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MOMTE CARLO ANALYSIS OF RAREFIED-GAS DIFFUSION

INCLUDING VARIANCE REDUCTION USING THE

THEORY OF MARKOV RANDOM WALKS

by Morris Perlmutter

Lewis Research Center

SUMMARY

Molecular diffusion through a rarefied gas is analyzed by using the theory of Markov
random walks. The Markov walk is simulated on the computer by using random numbers
to find the new states from the appropriate transition probabilities. As the sample mol-
ecule during its random walk passes a scoring position, which is a location at which the
macroscopic diffusing flow variables such as molecular flux and molecular density are
desired, an appropriate payoff is scored. The payoff is a function of the sample mol-
ecule velocity. For example, in obtaining the molecular flux across a scoring position,
the random walk payoff is the net number of times the scoring position has been crossed
in the positive direction. Similarly, when the molecular density is required, ~the payoff
is the sum of the inverse velocity of the sample molecule passing the scoring position.
The macroscopic diffusing flow variables are then found from the expected payoff of the
random walks. The confidence limit interval on the numerical results obtained for the
flow variables can be reduced by increasing the number of random walks simulated or
by reducing the variance of the random walk payoff. By reducing the variance, less
random walks are needed for the same confidence limit interval; thus less computer
time is needed for the calculation. Biasing functions are found which change the transi-
tion probabilities such that the variance is reduced. Both a zero-variance and a
minimum-variance biasing function are found. The zero-variance biasing function is
approximated in the numerical calculations which were carried out to illustrate the vari-
ance reduction procedure. The resulting saving in computer running time due to the
biasing procedure is shown.



INTRODUCTION

The present analysis treats the rarefied diffusion of molecules of one species, evap-
orated or emitted from one plate, through another nondiffusing molecular species en-
closed between parallel walls (see fig. 1). The problem has been treated by straight-
forward analog Monte Carlo without variance reduction in reference 1. The present
analysis treats the diffusing molecule as a Markov random walk, and the local macro-
scopic properties are found as the expected value of a random variable, the random walk
payoff. By biasing the transition probabilities and changing the collision payoffs, we can
retain the expected Markov walk payoff but reduce its variance so that the Monte Carlo
result will have a much smaller error.

Monte Carlo methods have been extensively used in nuclear reactor radiation shield-
ing problems, and sophisticated methods of analysis have been developed to minimize
error and reduce computing time (refs. 2 and 3). These Monte Carlo techniques and
methods of variance reduction would apply to any Markov random walk problem. Similar
techniques to those used in the present analysis can be applied to thermal radiation and
other rarefied-gas problems.

In the present analysis a zero-variance and a minimum-variance biasing function
are found. These biasing functions apply only for positive event payoffs. However, by
appropriately defining the scoring procedure, the event payoffs can be made positive.

The minimum-variance biasing function does not give a zero variance, as the zero-
variance biasing function does, and so must give a relative minimum variance. How-
ever, in the Monte Carlo calculating procedure, when only a finite number of events can
be calculated, the bias functions which would be optimum in the actual calculation have
not been determined.

The zero-variance bias function is approximated so as to simplify the Monte Carlo
calculations. These approximations which reduce the variance are the "next event"
calculation, in which we score the probable event payoff after each event whether or not
the sample molecule actually reaches the scoring position. Also used is "birth biasing, "
in which the expected initial or birth event payoff, which can readily be calculated, is
scored for the initial event irrespective of the initial state of the molecule. Also used
is "survival biasing, " which prevents the sample molecule from being absorbed after
only a few collisions, since then it would not contribute to the payoffs of the later colli-
sion. Survival biasing can be achieved by biasing the transition probabilities so that the
sample molecule is not permitted to reach the absorbing wall. The large variation in
sample molecular velocity contributes a large amount to the payoff variance; contribution
can be avoided by "velocity biasing. " Here we score the expected value of the event
payoff averaged over all velocities due to the collision, independent of what the actual
value of the velocity of the sample molecule is.



Since in survival biasing the sample history does not end, "Russian roulette" is
used. When the weighting function is sufficiently small, the random walk is either
ended randomly with a probability p, or the weight is increased by 1/p. Numerical
results are given to illustrate the amount of variance reduction obtained by these bias-
ing procedures.

ANALYSIS

As shown in figure 1 the Markov random walk of the diffusing molecule can be rep-
resented by the sequence of states {XQ, Xj, X2, . . .}. The symbol Xn denotes the
state of the molecule and refers to a point in position and velocity space {Y , V } taken
on by the diffusing molecule immediately after the n collision. The probability cor-
responding to this random walk is given by

dXj . . . =E0(X0)K(X1|X0)K(X2|X1), . . . dXfl dXj . . . (1)

The initial probability EQ(XQ)dXQ is the probability of the molecule originating in
dXp at XQ, where X/y refers to the initial position and velocity of the molecule, which
in this case is given by the initial position YQ and initial velocity VQ. The transition
probability K(X . l-^^n+l is the Pr°bability of a particle that is at XR immediately
after the n collision reaching dX ^ at X .. immediately after the next collision
The normalizing conditions that apply are

/'K<xnlxn-l>dxn =

(2)

where the integration is over all X.
Immediately after each event, n = 0, 1, 2, . . ., where by event we mean the estab-

lishment of a value X,,. we record an "event payoff" P_. This event payoff designates
tVi

the contribution to the desired answer by the molecule immediately after the n event
has occurred and the value of X has been established. The event payoff can be a func-
tion of the entire past history {XQ,X.,, . . ., X }.

The random walk payoff for the random walk process starting from the initial
n = 0 event is then given by



oo

P."0 - n
n=0

The expected payoff of the random walk is given by

X0

(4)

or

X = XQ + Xj+ Xg + . . . (5)

where X, is the expected event payoff

\ = f. • .yV^EolX^KCxJXo) . . . KfXjJX^dXQ dXj . . . dXk (6)

We can write the transition probability to include i events as follows

(7)

If we define 1C- '(X |X') = 6(X - X'), we can obtain Green's function

oo

G(X|X')= X K (Z)(X|X') (8)
1=0

Given that an event occurs at X1, G(x|X')dX is the expected number of events experi-
enced by the particle that occurs in dX near X. If we assume the event payoff is only
a function of its state and not a function of its previous history, the event index of P
can be dropped so that Pn(X) = P(X). Then equation (4) becomes



/*/• °°

= /I E
•// n=0

= ^P(X)E0(X')G(X |x')dX' dX (9)

We can define the probability density for state X after n events as

En(X) =y*E0(X')K(n)(X|X')dX'

Letting E(X)dX be the expected number of times a molecule is in state dX at X
averaged over all initial states, we can write

00 , - 00

E(X) = ^ En(X) = /EQ(X')G(X X')dX' = / E0(X')
n=0 J ** n=

(10)
=0

We can now write the expected payoff as

= /"p(X)E(X)dX (11)X

From equation (10) we can write

E(X) = EQ(X) +E 0 (X 0 )K(x |X 0 )dX 0 + EQ(X0)K(X< |X0)K(X|X')<K« dXQ

+ ff E0(X0)K(2)(X' |X0)K(X|X»)dX' dXQ + . . .

= EQ(X) + * E 0 ( X 0 ) K ( X | X ' ) 6 ( X ' - XQ) + K(X«.|X0) + K(2)(X' |XQ) + . . . dX' dXQ

= EQ(X) + /*E(X')K(x|X')dX' (12)

This result is the well-known Boltzmann transport equation.



Monte Carlo Process

In the Monte Carlo process, we first randomly choose an initial sample molecule
position and velocity from EQ(XQ). We then score P(Xg). We then randomly choose a
new velocity and position after collision, X.. from K(X.,|XQ). We then score P(X«).
The particle history is continued in this manner until the history is completed (i. e.,
the molecule is incident on an absorbing wall). The random_walk payoff is then given by
T?Q = P(XQ) + P(Xj) + . . .. This process is repeated for N samples to give the sample
expected payoff,

_ N

^o = ̂  Z "o, i * 'too> = x <13)

This gives the desired macroscopic result. By the central limit theorem, the probabil-
ity 9 that the difference between the Monte Carlo and the theoretical result is less than
some error e, called a confidence limit, is given by

* /2 dt (14)

o
where a (77,.) is the variance of the distribution of TJQ. For 95 percent confidence
(^ = 0. 95), the confidence limit is given by

£ = 1.961—^-1 (15)

2 2The variance a (?JQ) can be approximated by the sample variance S (TJQ), which can be
obtained in the Monte Carlo calculation from

N

N ~ * i=l

We can see from equation (15) that the smaller the variance cr (T]Q), the smaller the
error in the Monte Carlo calculation.

The average computer time to run a sample history a is given by a - T/N, where
T is the total computer time needed to run N sample histories. We can ratio the con-
fidence limits for the biased process e-o to that for the unbiased or analog process e A

6



and obtain

:B

where the B subscript refers to the biased process and the A subscript to the unbiased
or analog process.

We can compare the computing time needed to complete the random walks for the
same confidence limits. €„ = e A, and obtain

D A

ot,

Then the percent change in the computer running time for the biased case compared to
the analog case for the same confidence limits can be written as

- TT

1 = X 100 = 1 -

"A <£(„„)

x 100 (17)

Conditional Expected Payoff

2
We can find the variance of the random walk payoff a (?}Q) as follows. The proba-

bility density of a random walk from some point X^ {X^ Xi+1, . . . }, is given by
H^Xi+l'Xi+2' ' ' ' IXP' Tne Pavoff of tnis random walk is given by
77. = P(X.) + P(X. i) + • • • • We can then write the conditional expected payoff for a
random walk starting at Xi as W^Xj) and this is given by

jtXj) = /(7,-IXj) = PtXj) +y*P(Xi+1)K(Xi+1|Xi)dXi+1

r co

•AJ 1=0
(18)



We can see that, for the case where the payoff is independent of the past history, the
conditional expected payoff will be a function only of its state and not of the number of
collisions, so that the collision index number i in W.(X-) can be omitted. We can see
that

(19)

By multiplying equation (19) by K(Xi+1|xp and integrating, we can combine the result
with equation (18) and obtain

(20)

This can be written for the present case as

W(X') = P(X') + /*W(X)K(X |X')dX (21)

A simpler method of obtaining equation (21) is to write 77^ = P(X.) + 77. « . We then find
the conditional expected value of rji to be

W(Xi) = P(Xi)

= P(X.) + W(X.+1)K(X.+1 |X.)dX.+1 (22)

which is identical to equation (21). We can see that the expected payoff can be obtained
from the conditional expected payoff as follows

X = *(T,O) =y ^(r?0 |X0)E0(X0)dX0 = f W(X0)E0(X0)dX0 (23)

or from equation (18)

X = E ( X ) P ( X ) G ( X X ) d X d X Q



Conditional Expected Square Payoff

The conditional expected square payoff Q^X.) for a particle leaving X. can be ob-
tained as follows: The square of the payoff for a random walk starting at X. can be
written as

Then

<W = /(nflXj) = P2(Xi) + 2P(Xi)/^(r?i+1|Xi+1)K(Xi+1|Xi)dXi+1

+ / £\(]i, 1 X. ., )K(X. n X.)dX. , (24)/ \ ' i+l ' i+l/ i+l' i i+l

This can be rewritten as

Q^X.) = P2(Xt) + 2P(Xi)y W(Xi+1)K(Xi+1|Xi)dXi+1 + J° Qi+l(Xi+l)K(Xi+llXi)dXi+l

(25)

Combining equation (25) with equation (22) yields

^) = 2P(Xi)W(Xi) - P
2(Xp + f Qi+1(Xi+1)K(Xi+1|Xi)dXi+1 (26)

Again we see that, for the case where the payoff is independent of its past history, the
conditional expected square payoff will be a function only of its state and not of the num-
ber of collisions, so that the collision index number i in Q. (X.) can be omitted. Then
equation (26) can be written as

Q(X') = 2P(X')W(X') - P2(Xf) + f Q(X)K(X|X')dX (27)

As in the relation between equations (19) and (21) we can write equation (27) as

Q(Xi) = E
n=0

which can also be written as



Q(X') = /*f2P(X)W(X) - P2(X)]o(X|X')dX (29)

We can now write the expected squared payoff as

4?)-.

= /V"[2P(X)W(X) - P2(X)1 G(X |X')E0(X')dX' dX (30)

From equations (10) and (11) the variance can now be written as

2, N „/ 2\ r i \~\ 2
a (tin) = *Wo j " e ^0'* ' L J ,

2
= /*[2P(X)W(X) - P2(X)]E(X)dX - [y*P(X)E(X)dx] (31)

Biasing the Random Walk

We wish to reduce the variance of the random walk payoff so that the error in the
Monte Carlo calculation as given by equation (16) will be smaller. We can achieve this
by biasing the random walk process and at the same time changing the event payoff so as
to keep the expected payoff for the new process unchanged but at the same time have a
reduced variance. We can bias the probabilities so that the probability density for the
biased random walk is

H*(X0,X1,X2, . . .)=ES(X0)Kj(X1 |X0)Kj(X2 |X1). . . (32)

where the asterisks refer to the biased results. The subscripts on the biased transition
probabilities K* refer to the number of collisions since the initial event and show there
is a dependency of the biased transition probability on the event number.

We can distort the event payoff for the random walk as follows:

4 = P0 + Pl + P*2 + ' ' '

where

10



L0(XQ)

P(x)
LQ(X0)L1(X0>X1)

Pt =

and where the biasing ratios are given by

(34)

(35)

L0(XQ) =
EQ(X0)

The normalizing conditions also must apply

/E0 ^0 =

n = 0 (36)

(37)

(38)

These conditions are equivalent to the condition

f" -/^(X^m^X^. . . K(Xn |Xn_1)LndX0dX1

n = 0, 1, 2, ... (39)

The biasing ratios are subject to the condition that Ln(
x

n_ j_, XR) > 0 and LQ(XQ) > 0
since the biased probabilities must be positive. We can see the equivalency between
equations (38) and (39) since we can write

/ • -

11



and

/ • -/^(Xl^llXo) ' ' ' d^n+llxn>dx<)dxl • ' '

For these two equations to be true, equation (38) must be true. Then by integration of
equation (39) over X«, Xg, . . . , we also prove that equation (37) must be true. Thus,
equation (39) ensures that equations (37) and (38) are both satisfied.

We can see that the expected value for the biased walk payoff is given by

* .= f p$E5 dx0 + fj P*E*K*(XI |x0)dx0 dx

= /h^K
J \Lo/ \ o i

= X (40)

So that the expected biased walk payoff equals the unbiased value.
The expected biased walk payoff beginning at X. is given as in equation (18) by

=—-—+ f( Pi+1
LoLi • • • Li J U • • •

"i'Li+l dX- •1 +

L0L1 ' ' ' Li

Similarly to equation (24), we can write

12
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(42)

From equations (41) and (22)

.) f W(X
l
 + /.Li y L 0 . . .

W(X.) P=(X.) / W(X.
W? (X.) = l- = I—I— + / i^i K(X. i |X.)L. ! dX. ,

L . . . L . L T * T T T

Then equation (42) can be written as

Q* = ̂ (Xpw*^) - P*2(Xi)] +/^+1K*+1(Xi+1|Xi)dX.+1 (44)

Then substituting for Q^.i in equation (44) by letting the subscript i be i + 1, we ob-
tain

Of = [^JCxpwjoy - P*2(Xi)]

Continuing this process gives

Q* = (2P*W* - P*

i+l

// (2Pi+2Wi+2 ' Pi+2J K(x ix )K(X I v ^ d X dX 4- I (46)+ 1 1 - - - - - K(Xi+2|Xi+1)K(X.+1|X.)dXi+1dXi+2 + . . .> /
JJ Li+1Li+2 J

We can now write the expected square biased payoff as

13



\ /i?*rP HV /fro w P2>i/E°N

J = / EoQo ̂ o = / I2powo - poj ~
J J \ ^O/

dXr

dXr

•Iff*2P2W2 -
E0K(X1 |X0)K(X2 |X1)

D? dXQ

(47)

This is th? function we wish to minimize subject to conditions in equation (39).
A u: • J 1 simplification is to write the biasing ratio in terms of a biasing function

I (ref. '; i s follows:

(48)

The biased random walk then is

H*(XQ,X1, . . .) = ̂ (X^JJK^Xj

- [EO(XO)IO(XO)] X,
X > ^XgjX^

I2(x2)
" *

(49)

The normalizing conditions given by equations (37) and (38) are

y"E0(X0)I0(X0)dX0 = 1

n Xn-l) ; T ^n = 1 n ~ ̂ ' 2'11 ' Jl J. T- /V \ Jl

*•„ 1 \A« 1 /n-1 n-1

(50)

(51)

Or equivalently as was shown previously

f W W^n = X n = 0, 1, 2, . . . (52)

14



The payoff for the biased random walk now becomes

P ( X ) P(XJ P ( X )
(53)

Notice that the biased payoffs are now only functions of the immediate state and do
not depend on past history. However, they do depend on the number of previous colli-
sions since the biasing function I depends on the collision index number n.

As in equation (18) we can write the conditional expected biased payoff as

/P*+2<Xi+2>Ki?2<Xi+2 frl

P(X{j.o)

W(X)
-T-r (54)

Similarly, the conditional expected square biased payoff for the random walk leaving X.
is given by equation (46) as

r °° M
OfCx.) - *fa »|x.) .-i- / X Ki+n>w(x1+n> - P2(x1+n)] ^y*'' dx,

1;^A.) f 1^._IA. _)n-0 *i+n(Xi+n^
n-° (55)

The expected square biased payoff now becomes

15



/

v* f ^n)(x i
50(X0) > [2P(Xn)W(Xn) - P

2(Xn)] _—S.
{. n I n^ n, n=u v.

9 T En(XJ
n)W(Xn) - P2(Xn)] -S-JL dXn (56)

n=0 n n

where variance for the biased process is given by

*2<"5> - 4*o2) -

Zero-Variance Bias Function

We wish to choose a biasing function that will minimize this variance. An obvious
zero-variance biasing function is given by '

P(XJ
I*(Xn) = - 2_ if p > 0 (58)

n

where the dagger superscript is used to designate this particular zero-variance biasing
case. We can see that I* satisfies the normalizing conditions given by equation (52).

, th
With v as the zero biasing function, the event payoff after the n event is given by a
constant \ regardless of the state X of the molecule. Thus, for any random walk,
irrespective of the states involved in the random walk, the individual random walk payoff
is always given by

(59)

where there are an infinite number of terms. Since the random walk payoff is always
2 tequal to the expected random walk payoff, the variance a (T]Q) must be zero. This can

also be seen from the previous equations by substituting I_(X ) from equation (58)
into (56) to obtain

16



Z
n=0

00 /*
= E Xn X [p<xn> + 2

'Vn=0 An

Hence,

Z
n=0

- y *n+ 2 y *n y ^ = f y =Z^t n t_j n /^ n+i I Z-^ n_

n=0 n=0

2 / 12\and from equation (57), a MQ ) = 0- This result states the obvious fact that a biasing
function that minimizes the variation in the event payoff to zero will reduce the variance
of the Monte Carlo result to zero.

If the event payoff is negative, the zero-variance biasing function would not apply
since, from equation (58), P > 0. However, it is possible to define a payoff function so
that it is always positive. For instance, in the scoring of the molecular flux, the sample
molecules passing in the positive direction would score a positive quantity, while the
sample molecules in the negative direction would score a negative quantity. Then, since
part of the payoff is negative, the zero biasing function would not apply. However, we
can score the sample molecules in the positive direction and the sample molecules in
the negative direction as separate positive payoffs. This would give the absolute molec-
ular flow in the positive and negative directions, which can then be subtracted to give
the net molecular flow. And the zero-variance bias function would then be applicable.

Minimum-Variance Bias Function

We can also minimize the variance by using a straightforward calculus of variations
procedure as follows (see ref. 4). To minimize S (T]Q ) as given by equation (58) with
respect to In(Xn) subject to the boundary condition of equation (52) and I > 0, we ob-
tain

17



E (X ) \^
[2P(Xn)W(Xn) - P2(Xn)] -JL.JL

»n=0 n=0

= 0

where D are constants to be determined. This gives

r 9 n EJXJ
-[2P(Xn)W(Xn)-P2(Xn)]-^L + Dn

This can be rewritten as

- P (Xn>]
1/2

multiplying by En(Xn) and integrating. Then using equation (52) to solve for D , we
can write the minimized-variance bias function as

[2P(Xn)W(Xn) - P2(Xn)]
1/2

/En(Xn)[2P(Xn)W(Xn)-P2(Xn)]

Since In > 0 and real, then [2P(Xn)W(Xn) - P
2(Xn)l > 0. If all the P(Xn) > 0, then

using equation (18) we find

(61)

2P(XJW(XJ-P2(XJ= P(Xn' x n >0

as required.
Substitution of I (Xn) into equation (56) gives for the minimized expected squared

bias payoff

00

=/ {/[2P(Y)W(Y) - P2(Y)] l 2 En(Y)dYJ

n=0

We can show that <?u)0 ) is less than ^"(rjQjas follows: Consider the inequality

18



J|[2P(Y)W(Y) - P2(Y)] - 7[2P(X)W(X) - P2(X)] En(X)dxl En(Y)dY
2

> 0

Then we can show that

\ y* [2P(Y)W(Y) - P2(Y)] En(Y)dY - \ If J2P(Y)W(Y) - P2(Y)] En(Y)dYJ

n=0 n=0

This can be written as

This equation shows the Monte Carlo error would be larger for the unbiased as compared
to the minimized-variance bias case. Since from equation (27)

2P(Xn)W(Xn) - P2(Xn) = Q(Xn) -f Q(Xn+1)K(Xn+1 |Xn)dXn

The result for the minimized-variance bias function equation (61) implies that the prob-
ability distributions should be increased at those values of X that contribute most to
the variance.

4t

The minimized-variance bias function I is not the same as the zero-variance
t n

bias function 1^ and so must be a relative minimum because it does not give a zero
variance as In does. This is true for the case where the Monte Carlo calculation is
carried out with bias functions exactly as given and where an infinite number of terms
are evaluated. In the actual calculation, since the bias functions are approximated and
only a finite number of transitions are evaluated, it is not known which bias function is
preferable.

Molecular Diffusion Numerical Results

We wish to apply the results of the random walk theory to the specific problem of
rarefied-gas diffusion where the diffusing molecule is considered to be undergoing a
Markov random walk. The diffusion molecule originates at the emitting plane surface
with the initial probability distribution given by EQ(XQ). Because the geometry is one
dimensional (see fig. 1) where the direction from the emitting plate to the parallel ab-
sorbing wall is along the Z-axis, we need only be concerned with the Z-component of the
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molecular position. Inasmuch as in this report we will be finding only the molecular flux
and molecular density at various positions across the gap, we also need consider only
the Z -component of velocity. The position of the molecule is designated by the dimen-
sionless coordinate z, which represents the distance that the molecule is from the
emitting plate divided by the mean free path A . Similarly, the symbol v is employed

Vs

to represent the velocity, where v equals the Z -component of velocity V divided by
the thermal velocity c. Thus, the state of the molecule is given by the ordered pair
{z,v}. If we assume thermal equilibrium for the molecules leaving the emitting wall,
ZQ = 0, the initial distribution of the state of the molecule is given by (see appendix A,
eq. (A2))

E0(z0, VQ) = [2vQ exp(-V2)]6(z0) (62)

The transition probability density can be written as

l> vn+l I zn' vn> = T<zn+l I V vn>C(vn+l I zn+l' vn>

The transport distribution T(z « |z , v ) is the probability of having a collision in
dz j at z . after leaving z . The collision distribution C(v .|z «, v) is the
probability that a molecule with velocity v after undergoing a collision at z j will
have a velocity after collision in dv .. at v - . However, once the molecule is inci-
dent on a wall either at z = 0 or z = I (where I is the inverse Knudsen number, i. e. ,
the distance between the plates divided by the mean free path L/A ), the molecule his-

C/

tory is ended. The molecule is then assumed to remain at the wall with zero velocity so
that the transition kernel is then given by

' vn+l zn> vn> = 6(zn+l ' zn>6(vn+l) for zn = ° or l ' n > °

where 6 refers to the usual Dirac delta function.
As shown in appendix A (eq. (A10)), the transport probability for the case of

Maxwellian-type collisions, where the collision rate 6 is a constant, can be written as

zn>

In the present case, the molecules are assumed to emerge from the collision with a
Maxwellian distribution. Thus, the collision probability is not a function of the previous
velocity and position and can be written as (see appendix A, eq. (A17))
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C(v)dv = -±- exp(-v2)dv (66)

(Other types of collisions, either classical or quantum mechanical can be used. )
We are interested in determining the macroscopic flow quantities: the molecular

flux and molecular density of the diffusing species at various positions z across thes
gap between the walls. These positions zo are called scoring positions and are illus-s
trated in figure 1. Thus, zc = (0. 1)1 corresponds to a scoring position at 1/10 of the

S
distance across the gap from the emitting surface.

Scoring Payoff

Each sample molecule that crosses the scoring position contributes, to the measure
ment of some macroscopic flow quantity of interest, and amount given by an appropriate
scoring function u. This scoring function will, in general, be a function of the dimen-
sionless velocity of the molecule as it crosses the scoring position. Since the number
of molecules per unit time crossing the scoring position in the steady-state case ju_ is

S
directly proportional to the rate at which the molecules leave the emitting plate,
the net flux of n crossing the scoring position can be expressed as ^

"0+^0+
(67)

The \^ TT^V) is obtained by scoring the value of n for each sample molecule passing
i

the scoring position and then averaging this result over N samples. The v is the

C
_. s

VTT(V)J is the value of
VTT(V) averaged over the local molecular velocity distribution of the molecules at the
scoring position s and is therefore equal to p . ' , the net mass flux of n transported

S
across the scoring position. Similarly, v~ is the molecular density of the molecules
being emitted from the surface, while S » (v) is the value of v averaged over the
molecular velocity distribution of the molecules at the surface leaving the emitting walls
per unit time and therefore equals JUQ , the mass flux emitted from the wall.

When the molecular flux /JL at the scoring position is desired, the appropriate
scoring payoff is

JT = ±1 when v <; 0 (68)
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Then equation (67) becomes

(w )

69
M> l

When the desired macroscopic quantity is the molecular density v at the scoring posi-
tion, the appropriate scoring payoff is

v-pr (70)
I Is

For this case, equation (67) becomes

- , v(71)

Analog Calculation

For the first example the "analog" Monte Carlo method is used. First, the sample
molecule birth velocity VQ is randomly picked using equation (A4). Then similarly a
point Zj of first collision is obtained from equation (A12). If the sample molecule in
going from ZQ to z« passes z , the appropriate scoring payoff TT(VQ) is scored as
the zero event payoff PQ. If the sample molecule does not pass z , p^ = 0. Then a
new velocity v. after first collision is found from equation (A21), and a position of
second collision z^ *s found as before. Again if z is passed by the sample molecule
in going from Zj to Zg, then P, = TT(VJ); if not, P-, = 0. The process is continued in
this manner until the molecule is incident on either wall where the random walk termi-
nates. The sum of all the event payoffs for this random walk then gives T]Q. The ran-
dom walk process is repeated until N independent samples are obtained yielding the
average value T]Q, which is an unbiased and consistent estimate of the expected value of
the random walk payoff X.

In figure 2 the molecular flux across the gap per unit molecular flux leaving the sur-
face is plotted as a function of inverse Knudsen number Z.

In figure 3 is shown the molecular density at the various scoring positions across
the gap per unit molecular density of the molecular flux entering the gap from the emit-
ter. These results are shown for a different inverse Knudsen number I.
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In table I the value of the normalized molecular density VS/VQ. a* the scoring po-
sition adjacent to the absorbing wall z = I is given for the analog calculation. Also

O

given is the sample standard deviation S^Q) obtained by use of equation (21). And in
addition, the average running time per sample a is shown.

Next-Event Calculation

In this calculation we take the first step to reduce the variance. As shown previ-
ously, if the variance can be decreased for each event payoff P , the variance of the
random walk payoff TJQ would also be reduced. In the analog calculation, we registered
a nonzero event payoff only if a sample molecule actually crossed the scoring position.
In the present case, called the "next event" calculation, we register a nonzero event
payoff at each molecular collision within the gap whether or not the sample molecule
actually crosses the scoring position. We can achieve this as follows: We can write
the n expected event payoff as

where the term T(Z , X ) is the scoring probability, that is, the probability that a mole-s n
cule in state X will reach the scoring position z without incurring a molecular col-n s
lision. Therefore, immediately after each collision we can score the event payoff

= , ( v ) T ( z , X ) (73)

and obtain an unbiased estimate of X . The scoring probability as shown in appendix A
(eq. (A13)) is given by

I •— I Z — Z \

(74)

The results of using the next-event calculation to find the normalized molecular
density at the scoring position adjacent to the absorbing wall is shown in table I and can
be compared to the results for the analog calculation. The next-event calculations gen-
erally resulted in a decrease in variance with some increase in running time. This did
not result in a net saving in computing time as shown by the tabulated values of I, which
is the percent decrease (+) or increase (-) in computing time for. the biased case com-
pared to the analog case for the same confidence limits (eq. (17)). The negative values
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of I indicate an increase in computing time is necessary to obtain the same confidence
limits in the biased case as in the unbiased case. Careful design of the computer pro-
gram, which can reduce computing time per sample, would be very effective in reducing
total computer time needed since large numbers of samples are calculated.

Birth Biasing

It is possible to use the zero biasing function given in the analysis by equation (58)
for the initial event,

(75)

because we can evaluate numerically the equation

idXQ (76)

For this case, the initial or ' 'birth1' payoff would be given by P^ = PQ/IQ = ^0' tnus> we

can take AQ as our initial payoff irrespective of the initial state XQ found for the
sample molecule.

The results for the case where we treat the initial event by the birth bias and use
the next-event calculation for all subsequent events are shown in table I. For the same
conditions used in the previous examples in table I, it can be seen from the table that
there is a decrease in variance for the smaller values of I. There is also a decrease
in running time. This generally resulted in a savings in computer time, as shown by the
positive values of I in table I.

Survival Biasing

The variance in the random walk payoff of the molecule T]Q is in part caused by
the variation in the number of payoffs that are scored before the walk terminates. That
is, if a sample molecule is incident on one of the walls when the number of previous
scorings is small, it would be expected that the random walk payoff TJQ for this mole-
cule would be small compared to a sample molecule that had a very large number of
previous scorings. Hence, if we reduce the variation in the number of collisions, we
could expect to reduce the variation in TJQ. One method of accomplishing the aforesaid
purpose is to bias the transition probability so that the sample molecule is not permitted
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to reach an absorbing wall. We can write the survival transport distribution T^s' for
the molecules so that the next collision occurs before the molecule is incident on the
absorbing surface as

~n-J ' - ~n " •«• \' '/

where & is either 0 or I depending on whether the sample molecule velocity v _,
is less than or greater than 0.

— (s\
The normalizing factor Tv ' is given by

n-l

These results are shown in appendix A (eq. (A15)).
Since the event payoff P(X ) is zero for all z > y, we can write the expected value

tH
for the n event payoff as

v—(<*), ,—(<*) s — (<?}, vlY \T |VOMY ^ rr\D ' /Y \ TV°'/Y M•*» — / J . v -*»n /A \A •< ^ ... 1 V.A <Hn' U v 1 n-rj

yp fY ^T's ' />7 IY \C{\T ^T'sM-7 IY \fltr } T'SM^ IY ^PCir il HY ^7Q^
(r 0 ^ 1 I 0' ^ 1 VZ2 IA1'^^V2' ' ' ' ^ n' n-1 ^ n I 0' ' " * '

The Monte Carlo procedure for the survival biasing case now consists of picking the new
position X by using the survival-biased transport probability T^s'(z |x *) and scor-
ing the survival-biased payoff

lo} —lo\ —(o} —<a\
P\°/ _ TJ/Y ^^^^O '/Y ^^^\O '/Y ^ rT\°'IY ^ ^Rfi\„ — "^A«/ -I- \Ar>> 1 lA-il ... 1 IA_ iJ \OUJn v n' v U' v l' n-l

Velocity Biasing

Much of the event payoff variance is caused by the large variations in velocity of
the scoring sample molecules. In the zero biasing analysis we wished to minimize the
variation in the event payoff. We can do this by defining a biased collision distribution

(81)
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where PC'(X ) is the collision bias function and is subject to the conditionn

/C(vn)I
(c)(vn, zn)dvn = 1 (82)

The biased random walk distribution is now given by

T(s)(zn|Xn.1)C(vn)I^(Xn) (83)

and the biased random walk payoff is now

p(c) = T ( X ) T ( X ) . . . T(X ) (84)

i(c)(xn)

2
The variance of the event payoff a (P ) is given by

« 0 ' - - « n (85,

We can minimize equation (85) with respect to Pc'(Xn) by using the calculus of variations
to obtain

n' • • • c<v]
<Xn>

D2[E()(X0). . . C(vn)]ldX0. - - dX^ (86)

o
where D is the Lagrange multiplier. This result can be rewritten as

DI(c)(Xn) = P(Xn)T
(s)(XQ)T(s)(X1) . . . T(s)(Xn_1) (87)

which can be solved for D by using equation (82) to give
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(C)(XJ = s (88)
CP(zn)

where

Then the velocity-biased n event payoff becomes

PnC) =PC(zn)T<s>(X0)T<s>(X1) . . . T^CX^) (89)

While the random walk needed for scoring is given by

H(C) = EO(XO)T(S)(ZI XO)G(VI) . . . T(s)(zn|xn_1) (90)

We can now proceed to use the technique of survival and velocity biasing in evaluating
X... Of course, \1 can be evaluated by numerical integration and this value used for all
first-event payoffs, as in the birth case, regardless of the state X1. However, this nu-
merical integration would be difficult and instead we proceed as follows: We wish to
evaluate the biased payoff previously derived in equation (89) as

p(c) =T(S)(XO)CP(ZI) (91)

The biased random walk is thus given by equation (90) as

H(C) = EO(XO)T^(ZI|XO) (92)

To evaluate Pi° , we randomly choose VQ from EQ(XQ) as shown in appendix A

(eq. (A3)). This allows us to evaluate T^S'(XQ). Then Zj is found by randomly pick-
ing T^s'(z. |XQ) as given in appendix A (eq. (A16)). With vfi and z.. evaluated, the
first-event payoff Pip is scored. We can continue and evaluate P(X2), P(Xg), . . .
with an unbiased procedure so that the random walk is then given by

H(c) = E0(X0)T(s)(Zl |X0)C(V1)K(X2|X1) . . . (93)
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Then for the correct n payoff we have

PnC) = P(Xn)T
(s)(X0) n > 1 , (94)

The result for the birth bias and first-term bias with the remaining walk unbiased is
shown in table I under the "+1 Term bias. " The results show a significant decrease in
sample variance, except for the largest value of I , although there is a corresponding
increase in computer running time. The net savings in computer time was mixed, im-
proving some of the cases only.

The biasing can be continued to the second collision, which would have the payoff

P(
2
c) =T(s)(X0)T(s)(X1)CP(z2) (95)

The biased random walk is now given by

H(c) = E0(X0)T(s)(Zl|x0)C(Vl)T(s)(z2 Xx) (96)

To evaluate P2 we have previously obtained values of XQ, z^ and T^s'(vQ) used in
finding P^. We then randomly pick Vj from G(VJ) and evaluate f^Xj). Then zg

is found by randomly picking from T^s'(z0 Ix.,) as shown in appendix A (eq. (A15)). We
(c)can then evaluate the biased second-event payoff P\ . We can continue in either a

biased or unbiased manner in this fashion. The result for biasing to the third collision
p(c)(X0) + P^C\X1) + p(c)(X2) + p(c\X3) while the remaining collisions are unbiased

+ P(X&) + . . .] are shown in table I labeled "+3 Term
bias. " Now significant reduction in variance is seen even for I of 50 in this case.
There was a net savings in computer time for all values of I .

Russian Roulette

Finally we can bias continuously; however, in this case, the random walk does not
end because the transport probability biasing does not allow the molecules to be incident
on the walls. In this case, Russian roulette was used to end the random walks. The
sample histories were followed until the weighting T^S\XQ)T^S\X1) . . . T^s\Xn_1)
was less than 0. 001. Then if a randomly picked number uniform between zero and unity
was greater than 0. 1, the history was ended. If less, the sample weight was multiplied
by 10 and the process continued. These results are given in table I under "Russian
roulette. " This resulted in decreasing the variance but increasing the computer time
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such that the net saving in time was not greatly improved over the three-term bias case.
However, no effort was made to optimize the values used, 0. 001 or 0. 1. Further effort
in this direction could significantly improve the Russian roulette procedure.

CONCLUSIONS

Molecular diffusion through a rarefied gas was analyzed by the theory of Markov
random walks. The results indicate variance reduction techniques can be successfully
used in Monte Carlo analyses of rarefied-gas problems. This can be important in cases
where "analog" Monte Carlo analysis of unbiased random walks gives such large vari-
ances that unreasonably large amounts of computer time are needed to obtain acceptable
confidence limits on the results.

In the present analysis, both a zero-variance and a minimum-variance biasing func-
tion are found. These biasing functions, however, apply only for positive event payoffs.
However, by appropriately defining the scoring, the event payoffs can be made positive.

The minimum-variance biasing function does not give a zero variance, as the zero-
variance biasing function does, and so must give a relative minimum variance. How-
ever, in the Monte Carlo calculation procedure when only a finite number of events can
be calculated and the bias functions are approximated, which of the biasing functions is
optimum has not been determined.

The present results can be applied to any Markov process such as thermal radia-
tion, where instead of following molecules through various molecular collisions we can
follow photons through the random walks and apply these same variance reduction tech-
niques.

The "Russian roulette" procedure did not significantly increase the running time
saved. The reason may be that the parameters used in the Russian roulette procedures
were not optimized.

Since the Monte Carlo procedure is a continuous sampling process, further improve-
ment can be obtained in computer time saving by introducing a learning process into the
program so that the bias function would be changed as additional samples are obtained.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, June 22, 1973,
502-28.
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APPENDIX A

BIRTH D I S T R I B U T I O N

Assume that the molecules leaving the emitting surface at z = 0 are in thermal
equilibrium with the emitting surface and that the z -component of velocity v in dv is
divided by the total molecular flux leaving the surface /I given by

Then the flux of molecules leaving the emitting surface at z = 0 gives the initial
z-component of velocity distribution of the molecules leaving the surface (ref. 3) as

EQ(v) = 2v exp(-v2) (A2)

In the Monte Carlo calculation we can randomly choose a VQ from this distribution
by using

/

Vz0

where R is a random number generated on the computer from a uniform distribution
between zero and unity. Equation (A3) can be rewritten as

(A4)

Path Length to Collision

The distance a molecule travels between collisions can be found as follows: The
probability of a molecule having a collision in time dt is given by

- dN = +0 dt (A5)
N

where 0 is the collision rate. The probability of not having a collision during time t
is given by N/NQ, which can be obtained by integration of equation (A5) to give
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— = exp(-0t)
N0

(A6)

Then the probability for having a collision in dt after having no collision in time t is
C*

given by

N.x^=fexp(-0tc)l(-0)dt
Nn N L CJ

(A7)

The distance between collisions is then given by

A= IV l'c-M"«c 0 c
0) (A8)

In reference 3 for a Maxwellian-type collision the collision rate 0 is shown to be a
constant. Then if we define a mean free path X = C/0 and normalize so that 6 = A/Ac c
we obtain for the distance between collisions

= v |(t_e) (A9)

Combining equations (A7) and (A9) gives the probability of having a collision to be

n exp - n

n1

d6n

n 1
(A10)

where

We can randomly pick from this distribution by using

(All)

This can be integrated to give

(A12)
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The scoring probability, which is the probability of reaching a scoring position z
o

from some point z without having an intervening collision, is given by the probability
of having a first collision at 6 > 6 = | z - z |. This is given by

/

oo

T(6|v)d6=

0=6.,

(A13)

In some biasing cases we wish to pick from a transport distribution containing dis-
tances to collision which are limited to values smaller than those which would cause
the molecules to be absorbed at the walls:

6 < where
1 1 - z | for v > 0

z for v < 0

For this case the transport probability is given by

(A14)

T(s)(6|v)d6 =

exp - d6
T(5Jv)

/*/0 exp - 6 d6 1 - e>

(A15)

We can randomly pickirom this distribution by using

6 = - v ln<l - R 1 - exp (A16)

Sample Velocity After Collision

The molecules coming out of collision are assumed to be in Maxwellian equilibrium.
We can thus write for the distribution of molecules coming out of collision the Maxwel-
lian v-component of velocity as

C(v)dv = "v dv (A17)
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To randomly sample from this distribution we can write

f(v,X) =
2 -X

with

v = p cos 9 0 < p < °°

X = p sin 9 0 < 9 < n

We can then find

so that

v = -l

(A18).

(A19)

(A20)

(A21)
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APPENDIX B

SYMBOLS

l!Zn+l'^n) collision distribution

C^C'(V |z ) biased collision distribution

c thermal velocity

D constant

E(X) distribution at X

En(X) distribution at X after n events

EQ(X) initial or birth distribution

«?() expected value

& ( ) expected value based on local molecular distributions
G(X | Y) Green's function

H(XQ ,Xj, . . .) random walk distribution

I percent running time (saved +, lost -)
tc\P ' collision bias function

I bias function for n events

In zero-variance bias function

I minimized-variance bias function

K(Y|x) transition distribution

IO '(Y|x) transition distribution for I events

<g limiting value

L distance across gap

Ln biasing ratio

I inverse Knudsen number, L/X
\s

P event payoff

Q(X) conditional expected square payoff for a random walk leaving X

R random number picked from a uniform distribution between zero
and unity

S sample variance
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T(Z |x _..) transport distribution

T^S'(Z |x «) survival transport distributionv n1 n-l r

-jAs'(X \ normalizing factor

V point in velocity space (Z-component of velocity)

v dimensionless velocity in z-direction, V/c

W(X) conditional expected payoff for a random walk leaving X
•Hi

X point in position and velocity space immediately after n event

Y point in position space

Z coordinate across gap

z dimensionless distance across gap, Z/X

a average running time per sample

A distance between collisions

6 dimensionless distance between collisions

e confidence limit

rjQ random walk payoff

© collision rate

X expected payoff for random walk

X mean free path

A, expected value of k event payoff

X ,X expected molecular flux and density payoff

/z molecular flux

/LT ' molecular flux of TI at scoring position ss
JUQ molecular flux emitted at plate

v molecular density at scoring position
S

•n scoring function
2

a variance

T scoring probability

Subscripts:

c thermal velocity
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n event index

s scoring position

z position in channel

jj. molecular flux

v molecular density

0 evaluated at z = 0

+, - positive and negative z-direction

Superscripts:

(s), (c) survival biasing, velocity biasing

/j. molecular flux

v molecular density

t zero-variance case

minimum-variance case

* biased case

~~ sample average
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TABLE I. - NUMERICAL RESULTS - 10 000 SAMPLES

Monte Carlo
method

Density
ratio,

"/"0+

Standard
deviation,

S(TJO)

Average
running
time per
sample,

o,
min

Percent
change in
running

time
(saved +,
lost -),

I

1 = L/AC = 0. 1

Analog
Next event
Birth bias
+1 Term bias
+3 Term bias
Russian roulette

0.848
.844
.845
.850
.855
.854

0.923
.867
.741
.1568
. 116
. 115

0. 13X10"4

.15

.12

.42

.64

.61

0

-1.8
+40.5
+90.6
+92.2
+92.7

I = L/XC = 1

Analog
Next event
Birth bias
+1 Term bias
+3 Term bias
Russian roulette

0.4914
.4881
.4881
.4958
.487
.491

0.7494
.7188
.7185
.5728
.336
.259

0. 31xlO~4

.35

.32

.59

.95

2.33

0

-3.8
+5.1

-11.2
+38.4
+10.2

I = L/XC = 10

Analog
Next event
Birth bias
+1 Term bias
+3 Term bias
Russian roulette

0. 1202
. 11965
. 11965
. 1171
. 1195
. 1172

0.578
.527
.527
.463
.402
.244

2. 14X10 4

2.33
2.31
2.48
3.22

13.97

0
+9.49

+ 10.2
+25.6
+27.2
-16.3

1 = L/\c = 50

Analog
Next event
Birth bias
+1 Term bias
+3 Term bias
Russian roulette

0.0261
.0263
.0263
.0263
.0246
.0245

0.224
.238
.238
.2759
. 183
. 168

10. 78X10"4

11.61
11.60
11.34
14.17
39.50

0

-21.6
-21.5
-59.6
+ 12.27

-106.1
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* Nondiffusing species
O Diffusing species

Scoring cross sections, Zs

Emitting
surface-

X 0 |
(v, z)f

— Inverse Knudsen number, I = ll\

Figure 1. - Analytical model.

1 10
Inverse Knudsen number, I = UXC

Figure 2. - Molecular flux across gap per unit molecular
flux as function of inverse Knudsen number - analog
calculation for 10 000 samples.

100

Inverse Knudsen
number

0 .1 .2 .3 .4 .5
Dimensionless distance across channel, z =Z/L

Figure 3. - Molecular density at various scoring positions
across gap per unit molecular density entering gap from
emitter - analog calculation for 10 000 samples.
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distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

N A T I O N A L A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N

Washington, D.C. 20546


