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ABSTRACT

The H II region H2-3 has been found to have a large

infrared flux with a luminosity of 1 to 2 x 10 LQ between

1.65 and 25 y. Most of this flux comes from a single

component with a diameter of 110" (2 pc). At 2.2 p there

is an unresolved source which is identified as the exciting

star of the nebula; it can provide the required ionization

and the total luminosity observed at infrared wavelengths.

The 3- to 25-y radiation is shown to be consistent with

dust heated by La radiation within the nebula, but much

of the 40- to 350-y radiation probably originates from

outside the H II region.
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I. INTRODUCTION

The small optical H II region H2-3 (RCW 117,

G345.4-0.9) is a bright radio source at 2 cm (Rubin 1970).

Radial velocities have been determined from observations

of hydrogen recombination lines (Rubin and Turner 1971}

and of 21-cm absorption and emission lines (Radhakrishnan

et al. 1972). Discrepancies in the results are large, but

an estimate of 4 kpc for the distance to H2-3 is not

unreasonable. Intense 40- to 350-y emission has been

measured by Emerson, Jennings, and Moorwood (1973) with

X(»
a spatial resolution of 5'.

II. OBSERVATIONS

The 1.65- to 20-y photometry discussed in this paper

was obtained on the 36-inch (92-cm) telescope at Cerro

Tololo Inter-American Observatory in 1971 April, on the

24-inch (61-cm) telescope at Mt. Wilson in 1971 May, on

the 40-inch (102-cm) telescope at Las Campanas Observatory

in 1972 April and September, and on the 88-inch (224-cm)

«

telescope at Mauna Kea Observatory in 1973 May. The

data consist of spatial scans plus photometry at selected

points. From right ascension and declination scans at



2.2, 3.5, 10 and 20 y with 15" and 45" apertures, the

source was found to be roughly circularly symmetric with

a full width of approximately 110" at all observed wave-

lengths. The infrared source appears to be of the same

order of size as the image of H2-3 on the Whiteoak

extension of the Sky Survey. There is also good agreement

between the position of the center of the optical image

on the survey print and the extended infrared source

(table 1). A careful search of the central region of

the nebula with 10" resolution at 2.2 y revealed one
*

•~26 -"̂ 2 — Tdiscrete source with flux densities (10 W m Hz ) of

0.12 +0.02 at 1.65 y, 0.16 +0.02 at 2.2 y, and less than

10 at 10 y. The position of this latter object, which in

§ IVb we identify as the exciting star of the nebula, is

given in table 1.

The results of the scans and of photometry with various

sized apertures are summarized in figure 1. All of the

observed infrared colors are constant as a function of

nebular radius to within the errors, although point

photometry at 2.2 and 3.5 y with a 23" aperture shows

that the outer regions of the nebula at a radius of 44"

are 0.7 +0.2 magnitude redder than the center of the nebula.
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Pigure 1 has been used to obtain the total fluxes within

the central 110" area of H2-3; these fluxes are shown

in figure 2.

III. SUMMARY OF PROPERTIES

1. H2-3 consists of a single extended 2-pc diameter

source with a luminosity of (1.8 +0.5) x 10 LQ between

1.65 and 25 y. This radiation appears to originate

from within the optical nebula.

2. The infrared surface brightness of the source
*

increases towards the center. *"

3. At 1.65 and 2.2 y there is an unresolved source

within the nebula. The [1.65 y] - [2.2 y] color of this

source is 0.4 magnitudes bluer than that of the extended

nebula.

4. Longward of 3.5 y there is a considerable excess

of emission compared with that predicted from the radio

data by use o"f the extrapolation formulae of Willner,

Becklin, and Visvanathan (1972). Shortward of 3.5 y

the opposite is true, and there is a deficiency.
«

5. The infrared colors are independent of aperture

size, to within the errors of the measurements, except perhaps

in the outermost regions of the nebula.
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IV. DISCUSSION

a) The Reddening

By comparing the [1.65 y] - [2.2 y] color and the

1.65-y flux with the values expected on the basis of re-

combination emission (Willner et al. 1972), we obtain

visual absorptions of 8 and at least 7 magnitudes, respec-

tively. These values were computed by using the van de Hulst

reddening law (Johnson 1968). If, as will be shown in

S IVb, the discrete source seen at 2.2 and 1.65 y is the

exciting star of H2-3, then its observed colors lead to

a visual absorption of 15 magnitudes. These values for the

absorption are not necessarily inconsistent because of.

unknown contributions from dust emission to the nebular and
jtf

stellar fluxes.

b) The Exciting Star

The discrete source observed at 1.65 and 2.2 y can

probably be identified as the exciting star in H2-3 because

(a) it has a small diameter, (b) it has a much bluer color

in the 2-y region than the nebula itself and, (c) it is
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located within 20" of the geometric center of the nebula

(table 1).

If the discrete source is at the distance adopted

for H2-3 and its extinction is as discussed in the previous

section, then its absolute magnitude at 2.2 y is -5.0.

For it to be the exciting star of H2-3 it must be an O

star, so that V - [2.2] = -0.96 magnitudes (Johnson 1966)

and M * -6 magnitudes; the apparent visual magnitude of
v Ar

such a star would be about 17. As will be shown below,

both the ionizing flux and the total luminosity from H2-3

can be provided by such an early-tyjSe star; tft*. unlikely

possibility that the object is a very late-type M star

unassociated with the nebula will not be considered.

c) The Dust Temperature

The 3.5- to 20-y energy distribution shown in figure 2

cannot be fitted by a single temperature black-body curve;

* if this radiation arises from hot dust there must be a

range of dust particle temperatures within the nebula. To

within the errors of the measurements, the 3.5- to 20-p energy

distribution does not change over the face of the object,
I

indicating that the range in dust temperatures varies little

throughout the nebula. The dust temperature as characterized

by the 10- and 20-y fluxes is about 170°K; the central 30"
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has an optical depth at 20y of approximately 5 x 10~4.

d) Mechanism for Heating the Dust

If the 2-v point source is the exciting star of the

nebula, then, as pointed out in S ivb, its absolute visual

magnitude is -6. A zero-age main sequence star of this

magnitude would have a spectral type 04 (Conti and Alschuler

1971) and a surface temperature of 50,000°K (Conti 1973).

Using the latest model atmospheres of Mihalas (1972),

Westbrook (private communication) has calculated the total

luminosity of such a star to be 1.4 x 10 LQ. Since Emerson

et al.'s (1973) 40-350 y flux density indicate* a luminosity

of 1.0 x 10 LQ, assuming a distance of 4 kpc, it is very

likely that all of the infrared emission from H2-3 is the

result of heating of dust particles either directly or

indirectly by stellar energy.

Where are these particles? Observations have shown

that the infrared energy in the range 1 to 25 y is all

being emitted from within the ionized region. Because of

poorer resolution at longer wavelengths it cannot be

directly determined from the observations whether this is

also true for the remaining 85 % of the total power from

H2-3,*or whether the bulk of the 100-y emission is being

radiated from a neutral region outside the H II region.

The crucial factor is the relative density of the dust and

ionized gas within the H II region. If the,dust density is



-9-

low enough, only the resonantly scattered La radiation

will be absorbed by dust within the ionized region, and

all the optical photons will escape into the surrounding

neutral gas (see, e.g., Harwit et al. 1972). From the

radio flux density (Caswell 1972) and Rubin's (1968)

49 -1formula, it may be deduced that 7 x 10 s photons are

necessary to ionize H2-3. On the assumption that each of

these photons creates a La photon, the power available

as La photons is 3 x 10 L@. This value is in excess of

5
the 1.8 x 10 L~ known to be emitted from within the H II©

region itself at A £ 25 y; this model therefore presents

no conflict with observations.
+

If the dust density in the H II region insufficiently

high, on the other hand, some ionizing photons will be

absorbed within the H II region by dust rather than by gas.

An 04 zero-age main-sequence star emits about 10 s

ionizing photons (Westbrook, private communication); a

later-type star satisfying the 2-v observations would emit

49 —1fewer. As discussed above, about 7 x 10 s photons are

required to maintain the ionization in H2-3. Consequently,

no more than half of the ionizing photons can be absorbed

by dust grains within the H II region; thus the optical
o

depth is less than unity at 900 A (Petrosian, Silk, and
«

Field 1972) and, therefore, much smaller at visual wavelengths,

Most of the visible photons, both from the star and the

nebula, will be able to escape the ionized region and be
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absorbed in the surrounding neutral gas. This second

model, therefore, like the first, leads to the prediction

that a significant amount of the radiation at X > 25 v
(cf. Lemke and Low 1972).

will be emitted from- outside the nebula.. Size measure-

ments at 100 M and a flux density measurement at 35 y

with a small aperture would obviously be desirable.
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TABLE 1

H2-3 POSITIONS

Right Ascension
(1950)

Declination
(1950)

Center of 10-p emission

Center of optical emission

Discrete 2-ji source

17h06m01.5±l?0

17 06 02.5±1.0

•17 06 02.3±0.4

-41 32'20+10"

-41 32 18110

-41 32 04±5



FIGURE CAPTIONS

Fig. 1 - The flux density-aperture diameter relations for H2-3. The

filled circles denote direct photometric observationsj the

crosses indicate data obtained by integrating under the

spatial scans. The dashed line through the 20-u points shows

the relationship for a model in which the volume emissivity

E is inversely proportional to the physical central distance

r. Also shown is the relationship for a surface of uniform

surface brightness.
•f*

Fig. 2 - The infrared energy distribution of H2-3 obtained by assuming

.circular symmetry and integrating the total flux under the
+

***spatial scans out to the full 110 diameter of the source.

The dashed line represents the infrared fluxes extrapolated

from the 2-cm observation of Rubin (1970), with the formula

of Willner et. al. (1972).
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