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ABSTRACT
A theoretical model has been proposed for the problem of a round
jet in an incompressible cross-flow. The method of matched assymptotic
expansions has been applied to this problem. Inner and outer expansions

have been obtained in terms of the expansion parameter ¢ =R o/rt where

]

Rjo is the jet orifice radius and r, is the minimum radius of curvature
of the jet trajectory. For the solution to the flow problem in the
inner region, the re-entrant wake flow model was used with the re-
entrant flow representing the fluid entrained by the jet. Higher order
corrections are obtained in terms of this basic solution. The pertur-
bation terms in the outer region was found to be a line distribution of
doublets and sources., The line distribution of sources represents the
combined effect of the "entraimment" and the ''displacement'. For

large values of Ug/Uj, the effect of the "entrainment" is small while
the effect of the "displacement" is important. For small value of
u”/Uj’ the opposite is true. Pressure coefficient contours for
Uj/Ug==.25, .5, and .8 were computed for inner and outer region. The
variation of jet radius, source strength, and mean jet velocity as func-

tions of distance along the jet trajectory were also computed to aid in

assessing the role of these quantities in the interaction,
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I. INTRODUCTION

One of the methods currently employed to achieve vertical take-off
performance in VTOL aircraft is to install a lifting jet. An inherent
problem of such an installation is that it interacts with the crossflow
due to horizontal flight resulting in an induced flow field which has
a measurable influence on flight characteristics.

In recent years, considerable amount of attention has been paid to
this field. In the experimental area, Jordinson,Ref. [8] made pressure
measurements in the jet plume which gave jet penetration data and the total
pressure contours. Later, Bradbury and Wood, Ref. [ 7], and Vogler, Ref. [9],
measured the pressure distribution on the orifice plate of the jet. Recently,
Mosher, Ref. [2], weighed the relative importance of the effect of blockage and
the effect of entrainment on the induced flow at various ratios of jet exit
velocity to free cross-flow velocity, i.e., Uj/U . The most extensive wind-
tunnel tests were done by Fricke, Wooler and Ziegler, Ref. [1]. They ob-
tained data not only for a one jet configuration, but also for two and three
jet configurations.

One of the most comprehensive descriptions of the jet in a cross-flow
was given by Keffer and Baines, Ref. [3]. The picture which emerges from
their work is of a jet initially comprised of a potential core surrounded by a
growing turbulent shear region. Within a few diameters of the orifice, the
jet is completely turbulent, its cross-section becoming kidney-shaped and
finally developing the appearance of two counter rotating vortices far down-
stream. Over the initial stages of the jet, the cross-flow is described as
separating from the jet somewhere near the widest point of its cross-section.
A "wake" region immediately behind the jet is characterized by negative pres-

sure coefficients in contrast to the upstream face where pressure coefficients




become positive. The initial bending of the jet is ascribed to this pressure
"defect" in the wake. Further along the jet axis beyond the potential core
stage, the jet is described as fully developed or "established" and some
tendency toward similarity is noted in the velocity profiles measured by
Keffer and Baines. The pressure differences in front of and behind the jet
diminish and the bending of the jet is ascribed mainly to the shear stress
and momentum exchange due to turbulent mixing or entraimment.

Among the initial analytical efforts were attempts by Shandorov and
others, Ref. [12], to derive the jet trajectory. Margason, Ref. [10] has
proposed an empirically derived equation developed by matching experimental
data. The results of these investigations have been used by Rubbert, Ref. [11]
to provide the trajectory at the outset thus reducing the problem to a fixed
rather than a free boundary one. While Rubbert solves the three-dimensional
problem completely by computer methods, his potential model contains no
mechanism to account for the bending of the jet according to the assumed shape.
Wooler, Ref. [5], actually does derive the jet trajectory, introducing entrain-
ment parameter and a drag coefficient in the process. These are evaluated by
fitting his derived trajectory to Margason's curve. With the trajectory so
determined, he uses a line distribution of doublets along the trajectory to
simulate the 'local'blockage' effect and a line distribution of sources to
represent the effect of entraimment., This is the so-called sink-doublet
model. However, this model provides no mechanism to account for the bending
of the jet and the three-dimensional effect of the trajectory curvature on
induced flow is neglected.

Werner and Chang, Ref. [4], solved a complete three-dimensional potential
flow problem by dividing the flow field into inner and outer regions. Separate

inner and outer solutions were found in each region and these two solutions




were matched by asymptotic expansion techniques in an intermediate regionm,
For the inner solutiin, the first order term was found to be the locally two
dimensional solution to flow about the jet cross-section. For this component,
the Riabouchinsky wake flow model was adopted.

For the outer solution, the first perturbation was found to consist not
only of the familiar doublet distribution but a source distribution as well.
This latter distribution resulted from the displacement effect of the jet
as turned in the downstream direction. As such, it had two components, one
proportional to the trajectory curvature and a second contribution due to
the increase in jet cross-sectional area. This result raised a rather funda-
mental question about the use of net sink distributions to represent entrain-
ment effects: If the fluid entering the '"'sink'" is to be considered a part
of the jet, the jet displacement increases requiring an additional source
term in the solution and the net sink strength should be zero.

The flow model of Werner and Chang, Ref. [4], did not consider explicitly
the effect of entrainment by the jet. It's the purpose of this investigation to
explore the analytical structure of a model in which the effects of entrainment,
blockage and curvature exist concurrently. The particular model has been
chosen largely an mathematical grounds and admittedly an element of artifi-
ciality has been introduced thereby. On the other,hand, it provides a
framework in which to explore the mutual dependence of entraimment, trajectory
curvature and blockage, while the resulting insight should be useful in the

treatment of more rigorous models,




II. THE FLOW MODEL

The model to be used in this investigation together with pertinent
coordinate systems are illustrated in Fig. 1 and Fig. 2. The external
cross-flow is assumed to be steady and inviscid. A vortex sheet which
encloses the whole jet is the inner boundary of this problem. The plane
normal to the jet trajectory intersects the vortex sheet to give a shape
shown in Fig. 4. For external cross-flow, this vortex sheet can be re-
garded as a streamline in the normal plane. The streamline (or vortex line)
CABHF is assumed to separated from the jet at B, and a wake of constant pres-
sure Pw(s, ) is formed immediately behind the separation point. Then this
streamline rolls-up, forms a backwards stream HH'FF’ at the center of the
wake and floﬁs into the jet. The backwards stream HH'FF’ is called re-
entrant flow.

The geometrical shape af the wake and flow-rate of the reentrant flow

is governed by the cavity number Q and U,, where

2 - P (1I-1)
- —_.5-— -
2 U; 0
U =TU,sinQ (1I1-2)

If Q is assumed constant along the jet trajectory, the shape in each
normal plane will be geometrically similar. In this investigation, we do
assume that Q is constant.

In each normal plane, the reentrant flow carries some fluids of external

1

cross-flow and flows into the jet. Then, these fluids are carried away by
the jet into the next normal plane and forms so called entrainment. Two ?
assumptions have been implied here; all entraimment otcurs in the wake and

there will be no entrainment if the external cross-flow velocity is zero.




But from the study of Keffer and Bains (Ref. [3]), the entraimnment of a
jet in a cross-flow is much greater than that of a free jet.~ And, the
backwards flow in the center of wake of jet is confirmed by Mosher

(Ref. [2]). These assumptions might not be bad after all.



III. MATHEMATICAL FORMULATION

a) Formulation of the problem

Since the flow exterior to the vortex sheet (Fig. 1) is assumed to be
inviscid and steady, a velocity potential § exists and is governed by La-

place's Equation. A boundary valued problem is thus formed as following:

Ve =0 (1II-1)

1. Inner Boundary Condition: On the vortex sheet the velocity
vector is tangential to this sheet.

2. Outer Boundary Condition: At infinitely far away from the
jet, the velocity vector is uni'.

3. On the plane Z,,= 0, the velocity vector is tangential to this

plane.

b) Image System

The third boundary condition in preceding section is solved by re-
flecting the flow field into the lower half space (dotted line in Fig. 2).
Now, the new flow field is symmetrical with respect to the plane 2,0=0;
the velocity on this plane is, therefore, tangential to this plane.

¢) Inner and Outer Solution

The method of asymptotic expansion (Refs. [ 13, 14 and 15]) is used
to solve the problem formulated in preceding sections. By this method,
separated "inner" and "outer" solutions are introduced, with inner solution
satisfying the inner boundary condition and outer solution satisfying the
outer solution., In a intermediate region, these two solutions are matched
asymptotically. Also, Laplace's Equation is satisfied by both inner and outer
solutions. The use of this method is prompted by the fact that, due to three-

dimensional nature of the problem and geomtrical complexity of the inner boun-




dary, it is extremely difficult to obtain an analytic solution which can be
applied throughout the flow region. And also, for U@/Uj << 1, the radius of
curvature r, of the jet will be large compared to the jet radius R;, i,e.,
Rjo/rt << 1l, Under this condition, the flow near the jet, within a radius

of the order of Rj, is expected to be nearly two-dimensional, but not com-

pletly so,.

Introducing

R,
¢ = =2 (I1I-2)
r
t
as a parameter, we write inner and outer solutions as asymptotic series:
i ® i
o X,¥,85e)~7¥ g (e) o (X,Y,s) (111-3a)
7 m
with X,Y fixed as ¢ - o0

o @® o
o (x,,8;¢e)~7¥% £ (e)o, (x,5,8) (1I1-3b)
(o]

with x,y fixed as ¢-o

where
3 . . .
= non-dimensional potential (111-4a)
U'mrt

X, Y, s,
x=-li_ R Y=E_ > S=7 noen-dimensional inner variables (I1I-4b)

jo jo t

Xy Vi S,
X=o— , Y=, s=7 non-dimensional outer variables (I1I-4¢c)

t t

fm's and gm's are functions of the parameter ¢ only with the property:

f (e)

m+1

~f—mze—)——— - 0 as e = O (I1I-5)




Eq. (III-4) establishes Rjo as the basic normal length scale and r, as
the basic tangential (to the trajectory) scale for phenomenona in the inner
region. The basic length scale in the outer region is r, for every direc-

tion. At this point, attention should be called to the following fact:

a§ _QU f a_cp:;. + -\ = fo(e)

S~ [ © 5+ ] = o[ - ] (II1I-6a)
Bcoi

3% () -

2 \:fo(e) S+ ] = o\:fo(e)] (I1I-6b)

If fo(e) is taken to be unit, which will not lose generality in comparing
order of magnitude, then 0%/0x, is of order (1l/e), while GQ/BSI is of order
(1). In other words, following important assumption is implied in this way
of formulating inner and outer expansion; in inner region, variation in 3
for a displacement of O(Rjo) in X-Y plane are of the same order as variation
for a displacement of o(rt) in s direction. This assumption is, of course,
true as long as U,,/Uj remains small.

d) Basic equation in dimensionless variables

As stated before, both inner and outer solution should satisfy Laplace

equation. In inner region, Laplace's equation in inner variable takes the

form (Ref. [4]).

- €

dX? 0Y2 " 1-¢hX OX ds Os
( 1 )252“’1 =0 (III-7)
1-¢hX/ 0s°

where

h(s) = rt/rl(sl)

Expanding the coefficients into power series, Equ. (III-7) can be written

as




%%1 g - eh(s) E'Q— +e? [-5—9; - b? (s) X%g%i]"'o(ea)aao (I11-8)
Since the specific form of gm(e)'s in Eq. (III-3a) is still unknown, we
cannot substitute Eq. (III-3a) into (III-8) to obtain the governing equa-
tion for each ¢$ 's

In outer region, the parameter ¢ does not appear explicitly in the
Laplace Equation in outer variables. Thus, Equ. (III-3b) can be substi-
tuted into V2m°==0 to obtain the governing equation for each m; as:

\72cp;’1 =0 , formz=o ‘ (111-9)

where V2 is the three-dimensional Laplacian.

e) Boundary conditions

If the vortex sheet (Fig. 1) is given by the equation,
F(x1,y15 81)=0 (I11-10)

the over-all inner boundary condition will take the form:
Vol VF = 0 (1T1-11)

. L i,
But the inner boundary condition for each ¢, is yet unknown.

The over-all outer boundary condition is
lim o

X7 o chp =1 (I1I-12)

By substituting Eq. (III-3b) into this equation, the outer boundary con-

dition for each @: are obtained

lim o _ 7T

R W$o =1 (III-13a)
lim o _
X,y - Vo = 0, form=>1 (III-13b)




The remaining conditions are supplied by requiring the inner and
outer solution to match asymptotically over an intermediate region.
Formally, this can be stated as

. B 8m(e)cp:l]° [%' £,(e)00 | i

[o]

~ 0 (11I-14)
€=o v (e)

The notation [ ]o denotes behavior near the outer bound of the inner
region and [ ]i the behavior near the inner bound of the outer region.
Eq. (III-14) states that over the match region, the MFh partial sum of

@i agrees to the Nh partial sum of mo to the order of [y(e)].

10
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IV. SOLUTIONS FOR q_ AND g

As ¢ +0, the disturbance vanishes altogether, the outer flow re-
gion is just the undisturbed flow, which is independent of ¢. These

conditions will be satisfied if we take
fo(e) =1 (I-1)

fm(e) -0, as g—=0 formz=1 (Iv-2)
s
cpg (x,y,s)=fcosa('r) dT+xsina (s)

(o]

=cpg (0,0,s) +x sina(s) (Iv-3)

o . . . . i1 X
where cpo(x,y,s) is the undisturbed potential in curvilinear coordinate.

The matching condition, Eq. ( III-14) for m=o0, n=o0 becoming

1im 8o (e)[@i]o - [cpg (0,0,8) + eXsina(s)] 0

(Iv-4)
E=0
Y(e)
It is obvious that we should take y(g) =1, then this gives
g, (e) =1
s
[cp;] = Cpg (0,0,s8) = r coso(T)dT (Iv-5)
o )
Now, thé inner solution stands:
i i i
o~ t g:1(e)ep + ... (Iv-6)
Substituting this equation into the basic differential equation (III-8)
and basic boundary condition (III-11) gives
i
v2, @, = 0 . (Iv-7a)
Vool o v F=(acp°>=o (1V-7b)
. XYCpo XY dn A -

11



where VQXY and VXY are two-dimensional Laplacian and two-dimensional
gradient operator respectively., Together with the outer boundary condition
given by (IV-5a), the governing equations for (p:;' are completely deter-
mined. The solution of this set of equations is simply:

cpti, = cpg (0,0,8) (IV-8)

12




V. Solutions for ¢$, @% and @%

a) General solution for ¢$

¢2 has to satisfy following set of equations:

vy =0 (v-1)
lim ¢ =0 (V-2)
x,y-o@

With the inner boundary condition along the jet trajectory unknown. By
potential theory (Ref. [19]), the most general solution satisfying these
conditions can be represented as a infinite series of a line-distribution

of singularities along the jet trajectory:

2Py ar 2 u{P ) cos yr) ar
P +]

J r?
T o o

2 )(T) P, [cos y(1)] dr
\.[ 3 + eco e (V-3)
o

The first term is a line distribution of sources, the second term a line
distribution of doublets, the third term a line distribution of quadrupoles

and so on, with the symbols having following meaning:

ﬂél)(T) = Hél)fg(T)’ n(r), ¢(1)] Strength of source (V-4)
(1)(T) gl)[g(T), n(), ¢(1)] Strength of doublet
(1)

(1) = ugl)[g(T) n@), ¢(M)] Strength of quadrupole

"
n

T(x,-8)+3 g -m) +k 2 -0)

o

r, = |7,

° —
r

cos y (s) ;g
o

13



X, =X Irt, Yo = N /rt, Z, =2, /rt

X Yoo Zo: location of the point where the potential is to be evaluated

g, ms (: location of the singularity on the jet trajectory

P : nth order Largrangian polynomial

The strength uél), u§1),‘ué ) and so on will be determined by matching

with inner solutions.

In order to do the matching, the behavior of wf, near inner boundary
has to be determined first. In other words, we need the asymptotic expan-
sions (with X, Y fixed as ¢ = 0) of each singularity (source, doublet,
quadruypole and so on).

Fortunately, only erpansions of sources and doublets are needed for
our work. These expansions are obtained from Werner and Chang (Ref. [4]),
In all following formula, the index i means the expansion is obtained from
the ith order outer solution. For example, in this section we are dealing

@f, then we should take i=1. See Fig. 3 for symbols used.

1) Asymptotic expansion of a line distribution of sources

©

lim (1)('r) ar
X Y flxedf ___r—— (V'S)
e =0 (o]

~(log 3)2}_1( )(s) +[2u( )(s) log (X2+Y2)§ +T, (s)]

+ (e loge)u( ) (srnee) X
+ ex[uéP (o) o)+ u{Ph (s 10g (x7 +y2) 42, (0]

+ 0 (e® log ¢)

where .
. -p.(l)(T)dT

Ty (s) =[z+£] —

- 281 (s) 1052 6 (v-5a)

14



-8 o (i)
-y T)cosp(T)AT
po) =[] +] ]2

\-I C2
me b (V-5b)
-uc()l)(s) h (s) log2d
6: a small number, which has the property: 6 - o, as € » o
c: the chord of the trajectory between points P and P' (Fig. 3)
B: the angle between chord c and x-direction (Fig. 3)
This expansion is correct only if Ti(s) and Pi(s) are independent of 6.
But this can be easily proved.
2) Asymptotic expansion of a line distribution of doublets
lim °;u§1)(T)cos y(T)dr
X, Y fixed | 2 (V-6)
€0 ) o
- 0
1 2u§l)(s) cos§ (i)
~3 T— - (loge)u ""(s)h (s)
(X2 +y?)=
. . —J___
P 0252 -u{P6)n () 10g x7 412
+ Gi (s):\
+ o(e)
" where
cos B = X

— . I
(X2 +Y2)2

-6 = (1)
Gi(s) =[J + J\-J L%;—i_-%s-)— (T - s)"'cos(a-o')
SR - ’

HT - a) sin(0- C:'jjéd'r +pgi)(s)h(s) [log 2 é-%]

15




(b) Governing equations for ep]i and cp]é

The inner and outer expansion stands

[« ]

(1)(T)d'l'

+

CPo~co (0,0,s8) + xsina+1f, (e)[f

-

L-le )Pz (cosy)d'r
+f

with x,y finite as e¢—o

i i
® ~cog(0,0,s)+g1(€)¢91+
with X,Y finite as ¢- o0

In matching region, we have

[% fm(e)cp;:li = qog(o,o,s) +eXsina + f (e)[(log e) Zuél)

)+....]

1
2l 2u?

2rdz) e
+€Re 7 +€2Re 72

[_%; gm(e)“’nil:\o = cpg(o,o,s) +g, (e)[cpil]o
o

+ ] + ...

For later convenience, we use here the complex variables Z and z:

Z=-x+1ivy s Re(Z) = X

z=x +1iy , Re(z) X

By taking y(e) =f; (¢) and being simplified by the assumption ¢/g,(c)-o0 as

’

Im(Z)

Im(z)

e—0 (we will varify this assumption later), the matching condition

Eq. (III-14) becomes:

16

J. u,_ )('r) cosY dr

v-7)

(V-8)

(v-9)

(V-10)

(v-11a)

(V-11b)



1i 1 1), 1 2“1 ()
et @age) 2+ 2 re(—) +L, Re(ma =) +...]

€
(V-12)
-g N, | F =0
vl ] }
which gives:
g1(e) = £1(e) loge (V-13)
[ol] = 20 (V-14)
-0
ul(,l) =0, for P>1 (V-15)

Although (V-14) gives the outer boundary condition for cp].i, the specific form
of g, (e) is still unknown, and therefore we are unable to obtain the governing
differential equation for Cpii . A lot of information is revealed by (V-15):

it says the strength of all higher order poles are zero and the first order

outer solution is a line distribution of sources only:

=,
I (U-16)
-0 o

This is just the device used by many investigators (Ref .[5,6]) to simulate the
effect of entrainment. They generally used an empirical formula for the
strength of the sources. In this investigation, the strength of sources,
which is not yet known; will be derived as an integral part of the whole
theory.

We proceed to next order. In the matching region:

]

fm(e)cp;] = Cpg (0,0,8)+eXsina+f, (a)[(log €) Zuél)(s) +

oM

v-17)
+2u 0 (s) Re (log 2) + 1 () |

Again, using matching condition (III-14) with y(e) =g, (c), we have
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Previously, it was assumed that ¢/g, (¢)-~oase-o,

ga(e)=£f,()=¢

[cpjé] = Xsina+2u§1)(s)Re (logZ) +T; (8)
o

gi(e)=gz(c) loge=c loge

we see that this indeed is the case,

Now,

the inner solution stands:

cp1~cp;+eloge: cpi +ecp12+

Looking at (V-20),

Substituting this into the basic differential equation (III-11l) gives

xy®1 ° Vxy
V?(chal = h(s)

i
VXY N2)-]

Vo  F =

) vXYF = (an

<3 CP%

Bcpi

O

oX

i
5coa

5o/

A

o)

o

Here, O’=o'j +o‘w is inner boundary, see Fig. 4.

c) Solution for cp]i

From Eqs. (V-22), (V-23), and (V-14), cp]i is governed by:

i
Ve P =0
deps
37), =0
on /g
lim

XYoo

o1 = 2u5e)
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(V-18)

(V-19)

(V-20)

(v-21)

(V-22)

(v-23)

(v-24)

(v-25)

(V-26a)

(V-26b)

(V-26¢)




The solution of this set of equations is simply:
i 1
ok %1,8) = 2u{P(s) (W-27)

Therefore, @t represents a flow field which is parallel to the jet tra-
jectory. At each station s, the velocity of this flow field is constant
throughout the whole inner region.

d) Solution for ¢} : The Re-entrant Flow Model

Since @; = @g(o,o,s) is independent of X, Eq. (V-24) reduces to V§chg = 0.

Together with (V-25) and (V-19), m; is governed by following set of equa-

tions:
V2, 0z = 0 (V-28a)
X ;Enwcp; = Xsinax (s) + Zuc()l)(s) Re(logZ) (V-28b)
aCP;
(a n> =0 (V-28c)
()

Here, pi})(s) is still unknown and will pe supplied by @é .

A number of two dimensional wake models can be chosen here to give the
solution of this set of equations, each will give a different inner boun-
dary shape. The one we choose in this investigation is the '"Re-entrant
Flow Model" (Refs. [ 16,17,18)), The flow field of "Re-entrant Flow Model"
is illustrated in Fig. 4. The stream line CABHF is separated from the jet
at point B. B'AB is denoted by Oj and B'H'F, BHF by G, 0= cj + g, con-
stitutes the inner boundary. The shape of the rear surface of the jet
(dotted line BFF'B') has no direct effect on the external flow since the

external flow is bounded by a, rather than by the rear surface of the jet.

The front surface of the jet (cj) is assumed to be a circular arc. The
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geometry shape Oy and the wake pressure Pw are characterized by cavity number
Q. The actual shape of o = cj +o, for Q = -1.5, -2.0 and -3.0 are demon-
strated in Figs. 6a, 6b and 6¢c, respectively.

Mathematically, the flow region of the "Re-entrant Flow Model" consists
of '"two sheets of Reimann surface'". What we have just described is the first
sheet. The re-entrant flow HH'FF'carried some fluids of the first sheet flows
into the so-called second sheet. The flow field of the second sheet is shown
by the dotted lines FE and F'E'. It should be noted that the second Reimann
sheet is required only for mathematical consistancy of a two-dimensional wake
flow problem. In context of our three dimensional theory, all fluids which
flow across line FF' (Fig. 4) will be carried away by the jet to next plane
further along the jet, where this fluid will cause an increase in cross-
sectional area of the jet. Thus, in present formulation, entrainment is re-

presented by the re-entrant flow.

e) Wg(Z,s): The Solution of Re-entrant Flow Model

Solution to the "Re-entrant Flow Model' has been well documented
(Ref. (16, 17,187). This solution has been obtained by the method of Levi-
Civita for cavity flows about curved surfaces. Only a summary is presented
here. In two dimensional problem, it is convenient to work with complex

variables. We are looking for the complex potential:

W, (Z,8) = o5 (Z,8) + 1¥1(2,s) (V-29)

Here Yi is the stream function. By using conformed mapping technique, both
W, -plane and Z ~ plane are mapped conformed onto an auxilliﬁry plane; the

¢ -plane., The shapes of the boundary g = 0 + o, in Z-plane, w,-plane and
C(-plane are illustrated in Fig. 5. The boundary ¢ in the Z-plane is trans-

formed into a geometrically simpler shape in the (-plane, a semi-circle. The

solution can be represented in a parameter form as:
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1 2% y=-—1 fy.) e (C-1d) (d¢-1)(¢-1) F(C)
sind g ¢ "o @s-1V5) = (1- % CHOCID D (vV-30)
dw
1 _=z ne1 .oy £C%-1) (c2+d®) (d2C2+1)
Rj sina d( (¢)=b(1 Q)F C(C%+c?)? (c22+1)2 (v-31)

W2 b 42 1 c2
R, sina ©=-730 ‘Q)§1°g[ (C2+c2) ([ 2+1/c) .

2_.42)(1-c24% 2
- b(1-)F {em=dil(lendn) (g9+c?)c(g2+1/c2)+Bo (v-32)

where

b 1 d= 2 1 a_dz 1-c242
B =§ (1'Q)E FlO{(T_ic‘?)_z]"' b(l'Q).g (cch(i(_czc)ad ) (V-32a)

F(C) is Levi-Civita's Function: F(()=1iA, ( - iA, ¢2/3+ A CcB/5+...
Here, the constants A;,Ag ... will determine the shape of the line AB (Fig. &4).
For this investigation, only two terms of F({) are taken to approximate the

Levi-Civita's Function,

F(f)=1iA,C-1A,(¢3/3 (v-33)
To obtain Z as a function of (, w, is eliminated between (V-31) and (V-30)

dz dw,/d¢ . 2 ) 2 .
I —p ()2 (ACHi)B(CHi) (CB-1) [-iA,(+iA,(%/3
R, 3¢ O &,7az TP e FEEAE e 2073

(V-34)

All together, we have b,c,d,A;, A, five unknown constants. If these five
constants are known eq. (V-34) can be integrated numerically by choosing a
path in the {-plane and integrating step by step to obtain corresponding
values of Z. It is desirable to extend the integration to values of Z

well into the matching zone which for small values of Ux/U, may as much as

3

five to ten diameters from the origin. Unfortunately, for this range of
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values of 2 ,({ must approach the neighborhood of the singularity c in
the (-plane (Fig. 5), where small incremented in { yield unmanageably large
ones in Z . To avoid this inconvenience the reverse procedure of first
choosing a point in the Z -plane and determining the corresponding values
of ¢ by a modified Bairstow scheme (Ref. [20]) was employed.

The constants A;,A,;,b,c,d are determined by following five conditions
(Ref. 16):

1)- a predetermined cavity number Q

2) a predetermined curvature at A (Fig. 5)

3) the curvature at B must be finite (Fig. 5)

4) the curvature at B must be equal to curvature at A

5) Z(¢) must be a single valued function at ¢ =1ic

After applying above five conditions, the following five equations result

(etd) (ed+l)(cHl) (AjctAg e/3) _ 0 3

(c-d)(cd-1) (c-1) © 1-Q) (V-35a)
2 2d 24 .

Tc2 ¥ catl ~ clordy T A1 tAsce®=0 (V-35b)

—13*_:2 +1+A,-A, =0 (V-35¢)

(A~ 3A)(14c®)* (A +A,)(1-c?)*
4(1+d2)2 T T (i)t

$A1-A5/3) (V-35d)

(A1+A3 )(1-02 )4

8(1+h) % fhizhe/d

b=-

(V-35e)

Of course, this is another set of nonlinear equations. By suitably constructed
numerical methods, this set of equations is solved to obtain the five constants
for a predetermined cavity number Q. A, and A, determine the shape of 0.

]

b is a scale factor. ic and id are the points in (-plane corresponding to
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infinity and rear stagnation point in Z-plane respectively (see Fig. 5).

The procedure outlined here gives only an approximated circular arc along

g The constants A; and A, are chosen so that the curvature at front stag-

j.
nations point A and points of separation B and B' will have the same value.
From actual numerical computation, the maximum variation of curvature be-
tween A and B is less than 2% for Q=-2.0, In viewing the extreme uncertainty

of the shape of the jet, this is more than enough. 1In Fig. 6a, 6b and 6c, the

actual shape of g for Q=-1.5,’-2.0 and -3.0.

f) Power Series Expansion of wj; and the strength of sources E&

W, can be expanded into a power series having the form

. a_(s)
Wy (Z,8) = sina(s) ' 2 +bo(s)+ ao(s) log Z +? nz (V-36)
It should be noted that Re[w, (Z,s) -b°+T1(s)], not Re[w, (Z,s)], is the
solution of the set of eqs. (V-28). From this, we obtain the behavior of
cpjé at outer boundary of the inner region as:
(03] =[Relva@.9) -1, ()41, (7]
o o
=X sina(s)+T1(s)+ao(s) Re (log Z) (V-37)
Comparing (V-37) and (V-28b) gives
a (s)
1
ui o) = 25 (V-38)

Thus, the strength of the line-distribution of sources for outer expansion
is determined provided that ao(s) can be evaluated.
The evaluation of the constants bo, a, 83 ... in (V-36) presents

some difficulty because wy (Z,s8) is not an explicit function of Z. At least
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(1

three constants bo’ ao, a, have to be evaluated forpb zs) and for the later

matching with outer solution. The rest of this section is devoted to obtaining

these three constants.
i) ao(s)

Differentiating (V-36) with respect to Z gives

dw 5 a a,
o
E—=sina+7-'z—3+.... (V-39)
By Residu theorem
% 1 dw 1 dw
2mi R 3sing =‘§ R.sino dz 2 =9 R sina a¢ 9¢ (V-40)
J o Jd r, 3

where I" is any circle which encloses the surface ¢ in Z-plane and I"; is the
image of T in (-plane (Fig. 5). After expanding dw,/d({ (V-31) into power

series, (V-40) gives

a
o _ _bh? H
R, sina =~ 2cé (1-Q (V-41)
ii) a,(s)
Multiplying (V-39) by Z and using Residu theorem again, we have
a,; dw 5 dw 5
; o L 2z & _ 1 T2z 14
"“MRZsina J sina dZ R, R, § sina & R, R, d¢ ¢ (V-42)
J J ] J ]
r Ty
Next, expanding dw,/dZ and dZ/d( into power series and integrate dZ/d{ term
by term:
1 e . .
sino aZ ©> =bo+b1(§-lc)+..., for !€-1c|<(1-c) (V-43)
1l dz 1
R—j-d—g (C) = W [cl +Ca(€- iC)+Ca(€- ic)z"‘ ..--o]
for 0 < ‘g- ic|<c (V-44)
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/A "a
E—j- ) = - .t <, +c, (C-ic)+ ...

for 0< |¢-ic|<c (V-45)

where <, is a constant of integration and c, =o since Z/Rj is a single
valued function of {. Substituting (V-43), (V-44) and (V-45) into (V-42)

and simplifying it, we have

a,

RZ sina =bic,ey - bgek (V-46)
where
ey = 1 LT LA T (o) (reR) ((Baethec¥/D) (V-462)
lim ¢ 1 (C+id)® (dg+1)2 (C+1)® (€B-1) (-A ¢+ 1iAC3/3)
co=g.¢icJ‘ (¢-ic)® \:b C(C+1ic)? (c2¢?+1)" €
i
icg
- c1]dg “ao - b (V-46b)
by = (1-Q>’lf[if1 A, +£*x3<=2>+fz]e(A1 ¢ hact/3) (V-46c)
i
b, = (1-Q)2{f1 [2A,c+(Ay +A,c2)2] +2if, (A, +A, c2)+f3}
(A1 c-hyce®/3) (V-46d)
_(e-d)(cd-1)(c-1) -
£1= CFD(cdF D (cF1) (V-46e)
_ =214 d(l+d2) , d(1+d?2) (1+4d)?
fe=T-a2 L (ctd® T (1Fcd)2 " (1+c)2] (V-46£)
_ 4 d(1+d?®) , d®3(1+d?) ., (1+d)?
fs =TTz L (cFd)s © @+ecd®  * (1+c)3] (V-46g)

The evaluation of co(V-46b) deserves some explanation. By suitable numerical

method, (V-46b) is evaluated to give a sequence of numbers as ( approaches ic.
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This process continues until the sequence converges to a statiomary value,
which is just e Actually, if ( is too close to ic, the sequence will
diverge eventually because of round-off error of the machine. Neverthe-
less, a stationary value is clearly observed before its final divergence.
iii) bo
Examining (V-36), we can obtain bo by the limiting process

b a

o = S « B -
Rj sino Z-.eo [R sinc @) Rj Rj sino 1°gz] (V-47)
W a
1im 2 VA 0 Z
¢~ ic‘-_Rj sina ©) -Rj ©) - Rj sina (logRj+1Og Rj)]

For |g - ic[ <(l-c) and |g - icl <c, W5 (V-32) can be expanded into a power

series having the form

Wa d,
EjsTa (@) =—(E_—i'5+dz log(g - ic) +d, +dy (C -ic) +.... (V-48)
It is easy to show that

d, =-c, =-b(1 _Q)'Jé' (c®-d2)(1-c?4d%)

Ze® (L-c?) (V-48a)
4
d =- Rj sina (V-48b)
a 1
ic(l1-¢? L (c®-4d2)(1 - c2d®) (3c%+8c?+1
dy = ot o 108 [z(1+ 7y |TP(L-0F L s(sc4(1 -c4()2 ! (v-48c)
J
Inserting (V-48) and (V-45) into (V-47) and after some algebraic work, we
arrive at:
bo _ i i‘u log[ c(l-c2)2 ]
- = — 2. 42
Rj sina sina Rj 2(c2-42)(1-d%3c )b(1+Q)_2' R
(V-49)
R
Cok (e2-d2) (1-¢2d2)(3c4+8e2+1) . %o “p
+b(1-Q) 8c%(l-c4)? insinaR

3
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g) Entrainment E; (s) and drag coefficient CDz (s)

The entrainemt E, (s), flow-rate per unit length of the jet, is assumed
to be the two-dimensional flow-rate of the re-entrant flow, which is just

the sink strength -a, multiplied by 217 :

E, (8) 'ao d2 %
R ()sina (o) = R ()s1n 0 (3) =mbE(1-Q) (v-50)

Since b,c and d are functions of Q only, E/Rj sin@ is also a function of Q
only,

The drag D, (s) on the jet per unit length can be easily obtained by
considering momentum balance of a two-dimensional control volume which

encloses the normal cross~section of the jet (Ref. [167]):

Dy(s)=p Egz(s) (sina (s) + Uw) (V-51)

and the drag coefficient:

D, E; (s) U,
Cpe= s p U2 2Rj - Rj(s) sinQ (s) (1+sina ) (v-52)

where UW is speed of the free streamline BHF(Fig. 4); Uw= (1 -Q)% sinc.
CDQis also a function of Q only. The graph of both CDaand E2/Rj sinQa are

presented in Fig. 7.
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VI. SOLUTIONS FOR ¢2, o3, 95, - and gk
[o] o
a) wg and @,

Now, the inner and outer solutions stand

[+ -]

f-‘3('r)d'r
. 2
cp°=°92(°’°’s) +x sma(s)+g-xr aiEEe— +£, (e)cp‘; +f, ((;)cp?3 +aee

(]
-

with x,y finite as ¢-o (VI-1)

M8
Y

-1
zn |

i o .
CPl __.cpo(o,o,s) + (¢ loge) ao(s)+e Re[Z sin a(s) +ao logZ +T, (s)+

+g,(e) s +g4(e)cpt +g5(e\)cpt t..

with X,Y finite as ¢-o (Vi-2)

As stated before, the most general solution for cp% can be written as:

o ® ‘HS(T)dT mp"{(’r)cosy(’r)d'r <muZ(’l’)Pa(cosy)d'r
b2 - Ty i N
o o Y r
-0 - -0

o

+ ... (VI-3)

After inserting (VI-3) into (VI-1) and obtaining behaviors of inner and outer

solutions at matching region, we can have the matching condition (III-14) as:

1 2 2 1 zua :
fg(e)[(1°8€)2Ui+ERe _;L) +€—3; Re(——-zzz )+...-\°ga(€)[°93:]g=o i)

1lim
c =0 y(e)
By taking y(e) =f, (¢) log e, we have
gz(e) loge (VI-5)
i
[Cpa] =2p2(s) (VI-6)
o

”‘:=0’ for P21 VI-7)
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Just as m%,ep% is also a line distribution source only. Actually, @% is a
correction to w? . In Chapter V, we obtained the local velocity at infinity
in each plane normal to the jet trajectory to be sin « and this gives

w? as a line distribution of sources with strength ao(s)/2. We will see
later that the local velocity at infinity sin 0 is only correct to the order
of ¢ in inner region. If we go to a higher order, the local velocity at in-
finity has to be modified and this will, in turn, cause a correction.wg to
@i in outer solution.

We proceed to @g with the same technique; this time we have:

fa(e)=¢? . (VI-8)
) =812(s) (V1-9)
up(s) =0 , for P22 (VIr10)

(VI-9) and (VI-10) gives

'Lls (T)dr —"-(’r)cos v (T)dr
®s = +J‘ (VI-11)

Thus, mz is a line-distribution of doublets and sources with the strength of
sources “g unknown up to know. The line distribution of doublets here is

just the device used by many investigators to simulate the effect of blockage.
Later, we will see that the source term represents the three-dimensional effect

of curvature and growth of the cross-section of the jet.

b) The Governing Equations for ¢y , % and cpjé

In the matching, the inner and outer solution (VI-1) and (VI-2), with the

aid of (V-5) and (V-6), become:
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3 5 O o
[20 fm(e)cpm]i~cpo(0,o,8)+ex sina+ e[ao loge +a_ Be (logZ)+T,

a a a
+(c loge) 5 hX+e x(—29 h+—> hRe (logZ) +p1)+0(ea)]

+£, (g)[(log €) Zug +2ugRe (logZ)+ T, +0(c log e)—]]
a,

l—- a Re( >+(loge)<2ug -a—zlh> +(2ug -7h>Re(logZ)

+T, +G, P22 (Z ) +oce loge) (VI-12)
[’zETg (e)cpiJ~ © (0,0,8)+ (c loge)a_+¢ Re[ésina+a log-Z-+T
S °m m Po 1929 ) € ) e !

w nAa ,
+3 E_Z'HE]"'[fz () loge] 2u?2 +g, (e)[cp]i] +gs(e)[q3ié] (VI-13)
1 o o

Inserting (VI-12) and (VI-13) into the matching condition (IV-14) with the

assumptions 8¢ (e)/y(e)=0,e2%/y(c)~0 and £, (c)/y(c)~0(1) as €+ 0, we have:

el.l.moY(e) {(32 1°8€){—hx+<2u3 -—h>:\+f (G)LZua Re(logZ)+T, ]

i
ROy =0 (VI-14)
«©foi] }

taking y(¢) = ¢ loge, we have

gs(e) = c?loge (VI-15)
fo(e) = c®loge (VI-16)
g5(e) = loge f5(e)=¢c®log2¢ VI-17)

a,

. a
[o¢] =7 @n ()% +[ 203 -5 (8)h (8) + T4 (o) ]

+2que(logZ) (V1i-18)
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(VI-18) gives the inner boundary condition for cpi « We proceed to cpis .

Again, we have the matching condition for m=3, n=5 as

a

-a a.
lim _1 ( ({0 ) "o s _)
c=0v(e) L€ [(2h+P1 X+2hXRe(logZ)+(\2uo - 2h Re(log Z)

+ T, +

ash g z)+G:| 85(6)[:95]} 0 (VI-19)

By taking y(e) =e®, this gives

ggle)=¢? (VI-20)

. a a
[cplsjo = (7°(s) h(s) +P, (S)>X+T3 (s)+G4(s) +[ 212 -71(s) h (s)]Re(logZ)

ao h(s) a, (s) 7
+ —(s) h (s) XRe(log ) + ——F—— (— + .—_> (VI-21)
Now, the inner solution stands
cpi~cpci) + (e 10ge)cpi + ecpi + (e ®1log? e)cpg + (ezloge)cpi; + eecpis
+ ... (VI-22)

Substituting this back into the basic differential equation (III-8) and

the basic boundary condition (III-11) give the governing differential equa-

tion as
92, s = 0 (VI-23)
i
i O3
V2 ®a =h(s) 55 (VI-24)
acp ) .
Ty ¥ =h(e) S - (553 - (S =% | (v1-25)

and the inner boundary condition as

VXYF i acpg
_VXYF Bcp4 .
T s = (5o ) =0 (VI-27)




e i (9%s SF/D 30,
( )-- 2 0 (VI-28)

on

3 Vxy ®s = o [Vyg Fl 05

(VI-28) can be rewritten as

i i
3@5) _ dn 2%

on " ds Os (v1-29)
o
where n is the unit normal vector to g in X-Y plane. dn represents
e ess o . . . , , - dn _ ,dn
a infinitesimile displacement in the direction of n and is - 1ds ] .

. i i
c) Solutions for ¢, and o,

Since cpj; is independent of X, (VI-24) reduces to a two-dimensional Laplace
Equation. Together with (VI-27) and (VI-18), C,Dt is governed by the following

set of equations:

V2, ©a =0 (VI-30)
lim i _% . 21 .
X,Y-»cocP4 —T(S)h(s) X"‘\:ZU. > -T(S)h(s) +T, (s)]-i- Zpo Re(log Z) (VI-30b)
Yok
®a
( 5n ) =0 (VI-30c)
[e)

Compare this set of equations with the governing equations for cpié (V-28a,b,and c),
we see that the solution for cpi4 is just the Re-entrant Flow Model with a local
velocity at infinity as aoh°/2 instead of sino (s) for coiz. Actually, qpi is a
correction to cpjé, i.e., the local velocity at infinity, sin a (s), is only

correct to O(¢c) and we need a correction to this if we go to a higher order
O0(c®loge). Of course, if the jet trajectory were straight line [h(s) =0],

there will be no correction whatsoever. Thus, cpi represents part of three-
dimensional effect of curvature on the inner solution.

Define a complex w, (Z,s) as
ao(s)h(s)

Ve (2,8) = 7T

wy(2,s)
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a (s)h(s) ©a
sinQZ+a, logZ +T -Z-t_l] (VI-35)

- maw |

where w,(Z,s) is the Re-entry Flow Model defined in section (V-e). Then

% and the source strength ui for ¢ will be

i ao(s)h (s) a,
cp4(X,Y,S)=Re[W4(Z,S) - 35Tma ) Po(®) {213 (8) - 5 ()h(s)+ Ty(s]] | (VI-36)

a (s) h (s)

u2(s) =% m a_(s) (VI-37)

colé is governed by (VI-23, 26, 6). The solution of this set of equations
is
a (s)h(s)

o5 (K:¥,8) =20 2(8) = 55—ty 2 (s) (VI-38)

which represents another flow field tangential to the jet trajectory.

i
d) ®es
The differential governing equation (VI-25) is Possion's equation with
right-hand side to be a function of C.D}a and cp:- The solution of Possion's

equation can be written as a sum of homogeneous solution and a particular
solution

i i i
s = pto o (VI-39)
Let W, be the complex conjugate of w,, then cp% =%[w 2(2,s) +b0(s)

+ T, (s) +W(Z) +b _(s) +T, (s)_‘ and (VI-25) becomes
1 d_ 1
.;_ = [—;’72 —‘.’.2J - h(s) sino(s) (VI-40)

In this form, a particular solution @:P is easily obtained

obp (L,9) = B2 [Zuw, @) +27, @) - 22Zsina(e) ] (VI-41)
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With the aid of power series expansion of wy (V-36), we have the behavior

of cpPB at outer boundary of inner region as

i hls = = = 7,2
[%P:\: 3 [z b +Zb_+a (ZlogZ+Z logZ)+a, (Z + 5)] (VI-42)

The homogeneous solution should satisfy following set of equations:

incolsro (VI-43a)
[CDJE h] =’! Cpls] “[m}a P—lJ (VI-43b)
- o [ o _o
i .
(acpsh> =§£ac90_<acoéP> W 1430)
on ds Js on o ~4Jc
Inserting (VI-21) and (VI-42) into (VI-43b) gives
. a a,
i N
\fosh—‘ —(7h+P1>X+T3 +6, +<2u§ -'2—h>Re(logZ)
)
ah _ _ v _
+ =2 (2 10gz+Z logZ) -2 (z b +25_) (VI-44)

Attention should be called to the fact that up to now the source strength ug
for cp% is still undetermined and is at our disposal. For convenience, cpls h

and ug are broken up into two parts:

Psh=0shi1 T Pshaz (VI-44a)

Zug-alh/2=ugl +p§2 (VI-44b)

where cp;“hl is governed by

V2@ ghy = 0 (VI-45a)
[cpsihl] = [cpls h] -ug, Re(logZ) (VI-45b)
o] [o]

Here, the inner boundary condition for CD:hI has not been spécified. Of course,

the solution to this set of equations will not be dnique. By inspection, a

34



solution can be easily found as

ao(s)h(s)/2+P1 (s)

Cpiéhl(x’Y’s)=Re[ sinc (s) [wa(Z,s) 'bo(S)]] +T5(s) +G4(8)
a (s)h(s) _ _
+ —O——S—-—(Z log 2 +Z logZ) -MBEZ [Z bo(s) +Z bo (s)] (VI-46)
i
e) ®gha

The governing equations for (pls he are

Ve Pehz =0 (VI-47a)

c i . . .
LQPB h 2]0 Re[ Mo o log Z_I (VI-47b)

- a -
50 “ds 95 ia—n(@sP oy rn)] (VI-47c)
- (e}

i
(aCPsha> dn BCPO i
c
Let Yi ho be the stream function corresponding to C,Dié hz>s Or

Weha =Cplsh2 +i‘1’§ha (VI-48)

Then we can obtain the solution for (p]éha by solving a boundary value problem

i . : \ -
on ¥Yzh, With the more convenient inner boundary condition

o} i o
Yisha (,0) = -J‘ %r;l 'agc:—o do +I [58; (cpisp+cpih1)]cdo (VI-49)
(o] (o]

where dg represents a small displacement along the boundary ¢ in Z-plane (Fig. 5).
Due to complexity of the geometric shape of the boundary surface g, it is very
difficult to solve this boundary value problem in Z-plane. Fortunately, there
are conformal mapping techniques at our disposal and the surface g can be trans-
formed into a geometrically simpler boundary. Through the shape in w,-plane

and (-plane (Fig. 5) are much simpler than the shape of ¢ in Z-plane, they are
still somewhat complicated for our purpose. A better choice would be by the

transformation
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n= '§<€ +’C1‘> (VI-50)

to map the unit semi-circle in (-plane to the wholeupper plane onn-plane (Fig. 5).
In n-plane, the solution for C,D]éhz is easily obtained

@

i
. Y (T,0)n; -

i __]: Sha 3 1‘1 . A

Ysha (noomy) =2 f )2 ¥n? ar -us, ImL1°8 (n- 1cn) (n+ lcn)] (VI-51a)

- &

where T =dummy variable of integration
n=n,+ting
iCn =the position of Point C in n-plane (Fig. 5). [Point C in Z-plane is
infinite.
The harmonic conjugate function of \yjéhz is:

@

i y = -1 I*‘Ylsha (t,0)n, - 7T)
®gsha (nony) = . (nr_.r)a +,ni2 dr

-ugaRe[ log ('r] - lcn)(n + iCT])] (VI-51b)
and © i
i . i -1 " ‘Pshz (T]rso)
Wghe (M) =@spe TiYghe = gy M -1) aTt
-
-3 -1 i -
ue, log (n 1Cn)(n+1cn> (VI-51c)

By conformal mapping technique, wWgyp,(n) can be transformed back into Z-plane
to obtain w h, (Z). However, we generally require not the potential but the

velocity, i.e.:

i
4 ® a‘f'sha( )
W T,0
Bhz _ 1 ____Snrd,r -us[ 1, 1 ] (VI-52a)
d'r’[ T (T] - 'T) o2 (n - 1C_n) (n + 1Cn)
gha dvVeha d
= dn,dz
dz an _ dc’ac (VI-52b)
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The next step is to evaluate a\y’,;ha/anr. Before doing this, we should
clarify two more points. In section (V-d), we stated that mathematically the
Re-entrant Flow Model consists of two sheets of a Riemann Surface with dotted
lines EF and EF' (Fig. 5) as the boundary streamlines on the second sheet.
Physically, we are only concerned with the flow field on the first sheet.

All fluid flow across FF' is assummed to be carried away by the jet. But
from a mathematical point of view, we have assummed that the inner boundary
of our problem consists not only of the boundary lines ABHF and AB'H'F' on
the first sheet but also of FE and F'E on the second sheet. More precisely,
we have assummed ’

o > .
( c%s:e>c= & acpso '['a%(cPJEP +Q0jéh1>]o (VI-52c)

where g denotes the boundary ABHFE and AB'H'F'E (Fig. 5). In essence, we have
introduced artificial boundary condition on EF' and EF. One natural question
will be:what is the effect of this boundary condition in the second sheet on

the flow field of the first sheet. In order to answer this question, another

boundary condition is introduced for comparison with equ. (VI-52c), i.e.

aCpsha
( S ) =0 on EF and EF' (VI-53)
(o)

For Q=-1.5, the solutions to these two boundary conditions are calculated
and found that there is essentially no difference between_these two solutions,
and therefore, the more convenient boundary condition (VI-53) is used in sub-
sequent works.

Another point to be clarified is how to determine uga' The potential
(pgptoghi) Will induce a flow field which is generally not tangential to

the boundary g. ¢@ghp 1is introduced such that ((PsP+¢Psh1+CPsh2) will be
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tangential to the boundary ¢g. Therefore, gy, along will give a net influx
of fluids through the boundary g. This flux must be supplied by "sources" at
infinity in order that the equation of continuity is satisfied. But we have
two infinity: one on the first sheet (C in Fig. 5) and another on the second
sheet (E in Fig. 5) sources at either one of these can supply part of the
flux across the boundary . In order to determine “ga’ following criterion
is adopted: all flux across the portion of g on the first sheet is supplied
by the infinity on the first sheet and all the flux across the portion of o

on the second sheet is supplied by the infinity E on the second sheet, i.e.

Zﬂugg ='[Y]éh2(F,o) 'Y]éhg (F',O)] (VI-53a)

Now, we proceed to evaluate the boundary condition in yn-plane. Remembering

Bcpg/BS=cosoc(s), we can obtain the first integral of (VI-49) as

e

S, BAO
Ss dg=-cosa(s) Ss (VI-54)

o
T
J

e

o

where A0 is the shaded area in Fig. 6a. The second integral can be evaluated
in the w,-plane. By using the analytic property of the mapping function w, (Z),

it can be shown that
2 T D
i i . i i
n[.[-a—n(cpspﬂpsmﬂ d°=.,[1(§w3 ‘5?2)(%1)"%111)@2 (VI-55)
o -c °

Inserting cplsp (VI-41) and Cplshl (V1I-46), performing the differentiations and

noting that w, =;3 on the boundary g, we obtain

c
' dz
‘}"éha (0s0) =~ L{E—Sl Im{J‘[ao(logZ+1)g-g—-z %+ wed—é
o

oA

-2z sinozggE -E-O% %% dn}- cos a (s) -5—2 (VI-56)
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(Y

d
d

where = -1+

_n_
yn2-1°

3

dw

-523' and -g—zé are defined in (V-31) and (V-34), (VI-45) can be integrated by
by numerical method in either (-plane or n-plane. However, it is much easier
to obtain Bwsihz/a Ny numerically since no integration is involved in this case.

To obtain BYtha/bnr(nr,o), we first rewrite the boundary condition (VI-49) as

a‘i'izsha dndo 3/ i i
S5 (@,0) =-55 _Y;,L [ﬁ(@tP*@tm)L (VI-57)

Again, by using analytic properties of the mapping function w,, we can prove

i
d'l'] a‘yshz — a a . .
= . | - = 1 1
UO' dWQ }nr (nrso) UO':LL(\S—WQ awa><cpsp+cpshl>c

- %Bs cos O (s)] (VI-58)

after substituting cplsp and CP]éhl’ this becomes (here U0 is the velocity of

Re-entrant Flow Model on o)

dY¥sha
-4 b 4w, +7 2
3 =-3 Im{d [ao(logz+1)-bo+wa +Z Z
Ny n
— dw
-22 sinoz(s)‘l-i—?g-ga—n cos q (s) (VI-59)

I d¢ dnds

This equation is evaluated by computer and is presented in Fig. 9 for Q=-1.5,
-2.0, -3.0,

From (VI-43a), we have

u3, = -[y‘;ha (F0) -vi, 5 (F',o)]/z'n (VI-60)

where Y]éha is defined by (VI-56) and points F,F' are shown in Fig. 4. If we
examine (VI-56), we will see that only two terms are involved: one represents

the effect of curvature h(s); another, the growth of the jet. Let
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+ cosa(s) oA VI-61)

3 =
M52~ 205 2 ds
where A is the area enclosed by FAF'F (Fig. 4), and

2y = 2 [¥hhe (Fr0) -¥in, (r,0)] S50 4 (VI-61a)

os ds

f) The source strength ug(s) for Qpc;

Combining (VI-41), (VI-46), and (VI-51), we have the solution for cpis as

Qolé %_Z- +Z;7-2-ZZZsina-Zbo- ]+ —_— (z 10gZ+ZlogZ)
a h/2+P,
+Re[ 2o o b)) +wap o |+ T, Hg (V1-62)

Appropriate outer expansion of cpls is

A ,a h
[q)ls'} - (- +P1>X+T3 +G, + (ugl +H§E>Re(1°g 2)
e

4 20 Re(log 2y + 122 (5 + 2
2 °8 g \z 7%/ (VI-63)
where
a
Mgy = (agh/2+Py )81nOt
dA cos O
3 = Q4 cos &
Moo = 2 Os
Now, comparing (VI-63) with the outer boundary condition (VI-21) gives
a,(s)h(s) a°(s)h(s) a,_(s) P, (s)ay(s)
3(s) =E 1 + 2ot 4 2os ] cosoc(s) oA (VI-64)
4 sina(s) 2 2 sino (s) 4 ds

This source reflects essentially three kinds of effect: the first term repre-
sents correction due to curvature effect; the second represents the effect of

the shape of jet trajectory, i.e., the addition to the local flow induced by

the singularity distributions along the rest of the jet [function P, is defined by

(V-5b)]; the third, the growth of jet cross-section.
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.VII. COMPLETE POTENTIAL, VELOCITY, PRESSURE COEFFICIENT,
ENTRATINMENT AND DRAG

a) qpi, Ei and C;

The results of previous sections are assembled to give the complete
inner solution up to 0(¢?) as

s
o (X, ¥,85¢) = [cosa (1) a7 + (e loge) a_(s)

(o}

+eRelwy (Z,8) - by(s) + T, (s) |

a (s)h(s) a (s)
+ (e2 log?¢) —— >

sin ¢ (s)

ao(s)h (s)
+ (¢2 loge) Re{m wg(Z,S)-bo(S)] )

ag(s)h(s) P, (s)ao(s)
2sina (s) +aos(s)+ sino (s)

OA cosa(s
e )

+€a{h8gs2[§w2(z,s)+z§2 (Z,s) - 22Z sina(s)
-Zb_(s) -zFo(s)]

ao(s) h (s)

+ T (Z logZ +Z log Z)

-2 (5)h(8)/2+Ry(s)

+ T, (s)+6, (s)}:l'...

with X,Y finite as ¢~o
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where w, and Wghy are defined in sections (V-e) and (VI-e) respectively.
This complete potential for the inner solutions has not been evaluated
because we generally require not the potentials but the velocities., To

obtain the dimensionless velocity Ei, we substitute the potentials in

the following equation

i e e B .
= v(2—) - 1_ 7390 .Y s 97 i )
! -v<rtuw) Txys ® -l:e XTT Sy Toeny 359 (VII-2)

After simplfication, we have

a_(s)h(s)-

—i . = 0 -
q (X,Y,s%¢) ~ e\l 1+ (e loge:)--——-—-2 sinoe(s)_lU2 +eUg \}

a (s)h(s)
Y{\ 1+ (¢ loge) 2 smOt(s)]V2 teV ]}
da_ Bcpl

+'é's{cosoc(s)+(e loge) (s)+ef-a— +h(s)X cosa(s)J}

+ ...

with X,Y finite as ¢—~o (VIiI-3)

where
dw,
Uy, -iV, = A (Z,s), complex velocity of Re-entrant Model

- _ _ dw,
Ug-ivVg =%§P{ao(s)[1ogz+u -b_ (5) +7, (Z,8) +Z —=-(2,8)

2a (s) dw,

- z'isina(s)+sma(s) — (2, s)}

P, (s)ao(s)
+ sin @ (s)

dw sh2
+

(Z,s) (VII-3a)
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From (VII-3), it is seen that Eii consists of four elements: 1) the basic
two dimensional solution dw,/dZ; 2) corrections due to the three dimen-
sional effect of local curvature, which is reflected by all terms con-
taining h(s) and some part of dwg,/dZ; 3) corrections due to the growth
of jet cross-section, which are contained in the term dwsha/dz; 4) Higher
order corrections due to the singularities distributed along the trajec-
tory, which are represented by the function P, (s).

The pressure coefficient will be

C;(X,Y,s:e) 1-gt-g*

(1-(Ug+VE)-cos? a(s)]

ao(s)h(s) dao
2 (¢ log e)[z—m(—s—) (U +VE) +cosa(s) I (S)]

i

xp 5
- 25[(U2U5 +V, V) +tcosa(s) (—5—8—+h(s)x cosOt(s))vz

+ ...

with X,Y, finite as ¢—o (VII-4)

b) o° and §°

The complete outer solution up to 0(g?) is:
s

cpo(x,y,s:e)~[x sinQ(s) +f cos (T) d'r:]'l
o}

s a (1)/2
re[ 220,
v o

-

® ag (T)h(T)/4 sin a(T)

+ (eslogg)J~ - a7
o

- O
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T..ug(w) < a, (1) cosy(T) 1
2 —
) o
- -
with x,y finite as ¢~o (VII-5)

where
p,%(s) see (VI-64)

ro(s) and cos y are defined by (V-4)

The dimensionless coordinate in (VII-5) are referred to r . However,
the more commonly used reference is Rjo' Therefore, the velocity Eo

corresponding to @o is written in dimensionless system (Xo’Yo’Zo) referred

to R, .
Jo a,
% ® —(T)cos y(T)
°~1+v LIMdT+I 2 dr |+...
o) R R _
-0 ° -0
with x,y fixed as ¢-o0 (VII-6)
where

u(s) = ao(S)/Z + (¢ loge) ao2 (S)h(S)/4 sina(S) + u3° (s)

3 is defined by (VI-64)
M

It is seen that Eo is the superposition of three elements: 1) the basic free-
stream cross-flow uw'I ; 2) a line distribution of doublets representing the
local two dimensional blockage effect; 3) a line distribution of sources:

the first term of the source strength reflects the effect of entrainment,

The second and third term represent correction due to effect of local curva-
ture, the growth of jet cross-section and the shape of jet trajectory as

explained in section (VI-f).
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¢) Total Entrainment E(s)

The mass entrainment E(s) of the cross-flow at each station s is
assumed to be the two dimensional flow-rate of the re-entrant flow, which
can be expressed as F
E(s) = - | g* * 7 do (VII-7)

¥
The curve FF’' are shown in Fig. 4. Examining Ei defined by (VII-3) and

recognizing
F
- [wag+vee) - §do = Eo (9,

F

4

we have

a_(s)h(s)

E(sje) ~ Eg (s)+ (¢ log €) 35qmgray Be () +eBs () +.une,

with X,Y finite as ¢—~o (VII-8)
where

E, (s) is given by (V-50)

4 ’
F i, .= f i _ a_(s)h(s)/2+P,(s)
Es(s) = 'r yy?s) 'n do = 'Lr Ogy®sp) * BdOY =TS Ez (s)
F F

Since Ee(s)/Rj(a)sin(x(s)is a function of cavity number Q only, E(s)/R,(s)sin(s)

3
is a function of cavity number only up to 0(1l). We have assumed Q to be con-
stant along the trajectory; therefore, E(s) will be proportional to
Rj(s)sin(x(s)to 0(l). This means that E(s) will have a maximum near the

jet orifice and diminish gradually as the jet trajectory become parallel to

the free cross-flow, This corresponds qualitatively at least to the physical

situation,.
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d) Total Drag D(s)

The drag D(s) is determined by using momentum principle (Ref. [16])
applying to the system shown in Fig. 10. AB and A'B’ are two infinitely
long plates symmetrically located with respect to X-axis. Since sections
AA’ and BB’ are assumed to be located infinitely far away upstream and down-
stream, all disturbance created near the jet are subsided and the velocities
q, and qp across these two sections are uniform,

By applying continuity equation to this system bounded by AA‘BB’ and g,
we have
PE(s) = (q, - qg) p L (VII-9)

and the momentum equation gives

’

F
r - -
2 2 : . = _ - -
(g -q93)p2 - (pay)(qy, * n)do = (By -Pp) L -D (VII-10)
F

where ax is defined by the equation

l — — —
T = axey T vty T 98

T
gy T Ik T Iy

Combining (VII-9) and (VII-10), and using Bernouli's equation

(P, ~Pp) L= p(af-qf

we have
FI
D=3 pE (9 +q,) +J(P dy) 4y dy (VII-11)
F

Now, let f —«, then qB—-sin a(s) , qA—»sinCt(s) , we have
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FI
D(s) = pE(s) sinq(s) + r pqi dy (VII-12)
F
ao(s)h(s)

Substituting E(s) (VII-8) and q Dsing Uz teUg

X=U2+ (e loge)

into this expression gives:

ao(s)h(s)

D(s;e) ~p sina(s) Ez(s)+ (e loge) 2 sina(s) Sina(s)p E, (s) +epsin a(s)E (s)

ao(s)h(s)

i
2 ———— 2
[Ue * 2e loge) 37— U2 4200, Us [ody

F
+ (VII-13)
F
on the curve FF', U

2 is approximately equal to (- UW ), which is a constant,

and recognizing that
4

F
IUS dy = -Eg(s)
F

we have

ao(s)h(s)

D(s;e) ~p EE(S)[SiH OC(S)'*‘UWJ + (e log G)DEQ(S)m sina(s)+2Uw1

+ epEs(s)[sina(s)+2Uw]+

with X,Y finite ag €—o0 (VII-14)
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VIII. JET TRAJECTORY

a) Cavity Number and Trajectory

Up to now, a very important parameter remains unspecified, i.e., the
cavity number Q. We have seen that the geometrical shape of inner boundary,
entrainment and drag are all functions of Q. If we can derive a relation-
ship between these three elements, then Q will be determined, and, in turn,
geometrical shape, entrainment and drag will be determined accordingly.

The trajectory will serve to give this relationship.

The curvature of the trajectory is directly influenced by the combined
effects of pressure and shear stresses acting at the jet boundary. These
stresses not only change the momentum of the original jet fluid but alter the
momentum of a portion of the free stream fluid and through the agency of
turbulent mixing give rise to entrainment as well. In the inviscid model
employed here the role of viscous stresses has been reduced to that of
accounting for the origions of the vortex sheet Oy and the resulting wake
region while turbulent mixing has been replaced by the re-entrant flow. One
of the principle advantages of the model employed however is that it provides
a dynamic coupling between the entainment and the pressure stresses typified
by the cavity number Q. As a result, the value of Q is a determining factor
in the trajectory shape, for which Margason (Ref. [L0}) has provided experimental
data. Thus, trajectories are computed for several values of Q and compared
with Margason's trajectories.

The value of Q yielding the closest fit is then chosen for the computa-

tion of pressure coefficients.

b) Derivation of the Trajectory

In section (V-d), we assumed the front surface of the jet (oj, Fig. 4) to
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be a circular arc with radius Rj(s), and rear surface BFF’B’ unspecified.

Here, we still let the shape of the rear surface remain unspecified, but

the total cross-sectional area is assumed to equal an equivalent circle,

e.i., HR;(S).

For an infinitesemally thin cross-sectional element (Fig. 11), the

momentum equation and continuity equation can be written as

de _

35 = D(S) ey + pE(S) cos a(s) Eé
dm,

jﬁf = pE(S)

where mj(S): The rate of mass flux at station S

R2p v,
TP Y;

m,
J

ﬁj(S): The rate of momentum flux at station S

=mR23pv., e
P ]

j S

vj(S): Velocity of the jet at station §
S:

Dimensionless coordinate along trajectory S=3s 1/Rj

Here, we have taken the average velocity of the jet as v

3

(VIII-1la)

(VIII-1b)

(VIII-2a)

(VIII-2b)

o}

(S)(see Fig. 11).

Substituting Mj and m, into (VIII-1) and simplifying it, we arrive at:

da _ ___-D(S)
2
ds nRj (S)Vj(S.)p
dvj _ _E(S) [cosa(S) _ 1]
dS  nR2(S)L wv,(S)
j 3
de _ E(S) [2 _cosagsg]
T IV ERs) v,®)
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Now, substituting E (VII-8) and D (VII-1l4) and after some algebraic work,

we finally have

ah E

2oa B
do Eosm a(S) . .
as (L+20 ) +¢=— (L+2U )] (VIII-4a)
o Eg 0

ds = AR (5VE () [(1+U°)+(e log e)

2sin ¢

dv. E sina(S) , a h E
j_To cos a(S) 1\ ‘:1+( o 6
—_= - eloge) oo—+ ¢ +— (VIII-4b)
s TrRJ, (s) vJ. / 2sin E,.
dR, E_sin(S) a h Eg
2=y (2- 22N Ty loge) g te
ds 2an. (s) vj(S) 2sin E, (VIII-4c)
with the initial conditions
ao) =m/2 (VIII-44)
v, = U, -
J(o) 3 (VIII-4e)
Rj(o) =1 (VIII-4F)
where
Ea d=e _12-_
Eo - stina = b ch (1-Q)
a function of Q only, see (V-50) ,
U
Uo sinQ 1-Q

also a function of Q only.

This is a set of coupled nonlinear first order differential equations. We
cannot integrate them immediately, because we do not know' ¢ beforehand. But
we can solve it by iteration methods. First, take only terms up to 0(1)

i.e., the first term in the brackets, integrate them by suitable numerical
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methods to get a(S), Rj(S) and vj(S). Then we obtain the actual trajectory by

integrating numerically the following set of differential equations

de

E_ = cos a(S) (VIII-5a)
dZ

75? = sin a(S) (VIII-5b)

with the initial conditions

i
(@)

Xo(o) (VIII-5c)

1]
o

Zo(o) (VIII-5d)

where Xo’ Zo are dimensionless Cartesian coordinates, see Fig. 11,

From the solution of this set, ¢, h(S), P, (S) are obtained and substituted
back into (VIII-4). Now, we can take the full equations and integrate them
again, This process is continued until the difference between two successive
solutions are small. For the value of Um/Uj considered here, the vary first
integration was accurate enough for our purpose. In Fig. 12, trajectory for
Um/Uj = ,8, .5 and .25 are plotted with Margason's curve. The jet velocity

vj(S) and jet radius Rj(S) along the trajectory are shown in Fig. 13 and

Fig. 14, respectively.
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IX. CONCLUSIONS

The inner and outer solution for pressure coefficient for U,/U, = .8,

]
.5 and .25 are presented in Fig. 18, Fig. 19 and Fig. 20, respectively.
Experiment data by Bradbury and Wood (Ref. [7])and by Vogler (Ref. [8])

are also presented with the outer solutions for comparison.

Since the reentrant flow model introduces a stagnation point behind
the jet, it is incapable of reproducing the experimental pressure contours
in the wake region. However, upstream of and along the sides of the jet,
the computed pressure contour gi;es good agreement with the experimental
data for Um/Uj = ,25. For Um/Uj = ,5 and .8, the computed pressure contour
seems to have the right order of magnitude but is not swept back enough.

It is possible that the inclusion of higher order terms would remedy this
as indicated by the comparison of first order and second order solutions
in Ref. [4].

As indicated in the introduction, Werner and Chang (Ref, [4]) raised the
possibility that representing the effects of entraimment by a net sink dis-
tribution along the jet trajectory might not be correct. In order to
answer this question, we have calculated the contributions to the source
strength from the various elements of the flow. In our solution, the
outer flow region is represented by a line distribution of doublets and
sources. The doublets simulate the effect of 'local blockage", while the
sources, as we have repeatedly stated, are derived from four different
origins: 1) the entrainment, 2) the growth of the jet cross-sectional
area, 3) the curvature effect, and 4) higher order correction due to
singularities distributed along the jet trajectory, i.e., the effect of
P, (s) (V-5b). The magnitude of these contributions as a function of s, /R

jo

are shown in Fig. 15, Fig. 16 and Fig. 17 for U,/U,=.8, .5 and .25, re-

3

spectively. From these results, the following conclusions are drawn:
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1) The source strength due to P,(s) has been calculated and proved
to be very small fof all cases. Actually, it is too small to be shown
on these graphs.

2) Around Uj/Ua,= .8, the combined effect of entrainment and jet
growth is small. In other words, if only the source due to curvature is
used, a good approximation is obtained.

3) At Uco/Uj =,25, the effect of curvature is much smaller than the
combined effect of entrainment and growth of the jet.

Judging from the trend, we can neglect curvature effect for Uw/Ujs .125,

4) Introducing

)45 ()2 (IX-1)
jo'© b

we see that the source strength due to entrainment and the source strength

due to growth of the jet tend to cancel each other for
SI/RJ.0> (s, /Rjo)o

5) It seems that, for Sl/Rjo< (81/Rjo)o , following two equations

will give a reasonable approximation

S, l.'l_-1
Mg =C, s for XS 4.5 (Um) -3 (1X-2)
jo
S, 8, I_J‘1
ug=C2r, for ﬁ,—s 4.5 (U&)-3 (IX-3)
Jo Jo .

where C,, C, are constants
Mo source strength due to entrainment

“g: source strength due to growth of the jet
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NO CLEAR BOUNDARY
BETWEEN JET AND
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Fig.. 1 - Jet In A Cross-flow And Mathematical Model
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