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ABSTRACT

A theoretical model has been proposed for the problem of a round

jet in an incompressible cross-flow. The method of matched assymptotic

expansions has been applied to this problem. Inner and outer expansions

have been obtained in terms of the expansion parameter e=R. /r where

R. is the jet orifice radius and r is the minimum radius of curvaturejo t

of the jet trajectory. For the solution to the flow problem in the

inner region, the re-entrant wake flow model was used with the re-

entrant flow representing the fluid entrained by the jet. Higher order

corrections are obtained in terms of this basic solution. The pertur-

bation terms in the outer region was found to be a line distribution of

doublets and sources. The line distribution of sources represents the

combined effect of the "entrainment" and the "displacement". For

large values of Ife/U., the effect of the "entrainment" is small while

the effect of the "displacement" is important. For small value of

Uo/U., the opposite is true. Pressure coefficient contours for

U./IJ»=«25, .5, and .8 were computed for inner and outer region. The

variation of jet radius, source strength, and mean jet velocity as func-

tions of distance along the jet trajectory were also computed to aid in

assessing the role of these quantities in the interaction.
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I. INTRODUCTION

One of the methods currently employed to achieve vertical take-off

performance in VTOL aircraft is to install a lifting jet. An inherent

problem of such an installation is that it interacts with the crossflow
o

due to horizontal flight resulting in an induced flow field which has

a measurable influence on flight characteristics.

In recent years, considerable amount of attention has been paid to

this field. In the experimental area, Jordinson,Ref. [8] made pressure

measurements in the jet plume which gave jet penetration data and the total

pressure contours. Later, Bradbury and Wood, Ref. [7], and Vogler, Ref. [9],

measured the pressure distribution on the orifice plate of the jet. Recently,

Mosher, Ref. [2], weighed the relative importance of the effect of blockage and

the effect of entrainment on the induced flow at various ratios of jet exit

velocity to free cross-flow velocity, i.e., U./Uo;,. The most extensive wind-

tunnel tests were done by Fricke, Wooler and Ziegler, Ref. [1]. They ob-

tained data not only for a one jet configuration, but also for two and three

jet configurations.

One of the most comprehensive descriptions of the jet in a cross-flow

was given by Keffer and Baines, Ref. [3]. The picture which emerges from

their work is of a jet initially comprised of a potential core surrounded by a

growing turbulent shear region. Within a few diameters of the orifice, the

jet is completely turbulent, its cross-section becoming kidney-shaped and

finally developing the appearance of two counter rotating vortices far down-

stream. Over the initial stages of the jet, the cross-flow is described as

separating from the jet somewhere near the widest point of its cross-section.

A "wake" region immediately behind the jet is characterized by negative pres-

sure coefficients in contrast to the upstream face where pressure coefficients



become positive. The initial bending of the jet is ascribed to this pressure

"defect" in the wake. Further along the jet axis beyond the potential core

stage, the jet is described as fully developed or "established" and some

tendency toward similarity is noted in the velocity profiles measured by

Keffer and Baines. The pressure differences in front of and behind the jet

diminish and the bending of the jet is ascribed mainly to the shear stress

and momentum exchange due to turbulent mixing or entrainment.

Among the initial analytical efforts were attempts by Shandorov and

others, Ref. [12], to derive the jet trajectory. Margason, Ref. [10] has

proposed an empirically derived equation developed by matching experimental

data. The results of these investigations have been used by Rubbert, Ref. [11]

to provide the trajectory at the outset thus reducing the problem to a fixed

rather than a free boundary one. While Rubbert solves the three-dimensional

problem completely by computer methods, his potential model contains no

mechanism to account for the bending of the jet according to the assumed shape.

Wooler, Ref. [5], actually does derive the jet trajectory, introducing entrain-

ment parameter and a drag coefficient in the process. These are evaluated by

fitting his derived trajectory to Margason1s curve. With the trajectory so

determined, he uses a line distribution of doublets along the trajectory to

simulate the "local!1 blockage" effect and a line distribution of sources to

represent the effect of entrainment. This is the so-called sink-doublet

model. However, this model provides no mechanism to account for the bending

of the jet and the three-dimensional effect of the trajectory curvature on

induced flow is neglected.

Werner and Chang, Ref. [4], solved a complete three-dimensional potential

flow problem by dividing the flow field into inner and outer regions. Separate

inner and outer solutions were found in each region and these two solutions



were matched by asymptotic expansion techniques in an intermediate region.

For the inner solutiin, the first order term was found to be the locally two

dimensional solution to flow about the jet cross-section. For this component,

the Riabouchinsky wake flow model was adopted.

For the outer solution, the first perturbation was found to consist not

only of the familiar doublet distribution but a source distribution as well.

This latter distribution resulted from the displacement effect of the jet

as turned in the downstream direction. As such, it had two components, one

proportional to the trajectory curvature and a second contribution due to

the increase in jet cross-sectional area. This result raised a rather funda-

mental question about the use of net sink distributions to represent entrain-

ment effects: If the fluid entering the "sink" is to be considered a part

of the jet, the jet displacement increases requiring an additional source

term in the solution and the net sink strength should be zero.

The flow model of Werner and Chang, Ref. [4], did not consider explicitly

the effect of entrainment by the jet. It's the purpose of this investigation to

explore the analytical structure of a model in which the effects of entrainment,

blockage and curvature exist concurrently. The particular model has been

chosen largely an mathematical grounds and admittedly an element of artifi-

ciality has been introduced thereby. On the other,hand, it provides a

framework in which to explore the mutual dependence of entrainment, trajectory

curvature and blockage, while the resulting insight should be useful in the

treatment of more rigorous models.



II. THE FLOW MODEL

The model to be used in this investigation together with pertinent

coordinate systems are illustrated in Fig. 1 and Fig. 2. The external

cross-flow is assumed to be steady and inviscid. A vortex sheet which

encloses the whole jet is the inner boundary of this problem. The plane

normal to the jet trajectory intersects the vortex sheet to give a shape

shown in Fig. 4. For external cross-flow, this vortex sheet can be re-

garded as a streamline in the normal plane. The streamline (or vortex line)

GABHF is assumed to separated from the jet at B, and a wake of constant pres-

sure Pw(s1) is formed immediately behind the separation point. Then this

streamline rolls-up, forms a backwards stream HH'FF' at the center of the

wake and flows into the jet. The backwards stream HH'FF7 is called re-

entrant flow.

The geometrical shape of the wake and flow-rate of the reentrant flow

is governed by the cavity number Q and Uoo> where

Pw -Pa,
Q = i »8

U = !!„, sin a (H-2)

If Q is assumed constant along the jet trajectory, the shape in each

normal plane will be geometrically similar. In this investigation, we do

assume that Q is constant.

In each normal plane, the reentrant flow carries some fluids of external
I

cross-flow and flows into the jet. Then, these fluids are carried away by

the jet into the next normal plane and forms so called entrainment. Two °

assumptions have been implied here; all entrainment occurs in the wake and

there will be no entrainment if the external cross-flow velocity is zero.



But from the study of Keffer and Bains (Ref. [3]), the entrainment of a

jet in a cross-flow is much greater than that of a free jet. And, the

backwards flow in the center of wake of jet is confirmed by Mosher

(Ref. [2]). These assumptions might not be bad after all.



III. MATHEMATICAL FORMULATION

a) Formulation of the problem

Since the flow exterior to the vortex sheet (Fig. 1) is assumed to be

inviscid and steady, a velocity potential $ exists and is governed by La-

place's Equation. A boundary valued problem is thus formed as following:

V8 $ = 0 (III-l)

1. Inner Boundary Condition: On the vortex sheet the velocity

vector is tangential to this sheet.

2. Outer Boundary Condition: At infinitely far away from the

jet, the velocity vector is ILj i .

3. On the plane Z10= 0, the velocity vector is tangential to this

plane.

b) Image System

The third boundary condition in preceding section is solved by re-

flecting the flow field into the lower half space (dotted line in Fig. 2).

Now, the new flow field is symmetrical with respect to the plane Z10=0;

the velocity on this plane is, therefore, tangential to this plane.

c) Inner and Outer Solution

The method of asymptotic expansion (Refs. [13, 14 and 15]) is used

to solve the problem formulated in preceding sections. By this method,

separated "inner" and "outer" solutions are introduced, with inner solution

satisfying the inner boundary condition and outer solution satisfying the

outer solution. In a intermediate region, these two solutions are matched

asymptotically. Also, Laplace's Equation is satisfied by both inner and outer

solutions. The use of this method is prompted by the fact that, due to three-

dimensional nature of the problem and geomtrical complexity of the inner boun-



dary, it is extremely difficult to obtain an analytic solution which can be

applied throughout the flow region. And also, for iWUj « 1, the radius of

curvature r of the jet will be large compared to the jet radius R^, i.e.,

R. /rt << 1. Under this condition, the flow near the jet, within a radius

of the order of R-, is expected to be nearly two-dimensional, but not com-

pletly so.

Introducing
R.

e = -j12 (III-2)

as a parameter, we write inner and outer solutions as asymptotic series:

cpL(X,Y,s; e)~E (̂e) cp̂  (X,Y,s)

with X,Y fixed as e -»o

CO

cp°(x,y,s; e)~ £ fm^ ^m ̂ X>y>S^
o

with x,y fixed as e -»o

where

$
cp=r: non-dimensional potential (III-4a)

X=— — , Y=— — , s= — non-dimensional inner variables (III-4b)
K. ._ K . r^jo jo t

xi yi si
x= - , y= - , s= - non-dimensional outer variables (III-4c)

rt t rt

f 's and g 's are functions of the parameter e only with the property:
m m

- o as e - o (III-5)



Eq. (III-4) establishes R as the basic normal length scale and r as

the basic tangential (to the trajectory) scale for phenomenona in the inner

region. The basic length scale in the outer region is r for every direc-

tion. At this point, attention should be called to the following fact:

f

-x i

,

If f (e) is taken to be unit, which will not lose generality in comparing

order of magnitude, then ̂ /̂ K is of order (1/e), while S$/Ss is of order

(1). In other words, following important assumption is implied in this way

of formulating inner and outer expansion; in inner region, variation in $

for a displacement of o(R. ) in X-Y plane are of the same order as variation

for a displacement of o(r ) in s direction. This assumption is, of course,

true as long as U»/U. remains small.

d) Basic equation in dimensionless variables

As stated before, both inner and outer solution should satisfy Laplace

equation. In inner region, Laplace's equation in inner variable takes the

form (Ref. [4]).

l .dlB.1 eh ( s ) dco a[W S_f 1 \ .
dY2 " 1 -ehX dx e Ids d s V 2 ( l - e h X ) 3 J *

-'
where

h(s) = rt/ri(Sl)

Expanding the coefficients into power series, Equ. (III-7) can be written

as

8



Since the specific form of g (e)'s in Eq. (III-3a) is still unknown, we

cannot substitute Eq. (III-3a) into (III-8) to obtain the governing equa-

tion for each cp1 *s.m

In outer region, the parameter e does not appear explicitly in the

Laplace Equation in outer variables. Thus, Equ. (III-3b) can be substi-

tuted into V2cp = 0 to obtain the governing equation for each cp as:
o m

Vscp° = 0 , for m :» o (III-9)

where V2is the three-dimensional Laplacian.

e) Boundary conditions

If the vortex sheet (Fig. 1) is given by the equation,

,yi, Si) = 0 (111-10)

the over-all inner boundary condition will take the form:

Vcp1 • VF = 0 (III-ll)

But the inner boundary condition for each cp is yet unknown.

The over-all outer boundary condition is

lim Vcp° = I (111-12)x,y- oo ̂

By substituting Eq. (III-3b) into this equation, the outer boundary con-

dition for each cp° are obtained

Vcp° = I

Vcp = 0 , for m ̂  1
, y _ oo ^m

(III-13b)



The remaining conditions are supplied by requiring the inner and

outer solution to match asymptotically over an intermediate region.

Formally, this can be stated as

^ * * ^~ 0 (111-14)
£ -* O / N

Y(e)

The notation [ ] denotes behavior near the outer bound of the inner

region and [ ]. the behavior near the inner bound of the outer region.

Eq. (111-14) states that over the match region, the M partial sum of

cp1 agrees to the N partial sum of cp to the order of [y(e)].

10



IV. SOLUTIONS FOR cp° AND co*
o ^o

As e-»o, the disturbance vanishes altogether, the outer flow re-

gion is just the undisturbed flow, which is independent of c. These

conditions will be satisfied if we take

f Q (e) = 1 (IV-1)

f (e) -» o, as e -» o for m ̂  1 (IV-2)
m

cp°(x ,y , s )= C O S Q ( T ) dr+ x sina (s)

= cp (0,0, s) +x sina(s) (IV-3)

where cp (x,y,s) is the undisturbed potential in curvilinear coordinate.

The matching condition, Eq. ( III -14) for m = o, n = o becoming

O (IV-4)
«pM - [cp° (0,0, s) + eXsina
oJ0 [jo

e-» o
Y(e)

It is obvious that we should take y(e) = 1» then this gives

g0(e)-l
s

cp1"] = cp° (o, o ,s )= I c o s a ( T ) d T (IV-5)
OJ

0 o

Now, the inner solution stands:

cp ~ cpQ

Substituting this equation into the basic differential equation (III-8)

and basic boundary condition (III-ll) gives

V cp - 0 (IV-7a)

- 0 (IV-7b)

11



where V^ and V.^ are two-dimensional Laplacian and two-dimensional

gradient operator respectively. Together with the outer boundary condition

given by (IV-5a), the governing equations for cp are completely deter-

mined. The solution of this set of equations is simply:

cp* « cp° (0,0,s) (IV-8)

12



V. Solutions for cpi» (pi and cpa

a) General solution for cpx

cp° has to satisfy following set of equations:

V3cp?= 0 (V-l)

lim cp° = 0 (v-2)
x,y-*»

With the inner boundary condition along the jet trajectory unknown. By

potential theory (Ref. [19]), the most general solution satisfying these

conditions can be represented as a infinite series of a line-distribution

of singularities along the jet trajectory:

cos Y(T) dT

o
-00

7 Hi (T)<

J — r

<FH(21)(T)P3 [COSY(T)] dr
+ 1 rs + .... (V-3)

(J J.
-oo O

The first term is a line distribution of sources, the second term a line

distribution of doublets, the third term a line distribution of quadrupoles

and so on, with the symbols having following meaning:

T)(T), C(T)] Strength of source (V-4)

>, TI(T), £(T)] Strength of doublet

lag (T) = Ha [§(T)» T)(T), C(T)1 Strength of quadrupole

rQ = I (XQ - §) + j (yQ - T|) + k (ZQ - C,)

r = ro ' o _
_ r

cos Y (s) = i • -f-
o

13



yo = yi /rt' l /rt

x , y , Z : location of the point where the potential is to be evaluated

?» T) » C: location of the singularity on the jet trajectory

Pn: nth order Largrangian polynomial

The strength U^ » Hi » Ma and so on will be determined by matching

with inner solutions.

In order to do the matching, the behavior of cpx > near inner boundary

has to be determined first. In other words, we need the asymptotic expan-

sions (with X, Y fixed as e -» o) of each singularity (source, doublet,

quadrupole and so on).

Fortunately, only expansions of sources and doublets are needed for

our work. These expansions are obtained from Werner and Chang (Ref. [4]).

In all following formula, the index i means the expansion is obtained from

the i order outer solution. For example, in this section we are dealing

cp19 then we should take i = l. See Fig. 3 for symbols used.

1) Asymptotic expansion of a line distribution of sources

03 f l) / \

X, Y fixed J ° (V-5)
e -»o

-(log e) 2n (s) log

log(X8+Ya)*+Pi(a)]

where

+ 0 (e2 loge)

,

(V-5a)

14



P.(s) =
1 L J

- o> 6
(V-5b)

log 2 6
\s

6: a small number, which has the property: 6 -* o, as e -» o

C: the chord of the trajectory between points P andP1 (Fig. 3)

P: the angle between chord c and x-direction (Fig. 3)

This expansion is correct only if T.(s) and P.(s) are independent of 6.

But this can be easily proved.

2) Asymptotic expansion of a line distribution of doublets

lira " Hi^CO cos Y(T) dT
X, Y fixed I g (V-6)
e -»o ' o

( .
1 -- ( l o g e ) i ; ( s ) h ( s )

( X 2 + Y 2 ) 2

-9 - ^S i ) ( s )h (s) log

+ o(e)

where —

cos 8 =
( X 2 + Y 2 )

-6 » (i)

i(s)=[J +J] -cs-h^

-Kr -a) sin(a- a1 jdr +1/^(3)11(8) [log 26-|]

15



(b) Governing equations for cp i and cp2

The inner and outer expansion stands

«• ".,(!•),o o r r - o V 1 / U 1 ! • H i COcosydT
cp ~co0v°.°>s; x sin l U J ^ J r J r8

o o

p Us ps ( c o s y ) d T
+ J P + - . . J + . . .

with x,y finite as e -» o (V-7)

with X,Y finite as e - o (V-8)

In matching region, we have

v f (e) cp° = cp (0,0, s) + e X sin a + f, (.^ m T m J . To

For later convenience, we use here the complex variables Z and z:

z = X + i Y , Re(Z) = X , Ln(Z) = Y (V-lla)

z = x + iy , Re(z) = x , Bn(z) = y (V-llb)

By taking y(e) = f x (e) and being simplified by the assumption e/g1(e)-»o as

e -• o (we will varify this assumption later), the matching condition

Eq . ( III- 14) becomes:

16



lim —
G ^ O

(V-12)

-Si "

which gives:

Si (e) = fi (e) loge (V-13)

o

=0, for P >1 (V-15)

Although (V-14) gives the outer boundary condition for cpi» the specific form

of gi(e) is still unknown, and therefore we are unable to obtain the governing

differential equation for cp i . A lot of information is revealed by (V-15):

it says the strength of all higher order poles are zero and the first, order

outer solution is a line distribution of sources only:

O _ P ^O ( T ) d T
cpx -

This is just the device used by many investigators (Ref .[5, 6]) to simulate the

effect of entrainment. They generally used an empirical formula for the

strength of the sources. In this investigation, the strength of sources,

which is not yet known^'will be derived as an integral part of the whole

theory.

We proceed to next order. In the matching region:

s fm(e)cpm] = cPo (o,o,s)+e

CV-17)

Again, using matching condition (III- 14) with Y(e)=82(e), we have

17



g 2 ( e ) = f

(s) (V-19)
o

gi (e~) = gs (e) loge =e loge (V-20)

Previously, it was assumed that e/gj. (e)-* o as e-« o . Looking at (V-20),

we see that this indeed is the case.

Now, the inner solution stands:

cp ~ cpQ + e log e cp i + e cp 2 + .... (V-21)

Substituting this into the basic differential equation (III-ll) gives

V^cpi = 0 . (V-22)

^ i

XY XY \ o n /0

Scp1

vJYcp2
L = h(s) -^2. (V-24)

(v-25)

Here, a = a . + a is inner boundary, see Fig. 4.
J w

c) Solution for cpi

From Eqs. (V-22), (V-23), and (V-14), cp\ is governed by:

(V-26a)

CV-26b)
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The solution of this set of equations is simply:

cpi(X,Y,s) = 2\jL(8) (V-27)

Therefore, cp ̂  represents a flow field which is parallel to the jet tra-

jectory. At each station s, the velocity of this flow field is constant

throughout the whole inner region.

d) Solution for cpg : The Re-entrant Flow Model

Since cp = cp (0,0, s) is independent of X, Eq. (V-24) reduces to V^cp2
 = 0.

Together with (V-25) and (V-19), cps is governed by following set of equa-

tions:

V^ = 0 (V-28a)

s = Xsina(s) + 2u^1)(s)Re(logZ) (V-28b)y
A 9 I — » CO

cps\
• ° (v-28c)

Here, |j (s) is still unknown and will be supplied by cps .

A number of two dimensional wake models can be chosen here to give the

solution of this set of equations, each will give a different inner boun-

dary shape. The one we choose in this investigation is the "Re-entrant

Flow Model" (Refs. [16,17,18]). The flow field of "Re-entrant Flow Model"

is illustrated in Fig. 4. The stream line CABHF is separated from the jet

at point B. B'AB is denoted by a. and B'H'F, BHF by a • a = a. + a con-
J w j w

stitutes the inner boundary. The shape of the rear surface of the jet

(dotted line BFF'B1) has no direct effect on the external flow since the

external flow is bounded by a rather than by the rear surface of the jet.

The front surface of the jet (a.) is assumed to be a circular arc. The
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geometry shape a and the wake pressure Pw are characterized by cavity number

Q. The actual shape of a = a. + a for Q = -1.5, -2.0 and -3.0 are demon-
J w

strated in Figs. 6a, 6b and 6c, respectively.

Mathematically, the flow region of the "Re-entrant Flow Model" consists

of "two sheets of Reimann surface". What we have just described is the first

sheet. The re-entrant flow HH'FF'carried some fluids of the first sheet flows

into the so-called second sheet. The flow field of the second sheet is shown

by the dotted lines FE and F'E1. It should be noted that the second Reimann

sheet is required only for mathematical consistancy of a two-dimensional wake

flow problem. In context of our three dimensional theory, all fluids which

flow across line FF' (Fig. 4) will be carried away by the jet to next plane

further along the jet, where this fluid will cause an increase in cross-

sectional area of the jet. Thus, in present formulation, entrainment is re-

presented by the re-entrant flow.

e) W8(Z,s): The Solution of Re-entrant Flow Model

Solution to the "Re-entrant Flow Model" has been well documented

(Ref. [16, 17,18]). This solution has been obtained by the method of Levi-

Civita for cavity flows about curved surfaces. Only a summary is presented

here. In two dimensional problem, it is convenient to work with complex

variables. We are looking for the complex potential:

W2 (Z,s) = ops (Z,s) + iYg(Z,s) (V-29)

Here Y2 is the stream function. By using conformed mapping technique, both

W2-plane and Z -plane are mapped conformed onto an auxilliary plane; the

£ -plane. The shapes of the boundary cr = Q. + n in Z-plane, w2-plane andJ **

£-plane are illustrated in Fig. 5. The boundary a in the Z-plane is trans-

formed into a geometrically simpler shape in the £-plane, a semi-circle. The

solution can be represented in a parameter form as:
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sin

R. sina ~ 2

where

F(£) is Levi-Civita's Function: F(^) = iAa £ - iAg ̂
3 /3+ 1A5£

 5/5 + . . .

Here, the constants A X , A 3 ... will determine the shape of the line AB (Fig. 4).

For this investigation, only two terms of F(£) are taken to approximate the

Levi-Civita's Function,

i A 1 C - i A 3 C 3 / 3 (V-33)

To obtain Z as a function of £, w2 is eliminated between (V-31) and (V-30)

_ (C+id) s(dC+i) g(C+i) (C S -D [-

All together, we have b j C j d j A j , A3 five unknown constants. If these five

constants are known eq. (V-34) can be integrated numerically by choosing a

path in the £ -plane and integrating step by step to obtain corresponding

values of Z. It is desirable to extend the integration to values of z

well into the matching zone which for small values of U<x>/U. may as much as

five to ten diameters from the origin. Unfortunately, for this range of
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values of 2 , £ must approach the neighborhood of the singularity c in

the £-plane (Fig. 5), where small incremented in £ yield unmanageably large

ones in Z . To avoid this inconvenience the reverse procedure of first

choosing a point in the Z -plane and determining the corresponding values

of £ by a modified Bairstow scheme (Ref. [20]) was employed.

The constants A.l , A3 , b,c,d are determined by following five conditions

(Ref. 16):

1) a predetermined cavity number Q

2) a predetermined curvature at A (Fig. 5)

3) the curvature at B must be finite (Fig. 5)

4) the curvature at B must be equal to curvature at A

5) Z ( £ ) must be a single valued function at £ =ic

After applying above five conditions, the following five equations result

(A l C+A 3 c/3) = ie U (i) (V-35a)

c3 = 0 (V-35b)
^« vi ' j. ** \\* • \& j

4d
I ^ - 2 + l + A 1 - A 3 = 0 (V-35C)

(A1-3A3)(l+c2)4 (A1 + A3)( l -c2)4 , . . . . .
<TAl 'A3 / J ; (V-35d)

f-A - A /Vi
*Al Aa/J; (V-35e)

Of course, this is another set of nonlinear equations. By suitably constructed

numerical methods, this set of equations is solved to obtain the five constants

for a predetermined cavity number Q. A1 and A3 determine the shape of CT.

b is a scale factor', ic and id are the points in £-plane corresponding to
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infinity and rear stagnation point in Z-plane respectively (see Fig. 5).

The procedure outlined here gives only an approximated circular arc along

CT . The constants Al and A3 are chosen so that the curvature at front stag-

nations point A and points of separation B and B' will have the same value.

From actual numerical computation, the maximum variation of curvature be-

tween A and B is less than 2% for Q=-2.0. in viewing the extreme uncertainty

of the shape of the jet, this is more than enough. In Fig. 6a, 6b and 6c, the

actual shape of a for Q=-1.5, -2.0 and-3.0.

f) Power Series Expansion of w2 and the strength of sources u
1

o

w2 can be expanded into a power series having the form

oo ar,<S>
ws (Z,s) = sina(s) -Z + b(s) + a ( s ) log Z + £ -£-— (V-36)

O O \ Lt

It should be noted that R e [ w 2 ( Z , s ) - b +T1(s)] , not Re[w 2 (Z , s ) ] , is the

solution of the set of eqs. (V-28). From this, we obtain the behavior of

cpg at outer boundary of the inner region as:

Fcpil = r R e [ w 2 ( Z , s ) - b o ( s ) + T 1 ( s ) ] l
o Jo

= X sina(s) +TJ (s) + a ( s )Re ( logZ) (V-37)

Comparing (V-37) and (V-28b) gives

^Q1^8) = °2 (V-38)

Thus, the strength of the line-distribution of sources for outer expansion

is determined provided that a (s) can be evaluated.

The evaluation of the constants b , a , ax ... in (V-36) presents

some difficulty because wa(Z,s) is not an explicit function of Z. At least
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three constants b , a , a, have to be evaluated fora is) and for the latero o ~o

matching with outer solution. The rest of this section is devoted to obtaining

these three constants.

i) ao(s)

Differentiating (V-36) with respect to Z gives

dw2 a .
— = sina+ — - ̂3+ .... (V-39)

By Residu theorem

a
o -C 1 dw P 1 dw

dZ = d <V~40>dZJ r- J i*! J

where P is any circle which encloses the surface a in Z-plane and T \ is the

image of T in £ -plane (Fig. 5). After expanding d w 2 / d £ (V-31) into power

series, (V-40) gives

ii) a^s)

Multiplying (V-39) by Z and using Residu theorem aga in , we have

a i £• i d w s z d Z Ji I d W s Z l d Z
" 2n iR?sin a = J sina "dZ" R? R? = J sin a ~dZ~ R^ T. d^ d^ (V-42)

J p J J p J J

Next, expanding dw s /dZand dZ/d^ into power series and integrate dZ/d£ term

by term:

= b + b 1 ( C - l c ) + . . . , for C - i c | < ( l - c ) (V-43)

VT.K,

for 0 < |£- ic| <c (V-44)
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for 0 < |£- ic | < c (V-45)

where c is a constant of integration and c2 = osince Z/R is a single
o j

valued function of £. Substituting (V-43), (V-44) and (V-45) into (V-42)

and simplifying it, we have

ai
R3 sin a

J

where

bi c Cl - b2 cf (V-46)

. ib ei 3 (v_46a)

C
lim f 1 r. (C+ id ) s

c = „ • \ ~r,—JTTF 1 D

i

i iCl

— c.

e

c + ( A 1 + A 3 c 2 ) 2 ] + 2 i f 2 ( A 1 +A3

( . A l C - A 3 c 3 / 3 )

(V-46c)

+ d)(cd + l)(c + l) (V'46e)

2i rd(1 ' fdS } + d a + d 2 ) . (1 + d)g 1 rv 46f ̂L ( c + d ) 2 + (1 + cd)2 (l + c ) 2 J (V-46f)

4 f d d + d 2 ) . d 3 ( l + d8) . (l+d)2- | ,„ ., .
f3 = ( i -d) 2 L(c + d)3 + (1 + cd)3 + (l + c )3 j (V'46S)

Hie evaluation of c (V-46b) deserves some explanation. By suitable numerical

method, (V-46b) is evaluated to give a sequence of numbers as £ approaches ic.
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This process continues until the sequence converges to a stationary value,

which is just c . Actually, if £ is too close to ic, the sequence will

diverge eventually because of round-off error of the machine. Neverthe-

less, a stationary value is clearly observed before its final divergence.

iii) bo

Examining (V-36), we can obtain b by the limiting process

. ]

w.

For |£ - icl < (1 - c) and |£ - icl < c, w2 (V-32) can be expanded into a power

series having the form

w l

.

It is easy to show that

l o g ( C - i c ) + d 3 + d 4 ( C - i c ) + .... (V-48)

i (cs - ds ) d - c2

dl - - Cl - -b(l -Q)' ^

(v'48b)

- - - (V-48c)"a ~ R-. sin a
J

Inserting (V-48) and (V-45) into (V-47) and after some algebraic work, we

arrive at:

b a R
O O

R j S ina sina Rj iug l_2(c2 - d2 ) (1 - d2 c 2 ) b(1+Q)t R..

(V-49)
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g) Entrainment E3 (s) and drag coefficient C (s)

The entrainemt E 2 ( s ) , flow-rate per unit length of the jet, is assumed

to be the two-dimensional flow-rate of the re-entrant flow, which is just

the sink strength -a multiplied by 2rr :

E 2 ( s ) -ap dS ,
R.(s)s ina(s) = R.(s)sina(s) = nbr3(1 ' Q) (V-50)

Since b,c and d are functions of Q only, E/R. sina is also a function of Q

only.

The drag D2 (s) on the jet per unit length can be easily obtained by

considering momentum balance of a two-dimensional control volume which

encloses the normal cross-section of the jet (Ref. [16]):

D2(s)= p E2 (s) (sina(s) + T

and the drag coefficient:

D3 E2(s)

Ds f p Uof 2 R. R.(s) sina (s)

where U is speed of the free streamline BHF(Fig. 4); U =(1 - Q)* sin a.

C 3is also a function of Q only. The graph of both C aand E3/R.sina are

presented in Fig. 7.
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VI. SOLUTIONS FOR cp° , cp° , cp3 , Cpi and cp*

^ o j o
a) CDS and cp3

Now, the inner and outer solutions stand

a
_°/T\JT

cp° =cp°(o,o,s) +x sina(s) + e j -— +f z (e)cps + f 3 (e)cp° + ...
o

- 00

with x,y finite as e -. o (VI-1)

Cp1=cp°(o,o,s) + (e loge) aQ(s) + & ^ [ z sina(s) +aQ log Z +!,_ (s)+S ^~\
1 —'

, ^ i . , N i . / x i ,+ g3(e)cp 3 + g 4 C e ) c p 4 + g 5 ( e ) c p 5 + ...

with X,Y finite as e - o (VI-2)

As stated before, the most general solution for cpa can be written as:

- H? (T)cosy(T)dT | (T )P2 (cos
cp° - J + J -t

o

- 00

+ ... (VI-3)

After inserting (VI-3) into (VI-1) and obtaining behaviors of inner and outer

solutions at matching region, we can have the matching condition (HI-14) as:

f 2 (e)T(log e) 2n» +iRe(fl£l) +4j R«(Y^)+ •••! - Ss^^3!
lim - 1 - 2—^ - V L X

(e)
e - — - - - 1 - 1 - 12 = 0 (VI-4)

By taking y(e) = f 3 (e) log e, we have

g 2 ( e ) l o g e

^ a =0 , for P^l (VI-7)
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Just as cp° ,ep2 i
s also a line distribution source only. Actually, cp° is a

correction to cp° . In Chapter V, we obtained the local velocity at infinity

in each plane normal to the jet trajectory to be sin a and this gives

cp° as a line distribution of sources with strength a (s)/2. We will see

later that the local velocity at infinity sin a is only correct to the order

of e in inner region. If we go to a higher order, the local velocity at in-

finity has to be modified and this will, in turn, cause a correction cp^ to

o
cpj in outer solution.

We proceed to cp3 with the same technique; this time we have:

f3(e) = e
s .

l_l|(s) =0 , for Ps 2 (VlrlO)

(VI-9) and (VI-10) gives

GO op a _ .

O r - ^ ( T ) d T ^(T

*3"J — + J
O u

- 00 - 00

Thus, co3 is a line-distribution of doublets and sources with the strength of

sources |j3 unknown up to know. The line distribution of doublets here is

just the device used by many investigators to simulate the effect of blockage.

Later, we will see that the source term represents the three-dimensional effect

of curvature and growth of the cross-section of the jet.

b) The Governing Equations for cp3 ,(£4. and <p 5

In the matching, the inner and outer solution (VI-1) and (VI-2), with the

aid of (V-5) and (V-6), become:
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£ (e)cp°l ~cp°(o,o,s) + eXs ina + e\ a loge+a Re (logZ) + T1m ^i *-

a i a a v _
+ (e logs) -yhX + eX^ h+-^ hRe (logZ) +P: J + 0(e

s )J

£ a(e)[( loge) 2n£ + 2 u = Re (log Z) + T2 +0(e loge)~|

us — h) +(2U | — h ) Re (log Z)

§- (f + |)+°(e log.e)]
ah ~

(0,0, s)+ (e

Inserting (VI-12) and (VI-13) into the matching condition (IV-14) with the

assumptions g-g (e)/y(e )-* °> e 2 /y(e) •* 0 and f 2 (e)/y(e)~ 0(1) as e -* 0, we have:

-8*(e)Fcpi] } = 0 (VI- 14)
L o

taking y(e) = e3 log e, we have

f2(e) = e
sloge

g3(e) = loge fs(e)=e
3 log 2 e (VI-17)

2^3Re(logZ)
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(VI- 18) gives the inner boundary condition for cp4 . We proceed to cp \ .

Again, we have the matching condition for m = 3, n = 5 as

-Th)Re(1°ez)

+ T3 + -T- (f +|) + G3] ' SB (e)Cvi 30}- o (vi- 19)

By taking Y ( e ) = c s > this gives

g B ( e ) = e2 (VI- 20)

ft n

[cpi
s]0= (-f(s) h (s) +Pi <S))X + T3 ( s )+G 3 (s) +[2,^ --^(s) h (s)]Re(logZ)

a h(s) ax (s) /?-
- ^ ( s ) h ( s ) X R e ( l o g Z ) + - - - (J + i

Now, the inner solution stands

cp ~cp + (e log e)cpi + e c p s + (e s log8 s)cp3 + (e 2 loge)cp 4 + e2 cp5

(VI-22)

Substituting this back into the basic differential equation (III-8) and

the basic boundary condition (III-ll) give the governing differential equa-

tion as

V cps = 0 (VI-23)

(VI-24)

r^ - h(s) ̂ Icpi (VI-25)
D y O A J O

and the inner boundary condition as

XY „ , , _n (VI-26)

o
, f . n e,
XY

= 0 (VI-27)
'a
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V F
XY _ j. / •- ^ _ ut/us ^u (VI-28)

(VI-28) can be rewritten as

j_ dcp_
(VI-29)

ds ds
a

where n is the unit normal vector to a in X-Y plane, dn represents

a infinitesimile displacement in the direction of n and -r— = |-r- | .

c) Solutions for cp3 and cp 4

Since cp4 is independent of X, (VI-24) reduces to a two-dimensional Laplace

Equation. Together with (VI-27) and (VI-18), cp4 is governed by the following

set of equations:

= 0 (VI-30)

> (VI-30b)

i
x =0

Compare this set of equations with the governing equations for cp* (V-28a,b,and c),

we see that the solution for cp4 is just the Re-entrant Flow Model with a local

velocity at infinity as a h /2 instead of sina(s) for CD 3 . Actually, cp^ is a

correction to cp,g, i.e., the local velocity at infinity, sin a(s), is only

correct to 0(g) and we need a correction to this if we go to a higher order

0(e2loge). Of course, if the jet trajectory were straight line [h(s) = 0],

there will be no correction whatsoever. Thus, <p4 represents part of three-

dimensional effect of curvature on the inner solution.

Define a complex w4(Z,s)as

ao(s)h(s)

W4(Z'S) = 2sina(S)
W*(Z's)
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a (s)h(s) a, a

2°sina(s) E gg ] (VI-35)

where w 2 ( Z , s ) is the Re-entry Flow Model defined in section (V-e). Then

cp4 and the source strength |ja for cp° will be

" ' - N h ( s ) ax

cp; (X,Y,s) = Re|^w4 (Z,s) - 2sina (s) VS> +[2n3
o(s) - -5- (s)h(s)+ T2(s Jj (VI-36)

a ( s ) h ( s )
(VI-37)

w A. o0.1.1 \^t v°y *-*

is governed by (VI-23, 26, 6). The solution of this set of equations

a ( s ) h ( s )
cp 3 (X ,Y , s ) = 2|jS(s) = -5—7—-T-T- a (s) (VI-38)^3 ^o 2 sinO! ^s^ o

which represents another flow field tangential to the jet trajectory.

CD;

is

The differential governing equation (VI- 25) is Possion's equation with

right-hand side to be a function of cp2 and cpo • The solution of Possion's

equation can be written as a sum of homogeneous solution and a particular

solution

Let w s b e the complex conjugate of ws , then cp2 =iU w 2 (Z , s ) +b (s)

+ Tt (s) +w(Z~) +b ( s )+T 1 ( s ) l and (VI-25) becomes

(VI-39)

In this form, a particular solution cp is easily obtained
5 P

cp^pCX.Y. s ) = h ^ ( ~ Z w a ( Z ) + Z w a ( Z ) - 2 Z Z s i n a ( s ) ]
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With the aid of power series expansion of wa (V-36), we have the behavior

of cp 6 at outer boundary of inner region as

vip] =|pb0
+zb0-»-ao(ZlogZ+ZlogZ)+a1(|+|)] (vi-42)

The homogeneous solution should satisfy following set of equations:

(VI-43a)

(VI-43b)

Inserting (VI-21) and (VI-42) into (VI-43b) gives

o

a h _ _
+ -- (Z l o g Z + Z logZ) - (Zb + Zb (VI-44)

Attention should be called to the fact that up to now the source strength (a3

for cp3 is still undetermined and is at our disposal. For convenience, cp B h

and |j 3 are broken up into two parts:

(VI-44a)

(VI-44b)

where cp 5 h i *
s governed by

5 hi - 0 (VI-45a)

(VI-45b)

Here, the inner boundary condition for cp e h i
 nas not been specified. Of course,

the solution to this set of equations will not be unique. By inspection, a
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solution can be easily found as

ra (s)h(s)/2 + P 1 ( s )
cpe hl (X,Y,s) = Re [ sinQ(s) [w3(Z,s) -bo(s)]J +T3 (s) +G3(s)

a ( s ) h ( s ) _ _ ,
+ -2—5 (Z logZ+Z logZ) -^^[Zb ( s ) + Z b (s)] (Vl-46)

O O O O

. i
&) CDK U 2

The governing equations for Cp5 hs
 are

cp 68 = 0 (VI-47a)

(VI-47b)

dn " ' v '-* • ^ " (VI-47c)
a

Let Y B hs ^e fc^e stream function corresponding to cp g ^ 3 > or

- Z -••"1hs (VI-48)

Then we can obtain the solution for cpshs by solving a boundary value problem

on Y sha w^tn t'ie m°re convenient inner boundary condition

a .̂.i a

""da (VI-49)

where da represents a small displacement along the boundary a in Z-plane (Fig. 5).

Due to complexity of the geometric shape of the boundary surface a> it is very

difficult to solve this boundary value problem in Z-plane. Fortunately, there

are conformal mapping techniques at our disposal and the surface a can be trans-

formed into a geometrically simpler boundary. Through the shape in ws-plane

and £-plane (Fig. 5) are much simpler than the shape of a in Z-plane, they are

still somewhat complicated for our purpose. A better choice would be by the

transformation
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(VI-50)

to map the unit semi-circle in £-plane to the whole upper plane on r|-plane (Fig. 5).

In n-plane, the solution for cp 5h2 *-s easily obtained

(T1r-T)S+T1sdT 'Ho3, H108 <"- V
- 00

where T = dummy variable of integration

iC = the position of Point C in ̂ i-plane (Fig. 5). [Point C in Z-plane is
T!

infinite.]

The harmonic conjugate function of

T T . J <n r -T)a+n£

- 1C_)(n + iC )] (VI-51b)

and
00 1 . .

i _ i * y 5hs (T|r>o)
i^ = - dT

3 log C^- 1C Xn + iC ) (VI-51c)
02 TI T)

By conformal mapping technique, W g h a ^ T ) ) can be transformed back into Z-plane

to obtain w 5 h 2 ( Z ) . However, we generally require not the potential but the

velocity, i.e.:

d wBha 1 (T 'o)
,d T ' u 3 - + - (VI-52a)

dz

" (VI-52b)
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The next step is to evaluate dYBha/dr| . Before doing this, we should

clarify two more points. In section (V-d), we stated that mathematically the

Re-entrant Flow Model consists of two sheets of a Riemann Surface with dotted

lines EF and EF1 (Fig. 5) as the boundary streamlines on the second sheet.

Physically, we are only concerned with the flow field on the first sheet.

All fluid flow across FF1 is assummed to be carried away by the jet. But

from a mathematical point of view, we have assummed that the inner boundary

of our problem consists not only of the boundary lines ABHF and AB'H'F1 on

the first sheet but also of FE and F'E on the second sheet. More precisely,

we have assummed •"

() -ft W" V.,,0]
where a denotes the boundary ABHFE and AB'H'F'E (Fig. 5). In essence, we have

introduced artificial boundary condition on EF' and EF. One natural question

will be: what is the effect of this boundary condition in the second sheet on

the flow field of the first sheet. In order to answer this question, another

boundary condition is introduced for comparison with equ. (VI-52c), i.e.

h2\
— J =0 on EF and EF1 (VI-53)a a

For Q=-1.5, the solutions to these two boundary conditions are calculated

and found that there is essentially no difference between these two solutions,

and therefore, the more convenient boundary condition (VI-53) is used in sub-

sequent works.

Another point to be clarified is how to determine jj3 . The potential

i) will induce a flow field which is generally not tangential to

the boundary a. cpsha *8 introduced such that (cp5p + cpBn j.+cp Bn8 ) will be
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tangential to the boundary a- Therefore, cp5ha
 al°nS will give a net influx

of fluids through the boundary a. This flux must be supplied by "sources" at

infinity in order that the equation of continuity is satisfied. But we have

two infinity: one on the first sheet (C in Fig. 5) and another on the second

sheet (E in Fig. 5) sources at either one of these can supply part of the

flux across the boundary a. In order to determine p.3 , following criterion
O 2

is adopted: all flux across the portion of a on the first sheet is supplied

by the infinity on the first sheet and all the flux across the portion of 0

on the second sheet is supplied by the infinity E on the second sheet, i.e.

(VI-53a)

Now, we proceed to evaluate the boundary condition in f|-plane. Remembering

/d S = cos a (s), we can obtain the first integral of (VI-49) as

where A is the shaded area in Fig. 6a. The second integral can be evaluated

in the w2 -plane. By using the analytic property of the mapping function wg (Z),

it can be shown that

a a
(VI-55)

Inserting cp gp (VI- 41) and cp 5^! (VI- 46), performing the differentiations and

noting that w2
 = ws on the boundary a» we obtain

(VI-56)
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where — = - 1 + J
d Tl s -

r
•—2 and ̂  are defined in (V-31) and (V-34), (VI-45) can be integrated by

by numerical method in either £ -plane or t|-plane. However, it is much easier

to obtain dY sh2/dr] r numerically since no integration is involved in this case.

To obtain cty^hs /dr)r(Tir>o), we first rewrite the boundary condition (VI-49) as

(VI-57)
'a

Again, by using analytic properties of the mapping function w 2 , w e can prove

a

— COS
s a(s)l (VI-58)

after substituting cp^P and cp^hi > this becomes (here U is the velocity of
G

Re-entrant Flow Model on a)

h ,
4 -i^Ka°gz + i ) - t> , ,+« s +z^r

-2Z Sina(s)- cosa(s) (VI.59)
a ^ '

This equation is evaluated by computer and is presented in Fig. 9 for Q = -1.5,

-2.0, -3.0.

From (VI-43a), we have

F'°) -Y Bha (F'.o)]/2"TT (VI-60)

where Y^hs ^s defined by (VI-56) and points F,F" are shown in Fig. 4. If we

examine (VI-56), we will see that only two terms are involved: one represents

the effect of curvature h(s); another, the growth of the jet. Let
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+
os 05 2rr as v '

where A is the area enclosed by FAF'F (Fig. 4), and

a B --L. y^hs (F>0) -y"shg (F',o) - »•"»" W || (VI-61a)

f) The source strength (j3(s) for cp 3

Combining (VI-41), (Vl-46), and (VI-51), we have the solution for co* as
< D

h 1^- — — — — ~l 3 ^ — _
cpg = f |Zw s + Z w2- 2ZZ s ina -Z bQ - Z b I + -|- (Z l o g Z + Z logZ)

a h / 2 + P,

sina

Appropriate outer expansion of cp s is

(VI-62)

_ +=; (VI-63)

where
a
o
a

SA cos a
2 os

„3 = a + T -- r
os 2n

, comparing (VI-63) with the outer boundary condition (VI-21) givesNow.

3(S) _,- a i ( s ) h ( s ) , 4(s)h(s)
 +

 aos<s)1 +
 p i ( s ) a o< s > + cosq(s)

. ^o ^ ~L 4 4 sina(s) 2 j 2 sina (s) 4rr

This source reflects essentially three kinds of effect: the first term repre-

sents correction due to curvature effect; the second represents the effect of

the shape of jet trajectory, i.e., the addition to the local flow induced by

the singularity distributions along the rest of the jet [function P x is defined by

(V-5b)]; the third, the growth of jet cross-section.
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-VII. COMPLETE POTENTIAL, VELOCITY, PRESSURE COEFFICIENT,
ENTRAINMENT AND DRAG

a) <p > q and C1

The results of previous sections are assembled to give the complete

inner solution up to 0 (e 2 ) a s

cp^XX.Y.sje) = j c o s a ( T ) d T + ( e l o g e ) a
Q(s)

o

+ £Re[w2 (Z,s) - bo(s) + T^s)

a ( s ) h ( s ) a (s)

a ( s )h ( s )

L

a2(s )h (s ) P!(s)a (s)

2sina(s) O B v ' sina(s)

w 2 ( Z , s ) + Z w 2 ( Z , s ) - 2ZZ sina(s)

-Zb Q ( s ) -Zbo(s)]

a ( s ) h ( s )
— - - (Z logZ+Z logZ)

(s)h(s)/2+P1(s)

-sina(s)

with X,Y finite as e-«o (VII-1)
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where ws and "shg
 are defined in sections (V-e) and (Vl-e) respectively.

This complete potential for the inner solutions has not been evaluated

because we generally require not the potentials but the velocities. To

obtain the dimensionless velocity q , we substitute the potentials in

the following equation

l

After simplf ication, we have

a (s)h(s)-,

a (s)h(s) _.,
( e l°ge)2 s i n a ( s )]vg +e V B J |

dar o r 2
eg|cosa(s) + (e log e) -^- (s) +e | -^- +h( s )X cosa(s)

with X,Y finite as e - o (VII-3)

where
dws

U3 ' ivs = ~ d z ~ ( Z » s ) > comPlex velocity of Re-entrant Model

_ _ _ dws
: + l l - b (s) +w2 ( Z , s ) + Z -—-(Z,s)o d^

2a (s) dws

P1(s)ao(s)

sin a (s)

(Z.s) (VII-3a)
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From (VII-3), it is seen that q consists of four elements: 1) the basic

two dimensional solution dwg/dZ; 2) corrections due to the three dimen-

sional effect of local curvature, which is reflected by all terms con-

taining h(s) and some part of dw^/dZ; 3) corrections due to the growth

of jet cross-section, which are contained in the term dw^g/dZ; 4) Higher

order corrections due to the singularities distributed along the trajec-

tory, which are represented by the function P l (s) .

The pressure coefficient will be

Cp(X,Y,s:e) = 1-q1 • q1

= [1 - (Uf +V|) -cos3 a(s)]

a (s)h(s) da

U5 +VS VB) + cosa(s) (-ĝ -f h(s)X cosa(s)Y)

with X ,Y, finite as e - o (VI 1-4)

b) cp° and 'q

The complete outer solution up to 0(e2) is:

s
o

cp (x,y,s:e)~ix sina(s) + \ cos (T) d^\
L J J

" as(T)h(T)/4sina(T)
+ (e3loge)J -2 dT

o
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J (T)

0 O
- oo - oo

with x,y finite as e -• o (VII-5)

where

U3
o (s) see (VI-64)

r (s) and cos y are defined by (V-4)

The dimensionless coordinate in (VII-5) are referred to r . However,

the more commonly used reference is R. . Therefore, the velocity 'q°

corresponding to cp is written in dimensionless system (X ,Y , Z ) referred

to R. .
jo

00 00

O
- 00

al
—(T)COS Y(T)

with x,y fixed as e -» o (VII-6)

where

H(S) = aQ(S)/2 + (e log e) a* (S)h(S)/4 sina(S) + U3
Q (S)

H3
ois defined by (VI-64)

^~O
It is seen that q is the superposition of three elements: 1) the basic free-

stream cross-flow Uo, i; 2) a line distribution of doublets representing the

local two dimensional blockage effect; 3) a line distribution of sources:

the first term of the source strength reflects the effect of entrainment.

The second and third term represent correction due to effect of local curva-

ture, the growth of jet cross-section and the shape of jet trajectory as

explained in section (Vl-f).
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c) Total Entrainment E(s)

The mass entrainment E(s) of the cross-flow at each station s is

assumed to be the two dimensional flow-rate of the re-entrant flow, which

can be expressed as /

E(s) = - f q1 • n da (VII-7)
v

F

The curve FF' are shown in Fig. 4. Examining q defined by (VII-3) and

recognizing

F'

- J(U2 ex + V2 ey) • n da = E2 (s),

F

we have

a (s)h(s)
E(s; e) ~ E 2 ( s ) + (e logs) 2 sina(s) E 2 ( s ) + e E 5 ( s ) + .....

with X,Y finite as e - o (VII-8)

where

E 2 ( s ) is given by (V-50)

» i p' 1 - a ( s ) h ( 8 ) / 2 + P 1 ( 8 >
E 5 ( s ) = -I (Vxfp5) - n d a = -J (Vxycp5p) • n d a + s i n - EB

Since E 2 (s)/R. (a) sin a(s) is a function of cavity number Q only, E(s)/R (s)sin(s)

is a function of cavity number only up to 0(1). We have assumed Q to be con-

stant along the trajectory; therefore, E(s) will be proportional to

R.(s)sina(s) to 0(1). This means that E(s) will have a maximum near the

jet orifice and diminish gradually as the jet trajectory become parallel to

the free cross-flow. This corresponds qualitatively at least to the physical

situation.
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d) Total Drag D(s)

The drag D(s) is determined by using momentum principle (Ref. [16])

applying to the system shown in Fig. 10. AB and A B7 are two infinitely

long plates symmetrically located with respect to X-axis. Since sections

AA' and BB' are assumed to be located infinitely far away upstream and down-

stream, all disturbance created near the jet are subsided and the velocities

q. and q across these two sections are uniform.
A J5

By applying continuity equation to this system bounded by M'BB' and a,

we have

pE(s) = (qA-qB) P& (vn-9)

and the momentum equation gives

F'
r

*B " 4A' M* "J (M4X'V4XY " "' uu ~ ViA
F

(q " q} P-6 ~(pq)(q ' "} dCT = (P "P)je " D (VII- 10)

where q.;. is defined by the equation
A

q : = / ^ p "H ft A "4" fl P
HY^Y "v v ^o cA A II S S

qXY

Combining (VII-9) and (VII-10), and using Bernouli's equation

we have
F'

D = I P E (qB4-qA)+J(Pqx)qxdy (VII-11)

F

Now, let £-00, then q -sina(s), q -sina(s), we have
15 A
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F'

sina(s) + f p qs dy

^

into this expression gives:

(vir-13)

on the curve FP', U8 t. apprK!lmately equal t
v w^' wnicti is a constant,

and recognizing that

F'

J U5 dy = -ES(S)
F

we have

W

+ epE 5(s)fs ina(s) + 2U 1 +L wJ

with X,Y finite as e^0

(VII-14)
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VIII. JET TRAJECTORY

a) Cavity Number and Trajectory

Up to now, a very important parameter remains unspecified, i.e., the

cavity number Q. We have seen that the geometrical shape of inner boundary,

entrainment and drag are all functions of Q. If we can derive a relation-

ship between these three elements, then Q will be determined, and, in turn,

geometrical shape, entrainment and drag will be determined accordingly.

The trajectory will serve to give this relationship.

The curvature of the trajectory is directly influenced by the combined

effects of pressure and shear stresses acting at the jet boundary. These

stresses not only change the momentum of the original jet fluid but alter the

momentum of a portion of the free stream fluid and through the agency of

turbulent mixing give rise to entrainment as well. In the inviscid model

employed here the role of viscous stresses has been reduced to that of

accounting for the origions of the vortex sheet aw and the resulting wake

region while turbulent mixing has been replaced by the re-entrant flow. One

of the principle advantages of the model employed however is that it provides

a dynamic coupling between the entainment and the pressure stresses typified

by the cavity number Q. As a result, the value of Q is a determining factor

in the trajectory shape, for which Margason (Ref. 0.0}) has provided experimental

data. Thus, trajectories are computed for several values of Q and compared

with Margason1s trajectories.

The value of Q yielding the closest fit is then chosen for the computa-

tion of pressure coefficients.

b) Derivation of the Trajectory

In section (V-d), we assumed the front surface of the jet (a*, Fig. 4) to
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be a circular arc with radius Rj(s), and rear surface BFF'B' unspecified.

Here, we still let the shape of the rear surface remain unspecified, but

the total cross-sectional area is assumed to equal an equivalent circle,

e.i., rrR? (S).

For an infinitesemally thin cross-sectional element (Fig. 11), the

momentum equation and continuity equation can be written as

dM j
-jg- = D(S) ex + pE(S) cosa(s) leg (VHI-la)

dm.
-Jig1 = pE(S) (VHI-lb)

where m.(S): The rate of mass flux at station S

m = nR?pv (VIII-2a)
J J J

M.(S): The rate of momentum flux at station S

M. = m.v/e = TrR?pv.'e (VIII-2b)
J J J b J J b

v.(S): Velocity of the jet at station S

S: Dimensionless coordinate along trajectory S = sl/R.

Here, we have taken the average velocity of the jet as v.(S)(see Fig. 11).

Substituting M. and m. into (VIII-1) and simplifying it, we arrive at:

da = -D(S)
dS nRj

2(S)vj(S.)p

^-sf^p^-ii <""-*»
dRj E(S)

2rTVj(S)Rj(8)
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Now, substituting E (VII-8) and D (VII-14) and after some algebraic work,

we finally have

da _ o v ' T ahodS trR.(S)v? (S) L(1 + U ) + (e loge)jN X l_ O

dv E sina(S) ps ah E

7~- 1n1+(eloge) 2iî  + er3

dR yin(S) / cosa^r a
o

h

-d!T = 2TTV. (S) 12-^7(S) ;

with the initial conditions

«(o) = TT/2

R.(o) = 1 (VII]

where
E3 dS i

E = : = Tib 2-s (1 -Q)2

o R.sina c *
J

a function of Q only, see (V-50) ,

U ,
U = ~— = (1 -Q)*o sin a v x/

also a function of Q only.

This is a set of coupled nonlinear first order differential equations. We

cannot integrate them immediately, because we do not know e beforehand. But

we can solve it by iteration methods. First, take only terms up to 0(1)

i.e., the first term in the brackets, integrate them by suitable numerical
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methods to get a(S), R.(S) and v.(S). Then we obtain the actual trajectory by

inte'grating numerically the following set of differential equations

dX
-j£- = cosa(S) (VII
do

dZ
—^ = sina(S) (VIII-5b)
do

with the initial conditions

X (o) = 0 (VIII-5c)

Zo(o) = 0 (VII

where X , Z are dimensionless Cartesian coordinates, see Fig. 11.
o o

From the solution of this set, e» h(S), P1(S)are obtained and substituted

back into (VIII-4). Now, we can take the full equations and integrate them

again. This process is continued until the difference between two successive

solutions are small. For the value of Uoo/U. considered here, the vary first

integration was accurate enough for our purpose. In Fig. 12, trajectory for

Uoo/U = .8, .5 and .25 are plotted with Margason's curve. The jet velocity

v.(S) and jet radius R.(S) along the trajectory are shown in Fig. 13 and

Fig. 14, respectively.
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IX. CONCLUSIONS

The inner and outer solution for pressure coefficient for Uoo/U. = .8,

.5 and .25 are presented in Fig. 18, Fig. 19 and Fig. 20, respectively.

Experiment data by Bradbury and Wood (Ref. [7]) and by Vogler (Ref. [8])

are also presented with the outer solutions for comparison.

Since the reentrant flow model introduces a stagnation point behind

the jet, it is incapable of reproducing the experimental pressure contours

in the wake region. However, upstream of and along the sides of the jet,

the computed pressure contour gives good agreement with the experimental

data for U»/U. = .25. For U^/U. = .5 and .8, the computed pressure contour

seems to have the right order of magnitude but is not swept back enough.

It is possible that the inclusion of higher order terms would remedy this

as indicated by the comparison of first order and second order solutions

in Ref. [4].

As indicated in the introduction, Werner and Chang (Ref. [4]) raised the

possibility that representing the effects of entrainment by a net sink dis-

tribution along the jet trajectory might not be correct. In order to

answer this question, we have calculated the contributions to the source

strength from the various elements of the flow. In our solution, the

outer flow region is represented by a line distribution of doublets and

sources. The doublets simulate the effect of 'local blockage", while the

sources, as we have repeatedly stated, are derived from four different

origins: 1) the entrainment, 2) the growth of the jet cross-sectional

area, 3) the curvature effect, and 4) higher order correction due to

singularities distributed along the jet trajectory, i.e., the effect of

(V-5b). The magnitude of these contributions as a function of .

are shown in Fig. 15, Fig. 16 and Fig. 17 for Ifc/U. = .8, .5 and .25, re-

spectively. From these results, the following conclusions are drawn:
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1) The source strength due to P^s) has been calculated and proved

to be very small for all cases. Actually, it is too small to be shown

on these graphs.

2) Around U./TJa> = .8, the combined effect of entrainment and jet

growth is small. In other words, if only the source due to curvature is

used, a good approximation is obtained.

3) At Uoo/U. = .25, the effect of curvature is much smaller than the

combined effect of entrainment and growth of the jet.

Judging from the trend, we can neglect curvature effect for Uc/U.^ .125.

4) Introducing

Si N /U;

jo u

we see that the source strength due to entrainment and the source strength

due to growth of the jet tend to cancel each other for

5) It seems that, for s l /R. < (s x/R. ) , following two equations

will give a reasonable approximation

u =CX , for ̂  ^ 4.5 f^Vs (IX-2)
Rjo

si si
u = Co -— , for

R.
jo

where Cl , C3 are constants

U : source strength due to entrainment
^e

|j : source strength due to growth of the jet
O
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CROSS-FLOW DUE TO
VORTEX DIFFUSION
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Fig. 1 - Jet In A Cross-flow And Mathematical Model
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Fig. 12 - Jet Trajectory
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