Summary Report

TEST FIXTURE DESIGN FOR BORON-ALUMINUM AND BERYLLIUM TEST PANELS

August 1973

TELEDYNE BROWN ENGINEERING

Research Park • Huntsville, Alabama 35807
SUMMARY REPORT
ASD-ASTN-1745

TEST FIXTURE DESIGN FOR
BORON-ALUMINUM AND BERYLLIUM TEST PANELS

By
C. G. Breaux

August 1973

Prepared For
ENGINEERING DIVISION
ASTRONAUTICS LABORATORY
GEORGE C. MARSHALL SPACE FLIGHT CENTER

Contract No. NAS8-29901

Prepared By
ENGINEERING ANALYSIS DEPARTMENT
AEROSPACE SUPPORT DIVISION
TELEDYNE BROWN ENGINEERING
HUNTSVILLE, ALABAMA
FOREWORD

The work reported herein was performed under the sponsorship of the Engineering Division, Astronautics Laboratory, George C. Marshall Space Flight Center. Mr. Walter D. Medenica, S&E-ASTN-ET, is the NASA representative on this contract. The work was accomplished under contract NAS8-29901.

The work was performed by the Aerospace Support Division, Teledyne Brown Engineering, Huntsville, Alabama. The Strength Analysis Branch of the Engineering Analysis Department was responsible for project management. They were supported by the Design Engineering Department. Key Teledyne Brown Engineering personnel associated with the program and their respective areas of responsibility are:

C. Breaux Project Supervisor
K. Long Design
G. Kramer Design
J. Mathison Stress
P. Warren Stress
D. Weiss Thermodynamics

APPROVAL:

[Signature]
G. L. Hearne, Manager
Strength Analysis Branch

[Signature]
C. E. Kaylor, Manager
Engineering Analysis Department
ABSTRACT

A detailed description of the test fixture design and the backup analysis of the fixture assembly and its components are presented in this report. The test fixture will be required for the separate testing of two boron-aluminum and two beryllium compression panels.

This report is presented in conjunction with a complete set of design drawings on the test fixture system, DRW 90M05028.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION I.</th>
<th>INTRODUCTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION II.</th>
<th>DESCRIPTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Heat Enclosure</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>B. Loading Column</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>C. Duct System</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION III.</th>
<th>ANALYSIS SUMMARY</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Structural Analysis</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>B. Thermal Analysis</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Convair Uniformly Loaded Boron-Aluminum Compression Panel.</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>MDAC Point Loaded Boron-Aluminum Compression Panel.</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>Lockheed Uniformly Loaded Beryllium Compression Panel.</td>
<td>11</td>
</tr>
<tr>
<td>4.</td>
<td>Lockheed Point Loaded Beryllium Compression Panel.</td>
<td>11</td>
</tr>
<tr>
<td>5.</td>
<td>Test Fixture Assembly</td>
<td>12</td>
</tr>
<tr>
<td>6.</td>
<td>Side View of Test Fixture Assembly</td>
<td>13</td>
</tr>
<tr>
<td>8.</td>
<td>Heat Enclosure and Heat Source Showing Return Air Duct</td>
<td>15</td>
</tr>
<tr>
<td>9.</td>
<td>Front View of Insulated Heat Enclosure</td>
<td>16</td>
</tr>
<tr>
<td>10.</td>
<td>Top and Side View of Heat Enclosure</td>
<td>17</td>
</tr>
<tr>
<td>11.</td>
<td>Loading Column Assembly</td>
<td>18</td>
</tr>
</tbody>
</table>
SECTION I. INTRODUCTION

The development of two boron-aluminum and two beryllium experimental compression test panels (Figures 1 through 14) by Marshall Space Flight Center (MSFC) has necessitated the design of a suitable test fixture system. All four panels are to be tested in compression and subjected to a 600 °F temperature environment during load application. A concentrated load is to be applied to two of the specimens and a uniform load applied to the remaining two. The overall dimensions of the four specimens are:

- MDAC Boron-Aluminum Point Loaded: 48 by 72 in.
- Lockheed Beryllium Point Loaded: 48 by 75.5 in.
- Lockheed Beryllium Uniform Loaded: 86 by 29 in.
- Convair Boron-Aluminum Uniform Loaded: 80 by 29 in.

The decision was made by NASA to design a single test fixture system to accommodate all four panels since enough similarity exists in their overall dimensions and test requirements. Each specimen is to be tested separately and certain minor adjustments and modifications to the test fixture design or setup must be made for the testing of each respective panel. For this reason, it is recommended that the McDonnell Douglas Astronautics Company (MDAC) panel be tested first since some gusset plates must be field-welded to the enclosure frame for the test setup on the uniform loaded beryllium panel. These gussets may interfere with the side constraint devices on the MDAC panel test setup.

The two basic parts of the test fixture system are the loading column and the heat enclosure. The loading column consists of one hydraulic cylinder, one load cell, two partially tubular connecting rods, and two monoball lug and pin connectors at each end. The top lug and pin connector attaches to the crosshead of the 2,000,000-lb Gilmore testing machine (Building 4619) which will function as an attach and reaction point for the loading column. The loading column structure was designed to withstand the 350,000-lb test load with a required factor of safety. The lower part of the column which is located within the heat enclosure is exposed to the 600 °F thermal environment during testing. This exposed area is wrapped with insulation and a simple cooling system was designed to prevent overheating of the load cell and the hydraulic cylinder.
The required thermal condition is accomplished by enclosing the specimen within an insulated rectangular structure, then forcing hot air from an independent heat source through a duct system connected to the heat enclosure. The framework of the heat enclosure must also provide lateral and base support for the compression panels. The structure around the passage hole in the ceiling provides lateral support to the loading column. The enclosure which is 4.17 ft wide by 6.03 ft long by 11.68 ft high is a steel-framed rectangular box covered with sheet metal and externally insulated over the walls and ceiling with two layers of 2-in. thick mineral wool boards. The entire enclosure rests on the steel floor of the Gilmore machine; however, a 1-in. thick insulation pad (Marinite-36) is sandwiched between the bottom of the enclosure and the steel floor. In order to have free access to the panels for instrumentation and inspection, and also to allow for easy loading and removal of the specimens, the top and two broad side panels of the enclosure are removable.
SECTION II. DESCRIPTION

The development of a workable test fixture system for the testing of the four panel specimens required a total system design which included some existing hardware and some newly designed components. One of the existing items which is part of the overall fixture system is the 2,000,000-lb Gilmore testing machine (Figures 5 and 6). This large testing machine which is located in Building 4619 simply provides a convenient location for the test fixture. The Gilmore machine will not be used to apply the compression load to the specimen; a separately designed loading column will be suspended from the crosshead of the test machine. This loading column will produce the required compression loads; whereas, the crosshead functions as a convenient reaction point for the loading column's force. Also, the crosshead can be adjusted to various elevations (up to 22 ft from floor); thus, it provides a means of raising and lowering the loading column as required for the various tests. The heat enclosure will be bolted to the steel floor of the Gilmore machine in four locations; two of these locations will be at existing threaded holes and the other two locations will require tap drilling into the steel floor.

The next item, the heat source (Figures 7 and 8) was procured by NASA for this specific test. The only required work associated with the heat source involved the design of the interface connection between the duct system and the heater's supply and return ports.

The remaining three assembly items that complete the test fixture system and were designed under this contract are:

- Heat enclosure
- Loading column
- Duct system.

The insulated enclosure and its framework must perform as a heat retainer, and provide lateral and base support for the four specimens. The loading column's function is to apply the concentrated and/or uniform compression loads to the compression panels. The duct system (Figures 7 and 8) consists of two insulated air ducts, supply and return, which interface between the heat source and the heat enclosure. A more detailed description of the above design items will follow.
A. Heat Enclosure

The heat enclosure (Figures 9 and 10) is a steel framed rectangular box covered with 1/8-in. thick sheet metal and externally insulated over the walls and ceiling with two sheets of 2-in. thick mineral wool boards. All of the frame members are A-36 steel, wide flange beams; most of which are W 6 by 15.5. The two sheets of mineral wool board are overlapped at the seams to lessen heat loss through the seams. The wool boards are fastened to the metal panels with weld pins which are available from the insulation vendor. The weld pin attachment technique involves welding a 12-gage nail pin to the sheet metal at 18-in. intervals; then placing the insulation against the sheet metal whereby the pin completely penetrates the thickness of the insulation. At this point, self locking rectangular washers are placed over all of the protruding pins. Insulation is also required between the base of the heat enclosure and the steel floor of the Gilmore machine. In this design, a 1-in. thick heavy duty insulation board, Marinite-36, is sandwiched between the steel floor and the enclosure.

The top, front, and rear panels are removable to allow easy loading and removal of the specimens. Handles are attached to these panels to permit ease of handling during removal and replacement. The front and rear removable panels have angle stiffeners near their borders to maintain rigidity of the sheet metal during the removal process. The top panel is made up of two panel segments to allow the loading head to be lifted out of the enclosure. The top front wide flange beam (Figure 10) is also removable to allow possible loading of the panel specimens with a small crane.

The top panel provides lateral support for the loading column at the passage hole. Two semicircular rings are permanently attached to the skin of the top panel; one per panel segment. These half rings form a complete circle at the passage hole when the top panel is assembled. A floating collar which is placed around the rod of the loading column is bolted to the permanent ring after the column head is placed and set over the specimen.

The base support beam which is required to react the compression loads applied to the panels consists of a large wide flange beam (W 12 by 85) stiffened with gusset plates. After the gusset plates are installed, the top and bottom surfaces are machined for close tolerance (horizontal surface) and parallelism. This will encourage a uniform distribution of the compression load at the base of the specimen.
The supply and return interface connections for the ducts are located on the opposite narrow panels of the enclosure. A heat deflector is located on the inside of the enclosure at the supply duct interface connection. The deflector was installed to prevent hot spots from occurring on the panel specimen.

Another function of the enclosure is to provide lateral support to all four panels during their subsequent testing. Lateral support devices required for the McDonnell Douglas boron-aluminum point loaded panel are located on both sides and center of the panel at the four ring frame locations (12 points). The devices which interface between the specimen and the enclosure frame members consist of a wheel and track type system. This system restrains lateral movement but allows thermal growth in the vertical and side directions.

The Lockheed beryllium point loaded panel is supported along its sides at four points per side. The edges (sides) of the panel are clamped continuously with an angle and narrow plate arrangement. Four stiffened clip angles per side are used to interface between the specimen's sides and the side members of the enclosure. These clip angles will be installed in the field and used for this test only. The devices which interface between the specimen and the enclosure frame members consist of a wheel and track type system. This system restrains lateral movement but allows thermal growth in the vertical and side directions.

The Lockheed beryllium uniform loaded panel is clamped and supported in a similar manner with four support points per side. However, since this panel is not as wide as the point loaded panel (48 versus 29 in.) the distance between the panel edge and the enclosure frame is considerably more. Thus, for this panel a horizontal "A-frame" type structure is used to interface between the specimen and the enclosure member. Again these side attachment members will be used for this test only.

The Convair boron-aluminum uniformly loaded panel is also laterally constrained at the edges but only at two points; one on each side of the ring frame. Again, a cantilevered "A-frame" interfaces between the specimen and enclosure. A lug type fitting was installed by the contractor (Convair) to provide a convenient attach point for the lateral constraint member. The pin connection will permit thermal growth in the vertical direction but will restrain lateral deflection. A simple support device was designed to be placed at the top and bottom of this specimen to simulate the required simple support condition. The device consists of a convex (cross-section) member placed within a concave (cross-section) member with a larger radius. Rocking motion can occur but lateral motion is restrained.
B. Loading Column

The loading column (Figure 11) consists of one load cell, one hydraulic cylinder, two partially tubular rods, lug and clevis connectors, a loading head, a coupling adapter and an adapter plate. The entire assembly is suspended from the crosshead of the Gilmore machine. Each item will be discussed starting with the attachment at the crosshead and working down.

The first component is an existing adapter plate which is bolted to the crosshead at existing bolt locations. Connected to the adapter plate is a lug (AISI 4130 steel) with monoball (swivel joint) which in turn connects to the clevis of the hydraulic cylinder. The connecting pin (AISI 4340 steel) between the lug and clevis is a 4-in. -diam pin with a 1-in. -diam hole through the core to permit heat treat to an ultimate tensile strength of 180 ksi. The heat treat was required for high stresses produced by pin bending. A spacer was required between the lug and the clevis because a standard monoball could not match both the existing pin hole diameter and the spacing of the ears on the permanent clevis of the hydraulic cylinder.

The hydraulic cylinder called for in the design is an existing NASA test equipment item: Hydro-Line N2C, 12-in. bore by 15-in. stroke. The rod of the cylinder attaches to a coupling adapter (AISI 4130 steel) which in turn connects to a 6-in. -diam rod. The rod (AISI 4130 steel) is a partially tubular member with two 5/8-in. -diam holes (orifice) which lead to a 1 3/4-in. -diam hole through the core of the rod. The rod necks down to a 4-in. -diam at the lower threaded end to mate with the load cell.

The load cell is an existing custom built cell with a 4-in. -internal diameter. Below the load cell is attached another 6-in. -diam rod. The center hole (core) and orifice on this rod are the same as those on the upper rod. However, this rod is made from AISI 4140 steel, cold drawn and has a close tolerance finish. This finish is required because of close tolerance requirements at the passage hole through the enclosure. AISI 4140 steel was selected because AISI 4130 steel was not available at the 6-in. -diam and the close tolerance finish. Connected to this rod is a lug with monoball (AISI 4130 steel) which is pinned to the lower clevis (AISI 4130 steel). The pin is identical to the pin used in the top lug; that is, AISI 4340 steel pin with a 4-in. -external diameter and 1-in. -internal diameter.
The lower clevis device (AISI 4130 steel) performs as a loading head for the beryllium point loaded panel, attaches to the loading plate for the boron-aluminum point loaded panel and to the stiffened loading beam which is required for the two uniformly loaded panels. This completes the listing of components in the loading column assembly.

The load cell and the hydraulic cylinder have limitations on the amount of heat they are allowed to absorb: a limiting temperature of 175 °F was placed on the load cell and a 150 °F limit on the hydraulic cylinder. Two steps were taken to prevent an excessive heat buildup in these components: a simple cooling system was designed and the portion of the column which is located in the enclosure was insulated.

The lower portion of the column is externally wrapped, insulated, with 4 layers of 3/4-in. -kaowool blanket to reduce the amount of surface area exposed to the high temperature environment. The cooling system consists of having tap water flow through the partially tubular rods and the tubular load cell. Tap water initiates flow at the two upper orifice holes, through the tubular rod, then through the tubular load cell, through the lower tubular rod, and discharges at the two lower orifice holes. The water is carried to and from the cooling system with a 5/8-in. -diam hose. This simple cooling system prevents excessive temperature buildup in the load cell and hydraulic cylinder.

C. Duct System

The duct system (Figures 7 and 8) consists of a supply and a return air duct which interface between the heat enclosure and the heat source. The supply duct is a rectangular sheet metal tube (10 1/8 by 9 1/2 in.) insulated with two layers of 2-in. -sheets of mineral wool board. Expansion joints are located at appropriate points to allow thermal expansion. The duct is supported by roller braces from the floor.

The return duct is a 8 5/8-in. -diam tubular sheet metal duct insulated with four layers of 3/4-in. -thick-kaowool blanket (ρ = 8 lb/ft³). The return ducts interface location on the enclosure is at a higher elevation than the supply line interface to encourage a uniform distribution of hot air flow. Expansion joints are included and the duct work is supported by roller brackets. A large portion of the return air duct is removable to allow easy access to the rear of the enclosure.
SECTION III. ANALYSIS SUMMARY

The two assemblies of the test fixture system which required some detail structural and thermal analyses are the heat enclosure and the loading column. A complete set of the calculations prepared in the structural analysis are presented in Appendix A. And likewise, the results of the thermal analysis on the loading column are included in Appendix A.

The thermal analysis performed on the heat enclosure to determine the required external insulation was conducted by NASA in a preliminary design study. The adequacy of the insulation used on the enclosure for the 600 °F temperature range was confirmed by Mr. Jerry Fowler of Ennis Insulation Company, Decatur, Alabama.

A complete structural analysis of the loading column and the heat enclosure was conducted in support of the design effort. A thermal study on the loading column was required to determine the heat buildup in the hydraulic cylinder and the load cell.

A. Structural Analysis

The structural analysis of the heat enclosure can be broken down into two basic categories: computer model analysis of the enclosure framework, and hand calculations for the various other components. The model analysis made use of the 1130 STRESS program. The model consisted of all wide flange members which comprise the enclosure framework. The most stringent lateral loads anticipated by the respective specimen contractors was applied to the structural model. In this case, the MDAC lateral loads and deflection limitations set the criteria for the enclosure design. The enclosure framework turned out to be a stiffness design; that is, the limitation on deflection determined the member sizes. In general, the member stress levels recorded on the computer printout were very low. The computer input and output are part of the analysis presented in Appendix A. The remainder of the analysis on the enclosure consisted of hand calculations on the various side and center constraint devices, lower support beam and other miscellaneous components.

The structural analysis on the loading column involved determining the strength capabilities of its components and their connections. Several threaded connections were analyzed and the two lug and pin
connectors (top and bottom) required a detail analysis to determine the pin bending stress. A high strength heat treated ($F_{tu} = 180$ ksi) pin was required at both locations. The partially tubular rods were checked for stress concentration around the 5/8-in. diam orifice holes which are required in the cooling system design. The overall loading column was checked for its buckling capability as a compression member. Since the column assembly consists of components with varying cross-sections, a variable cross-section column analysis was required. However, in the available analytical approach only two variations in the cross-section are allowed. In this analysis, the two minimum cross-sections were used—a conservative approach. The resulting factor of safety was slightly less than the required 2.5; however, the fact that the column provided some lateral support at the passage hole was not considered in the analysis.

A summary of the safety factor and allowable stress criteria follows:

1. Allowable stresses for A-36 steel are to be taken directly from the Steel Construction Manual with no safety factor imposed.

2. For other materials such as AISI 4130 and 4340 steel, a factor of 2.0 will be imposed on yield strength (F_{ty}) and 2.5 on ultimate strength (F_{tu}).

B. Thermal Analysis

A thermal analysis of the loading column was necessary to determine if the cooling system design would adequately cool the load cell and the hydraulic cylinder. A thermal computer model of the column was developed in order to accurately determine the heat absorption in the two critical components. The results of the thermal analysis are presented in Appendix A. The assumption in the analysis is that it will require 6 hr to bring the specimen up to 600 °F and that the duration of the test will not exceed 6 hr, a total of 12 hr. The computer analysis was made with and without the tap water flowing through the tubular sections. The results from these two inputs indicate that the cooling system was required; and that the water flow keeps the region below the load cell at a temperature of 88 °F.
FIGURE 1. CONVAIR UNIFORMLY LOADED BORON-ALUMINUM COMPRESSION PANEL

FIGURE 2. MDAC POINT LOADED BORON-ALUMINUM COMPRESSION PANEL

Note: Dimensions are in inches.
Note: Dimensions are in inches.

FIGURE 3. LOCKHEED UNIFORMLY LOADED BERYLLIUM COMPRESSION PANEL

FIGURE 4. LOCKHEED POINT LOADED BERYLLIUM COMPRESSION PANEL
FIGURE 5. TEST FIXTURE ASSEMBLY
FIGURE 6. SIDE VIEW OF TEST FIXTURE ASSEMBLY
FIGURE 7. HEAT ENCLOSURE AND HEAT SOURCE POSITIONED WITHIN GILMORE MACHINE
FIGURE 8. HEAT ENCLOSURE AND HEAT SOURCE SHOWING RETURN AIR DUCT
FIGURE 9. FRONT VIEW OF INSULATED HEAT ENCLOSURE
FIGURE 10. TOP AND SIDE VIEW OF HEAT ENCLOSURE
FIGURE 11. LOADING COLUMN ASSEMBLY
APPENDIX A

STRUCTURAL AND THERMAL ANALYSIS
OF TEST FIXTURE
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1.0</td>
<td>Heat Enclosure, Strength Analysis</td>
<td>1.0</td>
</tr>
<tr>
<td>A2.0</td>
<td>Heat Enclosure, Computer Analysis</td>
<td>2.0</td>
</tr>
<tr>
<td>A3.0</td>
<td>Loading Column, Strength Analysis</td>
<td>3.0</td>
</tr>
<tr>
<td>A4.0</td>
<td>Loading Column, Thermal Analysis</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Test Fixture

MATERIAL PROPERTIES

A-36 Structural Steel

Allowable Stresses

Tension: \(F_t = 22.0 \text{ ksi} \)

Compression: \(F_c = 22.0 \text{ ksi} \) or stability allowable

Bending: \(F_b = 24.0 \text{ ksi} \) or stability allowable

Bearing: \(F_p = 33.0 \text{ ksi} \)

Shear: \(F_v = 14.5 \text{ ksi} \)

Ref. AISC Manual of Steel Construction pg. 5-64

Modulus of Elasticity

Room Temperature: \(E = 29,000 \text{ ksi} \)

\(T = 600^\circ F : E = 26,446 \text{ ksi} \)

Ref. AISC Manual of Steel Construction pg. 6-10
Test Fixture

MATERIAL PROPERTIES (Con't)
Ref. MIL-HDBK-5B
Table 2.3.1.0(a) pg. 2-11

<table>
<thead>
<tr>
<th>Mechanical Properties</th>
<th>AISI 4130 (Heat Treated to Obtain F_{tu})</th>
<th>AISI 4340</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RT</td>
<td>600°F</td>
</tr>
<tr>
<td>F_{tu}, ksi</td>
<td>90</td>
<td>80.46</td>
</tr>
<tr>
<td>F_{ty}, ksi</td>
<td>70</td>
<td>55.44</td>
</tr>
<tr>
<td>F_{cy}, ksi</td>
<td>70</td>
<td>55.44</td>
</tr>
<tr>
<td>F_{su}, ksi</td>
<td>54</td>
<td>49.68</td>
</tr>
<tr>
<td>F_{bru}, ksi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e/D=1.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e/D=2.0)</td>
<td>190</td>
<td>174.80</td>
</tr>
<tr>
<td>F_{bry}, ksi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e/D=1.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e/D=2.0)</td>
<td>120</td>
<td>110.40</td>
</tr>
<tr>
<td>$E, 10^6$ psi</td>
<td>29.0</td>
<td>26.33</td>
</tr>
<tr>
<td>$E, 10^6$ psi</td>
<td>29.0</td>
<td>26.33</td>
</tr>
<tr>
<td>$G, 10^6$ psi</td>
<td>11.0</td>
<td>-</td>
</tr>
</tbody>
</table>
A1. 0

HEAT ENCLOSURE STRENGTH ANALYSIS
HEAT ENCLOSURE

DEFLECTION OF MARINITE FLOOR UNDER COMPRESSION LOAD

Minimum Projected Area: \(A = 50 \times 12 = 600 \text{ m}^2 \)

Ultimate Deflection: \(S = \frac{Pc}{AE} \)

\[
S = \frac{2.5 \times (350)}{600 (360)}
\]

\(S = 0.00406 \text{ m} \)
TEST FIXTURE

MARINITE FLOOR (CON'T)

Stress

\[\frac{P}{A} = \frac{350 \times 2.5}{600} = 1.46 \text{ ksc} \]

Marinite Compressive Stress Allowable

\[f_{cu} = 14 \text{ ksc} \]
HEAT ENCLOSURE

BASE SUPPORT BEAM

12 WF 85

Gusset Plate (1/2")
(Every 10")

SECTION A-A
TEST FIXTURE

BASE SUPPORT BEAM (Con’t)

AREA Section A-A

$A_w = 50 \times 0.495 = 24.75$

$A_g = 13 (6.805 \times 0.5) = 34.83$

$A_f = 59.58 \text{ in}^2$

Axial Stress:

$\sigma = \frac{P}{A_f} = \frac{350}{59.58} = 5.874 \text{ ksi}$

Buckling Allowable of Gusset Plate

$\sigma = \frac{\mu T^2 E t^2}{12 (1-\mu^2) b}$

$\sigma = \frac{0.425 (0.80) (26,446) (1.25)}{12 (0.91) 5.805}$

$\sigma = 4.38 \times 10^8 \text{ ksi} \quad \text{high!}$

M.S. - high!
TEST FIXTURE

HEAT ENCLOSURE

PRESSURE LOAD ON SKIN PANEL

\[
p = \frac{p_{1}}{1728} = \frac{62.4}{1728} = 0.03611 \text{ N/m}^2
\]

\[
p = 0.0361(12.7)
\]

\[
p = 0.458, \text{ psi}
\]

Max Stress due to Pressure

\[
\sigma = \frac{0.75 \sigma_b \rho^2}{e^2 (1+1.61x^2)}
\]

or

Min Thickness

\[
e^2 = \frac{0.75 (0.458) 4/100}{22,000 [1+1.61(2.448)^2]} = 0.003782
\]

\[
e = 0.0614
\]

Material: A-36

References: page 208
TEST FIXTURE

SKIN PANEL (CONIT)

Actual skin panel thickness: \(t = 0.125 \) in
\(t^2 = 0.0156 \)

Actual Stress

\[
\sigma = \frac{0.75 (1.458) 4100}{(0.0156) (16.9)}
\]

\[
\sigma = 5340 \text{ psi}
\]

Allowable Stress A-36, \(F_a = 24,000 \) psi

\[
M.S. = \frac{24,000}{5340} - 1
\]

\[
M.S. = 3.49
\]
TEST FIXTURE

MDAC CENTER ATTACHMENT

TOP FRAME (1)

LOAD = 5394.0 lbs.

MATERIAL: 4130 Steel
TEST FIXTURE

MDAC CENTER ATTACHMENT

TOP FRAME (1)

BRACKET 7, WHEEL 5, PIN 9, PLATE 6

These items have been checked for the design load of 5394.0 lbs. from the analysis of the MDAC center attachment, center frames (2-3), pages A2.70 for this analysis.
TEST FIXTURE

MDAC CENTER ATTACHMENT

TOP FRAME (1)

LOADS

\[
P_B = 1.414 \times 2697 \times 1 = 3810.0 \text{ lbs. TENSION}
\]

\[
P_C = 2697 \times \frac{1}{1} = 2697.0 \text{ lbs. COMPRESSION}
\]
TEST FIXTURE

MDAC CENTER ATTACHMENT

TOP FRAME (I)

Plate (O)

LOAD (Ref. Page A1.9)

MATERIAL: 4130 steel

1.5 (SPACER) 1.5 (SPACER) 2.5 (SPACER)

1.4 0.90

10.75

4.0

.75

3.5

2.25

.75

.5625 DIA.

.6875 DIA.

.75

.50 DIA.
MDAC CENTER ATTACHMENT

TOP FRAME (1)

PLATE 10 CONT'

CHECK SECTION A-A FOR BENDING & AXIAL LOAD

\[A = 2[2 \times 25] = 1.0 \text{ in}^2 \]

\[I = 2[25 (2.5)^3]/12 = 0.333 \text{ in}^4 \]

SECTION A-A
(REF. PAGE 4)

\[M_{A-A} = 3810 (.93) \]

\[M_{A-A} = 5540 \text{ in-lb} \]

\[f_{0} = \frac{P}{A} + \frac{Mc}{I} = \frac{3810 (.93)}{1.0 + 0.333} \]

\[f_{0} = 14410 \text{ psi} \]

\[F_L = 27720 \text{ psi} \]

\[M.S. = \frac{27.72}{14.41} - 1 = 1.92 \text{ GOOD} \]
TEST FIXTURE

MDAC CENTER ATTACHMENT

TOP FRAME (1)

PLATE (1) CONT.

@ BOLT, .5625 DIA.

\[f_{br} = \frac{P}{A_{br}} = \frac{3810}{2(0.5625 \times 0.25)} = 13500 \text{, PSI Bearing} \]

\[F_{br} = 55.2 \text{ KSI} \]

\[M.S. = \frac{55.2}{7.85} - 1 = +3.1 \quad \text{GOOD} \]

@ BOLT, .6875 DIA.

\[f_{br} = \frac{P}{A_{br}} = \frac{2697}{2(0.6875 \times 0.25)} = 7850 \text{, PSI Bearing} \]

\[F_{br} = 55.2 \text{ KSI} \]

\[M.S. = \frac{55.2}{7.85} - 1 = +6.03 \quad \text{GOOD} \]

\[f_{s0} = \frac{P}{A_S} = \frac{2697}{2(0.25 \times 0.25)} = 2150 \text{, PSI Shear-Out} \]

\[F_s = 19.88 \text{ KSI} \]

\[M.S. = \frac{19.88}{2.150} - 1 = +8.23 \quad \text{GOOD} \]
TEST FIXTURE

MDAC CENTER ATTACHMENT

TOP FRAME (1)

PLATE (8)

LOAD \((P) = 2697\) lb.

COMPRESSION

MATERIAL: 4130 Steel

\[
A = 2(1.5 \times 2.5) = .75 \text{ in}^2
\]

\[
I_{min} = 2(.75)(.825)^2 + \left[\frac{1.5(2.5)^3}{12}\right]L
\]

\[
I_{min} = 1.0239 \text{ in}^4
\]
TEST FIXTURE

MDAC CENTER ATTACHMENT

TOP FRAME (1)

PLATE (3) CONT'

Consider the plates as a column

\[P = \sqrt{\frac{I}{A}} = \sqrt{\frac{10289}{7.5}} = 1.167 \]

\[L' = \frac{L}{c} = \frac{7.5}{1} = 7.5 \]

\[\frac{L}{P} = \frac{7.5}{1.167} = 6.44 \ll 91 \]

Ref. MIL-HDBK-58, 1 Sept. 1971, page 2-139, Table 2.7.2.1

This is a Short Column

\[\frac{P}{A} = 79500 - 51.9 \left(\frac{L}{P} \right)^{1.5} \]

Ref. "FORMULAS FOR STRESS & STRAIN" by R. J. ROARK, page 264, Table XI.

\[\frac{P}{A} = 79500 - 51.9 (644)^{1.5} \]

\[\frac{P}{A} = 78698 \quad \text{lb/IN}^2 \]

\[P = 59000 \quad \text{lbs. ULT. ALLOW. LOAD (R.T.)} \]

\[P = 23600 \quad \text{lbs LIMIT ALLOW. LOAD (R.T.)} \]

\[P = 23600 \times 0.792 = 18700 \quad \text{lbs, LIMIT ALLOW. LOAD (600°F)} \]

\[M.S. = \frac{18.7}{2.687} - 1. = 0.593 \quad \text{GOOD} \]
MDAC CENTER ATTACHMENT

TOP FRAME (1)

PLATE 8 CONT'

@ BOLT, MATERIAL BEARING

\[f_{br} = \frac{P}{A_{br}} = \frac{2697/2}{.5625 \times .25} = 9580 \text{ PSI} \]

\[F_{br} = 55.2 \text{ KS} \]

\[M.S. = \frac{55.2}{9.83} - 1 = 4.77 \text{ GOOD} \]
TEST FIXTURE

MDAC CENTER ATTACHMENT

TOP FRAME (1)

BOLTS

WHERE PLATES 6 & 10 JOIN

LOAD P = 2697 lbs
MATERIAL: 9130 steel

\[t_1 = t_2 = 0.25 \text{ in} \]

Shear on Bolt:

\[f_s = \frac{P/2}{A_s} = \frac{2697/2}{0.625 \times 25} = 8650 \text{ psi} \]

\[F_s = 15.0 \text{ kips} \]

\[M.S. = \frac{15.0}{8.65} - 1 = +0.74 \text{ GOOD} \]

Consider Bolt as a beam to check PIN BENDING:

\[M = 337 \text{ in-lbs} \]

\[f_b = \frac{Mc}{I} = \frac{M}{S} \]

\[S = 0.098175(0.3^3) = 0.098175(0.027) \]

\[S = 0.02395 \text{ in}^3 \]

\[f_b = \frac{337}{0.02395} = 14100 \text{ psi} \]

\[M.S. = \frac{27.72}{14.1} - 1 = +0.96 \text{ GOOD} \]
MDAC CENTER ATTACHMENT

TOP FRAME (1)

BOLTS CONT'

WHERE PLATES 8 & 10

\[
\frac{\text{LOAD}}{\text{AS}} = \frac{3810/16.85 \times 0.25}{1.65} = 12200. \text{ PSI}
\]

Refer to sketch on page A1.17 substituting 8 for 6 AND SIZE OF BOLT TO .5625 in.

Shear on bolt:

\[
f_s = \frac{1728}{A_s} = \frac{3810/16.85 \times 0.25}{1.65} = 12200. \text{ PSI}
\]

\[
M.S. = \frac{15.0}{12.2} - 1 = +0.22 \quad \text{GOOD}
\]

Consider bolt as a beam to check PIN BENDING:

\[
M = 1905 \times 0.25 = 477 \text{ in-lb}
\]

\[
f_b = \frac{M}{I} = \frac{M}{S}
\]

\[
S = 0.02395 \text{ in}^3
\]

\[
f_b = \frac{477}{0.02395} = 19900. \text{ PSI}
\]

\[
M.S. = \frac{27.72}{199} - 1 = +0.39 \quad \text{GOOD}
\]
TEST FIXTURE

MDAC CENTER ATTACHMENT

MIDDLE FRAMES (2 & 3)

DRW. 28, SHEETS 3 & 4

Dimensions and annotations are present on the diagram, including measurements and various labels. The diagram shows a layout of middle frames with specific design elements indicated by numbers.
TEST FIXTURE

MDAC CENTER ATTACHMENT

MIDDLE FRAMES (2 & 3)

DESIGN OF PIN 9

LOAD = 5394 lbs.
MATERIAL: 4130 Steel

\[M = \frac{PL}{4} \]

\[f_b = \frac{Me}{I} = \frac{PLd^2}{0.04908d^4} = \frac{PL}{0.09816d^3} = \frac{(5394)(1.56)}{(0.09816)(d^3)} = 27,700. \]

\[d_{ref} = 1.46 \text{ in.} \]

\[f_s = \frac{P}{2A} = \frac{P}{(2)(7854)d^2} = \frac{5394}{(2)(7854)(d^2)} = 19.850. \]

\[d_1 = 0.415 \text{ in.} \]

The above bending calculation requires too large of a pin therefore a new calculation is shown on the next page.
TEST FIXTURE

MDAC CENTER ATTACHMENT
MIDDLE FRAMES (2/3)

DESIGN OF PIN CONT'

\[b = 0.5t_1 + 0.25t_2 + q \]
\[= 0.5(0.375) + 0.25(1.0) + 0.2 \]
\[b = 0.6375 \]
\[M = \frac{P}{2} b = \frac{5394}{2} (0.6375) \]
\[M = 1718 \text{ in}-\text{lb} \]

\[S_{req} \text{ of PIN} \]
\[S_{req} = \frac{M}{f_p} = \frac{1718}{27.22} = 0.062 \text{ in} \]
\[S = 0.09816 d^3 \]
\[d = \sqrt[3]{\frac{S}{0.09816}} = \sqrt[3]{\frac{0.062}{0.09816}} \]
\[d = 0.858 \text{ in} \]

The pin is 0.875 in.

\[\text{M.S.} = \frac{0.875}{0.858} - 1, = +0.02 \text{ GOOD} \]
TEST FIXTURE

MDAC CENTER ATTACHMENT

MIDDLE FRAMES (2+3)

DESIGN OF WHEEL

LOAD = 5394. lbs.

MATERIAL: 4130 STEEL

3.218 DIA.
1.51 DIA.
.875 DIA.

Contact Stress Analysis (Ref. "Manual of Steel Construction")
Pp. 5-73

Allowable Load = 1.72d = 1.72(3.218) = 5.53 kips

WHEEL IS 1" WIDE

\[\text{LOAD CAPABILITY} = 5.53 \times 1 = 5.53 \text{ KIPS} \]

\[M.S. = \frac{5.53}{5.39} - 1 = 0.026 \text{ GOOD} \]
TEST FIXTURE

MDAC CENTER ATTACHMENT

MIDDLE FRAMES (2 x 3)

DESIGN OF WHEEL (5) CONT'

PIN HOLE BEARING

\[f_{br} = \frac{p}{A_{br}} = \frac{5394}{1.368 \times 0.875} = 4500 \text{ lb/} \text{in}^2 \]

\[F^{br} = 55.20 \text{ K/} \text{in}^2 \]

\[M.S. = \frac{55.2}{4.5} - 1. = +11.3 \text{ GOOD} \]
TEST FIXTURE

MDAC CENTER ATTACHMENT

MIDDLE FRAMES (2 each)

BRACKET 7

LOAD = 5394 lbs.

MATERIAL: 4130 STEEL

.50 DIA. HEX HD. BOLT (4 places) (A-325)

LOAD APPLIED BY WHEEL 5

4.0 7.5
1.0 TYP
5.75

4.0
4.25
5.75
TEST FIXTURE

MOAC CENTER ATTACHMENT

MIDDLE FRAMES (2 & 3)

BRACKET 7 CONT'

Front Plate As Beam

\[P = 5394 \text{#} \]

\[M = \frac{PL}{4} = \frac{5394 \times 4}{4} = 5394 \text{ in-lbs.} \]

\[f_b = \frac{M}{S} \]

\[s_{req} = \frac{M}{f_b} = \frac{5394}{27720} = 0.1946 \text{ in.} \]

\[S = \frac{bL^2}{6} \]

\[t_{req} = \sqrt{\frac{6s_{req}}{b}} = \sqrt{\frac{6(0.1946)}{4.0}} \]

\[t_{req} = 0.54 \]

If the material "Modulus of Rupture" is considered

\[F_{by} = 72.0 \text{ ksi} \]

(corrected to Temp. = 600°F)

\[s_{req} = \frac{M}{F_{by}} = \frac{5394}{72000} = 0.0758 \text{ in.} \]

\[t_{req} = \sqrt{\frac{6s_{req}}{b}} = \sqrt{\frac{6(0.0758)}{4.0}} = 0.337 \text{ in.} \]

M.S. = \[\frac{5}{337} \] - 1 = +.48 GOOD
TEST FIXTURE

MDAC CENTER ATTACHMENT

MIDDLE FRAMES (2, 3)

BRACKET (7) CONT'

SIDE PLATE

\[
\text{LOAD} = \frac{P}{2} = 2697.1 \text{ lbs.}
\]

\[
\sigma = \frac{P}{A} = \frac{2697}{4 \times 0.5} = 1348.5 \text{ lb/IN}^2
\]

\[
F_t = 27720 \text{ lb/IN}
\]

SECTION A-A

(MS) = \frac{27.72}{1.3485} - 1. = +19.5 \text{ GOOD}

.56 DIA. HEX. HD. BOLTS (A-325)

\[
\text{LOAD} = \frac{P}{4} = \frac{5394}{4} = 1348.5 \text{ lbs. (TENSION)}
\]

\[
P_t = \frac{90}{\pi (0.5^2)} = 204 \text{ kips (TENSION)}
\]

Ref. "Steel Construction Manual" page 4-3

\[
\text{REF.} = 40 \text{ ksi for A-325}
\]

\[
\text{MS} = \frac{204}{1.3485} - 1. = +150.4 \text{ GOOD}
\]
TEST FIXTURE

MDAC CENTER ATTACHMENT

MIDDLE FRAMES (2 & 3)

PLATE 6

LOAD (P) = 5394. lbs

MATERIAL: 4130 STEEL

\[\text{LOAD (P)} = 5394 \text{ lbs} \]

\[\text{MATERIAL: 4130 STEEL} \]
TEST FIXTURE

MDAC CENTER ATTACHMENT

MIDDLE FRAMES (2 & 3)

PLATE (6) CONT.

Consider plate as a beam

\[M = \frac{PL}{4} = \frac{2697(25)}{4} \]

\[M = 5050 \text{ in-lbs} \]

\[f_b = \frac{M}{S} \]

\[S = \frac{M}{f_b} = \frac{5050}{27720} \]

\[S_{eq} = 0.182 \text{ in} \]

\[S = \frac{t^2b^2}{6} \]

\[t_{eq} = \frac{bS_{eq}}{b^2} = \frac{6(0.182)}{(2.5)^2} \]

\[t = 0.175 \text{ in} \]

but \[t = 0.375 \text{ in} \]

\[M.S. = \frac{375}{0.175} - 1 = 114 \] GOOD

Stress level in (6)

\[f_b = \frac{5050}{0.34} = 12900 \text{ PSI} \]
TEST FIXTURE

MDAC CENTER ATTACHMENT

MIDDLE FRAMES (2 & 3)

PLATE (6) CONT.

BOLT HOLE CHECK

@ .625 DIA. BOLT:

\[f_{br} = \frac{P}{A_{br}} = \frac{1348.5}{.375 \times .625} = 5750 \text{ psi} \]

\[F_{br} = 55.20 \text{ ksi Allow. Bearing} \]

\[M.S. = \frac{55.2}{5.75} - 1 = +8.6 \text{ GOOD} \]

@ .875 DIA. PIN

\[P = 2697 \text{ lbs} \]

\[f_{br} = \frac{P}{A_{br}} = \frac{2697}{.375 \times .875} = 8225 \text{ psi} \]

\[F_{br} = 55.20 \text{ ksi Allow. Bearing} \]

\[M.S. = \frac{55.2}{8.225} - 1 = +5.7 \text{ GOOD} \]
TEST FIXTURE

MDAC CENTER ATTACHMENT

MIDDLE FRAMES (2 & 3)

PLATE (6) CONT'

Check of .625 Dia. Bolt

\[
f_s = \frac{P}{A_s} = \frac{5399/2}{2(0.625)^2} = 13800 \text{ PSI}
\]

\[F_s = 15000 \text{ PSI}\]

\[M.S. = \frac{15.0}{13.80} - 1. = + .088 \quad \text{GOOD}\]
MDAC CENTER ATTACHMENT
MIDDLE FRAMES (243)

BRACKET 8
LOAD (P) = 5394. lb.
MATERIAL: 4130 STEEL

2.25
.25 TYP

3.6875
6.5

4.75
3.75

9.5

.625 DIA. BOLT (A-325) (2 PLACES)
TEST FIXTURE

MDAC CENTER ATTACHMENT

MIDDLE FRAMES (2 4/3)

BRACKET (8) CONT'N

Bearing @ .625 Dia. Bolt Hole

\[\frac{f_{br}}{P_{br}} = \frac{2697}{.625 \times 1.4} = 3080 \text{ psi} \]

\[F_{br} = 55.2 \text{ kips} \]

\[M.S. = \frac{55.2}{3.08} - 1 = +16.8 \text{ Good} \]

Shear-Out @ .625 Dia. Bolt Hole

\[f_s = \frac{P}{2A_s} = \frac{2697}{2 \times 1.25 \times 1.4} = 770 \text{ psi} \]

\[F_s = 24.815 \text{ kips} \]

\[M.S. = \frac{28.815}{1.77} - 1 = +36.4 \text{ Good} \]

Leg of bracket

\[f_c = \frac{P}{A} = \frac{2697}{2 \times 3.75} = 3600 \text{ psi} \]

\[F_c = 27.72 \text{ kips} \]

\[M.S. = \frac{27.72}{3.6} - 1 = +6.7 \text{ Good} \]
TEST FIXTURE

MDAC CENTER ATTACHMENT

MIDDLE FRAMES (243)

BRACKET 8 CONT'

\[\begin{align*}
 y & = 0.375 \\
 h & = 2.25 \\
 d & = 2.125 \\
 t & = 0.375
\end{align*} \]

<table>
<thead>
<tr>
<th>ELE</th>
<th>A</th>
<th>A\textsubscript{7}</th>
<th>A\textsubscript{8}</th>
<th>I\textsubscript{30}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.844</td>
<td>1.875</td>
<td>1.58</td>
<td>0.0297</td>
</tr>
<tr>
<td>2</td>
<td>0.798</td>
<td>1.4375</td>
<td>1.145</td>
<td>1.644</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.642</td>
<td>3.3125</td>
<td>2.73</td>
<td>1.8737</td>
</tr>
</tbody>
</table>

\[\bar{y} = \frac{1.303}{1.642} = 0.793 \text{ in} \]

\[I_{30} = 1.6737 + 1.31 - 1.692 (0.793)^2 \]

\[I_{30} = 0.9817 \text{ in}^4 \]

\[M = \frac{PL}{q} = \frac{5394 (7.5)}{4} \]

\[M = 10130 \text{ in}-\text{lb} \]

\[f_b = \frac{Mc}{I} = \frac{10130 (1.767)}{9.517} = 18130 \text{ psi} \]

\[f_b = 27.72 \text{ ksi} \]

\[M.S. = \frac{27.72}{18.13} - 1 = +0.51 \text{ GOOD} \]
MDAC CENTER ATTACHMENT

MIDDLE FRAMES (2 & 3)

BRACKET CONT'

Check Plate (section C-C, page 13)

\[A = 3 \times 3.75 + 2 \times 6.25 \times 25 \]
\[A = 1,437 \text{ in}^2 \]

\[f_t = \frac{P}{A} = \frac{5,394}{1,437} = 3.750 \text{ PSI} \]

\[F_t = 27.72 \text{ KS}^1 \]

\[M_S = \frac{27.72}{3.75} - 1 = 7.2 \text{ GOOD} \]
TEST FIXTURE

MDAC CENTER ATTACHMENT

MIDDLE FRAMES (2 & 3)

BRACKET 8 CONT

WELDS

@ WELD 1 (Ref. page 18)

\[P_t = F_{tu} \times (Lt) \]

\[F_{tu} = \frac{F_{tu}}{S_{F}} \times \text{Temp. Factor} \]

\[F_{tu} = 37.5 \text{ KSI} \]

\[L = 9.5 \times 2 = 19.0 \text{ IN} \]

\[t = 0.375 \text{ IN} \]

\[P_t = 37.5(19)(0.375) = 267.0 \text{ KIPS} \]

\[M_s = \frac{267.0}{5.394} - 1. = + 48.6 \quad \text{GOOD} \]

@ WELD 2 (Ref. page 18)

\[P_t = F_{tu} \times (Lt) \]

\[= 37.5 \times \left(4.5 \times 0.375\right) \]

\[P_t = 105.5 \text{ KIPS} \]

\[M_s = \frac{105.5}{5.394} - 1. = + 18.2 \quad \text{GOOD} \]
TEST FIXTURE

MDAC CENTER ATTACHMENT

BOTTOM FRAME (1)

LOAD = 5394 lb.

MATERIAL: 4130 STEEL

(HOLE) .5625 DIA.
(BOLT) .50 DIA. HEX. HD. (A-325)
TEST FIXTURE

MDAC CENTER ATTACHMENT

BOTTOM FRAME (1)

PLATE 1

\[
A = 4.78 \times 1.875 = 8.96 \text{ in}^2
\]

\[
\frac{P}{A} = \frac{5.894}{1.876} = 3130 \text{ PSI}
\]

\[
M.S. = \frac{2.7.72}{6.0 - 1} = +3.62 \text{ GOOD}
\]
MDAC CENTER ATTACHMENT

BOTTOM FRAME (1)

PLATE (1) CONT'

@ .5625 Bolt Hole - Bearing Check

\[f_{br} = \frac{P}{A_{br}} = \frac{5394.12}{.5625 \times 1.1875} = 25550 \text{ psi} \]

\[F_{br} = 55.2 \text{ KSI} \]

\[M.S. = \frac{55.2}{25.55} - 1 = +1.16 \quad \text{GOOD Bearing} \]

\[f_{s} = \frac{P}{A_{s}} = \frac{2697}{1.38 \times 2.5 \times 2} = 3910 \text{ psi} \]

\[M.S. = \frac{19.88}{3.91} - 1 = +4.03 \quad \text{GOOD show out} \]
TEST FIXTURE

MDAC CENTER ATTACHMENT

BOTTOM FRAME (1)

PLATE (2)

\[f_t = \frac{P}{A_t} = \frac{5394}{1.435} = 3760 \text{ PSI} \]

\[M.S. = \frac{27.72}{3.76} - 1 = 7.37 \text{ Good Tension} \]

\[f_{br} = \frac{P}{A_{br}} = \frac{2697}{5625 \times 25} = 19150 \text{ PSI} \]

\[M.S. = \frac{55.2}{19.15} - 1 = 1.88 \text{ Good Bearing} \]

\[f_s = \frac{P}{A_s} = \frac{2697}{2(25 \times 138)} = 3910 \text{ PSI} \]

\[M.S. = \frac{19.88}{3.91} - 1 = 4.08 \text{ Good Shear-Out} \]
TEST FIXTURE

MDAC CENTER ATTACHMENT

BOTTOM FRAME (1)

BOLTS BETWEEN PLATES 1 2

BOLT: .50 DIA HEX. HD. (A-325)

\[F_s = \frac{P}{A} = \frac{2697}{\frac{\pi (0.5)^2}{4}} = 13725 \text{ PSI} \]

\[F_s = 15 \text{ KS} \]

M.S. = \[\frac{15.0}{13725} - 1 = +0.09 \text{ GOOD BOLT SHEAR} \]
TEST FIXTURE

MDIC PANEL SIDE ATTACHMENT

TOP FRAME (1)

DEW 28
Sheet 5

Page 5

Prepared By
Checked By
Revised By

Date
Date
Date

TELEDYNE
BROWN ENGINEERING

T. D. No.
TEST FIXTURE

MDHC PANEL SIDE ATTACHMENT

TOP FRAME

DESIGN OF PLATE 0 \((c = 0.375)\) (4133 Steel)

\[F_{uy} = 80.46 \text{ ksi} \quad \text{for H151 \#130 \# T58005}; \]
\[F_{y} = 55.44 \text{ ksi} \]

Allowable tensile yield: \(\frac{80.46}{2.5} = 32.18 \text{ ksi} \)

Allowable tensile yield: \(\frac{55.44}{2.0} = 27.72 \text{ ksi} (f_{b}) \)

Moment produce by lateral load at wheel.

Use maximum side load predicted by MDHC: \(P = 510 \times 3.71 \)

\(M = Px \)

\(M = 510 \times 3.71 \)

\(M = 1890 \text{ in} \cdot \text{kip} \)

\(f_{b} = \frac{M}{\frac{b}{3.71}} \)

\(5 = \frac{1890}{f_{b}} \)

\(f_{b} = 0.0695 \)

\(\varepsilon = 0.1668 \)

\[\frac{\varepsilon}{\varepsilon_{u}} = 0.34 \% \quad \rightarrow \quad MS = \frac{0.375 - 1}{0.342} = 0.98 \]
TEST FIXTURE

MDAC PANEL SIDE ATTACHMENT

TOP FRAME

DESIGN OF RNXE \(\Theta \) \((L = 0.75)\)

\[M = P_x \]

\[M = 0.51 \text{ (15\%)} \]

\[M = 0.928 \text{ in-lb} \]

\[S = \frac{\pi d^2}{32} \]

\[S = 0.098175 d^3 \]

\[d_1^2 = \frac{S}{0.098175} \]

\[d_2^2 = 0.0335 \]

\[d_2 = 0.341 \]

\[d = 0.700 \]

\[\frac{MS}{0.70} - 1 = 0.07 \]
TEST FIXTURE

MDHC PANEL SIDE ATTACHMENT

TOP FRAME

DESIGN OF WHEEL

- Actual Load
 \[N = \frac{0.51}{0.50} = 1.02 \text{ kip/in} \]

- Allowable Load
 \[N_b = 1.72d \]
 \[N_b = 1.72 \times 3.215 \]
 \[N_b = 5.53 \text{ kip/in} \]

- MS
 \[MS = \frac{5.53 - 1}{1.02} = 4.42 \]
Test Fixture

MDHC Panel Side Attachment

Top Frame

Weldment of Plate 0 to Axle 2

Material: 4130

Weld Allowances:

\[F_{su} = 45 \text{ ksc} \]
\[F_{ew} = 72 \text{ ksc} \]

Ref. Brown's Fig D2.4

Reduction in Tsc

\[F_{su} = 0.92(43) = 39.6 \text{ ksc} \]
\[F_{ew} = 0.894(72) = 64.3 \text{ ksc} \]

Bending:

\[S = \frac{Z b l^2}{6} \]
\[S = \frac{2(0.275)(1.28)^2}{6} \]
\[S = 0.1991 \]

\[M = 0.51(2.45) \]
\[M = 1.25 \text{ in.-kips} \]
TEST FIXTURE

WELDMENT OF PLATE 0 TO AXLE 0 (Cont.)

Bending Stress

\[f_b = \frac{N_1}{S} = \frac{1.25}{0.1991} = 6.27 \text{ ksc} \]

\[M_5 = \frac{64.3}{6.27} - 1 = \text{high} \]

Shear

\[M = 1.25 \text{ m.k} \]

\[V = \frac{M}{A} = \frac{1.25}{0.75} = 1.668 \text{ kip} \]

\[A_s = 0.375 \times 1.26 = 0.472 \text{ m}^2 \]

\[T = \frac{V}{A} = \frac{1.668}{0.472} = 3.56 \text{ ksi} \]

\[M_5 = \text{high} \]
TEST FIXTURE

MDAC PANEL SIDE ATTACHMENT

TOP FRAME

BRACKET

\[\begin{align*}
2.625 & \\
1.255 & \\
0.510 & \\
1.63 & \\
0.315 & \\
\end{align*} \]

Moment:

\[M = P_x \]

\[M = 0.510 \times 1.65 \]

\[M = 0.831 \text{ in.-ips} \]

Section Modulus:

\[S = \frac{b t^2}{6} \]

\[\frac{t^2}{b} = \frac{6 \leq 0.03 \times 1.775}{1.775} = 0.1013 \]

\[t = 0.318 \]

Required:

\[S = \frac{M}{f} \]

\[S = \frac{0.831}{27.72} \]

\[S = 0.030 \]

\[MS = \frac{3.75}{0.318} - 1 = 0.18 \]

MATERIAL 4130
TEST FIXTURE

MODC PANEL SIDE ATTACHMENT

TOP RING FRAME

DWG 28
SHEET 7

\[r = 510 \text{ lb} \]

Dimensions and notes are not transcribed due to the nature of the image.
TEST FIXTURE

MUAC PANEL SIDE ATTACHMENT

TOP RING FRAME

\[\begin{align*}
Y & = \frac{\gamma AY}{EA} = \frac{2,505}{1,463} = 1.712 \text{ in} \\
X & = \frac{EAX}{EA} = \frac{132}{1,463} = 0.092
\end{align*} \]
TEST FIXTURE

MDM PANEL SIDE ATTACHMENT

TOP KING FRAME

\[R = \sqrt{\left(\frac{P}{Nn}\right)^2 + \left(\frac{MC}{EX^2 + EY^2}\right)^2 + 2\left(\frac{P}{Nn}\right)\left(\frac{MC}{EX^2 + EY^2}\right) \cos \theta} \]

\(\left(\frac{P}{Nn}\right)^2 = \left(\frac{510}{7}\right)^2 = (72.857)^2 = 5302.16 \text{ in}^2 \)

\(M \times P \times C = 510 \times (3.25 + 0.902) = 2117.52 \text{ in} \cdot \text{lb} \)

\(C = \sqrt{(551)^2 + (1.388)^2} = \sqrt{302 + 1.9285} = 1.476 \)

\(\frac{MC}{EX^2 + EY^2} = \frac{(2117.52 \times 1.476)}{3(551)^2 + 1.388^2} = \frac{3125.46}{756 + 0.572 + 3.125 + 2.287 + 2.251 + 3.283} \)

\(\frac{MC}{EX^2 + EY^2} = \frac{3125.46}{8.902} = 350.86 \)

\(\left(\frac{MC}{EX^2 + EY^2}\right)^2 = (350.86)^2 = 123102.74 \)

\(\tan \theta = \frac{1.388}{1.378} = 3.67 \quad \theta = 74.46^\circ \)

\(\cos \theta = 0.26375 \)

\(R = \sqrt{5302.16 + 123102.74 + 2(72.857)(350.86)(0.26375)} \)

\(R = \sqrt{5308.16 + 123102.74 + 13433.15} = \sqrt{141844.05} \)

\(R = 376.6 \text{ lb} \)

\(\gamma = \frac{R}{A} = \frac{376.6}{0.0209} = 18019 \text{ psi} \)

Ref: LOTHERS, JOHN E., DESIGN IN STRUCUTURAL STEEL, Page 161
TEST FIXTURE

MOAC PANEL SIDE ATTACHMENT

TOP RING FRAME

BOLTS: 3M298C08
BOLT SHEAR MINIMUM: 76000 PSI

\[
M.S. = \frac{95000}{12609(2)} = 1.61
\]

BREAKING LOAD ON 0.63, 0.70 INCHES THICK, 4130 STEEL

\[
A = (1.63)(0.625) = 1.0336 \text{ in}^2
\]

\[
R = 3766.6 \text{ lb}
\]

\[
V = \frac{R}{A} = \frac{3766.6}{1.0336} = 3629 \text{ PSI}
\]

BREAKING LOAD ON 0.507, 0.375 INCHES THICK, 4130 STEEL

\[
A = (1.63)(0.375) = 0.61
\]

\[
V = \frac{R}{A} = \frac{3766.6}{0.61} = 6174 \text{ PSI}
\]

\[
M.S. = \frac{108,174}{6.174(2)} = 3.8
\]

\[
M.S. = \frac{108,174}{6.174(2)} = 7.75
\]
TEST FIXTURE

MOAC PANEL SIDE ATTACHMENT
SECOND AND THIRD RING FRAMES FROM TOP

BOLT	AREA	X	Y	AX	AY
 1 | .0209| .50 | .50 | .0104 | .0104
 2 | .0209| 2.05| .647| .0478 | .0478
 3 | .0209| 2.75| .647| .0575 | .0575
 4 | .0209| .50 | 1.22| .0104 | .0104
 5 | .0209| 2.75| 2.847| .0575 | .0595
 6 | .0209| .50 | 3.00| .0104 | .0627
 7 | .0209| 2.05| 2.847| .0478 | .0595
 | .1963| | | .2318 | .2446

\[\bar{X} = \frac{\sum A \times X}{\sum A} = \frac{2.318}{1.463} = 1.584 \]

\[\bar{Y} = \frac{\sum A \times Y}{\sum A} = \frac{2.446}{1.963} = 1.272 \]
TEST FIXTURE

MDAC PANEL SIDE ATTACHMENT

SECOND AND THINQ RING FRAMES FROM TOP

\[
R = \sqrt{(\frac{P}{Nh})^2 + \left(\frac{MC}{Ex^2 + Ey^2}\right)^2 + 2\left(\frac{P}{Nh}\right)\left(\frac{MC}{Ex^2 + Ey^2}\right) \cos \theta}
\]

\[
\left(\frac{P}{Nh}\right)^2 = (12.9)^2 = 5320.
\]

\[
M: PE = 510 (3.25 + 1.584) = 2463.
\]

\[
C = \sqrt{1.084^2 + 1.328^2} = \sqrt{1.175 + 1.76} = \sqrt{2.935} = 1.713
\]

\[
Ex^2 + Ey^2 = 3(1.084)^2 + 2(1.328)^2 + 2(1.175)^2 + 2(1.025)^2
\]

\[
= 3.525 + 1.324 + 2.719 + 1.374 + 2.101 + 2.04 + 2.76 + 1.764 = 14.181
\]

\[
\left(\frac{MC}{Ex^2 + Ey^2}\right)^2 = \left(\frac{2463 \times (1.713)}{14.181}\right)^2 = 297.52^2 = 88518.15
\]

\[
\tan \theta = \frac{1.322}{1.084} = 1.2251
\]

\[
\cos \theta = 1.3228
\]

\[
R = \sqrt{5320 + 88518.15 + 2(72.9)(297.52)(1.323)}
\]

\[
R = \sqrt{121264} = 348.
\]

\[
T = \frac{R}{A} = \frac{348}{.0209} = 16650 \text{ PSI}
\]
TEST FIXTURE

MOOG PANEL SIDE ATTACHMENT

SECOND AND THIRD RING FRAMES FROM TOP

BOLT S: 3M248 COB
BOLT SHEAR MINIMUM: 95000 PSI

M.S. = 95000 \(\div \) 1 \(\div \) 1.85 = 52050 (psi)

BREAKING OF BOLT ON 0.120 AND 301 STEEL (MG 1.063 PLATE)

\(A = 1.143 (2.78) = 0.3062 \)

\(R = 234.6 \div 66 = 0.3546 \)

\(\sigma = \frac{R}{A} = \frac{234.6}{0.3062} = 769.24 \text{ PSI} \)

M.S. = 1027 \(\div \) 769.24 (psi) = 4.95

BREAKING OF BOLT ON .375 PLATE

\(A = 1.163 (2.75) = 0.61 \)

\(\sigma = \frac{R}{A} = \frac{534.6}{0.61} = 883 \text{ PSI} \)

M.S. = 1027 \(\div \) 883 (psi) = 1.18
TEST FIXTURE

MDAC PANEL SIDE ATTACHMENT

FOURTH RING FROM TOP

3.25

3.32

.7

1.10

1.03

.82

.82

2.76

4.72

.45

.45

.56

.56

.92

.92

4.0

4.0

5.0

5.0

7.0
TEST FIXTURE

MDAC PANEL SIDE ATTACHMENT

FOURTH RING FROM TOP

Y

1.395

1.06

2.76

X

1.55

1.27

0.37

0.45

0.92

1.395

0.3008

0.9187

3.008

3.193

2.493

1.393

SHEET 7

BOLT AREA X Y AX AY

1 0.0209 1.17 0.45 0.0022 0.0094
2 0.0209 1.72 0.45 0.0205 0.0091
3 0.0209 2.74 0.45 0.0722 0.0074
4 0.0209 4.30 0.45 0.0597 0.0099
5 0.1963 1.20 1.27 0.0375 0.2493
6 0.0209 4.62 1.15 0.0890 0.4189

\bar{x} = \frac{E_{xy}}{EA} = 1.395 \text{ in}

\bar{y} = \frac{E_{xy}}{EA} = 1.06 \text{ in}
TEST FIXTURE

MDAC PANEL SIDE ATTACHMENT

FOURTH RING FROM TOP

\[
R = \sqrt{\left(\frac{P}{Nh}\right)^2 + \left(\frac{MC}{Ex^2 + Ey^2}\right)^2 + 2\left(\frac{P}{Nh}\right)\left(\frac{MC}{Ex^2 + Ey^2}\right)\cos \theta}
\]

\[
\left(\frac{P}{Nh}\right)^2 = \left(\frac{510}{6}\right)^2 = (85)^2 = 7225.
\]

\[
M = Pe = 510 (3.75 + 1.398) = 510 (4.645) = 2369.
\]

\[
C = \sqrt{(2.905)^2 + (21)^2} = \sqrt{8.439 + .044} = \sqrt{8.483} = 2.912
\]

\[
Ex^2 + Ey^2 = (1.075)^2 + (1.915)^2 = (6.395)^2 + (2.905)^2 + (4.61)^2 + (21)^2 + (0.9)^2
\]

\[
Ex^2 + Ey^2 = 1.156 + 1.72 + 5.499 + 8.439 + 1.468 + .044 + .240 = 17.032
\]

\[
\left(\frac{MC}{Ex^2 + Ey^2}\right)^2 = \left(\frac{2369 \cdot (2.912)}{17.038}\right)^2 = \left(\frac{404.89}{17.038}\right)^2 = 16395.6.
\]

\[
\tan \theta = \frac{21}{2.905} = 7.233.
\]

\[
\cos \theta = .997
\]

\[
R = \sqrt{7225 + 16395.6 + 2(85)(404.89)(.997)};
\]

\[
R = \sqrt{239786} = 489.8
\]

\[
T = \frac{R}{A} = \frac{489.8}{10259} = 233.77 \text{ PSI}
\]
MDAC PANEL SIDE ATTACHMENT

FOURTH RING FRAME FROM TOP

BOLTS: 3/4 x 8 x 3/4
BOLT SUGAR MINIMUM: 55000 PSI

\[
M_S = \frac{55000}{23377} - 1 = 1.04
\]

Breaking of bolt on MDAC steel (1/2 x 8 threaded)

\[
\sigma = 1.163 \times (1/2) = 0.266
\]

\[
\sigma = 0.266
\]

\[
\tau = \frac{0.266}{0.076} = 3.5
\]

Breaking of bolt .375 plate

\[
\sigma = 0.163 \times (3/4) = 0.61
\]

\[
\sigma = 0.61
\]

\[
M_S = \frac{108}{0.61} - 1 = 3.3
\]

\[
M_S = \frac{2016}{0.61} (2)
\]
TEST FIXTURE

MDAC PANEL CENTER ATTACHMENT

 TOP KING FRAME

MATERIAL: 4130 STEEL

TWO PLATES, EACH .25 THICK

\(\sigma = \frac{P}{A} = \frac{5072}{.25} = 20308 \text{ PSI} \)

\(M.S. = \frac{25000}{12939 (2)} = 1.96 \text{ in.-lb} \)

\(\sigma = \frac{P}{A} = \frac{5072}{.50} = 10144 \text{ PSI} \)

\(M.S. = \frac{1080}{10144 (2)} = 1.06 \)

Stress in Bolt

\(\text{Bolt Area} = A = \frac{\pi D^2}{4} = \frac{\pi (\frac{5}{8})^2}{4} = .196 \)

\(\sigma = \frac{P}{A} = \frac{5072}{.196} = 12939 \text{ PSI} \)

\(M.S. = \frac{25000}{12939 (2)} = 2.07 \text{ in.-lb} \)

Checking on Lug

\(A = (1.25 - .25) (3) = .50 \)

\(\sigma = \frac{P}{A} = \frac{5072}{.50} = 10144 \text{ PSI} \)

\(M.S. = \frac{1080}{10144 (2)} = 1.06 \text{ in.-lb} \)

Breaking on Lug

\(A = .5 (1.5) = .75 \)

\(\sigma = \frac{P}{A} = \frac{5072}{.75} = 6768 \text{ PSI} \)

\(M.S. = \frac{50000}{6768 (2.5)} = 3.78 \text{ in.-lb} \)
TEST FIXTURE

MDAC PANEL CENTER ATTACHMENT

FOURTH RING FRAME FROM TOP

MATERIAL: 4130 STEEL

STRESS IN BOLTS

BOLT AREA

\[A_t = (\frac{6}{4}) \pi \left(\frac{4.89}{2}\right)^2 = 115 \text{ in}^2 \]

BOLT SHEAR

\[f = \frac{P}{A} = \frac{4.89}{115} = 4252 \text{ PSI} \]

M.S. = \(\frac{4252}{4252} \) = 10.1

BOLT SHEARING ON 3/8 PLATE

AREA = \((1.15625)(.375) = .0586 \text{ in}^2 \)

\[f = \frac{489/6}{.0586} = 1391 \text{ PSI} \]

M.S. = \(\frac{1391}{1391} \) = 37
TEST FIXTURE

MACHINE PANEL CENTER ATTACHMENT
SECOND AND THIRD RING FRAMES FROM TOP

STRESS IN BOLTS

\[A = \frac{\pi D^2}{4} = \pi (D^2) = 1.5625 \times 10^{-2} \text{ in}^2 \]

\[\frac{\pi D^2}{4} = \frac{\pi (0.5)^2}{4} = 0.1963 \]

\[A_{\text{total}} = 1.063 + 1.077 = 2.733 \text{ in}^2 \]

STRESS IN BOLTS

\[\sigma = \frac{P}{A} = \frac{5394}{2.733} = 19737 \text{ psi} \]

BEARING ON BOLTS OF PLATE

\[A = (375)\left[4 (1.5625) + 0.5\right] = 375(1.125) = 413 \text{ in}^2 \]

\[\sigma = \frac{5394}{413} = 13060 \text{ psi} \]

M.S. = 78000

-1 = 1.4

19737 (2)

M.S. = 100

-1 = 3.15

13,060 (2)
Test Fixture

Beryllium Panels

Uniform Loaded

Beryllium Panel

A36 Steel

48 inch wide panel

Holes for \(\frac{3}{16}\) inch bolts

50 bolts

NAS1007

Panel load = 350 k

\[
\frac{350 \text{ k}}{50 \text{ bolts}} = 7.0 \frac{\text{k}}{\text{bolt}}
\]

\[
A = \frac{\pi D^2}{4} = \frac{\pi (4375)^2}{4} = 150 \text{ in}^2
\]
TEST FIXTURE

LEADING FEEDS
UNIFORM LOAD

BOLT SHEAR

BOLTS ARE IN DOUBLE SHEAR

\[\tau = \frac{V}{2Ah} = \frac{2000}{2(0.150)} = 2666.6 \text{ PSI} \]

Soup allowable at 600°F

\[\tau_{su} = 91000 (\%): 782.60 \text{ PSI} \]

\[M_S = \frac{15000}{2(25333)} = 1.34 \]

BOLT BEARING ON ANGLE

\[\tau = \frac{2000}{2(0.75)(1.33)} = 10667 \text{ PSI} \]

Bearing allowable at 600°F

\[\tau_{BEAR} = 782.60 (\%): 21000 \text{ PSI} \]

\[M_S = \frac{21000}{2(10667)} = 1.28 \]
TEST FIXTURE

2.9 INCH WIDE PANEL

HOLE FOR 3/8 BOLT
3/8 BOLT
NAS1002

32 HOLE FOR 3/8 BOLT

LOAD PER BOLT

\[\frac{209,000 \text{ lb}}{32 \text{ bolts}} = 6,531 \text{ lb/bolt} \]

\[A = \frac{\pi D^2}{4} = \frac{\pi (0.4375)^2}{4} = 0.150 \text{ in}^2 \]
TEST FIXTURE

BINARYUM PANEL

UNIFORM LOAD

BOLT SHEAR

BOLTS ARE IN DOUBLE SHEAR

\[
\gamma = \frac{F}{2A} = \frac{653}{2(15)} = 2.177 \text{ psi}
\]

Shear allowable at 600°F

\[
F_{su} = 91000 \times 0.9 = 81900 \text{ psi}
\]

M.S. = \[
\frac{78260}{2.5(9170)}\]

BOLT STAIN ON ANGLE

\[
F = \frac{653}{2(625)0.9375} = 11943 \text{ psi}
\]

Shear allowable at 600°F

\[
F_{su} = 91000 \times 0.9 = 81900 \text{ psi}
\]

M.S. = \[
\frac{81000}{2(11943)}\]
HEAT ENCLOSURE COMPUTER ANALYSIS
1) Deflection Requirements

a) Deflection, \(\delta_1 \) or \(\delta_2 \), from applied loads at any frame support point relative to plane \(x - z \leq 0.030 \) in.

b) Relative deflection, \(\delta_3 \), of support points on adjacent frames from applied loads \(\leq 0.03 \) in.

c) Maximum accumulated deflection at any point shall not exceed 0.06 in. Accumulated deflection is defined as the sum of deflections from installation, alignment and application of ultimate loads.

d) Plane \(x - z \) is defined by the intersection of skin and stringers in the unloaded position. Plane \(x - y \) remains perpendicular to the fixed head of the loading machine.

2) Relative stiffness between support points on adjacent frames shall be \(> 200000 \) lb/in.

FIGURE 1. LATERAL DEFLECTION CRITERIA FOR MDAC B/AL POINT LOADED PANEL
FIGURE 2. MDAC B/AL POINT LOADED PANEL. PREDICTED LATERAL LOADS AT TIME OF COMPRESSION LOAD APPLICATION
FIGURE 3. HEAT ENCLOSURE FRAMEWORK 1130 STRESS MODEL
Figure 4: Deflection at Sides and Center
Attach columns due to lateral forces produced by MDAC panel during testing.
STRUCTURE
TYPE SPACE FRAME
NUMBER OF JOINTS 30
NUMBER OF MEMBERS 44
NUMBER OF SUPPORTS 6
NUMBER OF LOADINGS 1

JOINT COORDINATES
1 0. 0. 0.
2 21.05 58.125 8.94
3 0. 0. 0.
4 0. 29.062 0.
5 21.05 58.125 32.94
6 0. 58.125 0.
7 0. 58.125 0.
8 21.05 58.125 0.
9 36.3 58.125 0.
10 21.05 58.125 56.94
11 42.3 58.125 0.
12 21.05 58.125 80.94
13 42.3 0. 0.
14 36.3 0. 0.
15 21.05 0. 0.
16 21.05 0. 129.5
17 0. 0. 129.5
18 0. 29.062 129.5
19 0. 58.125 129.5
20 21.05 58.125 129.5
21 36.3 58.125 129.5
22 36.3 0. 129.5
23 21.05 0. 8.94
24 21.05 0. 32.94
25 21.05 0. 56.94
26 21.05 0. 80.94
27 0. 29.062 8.94
28 0. 29.062 32.94
29 0. 29.062 56.94
30 0. 29.062 80.94

JOINT RELEASES
9 MOMENT X Y Z
6 MOMENT X Y Z
11 MOMENT X Y Z
13 MOMENT X Y Z
<table>
<thead>
<tr>
<th>MEMBER INcidENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 4</td>
</tr>
<tr>
<td>2 3 1</td>
</tr>
<tr>
<td>3 2 5</td>
</tr>
<tr>
<td>4 4 7</td>
</tr>
<tr>
<td>5 15 23</td>
</tr>
<tr>
<td>6 6 7</td>
</tr>
<tr>
<td>7 5 10</td>
</tr>
<tr>
<td>8 7 8</td>
</tr>
<tr>
<td>9 8 9</td>
</tr>
<tr>
<td>10 10 12</td>
</tr>
<tr>
<td>11 9 11</td>
</tr>
<tr>
<td>12 14 9</td>
</tr>
<tr>
<td>13 14 13</td>
</tr>
<tr>
<td>14 12 20</td>
</tr>
<tr>
<td>15 15 14</td>
</tr>
<tr>
<td>16 1 15</td>
</tr>
<tr>
<td>17 15 8</td>
</tr>
<tr>
<td>18 23 24</td>
</tr>
<tr>
<td>19 1 17</td>
</tr>
<tr>
<td>20 14 22</td>
</tr>
<tr>
<td>21 4 27</td>
</tr>
<tr>
<td>22 7 19</td>
</tr>
<tr>
<td>23 8 2</td>
</tr>
<tr>
<td>24 9 21</td>
</tr>
<tr>
<td>25 17 16</td>
</tr>
<tr>
<td>26 17 18</td>
</tr>
<tr>
<td>27 18 19</td>
</tr>
<tr>
<td>28 19 20</td>
</tr>
<tr>
<td>29 20 21</td>
</tr>
<tr>
<td>30 22 21</td>
</tr>
<tr>
<td>31 16 22</td>
</tr>
<tr>
<td>32 24 25</td>
</tr>
<tr>
<td>33 25 26</td>
</tr>
<tr>
<td>34 26 16</td>
</tr>
<tr>
<td>35 27 28</td>
</tr>
<tr>
<td>36 28 29</td>
</tr>
<tr>
<td>37 29 30</td>
</tr>
<tr>
<td>38 30 18</td>
</tr>
<tr>
<td>39 1 16</td>
</tr>
<tr>
<td>40 15 22</td>
</tr>
<tr>
<td>41 7 20</td>
</tr>
<tr>
<td>42 8 21</td>
</tr>
<tr>
<td>43 7 21</td>
</tr>
<tr>
<td>44 1 22</td>
</tr>
</tbody>
</table>
MEMBER RELEASES
21 START MOMENT Y Z
38 END MOMENT Y Z
39 START MOMENT Y
39 END MOMENT Y
40 START MOMENT Y
40 END MOMENT Y
41 START MOMENT Y
41 END MOMENT Y
42 START MOMENT Y
42 END MOMENT Y
43 START MOMENT Y
43 END MOMENT Y
44 START MOMENT Y
44 END MOMENT Y

MEMB PROP PRIS 4.62 3.228 1.44 1.103 30.3 9.69 90.

*MEMBERS 39, 40, 41, 42 REPRESENT EFFECTIVE SKIN

31 THRU 34
MEMB PROP PRIS 8.53 5.799 2.95 .561 157.3 15.2

35 THRU 38
17 11.77 8.256 3.51 .830 310.1 44.1
MEMB PROP PRIS .75 .75 .75 .004 2.25 .001

43 3.82 2.801 1.165 .136 11.3 3.76
44 3.82 2.801 1.165 .136 11.3 3.76

CONSTANTS E 26444 ALL
TABULATE ALL
LOADING 1

JOINT LOADS

23 FORCE X = -51
24 FORCE X = -426
25 FORCE X = 114
26 FORCE X = 149
23 MOMENT Z = 8899
24 MOMENT Z = 7434
25 MOMENT Z = -1989
26 MOMENT Z = -26
2 FORCE X = -51
5 FORCE X = 426
10 FORCE X = 114
12 FORCE X = 149
2 MOMENT Z = 8899
5 MOMENT Z = 7434
10 MOMENT Z = 1989
12 MOMENT Z = -26
27 FORCE X = 489
28. FORCE X = 1.179
29 FORCE X = -5.394
30 FORCE X = 5.072

TRACE

SOLVE

PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED. UNUSED RECORDS = 17719
Structure

Loading 1

<table>
<thead>
<tr>
<th>Member Properties</th>
<th>Forces/Moments</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member Number</td>
<td>Force</td>
<td>Moments</td>
</tr>
<tr>
<td>In.</td>
<td>In.</td>
<td>In.</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Note: The table above represents member forces and loading conditions for the structure. Each row corresponds to a specific member with its properties and forces/moments acting upon it, along with corresponding stress values. The data includes axial force, shear, moment, and stress values in SI and KSI units, along with the ratio of ABS KSI to SI and KSI values.
TOTAL WEIGHT = 2457 (LB)
Applied Free Joint Loads

<table>
<thead>
<tr>
<th>Joint</th>
<th>Force X</th>
<th>Force Y</th>
<th>Force Z</th>
<th>Moment X</th>
<th>Moment Y</th>
<th>Moment Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.509</td>
<td>0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>0.889</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.425</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.000</td>
<td>-0.743</td>
</tr>
<tr>
<td>5</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>0.114</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.198</td>
</tr>
<tr>
<td>7</td>
<td>0.149</td>
<td>0.000</td>
<td>-0.000</td>
<td>0.000</td>
<td>-0.000</td>
<td>0.259</td>
</tr>
<tr>
<td>8</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>10</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>11</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>13</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>14</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Reactions and Applied Support Joint Loads

<table>
<thead>
<tr>
<th>Joint</th>
<th>Force X</th>
<th>Force Y</th>
<th>Force Z</th>
<th>Moment X</th>
<th>Moment Y</th>
<th>Moment Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.305</td>
<td>-0.122</td>
<td>1.633</td>
<td>0.000</td>
<td>-0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td>6</td>
<td>0.305</td>
<td>0.122</td>
<td>1.633</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td>9</td>
<td>0.305</td>
<td>0.049</td>
<td>1.633</td>
<td>0.001</td>
<td>-0.168</td>
<td>-0.168</td>
</tr>
<tr>
<td>11</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>13</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>14</td>
<td>0.305</td>
<td>-0.049</td>
<td>1.633</td>
<td>0.001</td>
<td>-0.168</td>
<td>0.168</td>
</tr>
</tbody>
</table>
Free Joint Displacements

<table>
<thead>
<tr>
<th>JOINT</th>
<th>DISPL X</th>
<th>DISPL Y</th>
<th>DISPL Z</th>
<th>ROTAT X</th>
<th>ROTAT Y</th>
<th>ROTAT Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>-0.0000</td>
<td>0.0009</td>
<td>0.0000</td>
<td>-0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>-0.0005</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0010</td>
<td>0.0000</td>
<td>-0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>-0.0000</td>
<td>0.0000</td>
<td>-0.0000</td>
<td>0.0001</td>
<td>-0.0159</td>
</tr>
<tr>
<td>4</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0000</td>
<td>-0.0000</td>
</tr>
<tr>
<td>5</td>
<td>0.0002</td>
<td>0.0000</td>
<td>0.0009</td>
<td>0.0000</td>
<td>-0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>6</td>
<td>-0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>7</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0000</td>
</tr>
<tr>
<td>8</td>
<td>0.0005</td>
<td>0.0000</td>
<td>-0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0000</td>
</tr>
<tr>
<td>9</td>
<td>0.0109</td>
<td>0.0000</td>
<td>0.0011</td>
<td>0.0000</td>
<td>0.0001</td>
<td>0.0000</td>
</tr>
<tr>
<td>10</td>
<td>-0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>11</td>
<td>0.0179</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>12</td>
<td>0.0022</td>
<td>0.0000</td>
<td>0.0010</td>
<td>0.0000</td>
<td>0.0001</td>
<td>-0.0000</td>
</tr>
<tr>
<td>13</td>
<td>0.0179</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>14</td>
<td>0.0179</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>15</td>
<td>-0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>16</td>
<td>-0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>17</td>
<td>0.0109</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0000</td>
</tr>
<tr>
<td>18</td>
<td>-0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>19</td>
<td>0.0228</td>
<td>0.0000</td>
<td>0.0010</td>
<td>0.0000</td>
<td>0.0001</td>
<td>-0.0000</td>
</tr>
<tr>
<td>20</td>
<td>0.0179</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>21</td>
<td>0.0178</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>22</td>
<td>0.0173</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>23</td>
<td>-0.0005</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>24</td>
<td>-0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>25</td>
<td>0.0052</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0000</td>
</tr>
<tr>
<td>26</td>
<td>0.0109</td>
<td>-0.0000</td>
<td>-0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0000</td>
</tr>
<tr>
<td>27</td>
<td>0.0023</td>
<td>0.0000</td>
<td>0.0010</td>
<td>0.0000</td>
<td>0.0001</td>
<td>-0.0000</td>
</tr>
<tr>
<td>28</td>
<td>0.0064</td>
<td>0.0000</td>
<td>0.0010</td>
<td>0.0000</td>
<td>0.0001</td>
<td>-0.0000</td>
</tr>
<tr>
<td>29</td>
<td>0.0108</td>
<td>0.0000</td>
<td>0.0010</td>
<td>0.0000</td>
<td>0.0003</td>
<td>0.0000</td>
</tr>
<tr>
<td>30</td>
<td>0.0219</td>
<td>0.0000</td>
<td>0.0010</td>
<td>0.0000</td>
<td>0.0002</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Support Joint Displacements

<table>
<thead>
<tr>
<th>JOINT</th>
<th>DISPL X</th>
<th>DISPL Y</th>
<th>DISPL Z</th>
<th>ROTAT X</th>
<th>ROTAT Y</th>
<th>ROTAT Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>6</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>9</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>11</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>13</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>14</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
A3.0

LOADING COLUMN STRENGTH ANALYSIS
TEST FIXTURE

LOADING HEAD

THREADED CONNECTIONS

ALL THD. ALLOW. ARE Ref.: Bouchier, R.C.,
STRENGTH OF THREADS, Product Engineering, Nov. 27, 1961

DETAIL 37

EX. THD. (4-12 N-2A)
IN. THD. (4-12 N-2B)

DETAIL 38

IN. THD. (6-RN-2B)
EX. THD. (6-RN-2A)

DETAIL 40

EX. THD. (6-8N-2A)
IN. THD. (6-8N-2B)

EX. THD. (6-8N-2A)
IN. THD. (6-8N-2B)

500 K.P. LOAD CELL (OFF)
CUSTOM BUILT
TEST FIXTURE

LOADING HEAD

THREADED CONNECTIONS

@ 1

EX. THD (4-12N-2A) Steel (f_y = 100 ksi)

\[A_s' = 6.9903 \text{ in}^2/m \]
\[A_s = 6.9903 \times 5.75 = 40.15 \text{ in}^2 \]
\[f_s = \frac{350}{40.15} = 8.72 \text{ ksi} \]
\[F_s = 40.0 \text{ ksi} \]
\[M.S. = \frac{40.0}{8.72} - 1. = +3.58 \text{ GOOD} \]

IN. THD. (4-12N-2B) 4130 Steel

\[A_s' = 9.0585 \text{ in}^2/m \]
\[A_s = 9.0585 \times 5.75 = 52.1 \text{ in}^2 \]
\[f_s = \frac{350}{52.1} = 6.72 \text{ ksi} \]
\[F_s = 21.6 \text{ ksi} \]
\[M.S. = \frac{21.6}{6.72} - 1. = +2.21 \text{ GOOD} \]
TEST FIXTURE

LOADING HEAD
THREADED CONNECTED

IN. THD. (6-8N-2B) 4130 Steel

\[A_s' = 13.7557 \]
\[A_s = 13.7557 \times 6.375 = 87.7 \text{ in}^2 \]
\[f_s = \frac{350}{87.7} = 3.99 \text{ KSI} \]
\[F_s = 21.6 \text{ KSI} \]
\[M.S. = \frac{21.6}{3.99} - 1 = +4.42 \text{ GOOD} \]

EX. THD. (6-8N-2A) 4130 Steel

\[A_s' = 10.6132 \text{ in}^2 \]
\[A_s = 10.6132 \times 6.375 = 67.7 \text{ in}^2 \]
\[f_s = \frac{350}{67.7} = 5.175 \text{ KSI} \]
\[F_s = 21.6 \text{ KSI} \]
\[M.S. = \frac{21.6}{5.175} - 1 = +3.18 \text{ GOOD} \]
TEST FIXTURE

LOADING HEAD

THREADED CONNECTION

\[@ (3) \]

EX. THD \((6-8N-2A)\) 4130 Steel

\[A_s' = 10.6132 \text{ in}^2/\text{in} \]

\[A_s = 10.6132 \times 4.5 = 47.8 \text{ in}^2 \]

\[f_s = \frac{350}{47.8} = 7.33 \text{ ksi} \]

\[F_s = 21.6 \text{ ksi} \]

\[M.S. = \frac{21.6}{7.33} - 1. = +1.95 \text{ Good} \]

IN. THD \((6-8N-2B)\) 4130 Steel \((F_{u} = 155 \text{ ksi})\)

\[A_s' = 13.7357 \text{ in}^2/\text{in} \]

\[A_s = 13.7357 \times 4.5 = 61.8 \text{ in}^2 \]

\[f_s = \frac{350}{61.8} = 5.67 \text{ ksi} \]

\[F_s = 37.9 \text{ ksi} \]

\[M.S. = \frac{37.9}{5.67} - 1. = +5.68 \text{ Good} \]
LOADING HEAD

THREAD CONNECTION

\[@ \ 4 \]

IN. THD. (4-8N-2B) 4130 Steel (F_{u} = 155 \text{ ksi})

\[A_s' = 9.2365 \text{ in}^2/\text{in} \]

\[A_s = 9.2365 \times 4.5 = 41.5 \text{ in}^2 \]

\[F_s = \frac{350}{41.5} = 8.45 \text{ ksi} \]

\[F_s = 37.9 \text{ ksi} \]

\[M/s. = \frac{37.9}{8.45} - 1 = 4.34 \quad \text{GOOD} \]

EX. THD. (4-8N-2A) 4130 Steel

\[A_s' = 7.0883 \text{ in}^2/\text{in} \]

\[A_s = 7.0883 \times 4.5 = 31.9 \text{ in}^2 \]

\[F_s = \frac{350}{31.9} = 11.0 \text{ ksi} \]

\[F_s = 21.6 \text{ ksi} \]

\[M/s. = \frac{21.6}{11.0} - 1 = 0.96 \quad \text{GOOD} \]
TEST FIXTURE

LOADING HEAD

THREADED CONNECTIONS

EX. THD (6-8N-2A) 4130 Steel

\[A_s' = 10.6132 \text{ in}^2/\mu \]

\[A_s = 10.6132 \times 6.375 = 67.7 \text{ in}^2 \]

\[f_s = \frac{350}{67.7} = 5.17 \text{ KSI} \]

\[F_s = 21.6 \text{ KSI} \]

\[M.S. = \frac{21.6}{5.17} - 1 = +3.17 \text{ Good} \]

IN. THD (6-8N-2B) 4130 Steel

\[A_s' = 13.7357 \text{ in}^2/\mu \]

\[A_s = 13.7357 \times 6.375 = 87.6 \text{ in}^2 \]

\[f_s = \frac{350}{87.6} = 4.0 \text{ KSI} \]

\[F_s = 19.88 \text{ KSI} \]

\[M.S. = \frac{19.88}{4.0} - 1 = +3.97 \text{ Good} \]
负载 (P) = 350 kips

材料：如分析所注

温度：室温
TEST FIXTURE

LOADING HEAD

TOP LUG

FITTING 1

LOAD (P) = 350.0 KIPS

MATERIAL: 4130 STEEL

Diagram of test fixture with dimensions:
- 6.25 DIA. A
- 3.0
- 9.25
- 18.5
- 9.25
- 18.5
TEST Fixture

LOADING HEAD

TOP LUG

FITTING ①

Bearing check on 6.25 Dia. HOLE

\[f_{br} = \frac{P}{A_{br}} = \frac{3.50}{6.25 \times 3.0} = 18.68 \text{ KSI} \]

\[F_{br} = 60.6 \text{ KSI} \]

\[M.S. = \frac{60.6}{18.68} - 1 = +2.21 \text{ GOOD} \]

Compression in stem @ section A-A

\[f_{c} = \frac{P}{A} = \frac{350}{30 \times 11.5} = 6.30 \text{ KSI} \]

\[F_{c} = 35.0 \text{ KSI} \]

\[M.S. = \frac{35.0}{6.0} - 1 = +4.83 \text{ GOOD} \]
TEST FIXTURE

LOADING HEAD

TOP LUG

FITTING (2)

LOAD \((P) = 350 \) KIPS

MATERIAL: 4130 Steel

\[\frac{P}{2} \]

\[\frac{P}{2} \]

\[2.25 \text{ TYP} \]

\[2.0 \text{ DIA.} \]

Bearing check on 4.0 DIA. HOLE

\[f_{br} = \frac{350}{4 	imes 2.25} = 19.45 \text{ KSI} \]

\[F_{br} = 60.0 \text{ KSI} \]

\[M.S. = \frac{60.0}{19.45} - 1 \approx 3.08 \text{ GOOD} \]

Compression check of stem

\[f_c = \frac{350}{2.25 \times 10} = 7.78 \text{ KSI} \]

\[F_c = 35.0 \text{ KSI} \]

\[M.S. = \frac{35.0}{7.78} - 1 \approx 4.5 \text{ GOOD} \]
TEST FIXTURE

LOADING HEAD

TOP LUG

BEARING 3

LOAD = 350.0 KIPS

MATERIAL: STAINLESS STEEL (H.T.)

BEARING PART NUMBER: BAR-64015
(Ref. Southwest Products Co., Monrovia, California)

ULTIMATE STATIC LOAD = 1,962.5 KIPS

F.S. = \frac{1962.5}{350} = 5.62 > 2.0 \hspace{1cm} \text{GOOD}
TEST FIXTURE

LOADING HEAD

TOP LUG

PIN 4

LOAD \((P) = 350.0\) KIPS

MATERIAL: 4340 Steel, H.T. to 180 KSI

Ref.: ANALYSIS & DESIGN OF FLIGHT VEHICLE STRUCTURES by Brown, Page 41-9

Moment Arm on Pin \((b)\)

\[
b = 0.5t_1 + 0.25t_2 + \text{GAP} = 0.5(2.25) + 0.25(2.25) + 0.5 = 2.997
\]

Bending Moment on Pin, \(M\)

\[
M = 0.5 P_b = 0.5(350)(2.997) = 437 \text{ IN-K}
\]

\[
f_b = \frac{M_c}{I} = \frac{437(2.0)}{12.5} = 69.8 \text{ KSI}
\]

\[
F_b = 71.9 \text{ KSI (ULT)}
\]

\[
M/s_i = \frac{71.9}{69.8} - 1. = +0.3 \quad \text{GOOD}
\]
TEST FIXTURE

LOADING HEAD

TOP LUG

PIN 4 CONT'

check double shear on pin

\[f_s = \frac{P}{2A_s} = \frac{350}{2(11.79)} = 14.88 \text{ KSI} \]

\[F_s = 43.2 \text{ KSI} \]

\[M.S. = \frac{43.2}{14.88} = 1.90 \text{ GOOD} \]
LOADING HEAD

BOTTOM LUG

LOAD (P) = 350.0 KIPS
MATERIAL: AS NOTED IN ANALYSIS
TEMP.: 600°F
TEST FIXTURE

LOADING HEAD
BOTTOM LUG
FITTING (1)

10.0 DIA

5.88 DIA

INTERNIAL THD.
(6-8N-28)

6.375
9.0

10.0 IN. WIDE

10.5

5.0 RAD

6.25 DIA

3.0

LOAD (P) = 350.0 KIPS
MATERIAL: 4130 Steel
TEST FIXTURE

LOADING HEAD

BOTTOM LUG

FITTING 1 CONT'

\[
\text{Bearing check at 6.25 dia. hole}
\]

\[
f_{br} = \frac{P}{A_{br}} = \frac{350.0}{6.25 \times 3.0} = 18.68 \text{ ksi}
\]

\[
F_{br} = 55.7 \text{ ksi}
\]

\[
M.S. = \frac{55.7}{18.68} - 1.0 = +1.98 \text{ GOOD}
\]

\[
\text{Compress. in stem}
\]

\[
f_{c} = \frac{P}{A} = \frac{350.0}{10 \times 3} = 11.65 \text{ ksi}
\]

\[
F_{c} = 27.72 \text{ ksi}
\]

\[
M.S. = \frac{27.72}{11.65} - 1.0 = +1.38 \text{ GOOD}
\]
TEST FIXTURE

LOADING HEAD

BOTTOM LUG

FITTING 1 CONT'

INTERNAL THD. (6-8N-28)

\[A_s' = 13.7357 \text{ in}^2/\text{in} \]

\[A_s = 13.7357 \times 6.375 = 87.6 \text{ in}^2 \]

\[f_s = \frac{P}{A_s} = \frac{350}{87.6} = 4.0 \text{ KSI} \]

\[F_s = 19.88 \text{ KSI} \]

\[M.S. = \frac{19.88}{4.0} - 1. = +3.97 \text{ GOOD} \]
TEST FIXTURE

LOADING HEAD

BOTTOM LUG

FITTING (2)

LOAD = 350.0 KIPS

MATERIAL: 4130 Steel

BEARING CHECK @ 6.25 HOLE

\[F_{br} = \frac{P}{A_{br}} = \frac{350}{6.25 \times 2.22} = 25.2 \text{ KSI} \]

\[F_{br} = 55.7 \text{ KSI} \]

\[M.S. = \frac{55.7}{25.2} - 1 = 1.21 \text{ GOOD} \]

COMPRESSION CHECK ON STEM

\[F_{c} = \frac{P}{A_{c}} = \frac{350/2}{10 \times 2.22} = 7.88 \text{ KSI} \]

\[F_{c} = 27.72 \text{ KSI} \]

\[M.S. = \frac{27.72}{7.88} - 1 = 2.51 \text{ GOOD} \]
TEST FIXTURE

LOADING HEAD

BOTTOM LUG

BEARING 3

LOAD = 350.0 KIPS

MATERIAL : STAINLESS STEEL, (H.T.)

Bearing Part Number : BAR-64015
(Ref. Southwest Products Co., Monrovia, California)

ULTIMATE STATIC LOAD = 1196.25 KIPS
(Loads approved in temp. 800°-1000°F)

F.S. = \frac{1196.25}{350.0} = 3.42 > 2.5 \text{ Good}
TEST FIXTURE

LOADING HEAD

BOTTOM LUG

PIN 4

LOAD (P) = 350 KIPS
MATERIAL: 4340 steel (H.T. to 180 KSI)

Ref.: ANALYSIS & DESIGN OF FLIGHT VEHICLE STRUCTURES, by Brown
pp. D1-9

Moment Arm on PIN BENDING, (b)

\[b = \frac{t_1}{2} + \frac{t_2}{4} + GAP = \frac{2.2}{2} + \frac{3.0}{4} + 0.063 \]

\[b = 1.923 \text{ in.} \]

Bending Moment on PIN, M

\[M = \frac{Pb}{2} = \frac{350(1.923)}{2} = 336 \text{ in.-k} \]

\[f_b = \frac{Mc}{I} = \frac{336 \times 2}{12.5} = 53.75 \text{ KSI} \]

\[F_b = 64.3 \text{ KSI} \]

M.S. = \[\frac{64.3}{53.75} - 1. = 0.19 \text{ GOOD} \]
LOADING HEAD

BOTTOM LUG

PIN 4 CONT'

check double shear on PIN

\[f_s = \frac{P}{2A_s} = \frac{350}{2(11.79)} = 14.88 \text{ ksi} \]

\[F_s = 39.8 \text{ ksi} \]

\[M.S. = \frac{39.8}{14.88} - 1. = +1.67 \text{ GOOD} \]
TEST FIXTURE

LOADING COLUMN

TUBULAR ROD

Cross Section Area at Full Section

\[A_f = A_1 - A_2 \]

\[A_1 = 28.27 - 2.405 \]

\[A_1 = 25.865 \text{ in}^2 \]

\[I_f = I_1 - I_2 \]

\[I_1 = 63.62 - 0.46 \]

\[I_1 = 63.16 \text{ in}^4 \]

Material 4130
Properties:

\[F_{u} = 90 \text{ ksf} \]

\[F_{y} = 70 \text{ ksc} \]

Allowable Stresses

\[\frac{F_{u}}{25} = \frac{90}{2.5} = 36 \text{ ksf} \]

\[\frac{F_{y}}{2} = \frac{70}{2} = 35 \text{ ksc} \]
TEST FIXTURE

LOADING COLUMN

TUBULAR ROD (CON’T)

STRESS CONCENTRATION AROUND ORIFICE HOLE

\[
\frac{\sigma_{\text{max}}}{\sigma} = 2.53 \quad \text{(for hole with bead)}
\]

Stress concentration at edge of hole:

\[
\sigma_{\text{max}} = \frac{2.53 \times P}{H}
\]

\[
\sigma_{\text{max}} = \frac{2.53 \times (350)}{35.565}
\]

\[
\sigma_{\text{max}} = 34.8 \text{ ksi}
\]

\[
M_5 = \frac{35.0}{34.2} - 1
\]

\[
M_5 = 0.072
\]
TEST FIXTURE

LOADING COLUMN

VARIABLE CROSS-SECTION COLUMN ANALYSIS

In the variable cross-section column analysis only two variations in the cross-section are allowed. The loading head consists of several parts which have distinct cross-sections. In this analysis, the two minimum cross-sections will be used; a conservative approach.

Load Cell: \(I_1 = \frac{\pi}{64} \left(D^4 - d_1^4 \right) \)

\[I_1 = \frac{\pi}{64} \left(5.216^4 - 3.812^4 \right) \]

\[I_1 = \frac{\pi}{64} \left(740.19 - 211.16 \right) \]

\[I_1 = \frac{\pi}{64} \left(529 \right) \]

\[I_1 = 25.968 \text{ in}^4 \]

Tubular Rod: \(I_2 = 63.16 \text{ in}^4 \)

from pg
LOADING COLUMN

VAR. CROSS-SEC. COL. ANALYSIS (CONT)

\[P_c = \frac{11^2 (EI)}{m} \frac{L^2}{\pi^2} \]

\(\frac{(EI)}{(EI)_2} = \frac{E 25.968}{E 63.16} \)

\(P_c = 9.89 \frac{(29000) 25.968}{19000} \frac{138^2}{138} \)

\(P_c = 766 \text{ kips} \)

FACTOR OF SAFETY

\[F_S = \frac{766}{350} = 2.19 < 2.5 \]
TEST FIXTURE

LOADING BEAM

UNIFORM LOADED PANELS

GUSSET PLATE (t = 0.5)
(EVERY 3.2 IN)

SECTION A - A
TEST FIXTURE

LOADING BEAM

UNIFORM LOADED PANELS

\[
\text{AREA SECTION } A-A
\]

\[
A_w = 29.5 \times (0.5) = 15.045
\]

\[
A_g = 12 \times (3.855)(0.5) = 23.13
\]

\[
A_t = 38.175
\]

\[
\sigma = \frac{P}{A} = \frac{209,000 \text{ lb}}{38.175 \text{ in}^2} = 5475 \text{ psi}
\]

Buckling Allowable of Gusset Plate

\[
\sigma = \frac{K \pi^2 E t^2}{12 (1 - \nu^2) b}
\]

See Ref. Design of Welded Structures, Eq. 2.12-1

\[
\sigma = \frac{K \pi^2 (26,24 \times 10^6)(5)^2}{12 (.91)(3.855)}
\]

\[
\sigma = \text{HIGH}
\]
A4. 0

LOADING COLUMN

THERMAL ANALYSIS RESULTS
A. Assumptions:

1. Cooling Water Flowrate of 1000 GALL/MIN @ 80°F
2. Mat'l is 4130 Steel
3. Compression Panel Temperature History as shown below.

4. Tubular Fittings Dimensions (6" OD; 2" dia. bore)
5. Initial Test Fixture @ approx. 80°F.

B. Results:

1. Maintaining Load Cell Temperatures below 175°F can be accomplished with present design. (See attached figures.)

2. Hydraulic Cylinder Temperature should remain constant during test (No soak back from compression panel).
FIGURE 1. LOCATION OF THERMAL NODE POINTS ON THERMAL MODEL OF LOADING COLUMN
Notes:
1. Total H₂O Flow = 1000 gal/hr.
2. H₂O Inlet Temp = 80°F

Temperature (°F)

Time (hrs)

Loading Head Transient Temperatures

Position A

Position B

Position C
Notes: 1. No H₂O flow

Position A

Position B

Position C

Position D

Position E

Loading Head Transient Temperatures