IF (lt l--l)g E2,c, 8 1,982

_82 KK=K2LM(1)

KI=II

WRIIEIICUI,91241
CChT [NbE

896

OUTPI.T REFERENCE 8LADE WAKE MOMENTUM THICKNESS/CHORD OR LOSS

COEFFICIENT TABLES.

LI_DEX:IEXLES(I)÷5

GO TC (Bq_,B_E,ES_,Bg8,E_7,Bg6),LINDEX
KI=I
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8961

8963

8962

g5

97

92

899

899].

8992

g02

_04

gO4L

g021

89 8

898 I

8982

gO{

IF( KLZ(I I-IC)

KK= I0

LLI:2

GO 1O 8962

KK: KLZ(I )

LLI=!

LL= LLZ(I )

WR [TE( {OUT, 55

WRIIEIIObI,54

DO '_2 LI=I,LL

WR lIE ( IObT,91

WR ITE[ IOUT,_I

DO (;5 l:l,tt

WR llE| IOUT,54

CONT INbE

IF (iLl-I} _7, g2,_7

KK= KLZ[ I }

KL=LI

WRIIEIIOGl',9124)

CO_I INUE

GO TC _3

K1=1

8S63,8963,Sg61

3l

3}

1

23] (PHIBB{ I,K},K=KI,KK}

24)

22) XPB[I,LI,i(MEGBBII,K,L),K:KI,KK)

IF(KLZ(I)-IO)E_g2,8gg2, Bggl

KK=IO

LLI=2

GO IO g02

KK=KLZ(1)

LLI=I

LL=LLZ[I )

WRITE ( IOUT, _54)

WRITE (IOUT ,566 )

DO _021 LI=I,LL1
WRITE{IOUT,563)()CBB[I,K),K=KI,KK|
WRITE(ICUT,gI24)

DO _04 L=I,LL

WRITE(lOUT,564) RPBS{I,L),(THACB8{I,K,L),K=K1,KK)

CONI INLE

IF [LLI-I) gO41,gC21,904 1

KK=KLZ|[I

KI=]I

WRITE(IObT,gI24)

COKIINLE

GO TC $3

KI=I

IFIKLZll)-IO) 8_E2_8982_8_B1
KK:IO

LLI=2
GO TO 901

KK:KLZ[I!

LLI=I

LL=LLZ([)

WRITE(IOUT,57C)
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903

9031

9011

897

WR TTE { TOUT ,562 |

O0 GCII LI:I_LLI

WRITE( IOUTt 563 ) (£EOBB( I ,K )t K:K ItKK)

WR 11E { IOI_T tql2_]
DO _03 L=TILL
WRITEIIObT_564) FPBBII_L), (THACBBIItKtL}_K=KI_KK|

COhIINUE

IF {LLI-I) g031_9Cii,9031

KK=KLZ( I )

KI:ll
WRITE ( IOUTtgI2_ )
COkTINUE
GO TO _3

WR IT E ( ICUT w55C }

WRITE'{ IObTt551 ) (DEQB{K),K=I,10)

WRIIE{ IOUTt552} (THACB{K) ,K=I, TO)

hlINUE

TURN

93 CO
RE

503 FORMAT {4X, e [RUN= ttI4_ 10Xt mJBASE== t [ 3t 10X, =JLIM=t, [3)

505 FORMAT(7XttI=_,I2tlOXtIRN =l tF7.1, t RPM t tlOX,=RSTAR==,F8-5_ t FTtBIO

IX, 'IEXDEV =t_12,1C_, =IEXLCS= =,I2_II)

506 FOBMAT{TX,'REFERENCE TABLES FOR BLADE ROW GEOMETRY AND GEOMETRY-DE

IPENDENT LCSS CAI_//)
507 FORMAT (10Xt =j1,5X_ =XttgXt _ALF8 t ,7Xt t XP I _TXv =ALFPB _ tSX, = SGMAB I tSXt

I =TM_CB tP5xtQFI2CEt t5XtiFHE t,6Xt=FKSHAB I/)
508 FORMAT (gX, 12vgFIC.4}

542 FC FPAT (9Xt F8.4,2X_ IOF8.4 }
543 FORMAT(12XpIXPB =t_3X_=PFIBB=/!

550 FORF_T(II,TX,_REFERENCE TABLE LOSS(THACB)=II}

551 FOBPAT{IIOX_=EEC_ = * _10F8.2)

_52 FORMAT( IOX,tlHACB--_IOFB.2)

553 FOBPAT(I/,?X_'REFERENCE TABLE LCSS(GMEGBB)'/I)

554 FORPAT(//_TX_tREFERENCE TABLE LOSS(THACBB}_I/)

562 FORMAT(I£X_=RPBB'_45X_'CECBB_/)

563 FORMAT(17X,IOFIO.4)

564 FORMAT (6X _FIO.4 _ IX_ [OFI C.4)

566 FORMAT (11X_ tRPEE_45X_ 'XCBBtl)

570 FORMAT(/17X,'REFERENCE TAELE LCSSITHACBB)'//)

600 FORMAT(ITX_TFIO.]}

630 FORMAT{ 5XtFIO.312X_TF10.3}
503l FORPAT(TX,tVTMACF =_,7F8.2}
5032 FORMAILI3X_gFIO. Ill
5033 FORM AT (SX,F7.2,2X_9FIO.3 |
5034 FORMAT{IX,tYA_GSE _43X_SGMGBB_I)

5038 FORMATI/I_X,_BLAEE ROW CATA_//|
5074 FORMAI I/12X_'AXIAL-FLOW PUMP PERFORMANCE PREDICTION- - INPUT_II)

5076 FORMAT(I/4X,'REFERENCE TAELE INCIDENCE ANGLF BLADE THICKNESS CORRE

ICTIE_I)

5077 FORMAI(II4X,'REFERENCE TABLE ZERO-CAMBER INCIDENCE ANGLE AND CAMBE

IR CCEFFICIENTS {FIIOGB,SLPIGB_SLP2GB)'II)

5078 FORMAI{TX,_YFKIE = _ _7FB.2)
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5081 FORkAI(//7Xt=REFERENCE
L)*II)

5082 FOR_A T (//7Xt t PEFERENCE
5083 FO
509 l FO

5422 FO
6CO 1 FO
6002 FO
9122 FO
9123 FO
912_ FO
9125 FO

EN

TABLE DEVIATICN

TABLE DEVIATION

R_AT(//TX,'REFERENCE TABLE DEVIATION

FPJT(IIXt'PPHE=_5X,=FICIFB=I}
FP_TI8_,F8._2X,IGFB°4)
PNJT|I1GX_=YANESB==t8F8.2)
F_AT( IOX,eE_8 = B,8F8.2}
PNATII4Xt=XPBt,65XvgPFIBBI/}

R_AT {T8X_ LOFBo _ }

gNAT (1H }

RN_T(IHI)

E

_NGLE-CANBER EXPONENT|EXPBB

._kGL E-SL OP E FACTOR(EMB|t//)
ANGLE (DEL2B) i//}
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C

C
C

C
C
C

C
C

C

SLeRGLTIhE IhPbT

I(*)

COPPCNIBLCCKAIAL

I(5,2C),FF2(2C)tF

2(5,20),HLOB(2OIv

CC_Ck/BLCCKBIAL

FE (5,20 }, ETA2{ 20),BTPIB (I0) ,DEQ {20) ,DEQB (lO) ,FHB

IS2D(20),FIIOGB18,9)tFI2CB(5,20)tFKI (20),_KSHAB

._LPIGB (8,_) ,SLP2GB (8,9) ,THAC (20), THAC8(IO) ,X (5,20)
F I (20), _LF2 {20 ),ALFPB(5,20J _ANGST {5t 20) ,ANGSTB

115,_),CS(2C),EMI2C),EMe(5,8),FKSHAI20},PPFTII20),PPFT2120},Q(5,20)

2,QEIS, 20),RB2|20),RNI5),SGMAI20),SGMAEIS,20|,SGMGBB(g),THTA(20},

3TMJXCI2O),IVXCE(5,20),XPIS,20),YANGSB(8),YANGS(5,20)

COPlvCNIBLCCKD/I ,JEASE,Jt, JL IM,K,KLIVtKPRI ,QRt QRUNITHL

COI'MZN/BLCCKF/IL IM, IRUN,IEXLOS{ 5},IEXDEV(5),K2LMIS),L2LM{5)

I,LST#R(5) ,PHIBE (5,20), XFB (5,20) ,OMEGBE 15,20,20) ,DEL2BISv20,20)

2tPFIEXI20},RSTAR 15),ARE_(E},ARFAC{5)

COPMCN/BLZCKG/K2LIM,L2LIM,YPHIBe(20),YXPB(20),Y(]MGBBI20_20) _YDEL2
IB( 20,2C), ¥PHIEF (_0) ,YR( 2C), PHI EFC 15)

CO_P'Ch/BLECKP/IC _IL, IPRItJPRItKILIM

COMMCN/BLCCKI/ E_PBB(/,?),FIDIFB(I),PPHB(TI,STARI (20)

COMMEN/BLCCKJ/EMBBI 8 }, F IIOl I(40) ,FI IOI 2(32) ,FKI E(7), SLP Ill (I6),

ISLF 112 116) ,SLPII3 {16),SLP 114( 16 },SLPII 5(8), SLP2II (16) ,SLP212(16),
2 SLP213(16),SLP2

CCFFCNIBLCCKKIYC

X,RPBE {5,7) ,THACE
CCh_CklBLCCKLII I

COFVEklBLCCKM/KL

IRP_E2i7)_IHCBB2{
CI MEI_SICN ALPHZI
DATA ALPhZ/' KL

I4{I6),SLF2 I5 (8),TMAXCE (7!

ECB(20) tYBP8(7) ,YTHACB (20,7) ,YXCB (20) ,DEQBB(5 _20)

E (5e20e'/) _XCBB(5,20) _HLCP(20 )

_,IOUI

Z (5) _LL Z( 5 )_YXDBB(20) _RPBB 1{ 7) •THCBB I{ 20•7) •

20_7) •YCECEE (20)

tvmZ(I)m,m LLO•oZ(I)O• o m_OKLIMO/

INPUT LIMIT VALbES AND RUn IDENTIFICATICN.

73 RE_D (IIN,501)IC

IF(IC-I0}14,3,14

3 IL=ILIM-I

JL=JLIV-I

DO _g I=I•IL

,IL IM _J LI P, JBASE, IRUN•THL

INFLT LESS AND CEVIATICN CPTIGN VALUES.

RE_£ I IIN,SO21)IE_J_RST_R(I )

IF l IC-18) I_, I00• 14

IO0 IF (I-J) I4,101,I_

101 RE_D {IIN_501 )I{_IEXLOS|I}_IEXDEVII}

IF{IE-Iq)14,74_14

INFbT REFERENCE LESS AND OEVIATION TABLES.

74 IFIIEXLOS(I)}]5_5_76

75 IF(IEXDEV(I))SCC_8OO•T6
76 READ IIIN_501 )I£_ KLZ(I)_ LLZ(1)
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C
C
C

IF (IC-20) 14,E_,]4
80 IF(KLZ{I)-3) 6C0,6C1,601

600 WRITE(IOLT,ICCC} [ALPHZ[ IZ|tIZ=I,2),ItIC
STCP

601 IF (LLZ(I)-3) 6C2,603,6G3
602 WRITE(IC]LT,IO00) (_LPHZ(IZ), IZ=3i4)_ImlD

STCP

_03 K2LI_=KLZ(1)

L2L[_= LLZ(I}

REAE ( II,_,533 )IC t (PHI _B [I ,K), K= I,K2L IM)

IF(I_-21) 14,78,14

18 REtE (IIN,533)IC,(XPB(I,K),K=I,L2LIM)
IF ( IC-22) 16,IC2,14

I02 IF ( IEXLOS ( I ))E_, E(_,79

7g DC EO I(=I,K2LIM

REAE ( II_, _.32] ID, (CMEGBe (I,K,L) ,L=I,L2LIM)

IF ( IC-23 )14, 8C, 14

80 CONTINUE

80 IF ( IEXDEV (I )}Ig,c._,103
103 DO 85 L=I,K2LIM

RE_C ( I INi 532 ) IO _ (DEL28 ([ tL,KI , I_=l tL2LIMI
IFIIC-24)I4,ES,14

85 CC_T INtE

K2LM(I)--KLZ(I)
L2 LI'(I )=LLZ (I)

INPUT REFERENCE WAKE MCMENTUM/CHORD [THACBB)

800 LII_DEX= IEXL(]S (I) +5

GC TC (812,BL3,814,8L5, EI1} ,L INDEX

8II GO TC _9
812 REAC [ IIN,50I )IE,KLZ(I)tLLZ([)

IF (1E-25)14,816,14
816 IF(KLZ[I)-3) 6C4,605,605

604 WRITE(IOLJItlOCO) (ALPHZ( [Z ), IZ=L,2),I, ID
STEP

605 IF(LLZ(I}-3) (C_,e£7,007

606 WRIIE(IOUT,IOOO)IALPHZ( IZ),IZ=3,4),ItID

STCP

607 KK=KLZ([)
LL=LLZII }

802 RE_E(IIN, 5GO) IE,(XCBE(I,K),K=I,KK)

IF (IC-20) I4,BC3,14

813 REAE (IIf_t50L )IEtKLZ(I)ILLZII]
IF (IE-25}14,_17, 14

81? IF (KLZ(I )-3) 6C8,609,60g

608 WRIIEIICUI,IOCC) (ALPHZ( IZ),IZ=I,2),I,ID
STCF

60g IF (LLZ(1)-3} 6IG,EII,611

(_IO WRITE(ICUT,IOOC)IALPHZ[ IZ),IZ=3,4),I,ID

STCP

ell KK:KLZ(I )

TABLES.
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801

8O3

8O4

805

814

8141

8 I42

8143

815

8151

8152

8153
99

C

C

C

LL:LLZII )

RE_C(IIN,5CO} IC, (OEQBB ([ ,K |,K= I,KK ]

IF(IC-26)14,8C3,14

RE_E[IIN,5CO) IC, (RPBB( [, L) ,L=I,LL]

IF lIC-27) 14,8G4,14

DO EC5 K=I,KK

REAE{[ IN,500) IC, (THAC@ e [ I,K,L),L=[, LL)

IF [IC-28) 14,_, 14

KL Z [ I )=20

LLZ[I)=?

DO El4[ K:I,20

XDeE II ,K) =_XDB_ [K)

O0 El42 t=117
RPEE[I,L)=RPBBI[L)
DO E143 K=I,2C
_0 E143 L=I,7

TH_C88 [ I,K, L)=THCBBI |K, L|

GO 10 _g

KL Z| [ 1=20

LtZ(1)=7

DO E151 K=I,20

DECE8(I,K)=YDECeE(K)

DO 8152 t=l,7

RPRB ( I ,t l=RPB82( L )

CC, 8153 K=I,2C

DO E153 t=l,7
TH_CEB[I,K,L)=lhCBB2[K,L)

CChT INLE

INPUT REFERENCE eLADE ROW GEOMETRY TABLES.

DC 6 L=I,IL

REAC [ IIN,5OI)IC,J

IF {IE-30) 14,4, 14

4 IF (L-JII4,44,14

44 REAE [IIN,SCI )IC,KLIM

IF[IC-31)14,444, 14

444 IF(KLIM-3) E12,613,613

612 WRIIE(IOLT,IO00) (ALPHZ[ IZ),IZ:5,bI,L,ID
STEP

b13 DO 6 _=I,KLIM

REAC ([IN,EO2IIIC,JIX(L,K),ALFBIL,K|,XP(L,KI,ALFPB{L,K),
ISGMAEILI, KI,TMXCE(LtK}tF]2CB[LtK)tFHB(L,K}tFKSHAB(L,K)

IF ( IC-_.2 )14,5,14

5 IF (J-K)14,E,14
6 COhIIlktE J

ENIBY INPLTI[*)

COKT INUE

INPLT ELADE RCW FPM ANC CEMPUTE REFERENCE BLADE SPEED.
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C
C
C

72 DC 7 K=I,IL

REAC (IIN•5OOIIC•RN(K)

IF(IC-50) 14•71,It

71 IF (F_,(K)+I.}7,73•7
7 CCKI INLE

DO 250 K=I,IL
IF (RN{K)) 251,250,251

251 RR N=RN(K)

GO TC 253

250 COr, T INIJE

DO 255 I:l•It

255 USIAR(1):I

GO IC 256

253 DO 2_2 I=I,[L
252 UST_RIII=O.IO472'_RSTAR(1)*RRN

OUIFLT PRCBLEM DATA LOAC.

256

14

500

501

532

533

557 FO_M

I'IC=

I000 FORM

IR I_

502 I FO_P,

EN C

ID,I ,K•L,J

CALL INCCT

RE TURN I

WRIIE [I{]tT•557)

ST[F

FORMAT (I 2 , (T3 ,12 F6.4) )

FORMAT(412,16•F6.4)

FORMAT( I2, (TS, 14F5.4) )

FORM_T(I2t(T3•I4FS.4}}

AT(//' ERROR IN INPLT DATA CARD ORDER•

'•I3,' [='•I3•'K=',I3,'L= I •I3•'J:'•I3)

SUBRCUTINE INPUT. I,2X,

AT(//'*:_**W' ERRGR Ik INPUT- 't2AZ_,'

TERPCLATICN, I: ',I_,' IO= ', 12)

AT (I2,2X•I2 ,_F7.4]

MUST BE GREATER THAN 2 FO
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C

C
C
C

C
C
C
C

SUERCUT INE IREF

CCIVFLTE REFERENCE INCID, ENCE ANGLE FOR CCINSTANT STAGGER CASCADFS
BASED CN CAMPER _NGLE, STAGCER ANGLE, NAXIMUM TFICKNESS TO CHORD

RAIlC, SCLICIT¥, AND CORRECTICN FACTOR FOR THICKNESS DISTRIBUTICN.

CCMf'CE/BLCCKA/ALFB {5,20 ), ET

I(5,2C),FF2120),FIS2CI20),FI

2(5,2G) ,HLCE (2C }, _LP IGE (_.,_)

COMMC_,/BLCCKe/ALFI(20),_LF2

I(StE) ,CS(2C),EIv(2C),EMB (5,_

2,QE (5,2C} ,RB2(2C ),RN(5) ,SGM

3TM AXC (20) ,I_XCE (_ ,20) ,XP (_,

COMPCN/BLCCKD/I,.]eASE,JL,JL

COF#'C_/BLCCKI / EXPBB|7, 7),F

A2 (20) ,BTP IB (I0) ,DEQ (20) ,DEQB (I0 },FHB

IOGB (8,9) ,F( 2DB( 5,20 ), FKI (20 ),FK SHAB

,SLP2GB(8,g) ,THAC (20),THACB(i0), X (5,20 I

(20),ALFI)B(5,20) ,ANGST( 5, 20) ,ANGSTB

),FKSFA(20)tPPFT1120),PPFT2(20),Ql 5, 20I

A(ZO),SGMAB(5,20) ,SGWGBB(9),THTA(20),
20),YANGSBIS),YANGS[ 5, 20)

I_,K,KLI_,KPRI ,QR,QRUN,THL

ID IF B( 7 },PPHB (7} , STAR( (20 )

COMIVCN/BLCCKJ/EME@ (8), F IIOl II40) ,F IIO IZ (32), FK IBIT), SLP III ( 16},

1SL9112( 16),SLPI I_ (16), SLPII4( I6),SLP115 (8), SLP2 Ii (16),SLP212(I6),
2 SLF213 (16),SLP2 14(16), SLP2 15 (8),TMAXCB(7)

COMC'Z_,/BLCCKL/I I ,IC

CIME_SIGN F IOIOG (20), SLCP IG(20}, SLOP2G(2C), YANGSI {20)
Cl I_.EIXSICN ALPHZ(18)

DATA ALPhZ/' F',' I lOG', 'B (YA' ,' NGSB' ,' ,SGM' ,' GBB) ' ,' S',

I 'LPIG','BIYA', 'NGSB', ', SGM' ,'GBB) ' ,' S','LP2G',
2 'eIY_',mNGSB,,,,SGM, ,'GB?)'/

DO tO J=I,JLII V

I0 YAI_GS I (J) :YANGS( I',J)

CALL FIT2C(YANGSI,FIOIOC, SGMA,YANGSB,FI IOGB,SGMGBB,8,9,
XJL IM,8,9,1WARt_}

GO TO (201,20C),I_ARN

200 WR ITE (IC, 501 ) (ALPI'Z(IZ), IZ= I, 6)

201 CALL FIT20(YA_,GS1,SLI3PIC-,SGMA,YANGSB,SLPIGB,SGMGBB,8,9,
XJL I_',8,9, IWARN)

GC TC (203,202),I_ARN

202 WRIIE(IG,5CI} IALFHZ(IZ) ,IZ=7,12)

203 CALL FIT2C(YANGSI,SLOP2G, SGMA,YANGSB,SLP2GB,SGMGBB,8,9,
XJL IM,8,9, IW_RI%)

GO IC (205,204),(WARN

20_ WRITE (IG, 501 ) (ALPHZ( IZ ), IZ=I3,18)
205 DO ICO J=I,JLIM

100 STAR I(J )=FKSHA( J)4'FK I IJ )*FI OIOG| J) ÷SLOPlG(J)*THTA (j)*ST.Zg578
X +SLZP2G (J)*THTA (J)*THT_ (J} '57. 29578"57.29578
DO _C J=I,JLIM

BT PI=57.2SSZ8*ALF I (J) +STAR((J)
IF(ETPI.LE.75.) GO TO 60

WRITE (I{3,5C0} J,BTPI
60 CCI%IINbE
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RFILRN
500 FOP, NAT|/' IREF AT STRE.SMLINE',Iz,, I RE(_UIRED EXTRAPOLATION OF TABL

IFS EECa6SE BTPI=',FT-2, I C_G'I)

501 FC)PM_T(I/'_W:W_:_ _ARNING - FIT20 CALLEC IN IREF - EXTRAPOLATION OF

ITAELE ',6A4l

ENE
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C
C
C

C

C
C
C

SUgRCLI I_,E LCSS

I(R P_Z, _U, BTAPI ,81AP2,FNCI ,U I,U2 ,FH2,F IS2D,DEQB, THACB, I ,K,JL IM,
2HL OB,DEQ, IHaC )

D( r'E_SION _IAPI(20),_TAP2(20),DEQ(20),DEQ3(IO),

].FH2(20),FIS2C{2C)tFNC1(20)tHLC_(20) tR(5,20),

2THaC(2C) ,TFACS(IC),UI(20),UP(20) ,VU(5,20) fVZ(5,20),OMEGe(20)

DINEI_SICIX XVPI(2C)tXVP2(20),XC(20),XDD(5,20),DECDD(5,20)tTHACDD(5t
120)

COM_'CN/BLCCKB/ALFI(20),aLF2(20) tALFPB(5,20) ,ANGST(5,20),ANGST_

I(5,8),CS(20)t EM(,_O),EMP(5,8),FKSHA{ 20),PPFTI(20),PPFT2(20),Q(5,20)

2,QE (_,20) ,RB2 (20},RN(5) _SGMa(20) _SGMAB (5,20) ,SG_GBB(9) , THTA(20) ,
3TM,_XC(20)tTMXCE(C. t20),XF(_,20) _YANGSB(8),YANGS(Sv20)

CC_MMC K/BLCCKF/I L ]M, IRUN, IEXLCS (5 ), IEXDEV (5 ), K2LM( 5 ), L 2LM( 5 )

1,USIAR(5) tPHIeE('_t20)tXF_(5_20) _CMEGBSI5_2Ot20) _DEL28(5_,20_20)
2, PF IEX (20)I, RST_R q5 ),ARE_ (_ ) ,ARFAC (5)

COI'MEN/BLCCKG/K2L [Mr L2L IM,YPHI BE (20) ,YXPg. (20) fYCMGBB (20,20), YDEL2
IB(20_20) _YPFIEF (20) _YR(20), PHIEFC(5)

10

11
12

3O

I_PCk/BLOCKI / EXFBB(7,7) ,F [_IF_(7), PPHB (7), STAR((20)

_'I'CNIBLCCKJIEME_(8),FIICII(40),FIIOI2(32),FKI_(TI,SLPIII(16),

PII2(16),SLPlI3(16),SLPII4(16),SLPII5(8),SLP211(16),SLP212(16),
LF213(I(_),SLF214(16),SLF215 (8),TMAXC_(7)

MPCN/BLCCKK/YDECB(20) _YRPP.(?),YTHACB(20_,7) ,YXCB(20),DECB8(5,20)
PB_ (5,7) _TFACBE (5 _2C,"7) _XOBB (5,20) ,HLDP(20)

MIvC_IBLCCKL/II,IC

MMCNIBLCCKM/KLZ(5),LLZ(5) .YX0_8(20) _RPBBI(T),THCBBI(20_7),
_2 (7) _TFCBB2(2C,7), ¥OEC_E(20)

CC

CC

ISL

2 S
CO

1,R

CC

CO

1RP

Ol _'E_SICN _LPHZIIS)

DATA ALPHZ/_ "_e'THAC_t,B[YX_ _

1 _ (YCE _,'QB,Y','RPB) _
2 tYPE)'/
C0117=.GC7

IF(LI(I) )lO,II_IC
C_I=-.(I

GO TC 12

C61=.61

L[ I_DEX=IE XLCS (I ),5

GO TC (30,20,30_2G, 50_,4C)_LINDEX

KK=KLZ(I)

LL=LLZ(I )

=DB,Y','RPB)=, ' yT= _,,HACB, ,

, YOM,_ ,GB8( _, ,ypHI _ ,, BB_y= _

CCMI:LTE TI-ETA CVIR CFORC RATIO(THAC) FROM D-I:ACTOR AND 8LADE-
ELEMENT LCCATICN.

IFIRNiI)) 32,33,,32
32 KS I=I

GO TO 34
33 KS I:-1

34 DO 31 J=I,JLII _

XVPIIJ)=VZII,J)IICOS(BTAPI(j)))
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C
C
C

C
C
C

XVP2IJ)=VZ|I_,J)/[COS(PTAP2(J) ))

31 XD(J)=I.-(XVP2(J)/XVPI(J) )+KS[*(RIK,J)*VU(K,J)-R{ [,J)*VU(I,J))/
I(XVFI(J)_'(R(KtJ)4R(IyJ) ):_SGMA(J))

CALL F IT2C (XC,TF AC,PPFT2tYXEB,YTHACBt YRPB,KK tLL,JL [M, 20,7t I WARN )
GO TC (61,EO),IWARN

60 WRITE ( IC, LCI) (ALFHZ(IZ) t IZ= It 5)

6[ GO 1C 25
20 KK=KLZ{I )

LL=LLZ(I )

COMFLIE OEQ.

50

I+UI (J)ICI-VU(K,J

21 COklINLE

IF (LINDEX-5) 22,

DO 21 J=I,JLIM

CI=R( I,J )/R(K vJ)

C2=CCS(BIAP[ (J) )IVZ( I,J )

C3=4. /(3.WWFH2( J)-l. )
F(IPS=57.2_57EWWABS(FNCL(J)-STARI(J)157.20578)

CEC (J)=l. L2÷CO II 7_'_I IPS$W'I. _3

DEC (J)=( (C6Lw'C24'COS( BTAPI (J))ISGMA(J) )* (CI_'I VU( I, J)-UI (J) )

))÷DEE(J))'_COS(BTAP2(J) )/(C2_'VZ(K,J) )

23,22

CCMF_TE THAC AND FEAD LESS FRCM DEQ AND eLADE-ELEMENT LOCATION.

22 CALL FIT2C(CE_,TFAC,PPFT2,YDE_B,YTHACB,YRPB,KK,LL,JLIM,20,T, IWARN)
GO TC (25,E2) ,IWJRk

62 WRITE ( TO, (Of) (_LFHZ(IZ), IZ=6t [0 )
25 DO 24 J=I,JLIM

C4=(VZ(I,J)_'VZ(I,J)/(CCS(BTAPI(J)I_COS(BTAPL(J) )))

24 HLCE(J)=SGff_(J)_'IFAC(J):_C4/(32-174'_COS{BTAP2(J) ))

REILRN

CGMFUTE THAC AND I'EAC L[SS FRCM DEQ.

2] DO 26 J=L,JLIM
26 XDE(I,JI=DEC(J)

DO 28 J=l,lC

DECCC(ItJ )=CEQE (J)

28 THACCC(L,J)=THACE (J)

CALL FITLC(XDCtTHAC,DE(_DD,THACDOfJLIMtI0,I,L,IWARN}

GO TC (67,66), IWtRN
66 WRIIE(IO,ICO)

b7 00 27 J=ItJLIM

C4=SGMA(J)eThAC(JI_'Fh2(J)/CCS(BTAP2(J))

27 HLCE(J)=IC3_'C4w_(IVZII tJ)ICCS( P.TAP2(J)))*(VZ(I,J)/COS(BTAP2IJ))) )I

l(( 1.0-C4)_'_3))/E_.348

RE ILRk

4C KK=KLZ(I )

LL=LLZII )

CCMFUTE LESS CCEFFICIENI AND PEAD LOSS FROM EFFECTIVE FLOW
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C
C

COEFFICIENT At_C R/_CIAL FC__ITION.

CALL F

I IWAI;t,,I

GC IC

64 WR ITE (

65 DO 41

HLCE(J

C4=VZ(

41 THAC(J

RETLRN

I00 FORMAT

IFI IIC-

iOl FORMAT

ITAetE

END

IT2C(YPHIEF,OMEGB,¥R,YPHIBB,YOMGBB,YXPB,KK,LL,JLIM,20,20,

[65,64),IW_RN
I_,tOI)IALFFZ[IZ},IZ=11,15}

J=1,JLIk

)=CMECB[J}#((VZ(I,J)/CCS(RTAPI{J)))*_2)/64.348

I,J)_VZ{I,J)/(CCS[eTAPI(J))_COS(BTAPI(J}J)

)=[HLC_(J)_32.174_CCS(_TAP2(J)))/[C4_SGMA{J))

(II'_**** WARNING

CALLED IN LCSS')

(II'_**** WARNING

',5A41

- EXTRAPOLATICN OF TABLE

- FIT2D CALLED IN LOSS -

THACOO(DEQDD) IN

EXTRAPOLATICN CF
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SUSRCUTI_ENAVE

1( I,J,KtRtVZt_LtH,LltU2v_RGNtJLIN,JLtDELH,DELHI,RN,IL}
CC_[N/eLCCKLIIItIC]

DINEhSICN CELH (2C l, CELP If20 )tH(5,20) ,R (5,20l tRFFFP{ 20),

lRH_P (20) ,RVEL (20) ,SEFF P 12Ol ,SHRP (20) ,SDELH(20) ,T} SPD (5) ,UI {20 l
2U2 (20} ,VU (5,20 l, VZ( 5,2C ),_( 5,20 ),RN(5)

DO I J=I,JLIM

1 RVEL (J}=R(Kt J )_VZ(KtJ}

DENEM=O
DO 2 d=itJt

2 DENCt*=CENEM÷(IRVEL[J+I)÷RVEL(J) )_(R(K,J+I)-R(K,J) })/2.0
IF (Rfx{l}) _,12,3

12 IFIIL-I) l_,lO, l_

13 IFIF_(I-II) 7,10,7

3 DO 4 J=I,JLI_

RHRF |J):R(KtJ )_VZ (K, J )mCELH(J )

4 REFFP| J)=RHRP (J) IDELHI (J)
RHR I=O

REFF I=O

DO 5 J:l,Jl

RHRI=RHRI+((RhRP[J+I)+RHRP(J))m(R(K,J+I)-R(K,j) ))/2.0

5 REFFI=REFFI+( (REFFP(J*I)+REFFP[J))_(RIK,J+I)-R(K,J)))/2.0
RM _FR=RHR I/CE_CM

RM_E=REFFI/CENCM

AFLCO=.CCCTCgmQRL_/((R[ I,JLIM)mR(I,JLIP)-R(I,I)mR(I,I) )mUI(JLIM|)

AFLCCI=.GCCTCSmCPLN/|(R (K,JLIM)mR{K,JLIM)-R{K,1)mR|K,I))x'U2(JLIM)
RH RCC=32. I?4W_RM_R/( U2 (JL IM )w_U2 (JL IM) )

WRITE (IC, IGC }RM _HR, RMAE, AFLCC, AFLCGI, RHRCO, I
Tl SP[( I )=El{ JL IM)

gO 6 J=I,JLIM

6 W(I,J)=DELHI(J)

GO IC I0

7 O0 e J=I,JLIM

SDELF{ J)=H{ K, J)-F(I-I,J )

SHRP{J)=R(K,J)_VZ{K,J)_SDELH(J)
8 SEFFP(J)=SHRP(J) /W {I-l, J}

SHR I=0

SEFF I=O

DE] S J:I,JL

SHR I:'SHR I÷((SFRP(J+I) +SHRP(J) )e-(R( K, J+ i )-R| K, J ) ))/2.0

9 SEFFI=SEFFI÷((SEFFP(J÷I)+SEFFP(J})mIR(K,J+I}-R|K,J)) )/2.0
SM AFR=SHR I/{]ElkCP

SMAE=SEFF IIDENEM

SHRCC:32. I]4m SMAFR/(TI SFC {I-I )mT ISPD (I-l) )

WRITE (IG, I01 )SMaFR, SMAE, SHRCO, I
I0 CONIINUE

RE 1LRN
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i00 FOR_AT(IHC,46h R[TOR MASS A_ERAGED hEAD RISE FRCM I TO I÷l =,FIO.4

I,3F FT/52H RCTC_ _ASS _ERAGED EFFICIENCY BETWEEN I AND I÷I =,F6.

24,/33H aVERAGE FLCW CCEFFICIEKT AT I =,F6.4/35H AVERAGE FLOW COE

3FFICIEhT AT I+i =,_6.4/38H RCTCR HEAB RISE COEFFICIENT AT I÷1 =,

4F6.4/4F I=,I2)

I01FORMAT(IHC,48F SIAGE MASS A_ERAGEC hEAg RISE FREM I-I TO I÷1 =,FIO

1.4t2F _T/54H STACE MASS AVERAGED EFFICIENCY BETWEEN I-I AND I÷I =

2,F_.4/50F SI_CE FEA_ RISE COEFFICIENT (ROTOR lh TIP SPD) =,F6.4/

3 4F I=,I2)

EKE
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C
C
C

SU_RCUTINE GUTPbT

CO_'W[NIBL[CK_IALFE{5_20)t_TA2(20)tBTPIB(IO),DEQ(20)tDEQB(IO},FHB
I(5t20)tFF2(2G),FIS20(20)TFIIOGB(8tg)tFI2DB(5t20),FKI{20}t_KSHAB
2(5 _2C)tHLCB(20)t_LPlG_|8t_)_SLP2GB(B,9)yTHAC(20)tTHACB{ I0)_X{5_20

COM_CNISLCCKBIALF](2OI_LF2{20)_ALFPB(5,20),ANGST(5_20)taNGST_
I (5,8),CS{2C), E_ ( _C),EMB (_

2,QE(5v20} ,RB2{20),R_(5),S

3TMA_C (2C),IMXCE(_,20) tXP(

CO_ME_IeLCCKC/ETtPII20),B

IFNCI(2C),H{5,20),PLZSS(E,

220)

CCPMCN/BLCCKO/I,J_ASE,JL,

COPMCNIBLCCKF/ILI_,IRUk,I

I,UST_R(5),PHIEE{_,20),XFB

2,PEIEX|2G),RSI_R(5),AREI|
CCMMCN/BLGCKI! E_PBB[7,_)

CCMMCk/BLCCKK/YCECB(20),Y

X_RPBe(5_7) _THAC_E(5_2C_)
CCNMChI_LCCKLIII,IO

,BI,FKSI-A( 20),PPFTtI20},PPFT2(2C),_(5,20

C-_A(20 ),SGMA_ (5,20 ), SGMGBB (g) _ TI_TA( 20l
•20),YAKGSB(8),YANGS{5,20)

TAP2(20),DELH(20),DELHI(20),DEL2(20),

20 ),R(5_20) ,UI (20) ,U2 (20),VU(5,20) ,VZ( 5,

JL IM,K,KL IM, KPRI, QR,QRbN, THL

EXLOS(5),IEXDEVIS),K2LM(5),L2LM(5)
{5,20),OMEGBB(5,20,20) ,DEL2B(5,20,20)

5),ARFACIS)

,FIDIF_IT),PPH__(TI,STARI{20)

_PE(T) ,YTHAC8 (20, 7) ,YX_B (20) ,DE_EB(5,20)
,XCB_ (5 _20 },HLDP {20 )

DIME_SIZN RRT{20),X2ETA(20),XBETA2120),XCMEGI20),RRT2[20),XEFF(20

I,XVPI[20),XVP2(20)_XVII20),XV2(20|,XHSTTI(20),XFSTT2120)_XPHI[(20

2,XFFI2120),XPSII20),XPS]I(20),XCI20),X_TAPII20),XFNCI{20)

3,XEIAP2120),XCEL2120),XPFII(20),XPFT2120),XTHTA(20)

COMFGTE ECUIV_LE_T C-F_ETCR AND FEAD LOSS DIFFERENCE.

C0117=.0C7

IF(_.L(1) }10,II,10

10 C61:-.(I

GO TC 12

II C61=.61

12 DO 20 J=I,JLI_
CI=R(I,J)/R(K,J)
C2=CCS(BTAPI{J) )IVZ(I,J)

C3=_.I (3. _FH2 (J )- i. )

F[ IPS=57.29578_AES(FNCI(J)-STARI(J)/57.2957B)

DEC(JI= I. t2+CC 11?_F I[PS_1.43

DE C (J)= ( (C_ I_C2_CFJS( 8TAP I (J) )/SGMA(J) )• (CI:( VU( I, J }-UI(J) )

I+UI(J}/CI-_U(K,J))+GEC|J))mCOS(P_TAP2IJ))/(C2mVZ(K,J) )

20 CONTINbE

DO 30 j=I,JLIM

IF(HLOSS{I _J)) 3G,31,30

30 HLCP(J)={FLCS(J)-FLCSS(I,J) )/HLCSS(I,J)

31 COt_l INt, E

PREPARE ELaCE-ELEMENT RESbLTS FOR OUTPUT.

_2 DO 43 J.=I,JLIP

RRI[J):RII_J)IR(I,JLIM)
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RRT2 (J)=R(_,J} IR (KvJLIM)

XPFTI(J):ICO._PPFT[ (J)

XPFT2(J}=tCO.*PPFT2{J)
XTHI_IJ)=57.2qS?E*THIAIJ)

XVPI (J)=VZ (I,J)/ {COS( 8T_P 1(J )) )

XVP2 (J)=VZI _,J}/(CCS(_T_P2(J) ))
XB EIA |J )=57.2057 E

XB ETA2 (J)=57.2c57

XCMEG (J)=_4.348*F

IVZII,J})

XBI_PI(J)=57.2957

XF_CI(J)=57.2OETE

SATAN{ _L(

8SATAN (_L

LCSS( I ,J )

8*BT_Pl(J

_FNCIIJ)

XBT_P2(J)=S?.2£578*BTAP2(J

DELFI|J}=(U2(JI_U(K,J)-UI

DELP(J)=H(_,JI-H(I,J}

XVIIJ)=(VZ(I,J)*_ZII,J)÷Vb

I,J)IVZ(I,J))

(K,J}IVZ(K,J))

*CCS(BTAPI(JI)*COS(RTAPI|J}}/IVZ(I,j),

}

(J)#VU(I,J))/32.176

[I,J} *VU[ I,J} )**0.5

XV2 IJ)=(VZ (_, J }_Z(K, J ){VU( K,J ) *VU(K,J})*_O. 5

XHSIII(J)=F(I ,J)-((XVI(J}_XVI(J} )/64.3e, 8)

XHSII2(J)=H(K,J)-((XV2(J)_XV2(j))/64.348I

XDEL2 ( J )= 57.2957,8_'[_EL2 ( J )
IF (RN(I))44,45,44

44 XEFF (J)=DELP( J )/CELHI (J)

XPHII (JI=VZ( I,J) l[Jt (JLI _)

XPHI2tJI=_Z(K,J)IL2IJLIP}

XPSI (J) =(4.348=CELH(J) /(U2(JL IM)*U2(JLIM))

XPSII (JI=_4.348_CELHI(J}/(U2(JLIM)*U2(JLIM))

XD(J)=I.-(XVP2(J)/XVPI(J))÷(R(K,J)*VU(K,J)-R(I,J)*VU(I,j) )/(XVPl|j
I)* (R(K,J)*R| I,J) )*SG_A(J) }
GO TC 43

45 XEFF(J)=O
XPP [l(J }=0
XPFI2(J)=C

XPSI|J)=O

XPSII (J)=O

XD(J)=I.-(XVP2(J)/XVPI( J})-(R(K,J)*VU(K,J)-R(I,J)*VU(I,j))/(XVPI(j
i )* (R(K,J)*RI I,J) )_SGMA(J) )

43 CO,TItLE

OUIPUT BLACE-ELEMENT RESULTS.

50

I

WRITE (IC,514)CRLN

WRITE (IC,525)

WRITE (IC,515)

WRITE {IO,5lq)

DO 50 KJ=I,JLIM
J=JLIM-KJ*I

WRIIE(IO,Stb)J,RRI(J) _UI(J),XVI(J),VZ(I,JI,VUII,J),XVPI{J},H(I,J)
,XhSTTI{JI,XBET_(JI,XBTAPIIJ)
WRIIE (IC,_IS}

WRITE (IC,_30)

WRITE (I[,515}

WRITE (I0,519)
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C
C
C

DO 6_ KJ=I,JLIM

J=JLIM-KJ+I

bO WRITE (I£,518) J,RRI2 (J) ,b2 (J),XV2 (J) ,VZ (K,J) _VU{ K, J ),XVP2{J ),H(K,J)

I_XPSTT2( J ),_LCSS! I,J) ,XeEIA2(J) ,XBTAP2! J)

WRITE ([C,535)

WRITE (IC,=_40)
WRITE {IO,_=21)

DO 70 KJ=I,JLIM

J=JLIM-KJ+I

70 WRITE(I0,520) J,RRT[J),)_PFTI(J),XPHII(J),XFNCI(J),STARI (J),

L RRT2(J!,ANGST(K,J),XTf_TA(JI_SGMA|J),TMAXC(J}

WRIIE II0,519)

WRITE (IC,S30)

WRITE (I(],E22)

DO EO KJ=I,JLIM

J= J1 IM-KJ+I

80 WRIIE(IO,523) J,RRT2(J)tXPFT2IJ),XPHI2(J),XDEL2(J),XPSIIJ),

IXPSII{J),XEFF[J) _XOfJEG(J),XC(J)_DEQ(J),THAC(J),HLDP(J)

OUTPt_T MASS AVERAGED RESbLTS.

rHrU1,U2tQRUNtJLIMrJLrDELH,DELHItRNrIL}

VvFPS VZ,FPS

HOtF[ HO LOSS,FT BETA, DEG

11..3_ 2Fll. 2,F15.3t 2F [0.2,F TO. 3 tF I0.4)

_PH F T PHIl INCIDtDEG REF IN

DEC- CMBR _DEG SELIDITY TMAX/C'//)

) %PH F T PHI2 DEVtDEG P

C CMEGABAR C--FACTOR EQ D-FAC (THTA/C)A

FORMAT (13,FI 1.3t FII. I.F I1.3tFll.2t4Fll. 3, ZFIO. 3v2FlO.4)
FORMAT{' EkTRAkCE QUANll TIES' I)
FORMAT (' EXIT CUANTITIES'/)

FORMAT (1H1/)

IL=ILIM-L

CALL MAVE/I,JrK_RfVZtVU

RETURf_

514 FORMAT(LIHIFLCW RATE=,FSol,4H GPMII/)

5L5 FORMAT( l j RIR(TIP) U,FPS

L VU,FPS V(REL),FPS TOT FDtFT STAI
2 eETAP,CEG ° )

.=16 FOI_MAT(I3pFI2.3,lFL2.2yI2X_2FII.2)

518 FORMAT (I3 IFL2.3 teFL2.2, _F11.2 )

519 FORMAT(IHG)

520 FORMAT( I 3, F11.3, F IT. [, F

521 FORMAT(' J _IRT (1)

IC R2/RTII) STAG,

522 FORMAT( ' J RIRT(I

ISl PSI I EFFI

1L0_5 DIFF'i/)
523

525
530

535

540 FORMAT (2IH EkTRANCE Qt_AkTITIES /,4X 211_ GEOMETRIC PARAMETERS/)

ENC
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SU P,RCL, T I IxE R_CECC

I(*,_)

RACIAL ECUILIBRIIjM ANC CCNTINbIIY ITERATIONS.

CCMMCN/BLCCKA/ALF_IS,2OI•BT_2(20) •BTPIBII0),DEQ(20)•DEQB(IO)•FHB

I(5,20),FF2(20)•FIS2C(20),FIlOGB(8,9),FI2DB( 5•20)tFKI |20)•FKSHAB

2(5 •20),PLCe(20)•SLPILGP|8,9),SLP2GB(B,O)•THAC(20)•THACB(10)•X(5•20)

COMMCI_/BLCCKB/ALFII20),_LF2(20),ALFPe|5,20),ANGST(5,20) •ANGSTB

I(5,e),CS(2C)•EMI20),EMBIS•8),FKSHA(20)•PPFTII20),PPFT2(20),_(5,20)

2,QE(5,2C) •RP2(20)•RN(5) ,SCMA(20)•SGMAE(5,20) •SGMGBBIgI,THTA(20),

3TMA_CI2C)•1MXCE(5,20),XP(5•20),YANGSB(8) •YANGS|5•20)

CC_CI_/BLZCKC/_TtPI(20) •BTAP2(20),DELH(20),DELHI|20),DEL2(20),

I_NCI(2C) •H(5•20) ,F_LOSS(5•20) •R (5,20) •U1(20} ,U2( 20 ) •VU(5•20 )•VZ( 5•

220)

CO/vr,CN/BLCCKD/I ,_BASE, JL• JL IM •K,KLI M tKPR I, QR, QRUN, THL

COMMCN/BLOCKF/ILIt _,IRUN,IEXLOSI5}•IEXDEV(5) •K2LM(5)•L2LMI5)

I,USTARI5)•PHIBB(5•20),XFB(5•20),OMEGBB(5,20,20),DEL2BI5•20t20)

2,PI_IEX(2G)tRST#R(5) ,_REt(5) ,ARFAC(5)
COMMCNIBLOCKG/K2L IM, L2L IM,YPHI BB (20) ,YXPB(20) ,YCMGBB (20,20) ,YDEL2

IBI20,20),YPHIEF(20),YR(20),PHIEFC(5)
COIWMChlBLCCKJ/EMEE(8),FIICII(40),FIIOI2(32),FKIEI7),SLPIII(16),

1SLPII2 (16) ,SLP ]13 (16), SLP I14( I6 ), SLPII 5(8), SLP2II116} ,SLP212 (I6) t

2 SLP213(I_ ) ,SLP2 14(I6) • SLP2 15 (8) •TMAXCB (7)

CCMMCN/BLCCKLI[ I, TO

O( f'EhSICN ALPI_Z (10)
DATA ALPHZI' Ae•'LFPBI•'IXP|I• ' FKI•ISHAB',' (XP)'• • S'•

1 'GMAB', '(XP) ', 'Rig) 'I

DETERMINE eLADE-ELEMENT GECMETRY PARAMETERS• WHEEL SPEED AND RELATIVE

LEAVING FLOW AhGLES.

400

401

402

403

404
405

43

45

47

DO 33 KKK=I,IC

CALL F[TICIR,ALF2,XP,ALFPB, JLIM•KLIM•I•K,IWARN)

GO TC (401,400),IWARN
WRIIE(IO,7OG)iALFHZIIZ),IZ:I,3)

CALL FITIC (R,FKSFA,XP,FKSHAB,JLIM,KLIM•I,K,IWARN)

GO IC (4O3,402),IWARN

WRIIEIIO,TCG)(ALFHZ(IZ),IZ=4,6)

CALL F ITlC (R,SCM_ ,XP,SGMAS, JLIM,KLIM, I ,K, IWARN)

GO IC (405,404),IWARN
WRITEIIO,ICO)IALFHZ(IZ),IZ=I,9)

DO 43 J=l,JLIP

U2(J)=.IC472*RN(1)*R(K,J)

AN(ST(K,J)=G.5_57.29578_ALFI(J)+.5*ALF2(J)

YA_GS(K,J)=ABS(A_GST(K.J))
ALF2(JI=.OI_453*_LF2(JI
IF(IEXL_S(1)I45,45,47

IFIIEXDEVII))44,44,47
DO 4_ J=I,JLIM
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C
C
C

C
C

C

C

C

C

YPHIEF(J)=PhIEFC(II

46 YR (J)=RIKtJ)

CGPFLTE CEYlATICt_ ANGLES

44 CALL CEV

DO 20 J=I,JLIM
IF IALFI(J) )20I ,2C2,200

200 BTAP2 IJ)=ALF2(J) 4DEL2( J )

GO TC 20

201 BTAP2(J) =ALF2(J)-OEL2(J)

GO TC 20

202 WR[IE (IO,5II)

RE TLRN I

20 COhTINUE

DEIERMINE LEAVINC WHIRL VELOCITY, TOTAL HEAD AN[ AXIAL VELOCITY

SATISFYING RACIAl EQUILIBRIUM.

DO 2_ KR=I,20

KNT=I

KEIT=O

3C0 J= JBASE

301 VUIK,JI=U2(J)-VZIK,J)_SINIBTAP2(J)IICOS(BTAP2(JI)

HI V,J)=H(I,J)+.O3IO6'_(L2IJI*VU(K,J)-CSIJII-HLOSSII,J)

IF IK_T-I) ICI,ICC,IOI

lOT KJ =J-I

GO 10 I02

TO0 KJ=J+I

102 S= {R (K,KJI-P(KtJ))/R (K, KJ)

E=S_R (K,KJ)IR [K, J)-l.

D=S-I.

C=-(_ZIK,J)*VZIK,J) )-64.3_8WWIH( I,KJ)-HLOSS( I,KJ )-HIK,J) )

I+2 .'_CSIKJ )_D_b2 (_J) ww_2 (KJ)+E'_VU(K,J )=VU IK,JI

B= S IN (BTAF2 tKJ) )/COS (BT _P2 (KJ ) )

A= I.+(S+I.)_BX_B

B.=-2.*U2(KJ)*S_B

RA E= E_wB-4.,_ Aw_C

IF(RAD}2E,21,_I

25 WRITE (10,512)

KNTT=I

IF (KkT-I} I03,I04,103

103 RETURN 2

104 KNI=2

GO TC 300

21 VZ IK,K JI={-B+SCRI {RAC) ) /(2.W_A)
IF (K_T-I) IO_,IOE, IC6

106 IF(J-2) i12,112,11I

IL i J=J-I
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II2

tO5
6OC

I07
108

I09

II0

G[J TO 301

KJ=I

GO TO iO_

IF (J-JL) 6C0,IC7,107

J=J*1

GO TC 301
KJ=JLIM
VU{K,KJ)=L2[KJ)-_Z{K,KJ)*SIN(BTAP2{KJ))/COS(BTAP2(KJ)}

H{ _,_J}=F{ I,KJ ]÷.C3106" [U2[KJ]*VU(KtKJ)-CS{KJ))-HLOSS(I,KJ)

IF |KIlT-l) llO,1CC.,IIG
KNT=2

GO IC 300

IF(KI_TT.GT.O) GC TO I03

COMFLTE STREAM FLNCTION DISTRIBUTICN FOR LEAVING FLQW AND REVISE

BASE STRE_LIhE _ELCCIT_.

O
DO

28 Q(
I-R

IF

29 VZ

V_R

I K, I }=0.

28 J=l,JL

K,J+II=C {K, J )+CR_'|VZ(_,J+[) ÷VZ{K,J ))*(R(K, J+I )*R(K,J+[)

{_,J I*R (K,J))

(_BS (G( K ,JLIP )-I. |-.0C5 }B0,29,29

(K,JBASE)=VZ(K,JBASE}*QB| I,JLIM)IQ|K,JLIM}

ITE(I0,515)

REVISE LEAVIkG FLC_ STREAMLINE RADII BASED ON STREAM FU_CTICN

DISTRIBUTICN.

30 CALL FITIO[CB,Re2,Q,R,JL ,JLIM,K,I,IWARN)

GO TC (407,40E), IWARN

40a WRITE{IO,?CO) _LFHZ{IO}

407 DO _-1 J=2,JL

IF (ABS(RB2(JI-R(K,J) }-.O[_R(K,J)I3[,3t,32

31 COkTINLE

RETLBI_
32 DO 33 J=2,JL

R(K,JI=RB2IJ)
33 CONTINUE

WRITE! IC, 914)

RE TLRN

511 FORMAT(21PIALFI = 0 NOT ALL(]WED|

512 FORMAT{IHI/II/35FORACIAL EQUILIBRIUM SOLUTION FAILED}

5t4 FORM, AT|IHO,'RACIJL EQUILIBRIUM SOLUTION AND STREAMLINE RADIAL ADJU

IST/'E_TS kCT ACFTEVED In 10 ITERATIONS e)

515 FOBMATIIHC,'RACIAL ECbILIeRIUM AT CCNTINUITY NOI ACHIEVED IN 20 IT

IER_T IChS' l

70C F()FMAII/I,_*w_,_,_ WJRNING - FITID CALLEC IN RACEQC - EXTRAPOLATION 0

IF TABLE 't3A4l

END
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APPENDIX E SAMPLE INPUT LOAD AND PROGRAM OUTPUT LISTS

Sample Input Load i.

I0 32010 826 .Ci

18 I .375

lg-l-I

18 2 .375

19

30 1

317

32 I I .1506 4_.56 .1506 -16.7 2.52

32 1 2 .1725 55.60 .1725 II.I0 2.19

32 I 3 .2175 62.50 o2175 38.60 1.74

32 1 4 .2625 66.40 .2625 52.40 1.44

32 I 5 .3675 6g.40 .3G75 66.30 1.23

32 I 6 .3525 71.86 .__525 65.40 I.C?

32 i 7 .3750 72.80 .-_750 67.50 1.00
30 2

32 2 I . 1500 -51.44 . 1506 16.76 2.34

32 2 2 . 1725 -4g.O0 . 1725 IC.60 2.0g

32 2 3 ._175 -44.30 .2175 IO.SO 1.65

32 2 4 .2625 -46.20 ._625 11.20 1.36

32 2 5 .3C_5 -36.40 .3675 11.60 1.16

32 2 6 .3525 -33.10 .=.525 12.20 1.01

32 2 7 .375C -31.6_ .3750 I_.47 0. g6

50 3gIO.

50 O.
70 51.78

80 .Of

81 9

82 • 1500 E3.3 I15.2 .1625 53.3

82 .2165 53.7 lIE.2 .2E25 53.1

82 .3540 50.2 II5.2 .3E2E 48.0

83 0.967 [.C67

80 .02

81 9

82 . 1500 44.6 115.2 .1625 44.6

82 .2165 45.4 115.2 .2(25 46.2

82 .3540 43.1 115.2 .3625 4C.8

83 C.97 (.¢_7
80

.100 0. I. 08

.Cq7 0. I.C8

.Ogl 0. 1.08

.CE5 0. 1.08

•0 Ig 0. I •08

.(373 O. 1.08

.O?C 0. I. C8

• 08 O. 1.08

• C8 0. l. OB

.08 0. 1.08

•08 O. 1.08

.08 O. I.(38

• 08 O. 1.08

.C_ O. 1.08

115.2 .1710 54.2
115.2 .3685 51.8

115.2 .3150 48.0

115.2 .1710 45.4
115.2 .3685 45.0
115.2 .3]50 40.8

.7

.7
.7
.7
.7
.7
.7

.7

.7

.7

.7

.7
.7
.7

II._

I15

II:

115
11-=
II?
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_Sample Output 1

AX]AL-FLO_ PUMPPERFORMANCEPREDICTION-- INPUT

IRUN= 820 JBASE- 10 JLIM= 20

REFERENCE TABLE INCIDENCE ANGLE BLADE THICKNESS CORRECTION

YTPACB= 0.0 0.02 0.06 0.06 0.0B 0.10 0.12

YFKIB= 0o0 0.33 0.59 0o17 0.90 |.00 1,08

REFERENCE TABLE ZERO-CAMBER INCIDENCE ANGLE ANC CAMBER COEFFICIENTS IFIIOGBtSLPIGBtSLP2Gfil

YAhGSB
SGNGfiB

ODD -0o001 -O.OOl -0.001 -O.oOl -0.001 -0.001 -o.OOl -0.0oi -O.OOl

I0.00 -0.001 -OoOOl -0.001 -0.001 -0.001 -0.001 -O.DO1 -o.0oi -0.0o2

20.00 -0.001 -O,OCl -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002

30.00 -0.001 -0.001 -0.001 -0.001 -0°002 -0.002 -0,002 -0.002 -0.003

40.00 -0.001 -O.O01 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002 -0.003
50.0C --0.001 -0.001 -0.001 -O.OOl -0.002 -0.002 -0.002 -0.002 -0.002

6G.O0 -0.0C1 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002

70.00 --0.000 -0.000 -0.000 -0.001 -0.001 -0.001 -0.001 -0.002 -0.003

0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2. b

0.0 0.0_2 0.012 0.003 -0.041 -0.076 -0.097 -0.124 -0.132 -O.18b

10.00 0.413 0.554 0.721 0.853 1.072 1.203 1.387 1.764 2.30_

20.00 0.738 1.085 1.405 1.735 2.146 2.476 2.846 3.663 4.9_4

30.00 1.043 1.571 2.105 2.636 3.136 3.751 4.346 5.606 7.694

40.00 1.360 2.050 2.759 3.488 4.219 5.029 5.827 7.5ql 10.460

50.CC 1.662 2.485 3.38b 6.283 5.215 6.214 1.255 9.398 12.540

60.00 1.86_ 2.83_ 3.835 _.919 5.955 7.016 8.100 10.200 13.550

70.00 2.042 3.099 4.145 5.216 6.377 7.390 8.517 10.850 14.500

0.0 -0.043 -0.022 -0.004 0.016 0.061 0.060 0.082 0.116 0.163

10.00 -0.088 -0.058 -0.032 -0.008 0.019 0.047 0.073 0.124 0.18_

20.00 -0.138 -O.lO0 -0.067 -0.038 -0.013 0.025 0.055 0.113 O.lq3
30.00 -0.191 -0.148 -0.21_ -0.019 -0.044 -0.010 0.019 0.079 0.148

60.00 --0.250 -0.206 -0.167 --0.131 --0.096 --0.066 --0.040 0.003 0.047

50.00 -0.322 -0.273 -0.235 -0.201 -0.174 --0.150 -0.13_ --0.108 -0.072

60.00 -0.393 -0.352 -0.318 -0.291 -0.268 -0.269 -0.236 -O. lq5 -0.157

70.00 -0.48k -0.458 -0.448 -0.433 -0._08 -0.376 -0.357 -0.291 -0.247

BL&DE RO_ DATA

!= 1 RN= 3910.0 RPM RSTAR= 0.37500 FT IEXDEV=-I

REFERENCE TABLES FOR BLADE RON GEOMETRV AND GEOMETRY-DEPENDENT LOSS DATA

J x ALFB XP ALFPB SGMAB TNXCB FI208

IEXLOS--I

FHB FKSHAB
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0 00_0000 0 O00NOm_

oo o

0000000
0000000

0000000
0000000
Wm_Qm_m

000oo0o

0000000

_oooooo

0000000
0000000

eeooeeo

I

m_

eoeeooe

eeeee0_

0 0000000

X

Z

X

1
tJ

J

Z

Z
0

z

M.
uu

0 00000_0

0 00000_0

I IOOOeII

I ol •

eoeeeee

0 000_0_ 0 000_0_

0 0000000 0 _00000

4 d_dd _ _dddd

0000000 _ 0000000

0 000_ 0 000_0_
0 O0_lO0 0 mm_m_

ooooo00 _ ooo0oo0

oo __ oo __
0000000 _ 0000000

0 00_ 0 00000_

_ 00000 00000
o • ooeeoee • e_e_et_

0000000 _ 0000000

0 0000_ 0 000_0_

0000000 _ O00OO00

0 0000000 0 00_000

0 0000000 0 000,4- o _'_ ur_

"_''° o'.o'._ o°g _oooo. oo

000000 oo0oo0

000o00 oo0000o00ooo oo_ooo

" _ddd_ ddddd_

0

p e8

0
.I

w
0
Z
ul

!

0 w

d g

•, $

I[
o
_u

,,J

0
u
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J X ALFB XP ALFPB SGMAB TMXCB

1 0.1500 -51.4400 0,1500 10.7600 2.3400 0.0800
2 0.1725 -_9,0000 0,1725 10.6000 2.0900 0.0800
3 0.2175 -44.3000 0.2175 10.9000 1.6500 0.0800
4 0.2625 -40.2000 0.2625 11.2000 1.3600 0.0800
§ 0.3075 -36.600C 0.3075 11.6000 1.1600 O.OBO0
6 0.3525 -33.1000 0.3525 12.2000 1,0100 0.0800
T 0.3750 --31.6900 0.3750 12.4700 0.9600 0.0800

REFERENCE TABLE OEVIAT|CN ANGLE-SLOPE FACTORIEMBI

F1206

0.0
0,0
0.0
0.0
0.0
0.0
0.0

FHB

1.0800
1.0800
1.0800
1.0800
1.0800
1.0800
l.OeO0

FKSHAB

0.7000
O, 7000
0.7000
O. 70 O0
O. 7000
O. TOO0
O. 7000

YANGSB- 0.0 10,00 20.00 30.00 60.00 50.00 bO.O0 10.00
EMB- 0.22 0,23 0.24 0.27 0.29 0.33 0.37 0.42

REFERENCE TABLE LOS$(THACB)

OEQB- 1.30 1.60 1.S0 1.60 1.70 1,80 1.90 2.00 2.10 2.20
THACB- 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02
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ZNLET CQkDIT|ONS
PHIRUN NO. 820,01

R VZ VU H

0.1500 53.3000 OoO 115.2000

O.1625 53.3000 O_O L15.2000
O.171D 54.2000 0.0 115.2000

O.2165 53.7000 O.O 115.2000

0,2625 53.1000 O,O 115.2000

0.3085 51.8000 O.0 115.2000

O.35_0 50.2000 0,0 115.2000

0.3625 68.0000 0°0 115.2000

0.3750 _B.OOOO O.O 115.2000

• e,e NARN[NG - FIT2D CALLED IN

*os_ WARNING - FIT2D CALLED IN

,_r, WARNING - FIT2D CALLED |h

IREF -- EXTRAPCLAT[ON OF TABLE FILOGBIYANGSB.SG/qGBBI

IREF -- EXTRAPOLATION OF TABLE SLPLGB(YANGSB, SG.MGBB)

IREF - EXTRAPOLATION OF TABLE SLP2GBIYANGSB, SGNGB8)

,I.o WARkING -- EXTRAPOLATION CF TABLE EMBIANGSTB) IN FETID--CALLED IN DEV

_*_ WARNING - FET2D CALLED IN [REF - EXTRAPOLATION OF TABLE

._l, MARNING - FIT2O CALLED IN IREF - EXTRAPQLATEON OF TABLE

*a_.l.I, bARNING - F|T2D CALLED |N IREF - EXTRAPOLATION OF TABLE

,me, WARN[NG -- EXTRAPOLAT[ON OF TABLE ENB(ANGSTB| IN F|TLO-CALLEO IN OEV

,$,, WAREING - FIT2D CALLED IN IREF -EXTRAPOLAT[ON OF TABLE

_*S_ MARN[NG - FIT2D CALLED [h [REF - EXTRAPQLAT|DN OF TABLE

_ MARNJNG -- FJT2D CALLED JN |REF - EXTRAPOLJT|ON OF TABLE

_I** _ARNING - EXTRAPOLATION CF TABLE ENB(ANGSTB) IN FITID-CALLED IN OEV

**** MARKING - FET2D CALLED IN IREF - EXTRAPOLATION OF TABLE

*e*_ WARNING - FKT2C CALLED IN |REF - EXTRAPOLATION OF TABLE

*.os* kARNING - FIT2D CALLED lk IREF - EXTRAPOLATION OF TABLE

**,l-u WARNING - EXTRAPOLATION CF TABLE ERB(ANGSTB| IN FITIO-CALLEO IN OEV

FILOGBiYANGSBtSGNGBB)

SLPIGBIVANGSB,SGNGBB!

SLP2GB(YANGSB,SGMGBB)

FILOGB(YANGSB,SGNGBB)

SLPIGB(YANGSB,SGMGBB|

SLP2GBIVJJ_C..SB,SGMGBB)

F| |OGBiYANGSBt SGMGBB)

SLPIGBI YANGSB, SGMGBB |

SL P 2GB | Y ANG SB. SG/qGBB )
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s#t_ _ARN[NG - F[TZO CALLED [E [REF - EXTRAPDLAT[DN OF TABLE

***e kAR_[NG - F[TZD CALLEC IN |REF - EXTRAPOLATION OF TABLE

**** kARh[NG - FIT2D CALLED XN IREF - EXTRAPOLATION OF TABLE

F [ LOGB(YANGSB• SGHGBB)

SLP IG81 YANGSB, SGNGBB )

SLPZGB| YANGSBv SGNGBB)

**e* kAREING - EXTRJPDLAT|ON OF TABLE EMB(ANGSTB) IN FITID--CALLED IN DEV

_sle MAREING - FITZD CALLED IN IREF - EXTRAPOLATICN OF TABLE FIIOGB(YANGSB,SGMGBB)

_s_ MARRING -- FITZC CALLED IN [REF - EXTRAPOLATION OF TABLE SLPIGB|YANGSB,SGMGBB)

,e_e MARNING - FIT20 CALLED IN IREF - EXTRAPOLATION OF TABLE SLP2GB(YANGSB,SGNGBBI

_sss MARh|NG - EXT_APOLAT|ON OF TABLE EHBfANGSTB! IN F[TID,-CALLED IN OEV

*_** kARN|NG - F|T20 CALLED IN |REF - EXTRAPOLATION OF TABLE FI10GB(YANGSB,SGNGBBI

,stm MARNENG -- F|T2D CALLED |N [REF - EXTRAPOLATICN OF TABLE SLPIGEIYANGSB,SGHGBB)

es*a _ARNING - F|T2D CALLED IN [REF - EXTRAPOLAT|ON OF TABLE SLP2GB|YANGSB,SGMGBB)

e_,l_ bARkING - EXTRAPGLATION CF TABLE EMB(&NGSTB| [N F|TIO-CALLEO IN DEV
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iNLET CC_OITICNS
FPIRUN NO. 820.02

R VZ VU H
0.150C 44.6000 0.0 115,2000

0.1625 44.6000 0.0 II5. ZOCO

O.ITIC ¢5,6C00 0o0 II5.ZODO

0.2165 _5.4C00 0.0 115.2000

0.2625 46.2C00 0.0 115.20C0

0.3085 4fi,0000 0.0 115.2000
0.35_0 63.1000 0o0 115.2000

0.3625 _0o8000 O.O 115.20O0

0.3150 _C.8000 O.O 115.20G0

s_ EARhING - FITZO CALLED Ih

*_s_ NARNING -- FITZD CALLED IN

_s kARhlNG - FIT2C CALLED IN

IREF - EXTRAPOLATION OF TABLE FIIOGBIYANGSB,SGMGBB)

IREF - EXTRAPOLATION OF TABLE SLPIGBIYANGSB, SGNGBBI

IREF - EXTRAPOLATION OF TABLE SLP2GBIYANGSBtSGNGBBI

e_ NARhING - EXTRAPOLATION OF TABLE EMB(ANGSTB) IN FITIO--CALLEO Ih OEV

• _s bARN|NG - FZTZD CALLED IN |REF - EXTRAPOLATION OF TABLE

_ss EARNING - FITZD CALLEO Ih IREF - EXTRAPOLATICN OF TABLE

e_e_ _ARN|NG - FiT2D CALLED iN iREF - EXTRAPDLATICN OF TABLE

• _*_ EARNING - EXTRAPOLATION OF TABLE EMBIANGSTB) IN F|TIO--CALLED IN OEV

• _* _ARNING - FIT2D CALLED IN iREF - EXTRAPOLATJCN OF TABLE

#_se EARNING - FIT2D CALLED Ik IREF - EXTRAPOLATION OF TABLE

_e NARNING -- FIT2D CALLED IN IREF - EXTRAPOLATICN OF TABLE

• mso ¼ARNING - EXTRAPOLATION OF TABLE EMBiANGSTBI IN FITID-CALLEO IN OEV

• _ EARNING - FITZD CALLED Ik IREF - EXTRAPOLATION OF TABLE

i_ _ARNING - FIT2D CALLED IN IREF - EXTRAPOLATION OF TABLE

• _s WARNING - FITZO CALLED IN IREF - EXTRAPOLATION OF TABLE

• _ bARkiNG - EXTRAPDLATION CF TABLE EMBIANGSTB) IN FITID.--CALLEO IN OEV

FEIOGB(YANGSBtSGMGBB)

SLPIGBIYANGSB, SGNGBBI

SLP2GB(YANGSB.SGMGBB)

FIIOGBIYANGSBeSG.MGBB)

SLPIGB(YANGSB,SGMGBBI

SLP2GB|YANGSB,SGMGBB)

FI[OGBIYANGSB,SGNGBBI

SLPLGBIYANGSB_SGNGBB|

SLPZGBiYANGSBtSGNGBB|
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**_r4, WARNING -- FIT2D CALLED IN IREF - EXTRAPOLATICN OF TABLE

*_** kAR_ING - FIT2D CALLED IN IREF - EXTRAPOLATION OF TABLE

_s*_ WARNING - FIT20 CALLED IN iREF -- EXTRAPDLAT|ON OF TABLE

FI[OGBIYANGSB,SGNGBB)

$LP|GB(VANGSB, SGHGBB)

SLP2GB|YANGSB_SGNG6B)

oe,_, WAREING - EXTRAPOLATION CF TABLE ENB(ANGSTB) IN F|TLD-CALLED IN DEV

• _* WARNING - F|T2D CALLED 1_ IREF - EXTRAPOLATION OF TABLE

• _' WARNING - F|T2D CALLED IN IREF - EXTRAPOLATION OF TABLE

o_Oo WARNING - F|T20 CALLED IN |REF - EXTRAPOLATION OF TABLE

• _' WARk|NG - EXTRAPOLATION CF TABLE EMBIANGST8) IN F[TIO'--CALLEO IN DEV

FIIOGBIYANGSB,SGNGBB)

SLPIGBIYANGSB,SGNGBBI

SLP2GB(YANGSB,SGNGBB|
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eeee bARk|NG - EXTRAPOLATION OF TABLE THACDO(CEQOOJ IN F|TIO-CALLEO IN LOSS

•see bARkING - EXTRAPOLATION OF TABLE THACDO|OEQOO) [N F[TID--CALLEO [N LOSS

• o*_, LARKING - EXTRAPOLATION CF TABLE THACOOIOEQOO| IN FITLO-CALLEO IN LOSS

:M, se bARNiNG -- EXTRAPOLATION OF TABLE THACOO|0EQOOI IN F|TIO--CILLEC iN LOSS

_4,_ WARk[NG - EXTRAPOLATION OF TABLE THACOO(OEQOO) |N F|TID-CALLED IN LOSS

e_ml, LARkiNG - EXTRAPOLATION OF TABLE THACOO(OEQOO) |N F[TIO-CALLEO iN LOSS

e*4.1, kARNING - EXTRAPOLAT|ON OF TABLE THACOOIOEQO_I [N FETIO-.CALLEC IN LOSS
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Sample Input Load 2.

I0 22010 I000 ,01

18 I ,375

19 1 1

209 9

21 ,260 ,284 ,290 ,302 ,324 ,352 .381 .405 ,420

22 2625 2729 2850 2979 3188 3396 3500 364.6 3750

23 1 051 04.2 024. 016 057 062 14.0 380 4.40
23 2 052 04.5 036 029 036 044 082 201 262
23 3 052 046 038 032 032 04.0 068 160 214.

23 4. 051 046 041 036 029 039 056 089 118
23 5 038 033 028 026 04.4 060 070 090 105

23 6 053 04.7 039 030 013 019 042 103 164.

23 7 092 067 04.3 031 036 04.0 056 090 117

23 8 066 056 060 033 064 04.7 063 096 116

23 9 040 038 036 034 083 048 064. 104. 116

0.024. 1 1.65 4..20 6.30 7.25 6.05 4..85 3.50 0.0
24. 2 4.75 6.26 7.58 8.14 7.68 6.53 4.60 1.73 0.50

24 3 5.25 6.60 7.70 8.25 7.95 6.90 5.95 4..10 2.55

24 4 6.30 7.11 7.88 8.23 8.11 7.21 6.72 6.18 5.90

24. 5 6.60 7.31 7.43 7.65 7.55 6.4.6 6.12 5.82 5.70
24. 6 9.25 8.02 6.95 6.45 6.53 5.88 5,60 5.36 5.19

24 7 7.95 7.28 6.60 6.17 5.98 5.43 5.36 5.40 5.50

24. 8 8.25 7o33 6.33 5.75 5.28 4..90 4..92 5.4.7 6.08
24, 9 8.65 7.45 6.35 5.50 4.80 4.50 4..70 5.38 6.50

3O 1

3110
32 1 1 .2625

32 I 2 .2700
32 1 3 . 2800

32 1 4 . 2900
32 I 5 .3000

32 1 6 .3200

32 I / .3400

32 1 8 ,3600

32 1 9 .3700
32 110 .3750

50 3620.
70 55.0

80 .01

81 7

82 .2625 59.81
82 .3188 59.39

82 .3750 55.92
83 0.984

80 .02

81 7

66.00 .2625 38.4.0 1.4.4 .0850

66.60 .2700 4.0.30 1,,40 .084,0
67.50 .2800 4.2.70 1.35 .0826
68.50 .2900 45.10 1.30 .0813

69.30 °3000 4.7.20 1.26 .0800
70.50 .3200 51.00 1.18 .0773
71.10 .3400 55.20 1.11 .0746

70.30 .3600 60.20 1.05 .0720

68.40 .3700 63.,70 1.02 .0706
67.10 .3750 67,10 1.01 ,0700

O. 1.08 .7

O. I. 08 .7

O. 1.08 .7

O. 1.08 .7

O. 1.08 . 7

O. 1.08 .7
O. 1,08 .7

O. 1.08 .7

O. 1.08 .7

O. 1.08 .7

188.36 .2729 59.81
188.4.6 .3396 58.93

185.66

188.36 .2979 58.95
188.52 .3646 55.92

188.36

185.66
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82 .2625

82 . 3188

82 . 3750

83 0.985
80 -i.0

50 2890.

70 47,7

80 .05

81 7

82 .2625

82 , 3188

82 • 3750

83 0.g84

8O

51,81

51.34

48.80

48.01

47.68

44.8g

188.57

188.84

186,90

188.36

188,46

185,66

.2729

.3396

.2729

,3396

51.81

51.17

48.01

47.31

188.57

188.89

188.36

188.52

.2979 51.15

.3646 48.80

.2979 47.32

.3646 44.8g

188.41

186.90

1 88.36

185.66
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Sample Output 2

Ax!AL-FLCWPU/qPPERFORMANCEPREO(CTION- - INPUT

IRUN=tO00 JfASE= tO JLIN= 20

PEFERENCE TABLF INCIDENCE ANGLE BLADE THICKNESS CORRECTION

YT_ACB= O.O 0.02 0.04 0,06 0.08 0,10 0.[2

YFKI_= O.O 0.33 0.59 0.77 O. gO 1.00 1.08

=EFERENCE TABLE ZERO-CAMBER INCIDENCE ANGLE AND CAMBER COEFFICIENTS (FI1OGBtSLPtG_tSLP2GB)

YANGS8
SGMGBB

0.4 0.6 O.B 1.0 1.2 1.4 |.6 2.0 2.6

0.0 0.0_2 0,012 0.003 -0.061 -0.07% -0.097 -0.124 -0o132 -0.186

10.00 0.413 0.554 0.721 0.853 1.072 1.203 1.387 1.764 2.303
20.00 0.738 1.085 1.405 1.735 2.166 2.476 2.844 3.663 4. q44

30.00 1.063 1.571 2,105 2.636 3.136 3.751 4.346 5.606 7.694

40.00 1,360 2.050 2.759 3.488 4.219 5.029 5.827 7.591 10.460

50.00 1.662 2.485 3.386 4.283 5.215 6.214 7.255 q.398 12.540

60.00 1,864 2.834 3.835 4.919 5,955 7.016 8.100 10.200 13.550
70.00 2.042 3.099 4.145 5.276 6.377 7.390 8.517 10.850 14.500

0.0 -0.043 -0.022 -0.004 0.016 0.041 0.060 0.082 0.116 0.163

10.00 -O,OBB -0.058 -0.032 -O.OOB 0,019 0°067 0.073 0.12_ 0.189
20.00 -0.138 -0.100 -0.067 -0.038 -0.013 0.025 0.055 0.113 0.193

30.00 -0.191 -0.148 -0.114 -0.079 -0.046 -0.010 0.019 0.079 0.148

60.00 -0.250 -0.206 -0.167 -0.13l -0.096 -0.066 -0.040 0.003 0.067

50.00 -0.322 -0,273 -0.235 -0.201 -0.174 -0.150 -0,134 -0.108 -0.072

60.00 -0.393 -0.352 -0.318 -0.291 -0.268 -0.269 -0.236 -0.195 -0.157

70.00 -0.484 -0.458 -0.6_8 -0.433 -0.408 -0.376 -0.357 -0.297 -0.247

0.0 -0.001 -0.00l -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001

10.00 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002

20.00 -0.001 -0,001 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002

30.00 -0.001 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.003

60.00 -0.001 -0.001 -O.001 -0.002 -0.002 -0.002 -0.002 -0.002 -0.003

50.00 -O.OOl -0.001 -0.001 -0.001 -0.002 "-0.002 -0.002 -0.002 -0.002
60.00 -0.001 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002

70.00 -0.000 -0.000 -0.000 -0.001 -0.001 -0.001 -0.001 -0.002 -0.003

BLADE ROW DATA

I- 1 RN= 3620.0 RPN RST&R- 0.37500 FT IEZOEV= 1

REFERENCE TABLES fOR BLADE ROW GEOMETRY &NO GEOMETRY-DEPENDENT LOSS DATA

[EXLOS= 1

J X ALFB XP ALFPB SGN&B TMXCB PI20B _HB FKSH&B
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INLET CONO|T|ONS
PHtRUN NO,

R VZ

0.2625 59.8100

0.2729 59.8100

0.2979 58.9500
0.3188 59.3900

0.3396 58e9300

0._646 55.9200

0.3750 55o9200

l PHIfF_

1000.01

VU
0.0

0.0

0.0

0.0

O. 0
0.0

0.0

UST&R

H

188.3600
188,3600

188°3600

188.4600

188°5200

185.6600

185°6600

ARFAC

1 0.4052 142oL574 0.9840
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|NLET CONOIT|ON$
PH[RUN NO. 1000, 02

R VZ VU

0. 2625 51.8t00 0.0

0.272q 51,8_00 0.0
0°2979 51.1500 0o0

0.3188 51.3400 0.0

0.3396 51,1700 0.0

0,3646 48,8000 0.0
0.3750 48.8000 0,0

! PH|EFC USTAR

H

188,5700

188.5700

188.4100

188.8400
188.8900

186.9000

186.9000

ARFAC

t O.3SZI 142.1S74 0,9850
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AXIAL-FLOW PUMP PERFORMANCE PREDICTION - - INPUT

IRUN=lOOO JBASEs 10 JlfM- 20

REFERENCE TABLE INCIDENCE ANGLE BLADE THICKNESS CORRECTION

YTMACB= 0.0 0.02 0.04 0.06 0.08 0.10 0.12

YFKI8= 0.0 0.33 0.59 0.77 0.90 1.O0 1.08

REFERENCE TABtE ZERO-CAMERA INCIDENCE ANGLE AND CAMBER COEFFICIENTS |FIIOGB,SLPIGB,SLP2G_I

YANGSB SGNGBB

0.4 0.6 O. 8 1.0 1.2 1.4 l.b 2.0 2.6

0.0 0.042 0.012 0.003 -0.041 -0.074 -0.097 -0.124 -0.137 -0.1_

10.00 0.413 0.554 0.721 0.853 1.072 1.203 |.3BT 1.764 2.303

20.00 0.738 1.085 1.405 1.735 2.146 2.476 2.844 3.663 4.944

30.00 1.043 1.571 2.105 2.636 3.136 3.751 4.346 5.606 7.694

40.00 1.360 2.050 2.759 3.488 %.219 5.029 5.827 7._91 10.460

50.00 1.662 2.485 3.386 4.28_ 5.215 6.214 7.255 ?.3gB I_o540

60.00 1.864 2.834 3.835 4.919 5.955 7.016 8.100 I0.?00 13.$50

70.00 2.042 3.099 4.145 5.276 6.377 7.390 8.517 10.850 14.500

0.0 -0.043 -0.022 -0.004 0.016 0.041 0.060 0.082 0.116 0.163

I0.00 -0.088 -0.058 -0.032 -0.00_ 0.019 0.047 0.073 0.124 O.?Bg

20.00 -0.138 -0.100 -0.067 -0.038 -0.013 0.025 0.055 0.113 O.]q_
30.00 --0.191 -0.148 -O.11& -0.07g -0.044 --0.010 0.019 0.079 0.14_

40.00 -0.250 -0.206 -0.167 -0.131 -0.096 -0.066 -0.040 0.00_ 0.047

50.00 -0.322 -0.273 -0.235 -0.201 -0.174 -0.150 -0.134 -0.108 -0.072

60.00 -0.393 -0.352 -0.318 -0.291 -0.268 -0.249 -0.2_6 -O.lq5 -0.757

70.00 -0.484 -0.458 -0.448 -0.433 -0.408 -0.376 -0.357 -0.297 -0.24?

0.0 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -O.OO1 -0.001

10.00 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -O.OG_

20.00 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.00_

30.00 -0.001 -0.001 -0.001 -O. OOL -0.002 -0.002 -0.002 -0.002 -0.00"

40.00 -0.001 -0.001 -O.OOl -0.002 -0.002 -0.002 -0.002 -0.002 -0.003

50.00 -0.001 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002
60.00 -0o001 -0.001 -0.001 -0.001 -0.002 -0.002 -0,002 -0.002 -O.O0_

70.00 -0.000 -0.000 -0.000 -O.OO1 -0.001 -0.001 -0.001 -0.002 -0.00_

BLADE ROW OAT&

I- I RN= 2890.0 RP_ RSTAR= 0.37500 FT IEXDEV- 1 1FXLnS= 1

REFERENCE TABLES FOR BLADE ROW GEO4TRY AND GEOMETRY-DEPENDENT LOSS DATA

J X ALFB XP ALFPB SGNAB TNXC8 FI20B FHB FKSH6_
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FLOW R&Tf$ COMPL[TEO-NFXT RE&O NEW RPM OR NEW GI_OM_TR¥ O&T&

1 0.2625 66.0000
? 0.2700 66.6000

3 0.2900 67.5000

4 0.2900 68.5000

5 0,3000 6q.3000

6 0.3200 70.5000

7 0°3400 71o|000

8 0.3600 70.3000

9 0.3700 65.4000

10 0.3750 67.1000

0.2625 38.4000 1.4400 0.0850 0.0

0.2700 40.3000 1.4000 0.0840 0.0

0.2500 42.7000 1.3500 0.0826 0.0

0.2900 45.1000 1.3000 0.0813 0.0

0.3000 47.2000 1.2600 0.0800 0.0

0.3200 51.0000 1.1800 0.0773 0.0

0.3400 55.2000 1.1100 0.0746 0.0

0.3600 60.2000 t.0500 0.0720 0.0

0.3700 63.7000 1.0200 0.0706 0.0
0.3750 67.1000 1.0100 0,0700 0.0

1.0800
1.0_00

1.0800

1o0500

1.0800

1.0800

1.0500

1.0800

1.0800
1.0500

OF_EQCNEE T6BLE DEVI&TION &NGLEiDEL28)

XP8

0.2625

0.272g

0.2850

0.2979

0.3188

0.33g6

0,_500

0,3646

0.3750

PHI8B

0.2600 0.2840 0.2900 0.3020 0.3240 0.3520 0.3810 0.4050 0.4200

0.0288 0.0829 0.0916 0.1100 0.1152 0.1614 0.1388 0,1440 0.1510

0.0733 0.1093 0.1152 0.1241 0.1276 0.1400 0.1271 0.1279 0.1300

0.1100 0.1323 0.1344 0.1375 0.1297 0.1213 0.1152 0.1105 0.1108

0.1265 0.1421 0.1440 0.1436 0.1335 0.1126 0,1077 0,1004 0.0960
0.1056 0.1340 0.1388 0.1415 0.1318 0.1140 0.1044 0.0922 0.0838

0.0846 0.1140 0.1204 0.1258 0.1127 0.1026 0.0948 0.0855 0.0785

0.0611 0.0803 0.[038 0.1173 0,1068 0.0977 0.0935 0.0859 0.0820

0.0 0.0302 0.0716 0.1079 0.1016 0.0935 0.0942 0.0955 0.0939

0.0 0.0087 0.0445 0,1030 0.0995 0.0906 0.0960 0.1061 0.1134

REFERENCE T6_LE LOSSIOMEGBB)

Xpl_

0.2625

0.2729

0.2850

0,2979

0,3188

0.)3q6

0.3500

0.3646

0.3750

PHIl8

0.2600 0.2840 0.2900 0.3020 0.3240 0.3520 0.3810 0.4050 0.4200

0.0510 0.0520 0,0520 0.0510 0.0380 0.0530 0.0920 0.0660 0,0400

0.0420 0,0450 0.0460 0,0460 0,03)0 0.0470 0.0670 0.0540 0.0380
0.0240 0.0360 0.0380 0.0410 0.0280 0.0390 0.0430 0.0400 0.0360

0.0160 0.0290 0.0320 0.0360 0.0260 0.0300 0.0310 0.0330 0.0340

0.0570 0.0360 0,0320 0,0290 0.0_40 0.0130 0,0360 0.0640 0.0830

0.0620 0.0440 0.0400 0.0390 0.0600 0.0190 0,0400 0,0470 0,0480

0. I_00 0.0820 0.0680 0.0560 0.0700 0.0420 0.0560 0.0630 0.0640

0.3800 0.2010 0.1600 0.0890 0,0900 0.1030 0,0900 0,0960 0.1040

0.4400 0.2620 0.2140 0.I180 0.1050 0.1640 0.1170 0.1160 0.1160

O. 7000

O. 7000

O. 7000

O. 7000

O. 7000

O. 7000

O. 7000

O. 7000

O, 7000

O. 7000

170



INLET CONDITIONS

PHIRUN NO.

R VZ

0.2625 _B,,OXO0
0.27?9 68.0100

0 . 2979 _.7, 3200

0,3188 67,6800

0.3306 _7, 3100
O. 36_6 _,_. 8900

0.3750 _6. 8900

! PHIEFC

I, O._O?S

1000.05

VU
0.0

0.0

O. 0

0.0

O, 0

0.0
0.0

USTAR

11],_903

H

188.3600

188.3600
188.3600

188._600
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185.6600
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APPENDIX F

ANALYSIS OF RADIAL EQUILIBRIUM SOLUTION FAILURE

In the formulation of the pump off-design performance prediction

problem, the radial equilibrium equation in finite difference form was

obtained in equation (13). Coefficient C in that equation is repeated

here, with subscripts I and 2 denoting blade row entering and leaving

stations:

C = - V 2

z 2,j - 2g(Hl,j+l - Hloss,O+I - H2,j) + 2 (UVo) I,j+ I

__ _ ('_.J+___LL_,J_ 1)v__,j+,.r2,j+ I U2,j +I + \-- r2, j

The coefficient C can be expressed in terms of a difference in loss,

Hloss,j+l " Hloss,j"

Since

H2, j - HI, j = &Hideal, j - Hloss,j

and

- ev )_m
gHideal, j - g

then

= HI + 2, j _ Iz_
H2,j ,j g ---- _ Hloss, j
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Therefore

/

C = - V2 (Hz 2,j 2g l,j+l " Hloss,j+I - HI,j
%

e),_,j + +
g --- Hloss,j

r2,j+ I 2,j+l + 1\ r2,j - V@ 2,j

or

C = - V 2 -
z 2,j 2g(Hl,j+l HI,j) + 2g(Hloss,j+l

+ . +2(UV@)I, j ,j+l

- Hloss, j)

_ _ U 2 (r2,j+l - r2, j

r2,j+ I 2,j+l + \ r2, j

Radial equilibrium solution failure is defined as the condition

related to the radicand of the quadratic equation root formula, namely,

B 2 - 4AC, becoming negative.

In figure 39, the computed results of each of three iterations

before a radial equilibrium failure occurred are shown for pump config-

uration 15 operating at a flow coefficient, _Dro_ = 0.338. The recom-

mended procedures associated with figures 14 and _8 were used for pre-

dicting losses and deviation angles. The results indicate that the

spanwise variation of predicted deviation angle did not vary appreciably

during successive iterations. Thus it can be concluded that the span-

w_se variations with iteration of the blade row exit relative flow angle,

_2_ and hence the quadratic equation coefficients A and B, were very

small. Stability of successive predicted loss variations was, however,

ne_er achieved before a radial equilibrium solution was obtained. The

main reason for this circumstance is thought to be the imprecision of

the recommended loss prediction method which, in the case of radial

equilibrium solution failure, seems to generate spanwise gradients of

loss that cause the quadratic equation coefficient C to become large

enough in a positive sense to result in a negative rad_cand B2 - 4AC
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before equilibrium is achieved. It is easily seen from the quadratic
formula as well as the relationship for the coefficient C that a large
spanwise gradient of loss will lead to a small Vz 2 and a large V0 p.
The large difference in Hloss, the small Vz,2, an_ the large Vg,2 $_I
tend to makeC a large positive number.
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APPENDIXG

SYMBOLS

In addition to the following list of symbols, glossaries of Fortran
computer program symbols and description of program input load and output
variables are included in the section, ComputerProgram Capability and
Utilization.

C

c

C.P.

C
P

C I, ... C4

D

DEQ

g

H

H

h

Hloss

i

A coefficient (see equation 14)

a empirical constant (see equation 19)

AVR ratio of blade leaving to entering axial velocity

B coefficient (see equation 15)

b empirical constant (see equation 19); camber exponent

(see equation 43)

coefficient (see equation 16)

blade chord

circulation parameter (see equation 21)

pressure coefficient

coefficients (see equation 21)

diffusion factor (see equation 19)

equivalent diffusion factor (see equation 21)

acceleration of gravity

stagnation head

blade wake form factor

static head

head loss

blade incidence angle (see figure 6)
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(K_sh deviation angle blade shape correction factor

(K6) deviation angle blade thickness correction factort

m slope factor, deviation angle function of blade
camber for compressors (see equation 23) for compressors

m coefficient in Carter's deviation angle rule for
¢

compressors (see equation 22)

n exponent (equation 18); number of blades in blade

row

P stagnation pressure

p static pressure

Q measure of volume flow rate (see equation 17)

q volume flow rate

r radius from machine axis

s blade spacing in cascade

U tangential blade speed

U free stream velocity

V flow velocity

x a distance

z axial coordinate

blade angle (see figure 6)

flow angle, measured from axial direction (see

figure 6)

F blade circulation (see equation 26); Buri shape

factor (see equation 18)

blade setting angle, angle between chord and axial
direction

6 flow deviation angle (see figure 4)
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6 zero camber reference deviation angle (see equation 23)
o

(_)i0 10% thickness reference value of 6o, NACA 65-series

blading (see equation 24)

c turning angle, _i - _2

hydraulic efficiency

blade wake momentum thickness

(_Ic)A, (@/c) E blade wake momentum thickness to chord ratio (see• Q @

equations 29-33)

U kinematic viscosity

solidity, c/s

flow coefficient, Vz/U t

_o blade camber angle (see figure 6)

head rise coefficient, g(H 2 HI)/U _

head loss coefficient, 2g(H_, i - H_)/(V_) 2

Subscripts

A, ... E

AV

c

eq

exp

i

J

Jbase

Jlim

min

versions of momentum thickness to chord ratio parameter

average

corrected

equivalent

experimental

axial station, between blade rows

blade element or streamline radial station

radial equilibrium calculation starting value of j

outer casing

minimum value
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Superscr_i_p__

nom nominal

prog program

r rotor

ref reference

s blade suction surface; stator

st stage

t blade tip

z axial

@ tangential

i blade row entrance

2 blade row exit

2-D two-dimensional

' relative to blades

* reference value

- mass averaged
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O Experimental data (ref. 57)

Calculated using specific three-parameter

(8 or _, _ and r) loss and deviation angle
correlations (IEXLOS = IEXDEV = 1)
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Figure 33. - Rotor overall performance, 9-inch tip diameter, 33 blades,

0.85 hub-tip radius ratio, N = 2420 rprn (configuration 13A).
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0.85 hub-tip radius ratio, N = 2420 rpm (configuration 13A).
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& Experimental data (ref. 57)
--" Calculated us[ng specific three-parameter ( 6 or _,_ and r)

lots and deviation angle correlations (IEXLOS _, IEXDEV - 1)
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Experimental data (ref. 57 )
Calculated using specTfTcthree-parameter (6 or _, _ and r)
lass and deviation angle correlations (IEXLOS = IEXDEV " 1 )
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O Experimental data (ref.57)
Calculated using recommended loss (fig. 14 , IEXLOS = -1)

and deviation angle (fig. 28, I EXDEV = -1) col'relations
---Calculated using two-dimensional loss (fig. 18, IEXLOS = 0)

and deviation angle (Carter's rule, IEXDEV = 0) correlations
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Figure 35. - Rotor overall performance, 9-;nch, 19 blades,

0.8 hub-tip radius ratio, N = 3000 rpm (configuration 15).
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& Experimental data (ref. 57 )

_Calculated using recommended loss ( fig. 14, IEXLOS = 1 )

and deviation angle ( fig. 28, IEXDEV _- = -1 ) correlations
---Calculated us|ng two-d|mentlonal loss ( fig. 18, IEXLC)S = 0 )

and deviation angle ( Carter's rule, IEXDEV = 0 ) correlatlom
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O Experimental data (ref. 57)
_Calculated using specific three-parameter
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correlations (IEXLOS = IEXDEV = 1)

I I I I I I

I I I I I I

.5O

T
I_ .40

_.30

.2O
0.32

I I I I 1 I

O

I I I I I I
0.36 0.40 0.44 0.48 0.52 0.56 0.60

Mass-averaged flow coefficient, _prog

Figure 37. - Rotor overall performance, 9-inch tip diameter,

19 blades, 0.8 hub-tip radius ratio, N = 3010 rpm
(configuration 15).

238



Experimental data (ref. 57)
Calculated using specific three-parameter

(G or _, _ and I") loss and deviation angle
correlations (IEXLOS = IEXDEV = 1)
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Figure 38. - Rotor blade-element performance, 9-1nch tip diameter,

19 blades, 0.8 hub-tlp radius ratio, N = 3010 rpm, ¢prog
(configuration 15).
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Exper;mental data {ref. 57 )
/ Calculated values associated wlth each of three iterations

before solution failure when using the recommended

(flgs.14 and 28, IEXLOS = IEXDEV = -1) loss and deviation angle correlations.

70 I .z_'_

66- ." -

/ /

_ se

so-".....".._Ji -

4_.,. I

26

•_ _0_' -_ 0._
" '- __i: /

,! i

"_ 30 _ _ 0.1

.,o

20 1
0.8 0.9 1.0

Radius ratio, r/r t

0.0
0.8

I
0o°o°

°.

°.

0.9 1.0

Radius ratio, r/r t

Figure 39. - Rotor blade-element performance, 9-inch tip diameter,
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0 Experimental data (ref. 70)

Calculated using recommended loss (fig. 14,
IEXLOS = -1) and deviation angle (fig. 28,
IEXDEV = -1) correlations.
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Figure 41. - Rotor blade-element performance; 9-1nch tip dlameter,_

19 blades, 0.4 hub-tlp radius ratio, N = 3910 rpm, Cprog
(rotor of configuration 01 stage).
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0 Experimental data (ref. 70)
--- Calculated using two-dlmenslonal loss (fig. 18, o_

IEXLOS = O) and deviation angle (Carter's rule) "_
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Figure 42. - Stator blade-element performance; 9-1nch tip diameter,

18 blades, 0.4 hub-tlp radius ratio, Cprog = 0.291
(sta tor of configuration 01 stage).
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Figure 43. - Rotor overall performance; 9-1nch tip diameter,
19 blades, 0.4 hub-tlp ratio, 1'4= 3910 rpm

(rotor of configuration 01 stage)
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Experimental data (ref. 70)
Calculated using recommended loss (fig. 14,

IEXLOS = -1) and deviation angle (fig.28,

I EXD EV = -1 ) con'elations
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Figure 44. - Rotor blade-element performance; 9-1nch tip diameter,
19 blades, 0.4 hub-tip radius ratio, N = 3910 rpm,

I

_prog = O. 272 (rotor of configuration 01 stage)
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