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FOREWORD

This report summarizes the results of the Phase B por-

tion of Contract NAS8-28729 for the 12-month period ending

15 July 1973. This effort was performed by personnel in the

Fluid Mechanic Applications Group of the Lockheed-Huntsville

Research & Engineering Center for NASA-Marshall Space Flight

Center.

The work was performed under the direction of

E.A. Hasemeyer (M553) and R. M. Poorman (M551) of NASA-

MSFC S&E-PE-MW and S&E-ASTN-MM, respectively.
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Section 1

INTRODUCTION

Lockheed-Huntsville began work in May 1972 to assist the National

Aeronautics and Space Administration, Marshall Space Flight Center, in meeting

the objectives of the M551 Metals Melting Experiment and the M553 Sphere

Forming Experiment to be conducted in the M512 Facility aboard the Skylab

Laboratory. Specifically, ground-based studies have been conducted with the

objectives of clarifying the effects of gravity and optimizing the experiments

within the constraints of existing hardware. All process phenomena have been

considered with particular attention given to adhesion-cohesion studies with

emphasis on the fluid dynamics of the molten metal. Detailed thermal histories

have been generated for the three-dimensional specimen geometry including

radiation, conduction arid vaporization losses with allowances for variable

properties. In addition, quantitative techniques have been used to establish

the gravitational level (magnitude and direction) for KC-135 aircraft flights

and the actual Skylab mission for both experiments.

The overall study is composed of three distinct portions, Phase A —

the preparation of a ground base study plan, Phase B —the performance of the

study plan, and Phase C —the analysis of experimental flight data. The results

of Phase A were presented in July 1972 (Ref. 1); this report covers the Phase B

portion of the study and the Phase C analysis is forthcoming.

The M551 Metals Melting Experiment consisted of a rotating metal disk

mounted perpendicular to an electron beam (eb) heat source with the eb

impingement point located 6 cm from the center of rotation. The velocity of

the beam relative to the impingement point was 1.61 cm/sec with a corre-
_ A

spending radial acceleration of 5.09(10) g. The eb was focused to approxi-

mately 0.15 cm diameter. The three materials listed on the following page

were used in the experiment.

1-1
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• 2219 Aluminum

• 321 Stainless Steel

• Tantalum.

Each of the four quadrants of the disk is composed of a different thickness

of material.

The M553 experiment consisted of two 15-specimen indexing pinwheels

mounted perpendicular to the electron beam. With each discrete rotation of

the pinwheel a new cylindrical specimen was positioned in the path of the elec-

tron beam. As the specimen melted, the hardware was designed to allow for

deployment of the resulting liquid spheres with the ensuing free-float time

giving rise to a containerless solidification in the vacuum chamber.

Before presenting specific calculations relating to the M551 and M553

experiments, a brief discussion of some fundamental concepts will be pre-

sented (Section 2). Specific attention will be given the M551 experiment in

Section 3, while Section 4 is devoted to the M553 experiment.

1-2
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Section 2

FUNDAMENTAL, CONCEPTS

This section reviews some of the fundamental concepts pertinent to the

M551 and M553 experiments. Specific calculations relative to either the M551

or M553 experiment are presented in Sections 3 or 4, respectively.

2.1 MECHANISMS OF POWER LOSS

The distribution of eb power can be described by the following equation:

where

q = power loss due to vaporization

q = power loss due to heat conduction
C . • '

q = power loss due to radiation

q. = power loss due to ionization and excitation of evaporated
atoms.

The vaporization loss can be calculated from the Langmuir theory. Here,

the mass flux due to vaporization can be calculated from kinetic theory and is

equal to

M \1/2

m = p /- - J (2 .2)
0 v RT

where

2-1
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p = vapor pressure

M =• molecular weight

R •= universal gas constant

T = temperature.

If more than one component is present, Raoult's law may be used to

calculate the equilibrium vapor pressure that is exerted by a component in

a solution. This law states that

n

n-l ' iAn + . . . Pva Q c / a

where

p = partial pressure components "a" in a solution with, b,c.

p = vapor pressure of "a" in pure stale
a

n , n, , n = moles for components a, b, c
ct D C i

N = mole fraction of "a."
3. • •

The total vaporization power loss can now be calculated from

N N /• • / \> + 2 ^ T

i=l S

where A is the energy required to vaporize a unit mass at 0 K (i.e., the

sum of the heat of melting and the heat of vaporization).

2-2

LOCKHEED - HUNTSVtLLE RESEARCH & ENGINEERING CENTER



LMSC-HREC TR D306700

A second mechanism of heat loss is due to thermal conduction. This

can be bbtained (via a thermal analyzer) from

./,.q = f *• . A dS (2.5)
c

where F is the heat flow vector and r) is the surface normal. The term F is

calculated by

F = -k VT (2.6)

with T satisfying

where

a = thermal diffusivity

k = thermal conductivity

Q = heat generation (source).

The heat loss to radiation can be calculated via the Stefan-Boltzmann

law

/ ecr T4 ydS (2.8)

where

e = emissivity

y = fraction of radiation differential area dS which escapes
from eb hole

0 = Stefan-Boltzmann constant.

2-3
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The average power lost to ionization and excitation can be calculated

from the universal electron range (R) — incident electron energy relationship.

This can be written as

rlE
-T=- = known constant (2.9)oK

The density of the gas in the hole is

m
p= - l- (2.10)

A V
o

•where

A = area of cavityo 7

V = is a molecular velocity.

The energy loss due to ionization and excitation is then

i= I 0 d p - (2.11)

where

I = currento

d = cavity depth.

These mechanisms are shown schematically in Fig. 2-1.

2.2 ACTIVE FORCES ATTRIBUTABLE TO ELECTRON BEAM

2.2.1 Electron Force

The transfer of electron momentum during impingement on a surface

can be equated to the net force on the surface and is given by (page 2-6)

2-4
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w , = total input power

Fig. 2-1 - Thermal Mechanisms

2-5
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where

Fe/A =

F /A = force per unit area

m = mass of electrone

v = velocity of electron

q = charge of electron

J = current density

The velocity can be calculated from

1/2

where .

E ^ acceleration potential.

Thus the total force on area A is

2m E
F = Ie

17

(2.13)

with q/m = 5.27(10) stat coulomb/gm.

2.2.2 Vaporization Force

The reaction force of evaporating mass can be calculated from conser-

vation of momentum:

= m v (2.15)

2-6

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC TR D306700

where

v = molecular velocity.

The most probable velocity calculated from a Maxwell -Boltzmann distribu

tion is

,- .,.
v = I — — — 1 (2.-16)mp \ m f v '

•while the mean speed is given by

where

k = Boltzmann1 s constant

m = mass of proton times molecular weight

= m M
P

The total force can be found by integrating over the surface

= J mQ(T) v(T) dS. (2.18)

If the most probable velocity is used this equation reduces to

_1
1.775

S

2-7
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and

F = fW f p CTJ dS (2.20)v 1.57 I v

for mean velocity. Thus, given the surface temperature distribution, the total

force can be calculated.

2.2.3 Surface Tension Force

The total surface tension force tending to close the cavity can be calcu-

lated as the product of surface tension and the circumference of the cavity,

i.e.,

F = TrDor (2.21)

where

D = cavity diameter

a = surface tension.

2.2.4 Hydrostatic Force

One of the three expected differences in zero-g phenomena as com-

pared to one-g is the decrease in hydrostatic pressure exerted by the

weight of the molten material on the cavity wall. This is given by

Fh/A = pgd (2.22)

where

d = depth of cavity.

2-8
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Thus, the total force is then

F. = 5- pgdD2 . (2.23)

2.2.5 Electrostatic and Electromagnetic.Forces

The electrostatic force due to a net charge on a mass of material

(especially low electrical conductors) may be a non-neglible force for both

experiments. The magnitude °f this force may be estimated for a given

charge distribution by calculating the electrostatic body force (pE) and
>

realizing the tendency to negate surface tension effects.

The contribution of magnetostriction and electrostriction effects (i.e.,

the variation in electrical properties with changes in density due to com-

pression) to the total force may also be estimated if this variation in elec-

trical properties (permittivity and permeability) with density is known. Also,
—i —i '

the Lprentz force (J x B) is a measure of the role of convective charge

transport and conduction current of the total force.

In the absence of one predominant body force (gravity) some of the

mentioned mechanisms may produce a unique effect and the relative magni-

tudes should be established to help clarify the effect of the absence of gravity.

2.3 ADHESION, COHESION AND SURFACE TENSION EFFECTS

The terms cohesion and surface tension are generally used interchange-

ably while in fact they represent different mechanisms. In discussing the

differences between the two, it is necessary to discuss the concept of intrinsic

pressure. Intrinsic pressure is generated as a result of the attractive co-

hesive force producing a compression and, since one is a result of the other,

they exist at the same time. It is this intrinsic pressure gradient that defines

2-9
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the range of the effects of surface tension itself as surface tension is the

difference between the intrinsic pressure forces and the cohesive forces.

This difference is non^zero only near the surface as the cohesive forces are

weaker at the surface than they are in the bulk and intrinsic pressure is at

a maximum. This situation produces the largest difference at the surface.

The general effect of increasing temperature is to superimpose a repulsive

force that produces a weakened cohesive force and also reduces the intrinsic

pressures. If the cohesive effects are a stronger function of temperature

than intrinsic pressure effects, a reduction in the surface tension accompanies

an increase in temperature and vice versa. For equal dependence, surface

tension would remain constant.

2.3.1 Contact Angle

The equilibrium conditions of a sensible drop in contact •with a solid

surface have generally been written in terms of surface tension (i.e., the

Young-Dupre' form). One derivation of this form of the equation can be ob-

tained from a force balance at the interfaces (see Fig. 2~2).

Fig. 2-2 - Contact Angle

This yields

CTsg

2-10
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A distinction must be made, however, between surface tension and

surface free energy as recognized by Gibbs (Ref.2), restated by Shuttleworth

(Ref .3) and discussed by Pethica and Pethica (Ref.4). Young's equation is

frequently used to draw conclusions concerning the surface energy of solids;

but as stated it is objectional from a theoretical point of view and refuted by

experiment. The main theoretical objection lies in the fact that the vertical

component ( a . sin9) is not accounted for. Some investigators have argued

that it is obvious that this component is balanced by the elasticity of the solid,

by gravitation, or by another non-capillary agent. However, if a vertical plate

is envisioned (i.e., unaccounted component now horizontal), it is easily seen

that this component cannot affect the vertical displacement of the plate. Also

it is known from experiment that poorly wetted solid particles float on the

Surface of a less dense liquid; thus the vertical component cannot be compen-

sated for by or - a . (see Fig. 2-3).
S g S J t

Gas

Liquid

sg

'Ig

Fig. 2-3 - "Floating" Solid

These aforementioned sentiments are best described by Bikerman (Ref. 5)f

as this discussion denies the validity of Young's equation from a theoretical

and experimental point of view. The work of Pethica and Pethica (Ref.4)

examined the validity of the equation in a gravitational field and it was con-

cluded that the equation.is invalid. Others, as pointed out by Johnson (Ref. 6),

deny the validity for zero contact angle. Johnson, however, maintains that

Young's equation is indeed valid when surface tensions are used instead of

2-11
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surface free energy. He derives relationships based on Gibbsian thermo-

dynamics that include the effects of adsorption and gravity. He also discusses

four major reasons that contribute to these discrepancies, i.e.,

• Assumption that surface tension is numerically equal
to specific surface free energy

• Conclusion that a necessary and sufficient condition
for equilibrium is that the free surface energy of
the system be a minimum

• Lack of vigor in defining the differences between
surface tensions, surface free energies, specific
surface free energies and surface energies, and

• Interpretation of a as applied to solids.

Johnson then clarifies the above misconceptions and derives an equation

that represents total mechanical equilibrium from which Young's surface

tension equation results. In support of Johnson's work is the work of Li

(Ref.7) . Here the Young equation is shown to be a terminal condition of an

isoperimetric problem derived from the principal of minimum energy. It

is also shown that the contact angle is constant for all gravitational field

levels. This concept will be employed to examine the adhesion and cohesion

effects in the M551 and M553 experiments.

2.3.2 Spreading and Wetting

The spreading of a liquid on a substrate has classically been defined

as the energy released per unit area when the liquid with a free surface

spreads over the solid. The spreading coefficient is given by

S = CT - a .. - a. (2.25)c sv si fv * '

2-12
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or by

S = or (cos9 - 1) (2.26)
c

if Young1 s equation is substituted. If S <^ 0 the liquid will assume the shape
C

of a spherical segment (no external forces) with the area of contact given by

1/3 . 2_ ..2/3
A = ' am 9 V V {2 2?)

where

v = volume of the liquid.

On the other hand, if S > 0, the liquid will spread over the solid surface at

a rate dependent upon the viscosity of the liquid and the surface roughness.

2.3.3 Work of Adhesion

Dupre1 introduced the concept of reversible work of adhesion

of liquids to solids and this relation can be written as

W = o- + cr, - or . (2.28)
SV j?V SJ?

This equation is simply the thermodynamic expression of the fact that the

change in free energy of a system is equal to the work needed to separate

the liquid from the solid.

2-13
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2.4 LIQUID DYNAMICS

2.4.1 Formation Time

The question of the time needed for minimum energy formation has

received considerable attention and is reviewed here to document how the

calculations have been made.

Consider a mass of liquid whose motion can be described by the full

Navier-Stokes equations as given below:

p = F- VP+ |UV2 V (2.29)

Performing an order of magnitude analysis with

V = O(R/t)

D/Dt = O(l/t)

F = 0(a/R)/R (2.30)

V = 0(1/R)

V2 = 0(1/R2)

and keeping track of the resisting and forming forces yields

pO(R/t2) = £i2£) - 0(P/R) - j iO(l/Rt) (2.31)

or

0(pR/t2) = 0(cr/R2) - 0(M/Rt) (2.32)

as

0(P/R) = 0(2(T/R). (2.33)

2-14
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Rearranging yields

0(<rt2) - O(MRt) - O(pR3) = 0. (2.34)

Thus

T , OW .
Za

where T is the time to formation. For low viscosity liquids such as liquid

metals, Eq. (2.35) can be simplified to

Li R + % u R + 4 a p R
limT = lim ~ V • (2.36)
M _^0 u^O 2 a

or

T' = J*"Vy = W-^ R ' (2-37>
If 4a

where T1 = time to formation of inviscid fluid.

2.4.2 Damping Time

After formation, the sphere will continue to oscillate around its minimum

energy position due to inertial effects. These oscillations are reduced as a

function of time as a result of internal friction due to a non-zero viscosity.

Consider a system of mass M freely oscillating about its equilibrium

position. Further, it is reasonable to assume a constraining force coefficient

proportional to the surface tension and a damping coefficient proportional to

viscosity and radius. This can be expressed as

2-15
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d a + c ^ L + Ka = 0 (2.38)
dt2

•where

M = mass = (4/3) jrr p

a = amplitude of response

t = elapsed time

C cc r/i

K oc cr .

The solution to Eq. (2.38) is

a=Ae' t C / 2 Mcos(cot + </>) (2.39)

where

A = maximum amplitude

0) = angular velocity

<p = phase angle.

The time required to achieve a certain percent decay can be readily found

from Eq. (2.39 ) as follows:

TV* 2

t = -2^-ln(a/A).oc -. — In (a/A) (2.40)

with the corresponding circular frequency being

(ZAl)

2-16
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2.5 . MELTING AND SOLIDIFICATION TIMES

2,5.1 Time to Melt Specimen

From the operating characteristics of a heat source, the time needed

for melting can be calculated by equating the heat input from the source to

the change in internal energy plus the radiative loss. This yields the following

for minimal conduction loss (i.e., M553);

(2.42)

or rearranging

m

/ dT

4?rr o-e

4 4
+ T - T

o

3 C T 6
p r C

dt

t = 0

(2.43)

Performing this integration yields

t = prC

6cre
in

where

T ) (T ' - T.)m /v i'
T ) (T ' + T.)m i'

tan(T /T')- tan(T /T')m
^ (2.44)

A 24?r r ae
(2.45)

Upon reaching the melting temperature, the time needed to melt can be

estimated by equating the available heat (source input less radiative loss) to

the heat absorbed during formation of a complete melt. This gives

2-17
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q t - 4 ; r r 2 e a T 4 t = -| TT r3 p Q^ . (2.46)
s m m j & '

where

t = time to meltm

T = temperature of melting.

Rearranging yields

(4/3)7rQ r p
t = F (E>47)

qg TT r e a

Thus, the total time for heating and melting is

t. . . s t '+ t . (2.48)total rn

In the derivations for both of these times, it was assumed that isothermal

conditions prevailed; i.e., the sphere is at uniform temperature. This would

be realistic for materials of relatively high thermal conductivity. However,a

"warm up" time is associated with low k materials as a result of finite heat

conduction and this time can be estimated by an order of magnitude analysis

of Fourier's heat conduction equation,

with

I |i (2-49)

V2 = 0(1/R2) (2.50)

a = thermal diffusivity = k/pC

t = conduction time

2-18
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Thus

0(T/R2) = £ 0(T/tc) (2.51)

or rearranging

0(1/R2) = 0(l/atc). (2.52)

This relation shows that the thermal diffusivity is a measure of the time re-

quired to heat a material to a given temperature level and is seen to be

proportional to the square of the conducting path and reciprocal transfer time,

A final result can be obtained from Eq. (2.52) by solving for this time,

tc =RZ /a = PR* Cp/k. (2-53)

In a transient heating process the thermal capacity of the material

governs the amount of energy absorbed and the thermal conductivity dictates

the rate. Thus, for large k the time to reach the melting temperature is

governed by Eq. (2.44) while for small k,Eq. (2.53) applies. A maximum

time (upper bound) could be estimated by the addition of all three times (Eqs.

(2.44), (2.47) and (2.53); however, in practice a tradeoff should be made

between Eq. (2.44) and Eq. (2.53), depending on the value of the conductivity

and the magnitude of convection present.

The maximum temperature capable of a given heat source can be readily

obtained from a balance of heat input from source and the loss due to radiation.

This can be expressed as

a = 4?r r2 e a T4 (2.54)s

or

4 ir r e a
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2.5.2 Solidification Time

The time needed for a liquid sphere to solidify can be estimated by

equating the heat of fusion to the time integral of the radiated dissipation

rate; i.e.,
t

QFM = I Ae ov(T4-T'4)dt (2.56)

o

where

Q_, = heat of fusion
£

A = surface area

e = emis'siyity

a = Stefan-Boltzmann constant

T = solidification temperature

T1 = surrounding temperature.

Since T'4 «T4, Eq. (2.56) can be reduced to

Q F rp
t = — . (2.57)'
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Section 3

M551 METALS MELTING EXPERIMENT

3.1 GENERAL

During the course of the investigation all process phenomena have been

considered with particular attention given to adhesion-cohesion studies with

emphasis on the fluid dynamics of the molten metal. This was accomplished

by establishing all expected variations in.:terrestrial versus space processing

occurring as a result of:

• The dominance of capillary motion (instead of gravity-induced
flow)

• Minimal segregation (sedimentation), and

• A decrease in hydrostatic pressure gradient.

*
These mechanisms are all hydrodynamical in nature; thus gravity has no direct

affect on grain structure or any other properties of the solidified material. The

gravity effects occur as a result of differing fluid motion.

The following items are considered the most significant contribution to

the M551 experiment analysis:

• Establishment of the role of vaporization in the cavity shape

• Performance of three-dimensional temperature calculations for
weld and dwell modes of melting for multi-component variable
property material, and

• Establishment of magnitude and direction of gravity during actual
Skylab mission to allow meaningful conclusions to be drawn from
micrographs about zero-gravity effects.
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Analysis of the aforementioned results has produced the following pro-

jections of effects of zero-gravity.

• Since all fluid mechanic phenomena require a finite time to
occur (due to inertia considerations) an effect due to gravity
during the weld portion of the experiment may not occur
(except for a mqre spherical bead when beading occurs) as
large cooling rates are available via conduction.

• A more homogeneous dwell structure will occur due to lack
of sedimentation.

• The liquid cavity shape will be determined by vaporization
effects and should be nearly symmetric (different tempera-
ture gradients do exist in positive and negative radial direc-
tions).

• If degassing is the cause of the splattering as noted in color
films of the process, porosity may result in the zero-gravity
dwell as the driving force for the pockets to surface is less.

3.2 THERMAL HISTORY RESULTS

Thermal histories corresponding to the experimental test conducted

at NASA-MSFC with the M512 Facility have been calculated. The stainless

steel disk was discretely divided into 289 nodal points shown schematically

in Fig. 3-1. The operating procedure consisted of the weld beginning at node

4 and continuing around the weld circle through all four quadrants. The weld

portion ends at a time of approximately 19 seconds with the dwell beginning on

node 316 at 19.5 seconds and continuing until 34.5 seconds (15-second duration).

The input power was 1 kW with a 75% conversion efficiency assumed for the

calculations. Table 3-1 defines the eb location as a function of time for both

the weld and dwell modes of operation.

Figure 3-2 shows the nodes on the weld circle for the entire quadrant

of the thin section (0.02-inch thickness). This result indicates that full penetra-

tion will occur with an average of 500°C superheat. Notice also as the dwell

is begun at 20 seconds, no effect is seen at this location. Figure 3-3 shows

the radial distribution of temperature corresponding to the center of the quadrant.
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(Q.05 in. thick) I (0.02 in. thick)

(0.125 in. thick) TV (0.250 in. thick)

Fig. 3-1 - Nodal Point Arrangement for Thermal Calculations
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Table 3-1

ELECTRON BEAM POSITION VERSUS TIME (DISK ROTATION)

Node

4

10

16

22

28

34

40

46 ''

52

Time
(sec)

0

0.62005

1.2401

1.8602

2.480.2

3.1003

3.7203

4.3404

4.9604

Node

104

110

116

122

128

134

140

146

152

Time
(sec)

5.5805

6.2005

6.8206

7.4406

8.0607

8.6807

9.3008

9.9208

10.541

Node

204

204

210

216

222

228

Time
(sec)

11.161

11.657

12.773

13.889
15.005

16.121

Node

304

310

316

316

Time
(sec)

17.237

18.454

19.570

34.570
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2000.0

4.00 a.oo it.oo 16.00 10.00

TIME CSEC]
14.00 16.00 se.oo 16.00 40.00

Fig. 3-2 - Thermal History for 0.02-Inch Stainless Steel Disk (Nodes 4,
10, 16, 28, 40 and 52)
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1400.0

r-\ 1300.0

1200.0

CD
LD ijoo.o
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1000.0

W 900.0

r

N O O E
31
32
33
34
35
36

S Y M B
D
A
O
0

800.0

roo.o

600.0

500.0

400.0

900.0

200.0

ct:
yj
Q_

A

LU

4.00 a.oo 12.00 16.00 (0.00 (4.00
TIME CSEC3

(0.00 32.00 16.00

Fig. 3-3 - Thermal History for 0.02-Inch Stainless Steel Disk (Nodes 31
through 36)
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Note that the nodes surrounding the weld circle do not melt as the maximum

temperature is 800°C. Also a nearly symmetric radial temperature gradient

about the weld circle is seen to exist. Figure 3-4 gives the weld circle distri-

bution of temperature through the entire quadrant of 0.05-inch thickness. Again,

full penetration is predicted with 300°C of superheat. Figure 3-5 reveals the

same results as those for the thin section, namely, no melting except on the

weld circle and again near symmetry existing.

The situation in the third quadrant consisting of a 0.125-inch thickness

section is shown in Fig. 3-6. For this beam power (1 kW) these results indicate

that melting is confined to near the surface. In fact the average temperature

oyer one third of the thickness is below the melt temperature indicating that

less than one-third penetration occurs. Figure 3-7 shows the profiles just

below the surface node discussed in the previous figure. Exactly the same

trend is observed with lower maximum temperatures. The radial profile for

the bottom layer is shown in Fig. 3-8,indicating precisely the same trend as

before. The thickest quadrant results are shown in Fig. 3-9 for the upper

surface where again melting is seen to occur only near the surface. Here,

an asymmetric situation develops about the weld circle with a substantial

difference in temperature in the positive and negative radial directions. As

the center of this quadrant is reached the dwell portion of the cycle is initiated

as depicted in Figs. 3-10 and 3-11. It is seen that nearly full penetration is

predicted (no allowance for eb cavity) and a substantial melt region is out-

lined. Within a few seconds of eb cutoff, nearly isothermal conditions result

near the dwell region as indicated by the temperatures at 40 seconds.

A comparison between these calculated results and those obtained

by experiment are shown in Table 3-2 where the maximum temperatures are

given in each case. The calculated results in the weld case are consistently

lower than the corresponding experimental values. As previously stated, a

1 kW beam power (50 mA and 20 kV) was assumed with an efficiency of 75%

giving rise to an input power of 0.75 kW. If the actual input power was slightly

higher, this could explain the trend. Also some of the maximum temperatures
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ieoo.0

1700.0

1600.0

4.00 0.00 12.00 16.00 SO.00 14.00

T I M E C S E C 3
00 32.00 16.00 40.00

Fig. 3-4 - Thermal History for 0.02-Inch Stainless Steel Disk (Nodes 104,
110, 116, 128, 140 and 152)
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1800.0

1700.0

1600.0

4.00 6.00 12.00 16.00 CO.00

TIME CSEC]
14.00 ta.oo it. 00 J6.00 40.00

Fig. 3-5 - Thermal History for 0.02-Inch Stainless Steel Disk (Nodes 131
through 136)
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900.00

800.00

700.00

600.00

CJ

CD
l_g soo.oo
O

UJ
400.00

or
UJ
Q_

UJ

300.00

eoo.oo

100.00

1

N O D E
219
220
221
222
223
224

S YMB
D
A
O
0

TIME CSEC)
4.00 6.00 12.00 16.00 (0.00 (4.00 (8.00 32.00 36.00 40.00

Fig. 3-6 - Thermal History for 0.02-Inch Stainless Steel Disk (Nodes 219
through 224)
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700.00

600.00

500.00

u
CD 400.00
UJ
Q

UJ
300.00

OH
UJ
QL
51
UJ 800.00

100.00

N O D E
249
250
251
252
253
254

S YMB
D
A
O
0

0 4.00 «.00 12.00 16.00 CO.00 (4.00 C8.00 32.00 J6.00 40.00

TIME CSECD

Fig. 3-7 - Thermal History for 0.02-Inch Stainless Steel Disk (Nodes 249
through 254)
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600.00

500.00

400.00

CJ

CD
LL)
Q

300.00

o:
ID

or
UJ
Q.
51
UJ

200.00

100.00

N O D E
279
280
281

4.00 «.00 12.00 16.00 10.00 14.00 18.00 12.00 1«.00 40.00
TIME CSEC]

Fig. 3-8 - Thermal History for 0.02-Inch Stainless Steel Disk (Nodes 279
through 284)

3-12

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC TR D306700

700.00

600.00

N O D E
301
302
303
304
305
306

4.00 6.00 12.00 16.00 20.00 (4.00 tt.OO 32.00 36.00 40 .OC

TIME CSEC)

Fig. 3-9 - Thermal History for 0.02-Inch Stainless Steel Disk (Nodes 301
through 306)
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Fig. 3-10 - Thermal History for 0.02-Inch Stainless Steel Disk (Nodes 315,
345, 375, 317, 347 and 377)
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Fig. 3-11 - Thermal History for 0.02-Inch Stainless Steel Disk (Nodes 310,
322, 328, 316, 346 and 376)
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for the dwell occur after 40 seconds. This accounts for the dwell temperatures

in the table being listed as greater than some level (i.e., > 50). This means

that the maximum temperature will occur later in time than the cutoff of the

plot. In general, however, agreement is fairly good and additional runs will

be made after the true input power is established.

3.3 BEADING CONSIDERATIONS

Upon examination of the M551 disks, it has been noted that a beading

occurs behind the electron beam as the beam moves through the molten material.

At present, no detailed analysis has been conducted to explain this phenomenon;

however, some consideration has been given to understanding the mechanism.

In order to present a hypothesis explaining the proposed mechanism some back-

ground information is presented.

The movement of the electron beam cavity through the molten metal

resembles the motion of an infinite cylinder (especially if full penetration

occurs) through a fluid. It has long been known that such a body leaves in

its wake a regular pattern of vortices which move alternately clockwise and

counterclockwise and is known as a Karman vortex street. A schematic is

presented in Fig. 3-12.

Fig. 3-12 - Karman Vortex Street (Diagrammatic); Stream-
lines Drawn in a System of Coordinates Moving
with the Vortex Street
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There exists a distinct frequency at which the vortices on one side of

the wake are shed that depends only on the Reynolds number of the fluid motion

and is given by the Strouhal number, i.e.,

fD

where f is the frequency, D is the diameter of the cavity and V is the velocity

of the beam in the liquid metal.

From experiment, the relationship of the Strouhal number to the Reynolds

number has been determined and is shown in Fig. 3-13.

a z t tin' 2 * saio3 i t

Fig. 3-13 - Strouhal Number vs Reynolds Number

This shows that a critical Reynolds number exists below which no shedding

has been observed.

Using these concepts the theoretical number of beads per unit length has

been determined for the M551 materials. It should be mentioned that no attempt

has been made to account for the solid material (edges) in the cut or the extent

of melt in the radial direction of the disks (which is a function of the thermal

conductivity). These results are shown in Table 3-3.
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Table 3-3

BEAD POPULATION

M551
Materials

321 Stainless Steel

2219 Aluminum

Tantalum

Reynold s
No.

55

86

207

Strouhal
No.

0.125

0.155

0.19

Shedding
Freq.
(beads/

sec)

0. 8

1.0

1.2

Beads
per cm
(on each

side)

0.5

0.6

0.75

Total
Beads
(both
sides)

1.0

1.2

1.5

Surface
Tension
(dynes/

cm)

1750

737

2150

The surface tension is included as the magnitude indicates the tendency of the

vortices to bead before solidification occurs.

Some qualitative observation can be made concerning these results. First

both aluminum and stainless possess Reynolds numbers near the critical values;

thus it would not be surprising if some of the effects not accounted for could

have a significant effect on the population of the beads if not controlling whether

or not beading will occur. Tantalum, however, possesses the largest Reynolds

number and value of surface tension; thus it is expected that these properties

produce the greatest probability of beading and will give use to the greatest

population of beads.
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Section 4

M553 SPHERE FORMING EXPERIMENT

4.1 GENERAL

During the course of the investigation all process phenomena have been

considered with particular attention given to adhesion-cohesion studies with

emphasis on the fluid dynamics of the molten metal. This was accomplished

by establishing all expected variations in terrestrial versus space processing

occurring as a result of;

• The dominance of capillary motion (instead of
gravity-induced flow)

• Minimal segregation (sedimentation), and

• Decrease in hydrostatic pressure gradient.

These mechanisms are all hydrodynamic in nature, thus gravity has no direct

effect on grain structure or any other property of the solidified material; the

gravity effects occur as a result of differing fluid motion.

The following items are considered the most significant contributions

to the M553 experiment analysis:

• Identification of physical forces affecting the
trajectory of the molten sphere

• Development of unifying calculational technique
to predict trajectory of molten spheres during
free-float condition

• Development of three-dimensional thermal model
to predict temperature history of sphere during
melting
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• Establishment of the role of vaporization on
temperature history and motion of sphere

• Establishment of the magnitude and qualitative
motion of surface dynamics, and

• Performance of detailed analysis of KC-135
flight data and ground-based experimental tests.

Analysis of the aforementioned results has produced the following pro-

jections of effects of zero-gravity:

• Less heterogeneous nucleation will occur due to
foreign particles as segregation effects will be
minimal.

• If the material has any gas content that comes out of
solution during solidification, an increase in porosity
may result as there will be minimal tendency for the
gas pockets to surface (except for convection effects).

• For the materials with high vaporization rates (Ni-12%
Sn, and Ni-30% Cu), a substantial increase in surface
cooling occurs — thus greater nucleation and surface
tension gradients.

• Even though the cooling rate is dependent on the
amount of convection, the cooling rate will be deter-
mined by radiation considerations only as the sphere
reaches isothermal superheat conditions in approxi-
mately a second. This in turn dictates the solidifica-
tion rate.

• Since solid formations in polycrystalline materials is
highly dependent on the distribution of foreign particles
and the liquid motion, the associated differences should
be discernible (homogeneous nucleation).

As discussed previously, the only expected differences in zero-g versus

one-g processing are the dominance of capillary motion instead of gravity-

induced flow, the absence of segregation and a decrease in hydrostatic pres-

sure. There are, however, many indirect effects (advantages) due to a lack
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of gravity. In general, the factors affecting the final sample properties,

composition and structure can be divided into three major categories, i.e.,

• Nucleation

• Growth, and

• Reaction kinetic s.

The absence of gravity might allow better control of the independent variables

affecting each category; this occurs directly through the three aforementioned

fluid dynamic effects and indirectly through other mechanisms that are a func-

tion of fluid motion (gas content, composition, foreign particles, imperfections,

cooling rate, nucleation rate, etc.). -

4.2 M512 VACUUM CHAMBER GEOMETRY

The geometry of the M512 chamber is shown in Fig. 4-1 along with the

coordinate system chosen. The pinwheel containing the specimen to be melted

is mounted in the chamber in the y-z plane with the center of the specimen to

be melted positioned at coordinates (-0.292, -0.750, -0.433) as shown in Fig.

4-2. Figure 4-2 also defines the camera locations used in the KC-135 aircraft

and ground-based (camera 1) tests with the associated line-of-sight geometry

to account for mirror effects. The corresponding film frame projections are

depicted in Fig. 4-3 in the local £ , r ) , £ coordinate system.

4.3 M553 THERMAL CONSIDERATIONS

The theoretical foundation for computing the three-dimensional temper-

ature history for a multi-component system has been presented in Section 2.

This subsection presents the results of calculations for the M553 materials

of interest. First consider the time required for the material to become

superheated and cool to the melt temperature for the operating procedures

used in the actual Skylab mission. This time can be determined from the
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-x

Camera 1 Film Frame

Equipment Panel

Camera 2 Film Frame

Fig. 4-3 - Projection of x'y1 z1 Axes onto Film Frame Coordinate
System (Positive Normal, t,, is into Plane)
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temperature history calculated by the Lockheed Thermal Analyzer which

includes allowances for:

• A three-dimensional network

• Conduction heat loss

• Radiation heat loss

• Vaporization heat loss

• Variable properties (with temperature and phase), and

« Variable heat source.

The spheres are discretely modeled by 69 nodal points with each of the

corresponding nodal temperature histories computed. Allowances are included

for sting melting and automatic electron beam cutoff. The nodal arrangement

is shown for the inner layer in Fig. 4-4, with the outer layer and electron beam

impingement location given in Fig. 4-5.

The thermal history for pure nickel is shown in Figs. 4-6 through 4-9.

It is seen that in less than one second after eb cutoff the sphere is nearly

isothermal in each layer. The time corresponding to the onset of solidifica-

tion is shown in Fig. 4-6 and is approximately 10.5 seconds. This time must

be added to the time needed for solidification to determine the necessary free-

float time for containerless solidification. The corresponding temperature

histories for Ni-12%Sn, Ni-1% Ag and Ni-30% Cu are shown in Figs. 4-10

through 4-13, 4-14 through 4-17 and 4-18 through 4-21, respectively. The

essential features of these results are as follows:

• Vaporization forces can be computed

• Time above melt temperature can be
determined, and

• Superheat can be determined.

These items either affect the free-float time directly or the time duration

needed for solidification. The solidification time including both vaporization
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Inner Layer
(r =0.1058 cm)

Fig. 4-4 - Thermal Model for Inner Layer
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Fig. 4-5 - The Relative Position of Electron Beam to Sphere
and Thermal Model for Outer Layer
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Solidification Begins

• 1.00 (.00 1.00 4.00 f.OO 6.00 r.OO 1.00 9.00 10.00 11.00 1C.00 IS.00 14.00 IS.00

TIME (SEC)

Fig. 4-6 - Nickel Temperature History (Nodes 1, 2, 3, 4 and 8)
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Fig. 4-7 - Nickel Temperature History (Nodes 12, 18, 20, 24 and 32)
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Fig. 4-8 - Nickel Temperature History (Nodes 36, 37, 38, 42 and 46)
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Fig. 4-9 - Nickel Temperature History (Nodes 50, 54, 58, 62 and 64)
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Fig. 4-10 - Nickel-12% Tin Temperature History (Nodes 1, 2, 3, 4 and 8)
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Fig. 4-11 - Nickel-12% Tin Temperature History (Nodes 12, 18, 20, 24 and 32)
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Fig. 4-12 - Nickel-12% Tin Temperature History- (Nodes 36, 37, 38, 42 and 46)
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Fig. 4-13 - Nickel-12% Tin Temperature History (Nodes 50, 54, 58, 62 and 64)
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Fig. 4-14 - Nickel-1% Silver Temperature Histories (Nodes 1, 2, 3, 4 and 8)
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Fig. 4-15 — Nickel-1%Silver Temperature Histories (Nodes 36, 37, 38, 42 and 46)
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Fig. 4-16 - Nickel-1%Silver Temperature Histories (Nodes 36, 37, 38, 42 and 46)
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Fig. 4-17 - Nickel-1% Silver Temperature Histories (Nodes 50, 54, 58, 62 and 64)
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Fig. 4-18 - Nickel-30% Copper Temperature Histories (Nodes 1, 2, 3, 4 and 8)
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Fig. 4-19 - Nickel-30% Copper Temperature Histories (Nodes 12, 18, 20, 24and32)
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Fig. 4-20 - Nickel-30% Copper Temperature Histories (Nodes 36, 37, 38, 42 and 46)
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Fig, 4-21 - Nickel-30% Copper Temperature Histories (Nodes 50, 54, 58, 62 and 64)
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and radiation losses for all four materials has been computed based on the

methodology of Section 2. These results are summarized in Table 4-1 for

the M553 materials. These calculations indicate that from 32 to 48 seconds

are necessary for complete solidification to occur.

4.4 M553 TRAJECTORY ANALYSIS

One of the most important aspects of the M553 experiment is the motion

of the sphere after deployment since this determines what free-float time will

exist. In order to predict the motion, a trajectory program has been developed

that includes allowances for:

• Electron beam force

• Deployment velocity (spring)

• Vaporization force based on 3-D temperature
history

• Skylab orbit considerations

• M512 position considerations, and

• Allowances for additional forces as independent
subroutines (KG-13 5 g-level data).

In general a solution to the equation of motion

_

-- = f ( t ) (4.1)
dr

is obtained numerically via Simpson's rule subject to the following boundary

conditions:

and ~ = V at t = 0 (4.2)dt o
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Integration of the equation of motion twice yields

t n

S = f ( t ) d £ dr) (4.3)

o o

which produces the desired trajectory in chamber coordinates centered on

the specimen. This computed trajectory is then transformed to camera

coordinates to show the path as seen in the film, i.e., v

S' (t) = [A] s(t) (4.4)

where S1 (t) is the projected trajectory and A is the transformation matrix

obtained from the hardware. For camera 1

M
and for camera 2

N

.932

-.203

.301

-.363

-.521

.773

0

-.829

-.560

(4.5)

.661
-.224

-.716

-.183

-.974

.136

-.728

.041

.685

(4.6)

To demonstrate the concept, consider the accelerometer data in Table

4-2. These data were obtained by orthogonal accelerometers placed on board

the July 1972 KG-135 research aircraft flight. The resulting directions of the

residual g-level are shown in Fig. 4-22 transformed into both camera planes.
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Table 4-2

ACCELEROMETER DATA FROM JULY KG-135 FLIGHT

Index

1

2

3

4

5

6

7

8

9

10

11

Specimen

10

9

8

14

11

7

6

5

2

15

13

a (10)2

X

(g)

1.0

0.5

-0.4

0.0

-1.0

0.5

0.6

1.4

1.5

-0.4

0.2

ay(10)2

(g)

-1.0

0.3

0.3

0.2

-0.7

-0.4

-0.1

-1.0

-2.2

-0.4

-0.4

a z<10)2

(g)

3.0

0.3

4.0

2.0

2.0

1.0

1.5

4.5

-2.2

-1.0

5.8

|g|(io)2

(g)

3.4

0.65

4.05

2.02

2.34

1.19

1.65

4.82

3.14

1.15

5.82
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The tabular gravity levels appear in Table 4-3 in film plane coordinates.

The resulting float time as a function of the magnitude of the gravity level is

shown in Fig. 4-23 for a spherical outer boundary 20cm from specimen re-

lease. It is seen that float times of 1 to 3 seconds can be expected in the KC-

135 flights for g-levels of 6(10)~ 2 to 0.6(10)"2.

The eb force was discussed in Section 2 and Table 4-4 gives the magni-

tude of this force for two eb currents. To establish the motion as

a result of the eb force, the conversion efficiency and eb cutoff time must

be known. This time corresponds to the time delay associated with automatic

shutdown of the eb due to sting melting. Original estimates were from 10 to

20 milliseconds; however, high speed movies (1000 frame/sec) taken during

the M553 ground-based test at MSFC on 20 October 1972 show conclusively

that longer times exist. During their test the spring loads were varied on

the shutdown mechanism to experimentally establish the time interval the eb

is on after melting occurs. It was found that for a 150-g spring load a cutoff

time of 410 milliseconds was measured while 220 milliseconds were observed

for a 200-g load. This cutoff time translates into a free-float time of approx-

imately 12 seconds for a 150-g load and 23 seconds for the 200-g load. Thus

the expected free-float time is drastically reduced from the 250 seconds corre-

sponding to the original 20 milliseconds estimate.

An analysis was performed to determine if the cohesive energy-generated

kinetic energy is sufficient to cause deployment in the absence of external

forces. This was done to allow initial conditions to be calculated. To reduce

the complexity of the problem, the following assumptions were made:

• Zero gravitational field

• No sting melting

• Sting pulled down before breaking

• Perfectly spherical free surface, and

• Contact angle of 120 degrees.
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Table 4-3

TRANSFORMED KG-135 ACCELEROMETER DATA

Camera 1

Index

1
2
3
4
5
6
7
8
9

10
11

Specimen

10
9
8

14
11
7
6
5
2

15
13

« i
1.290
0.357

-0.482
-0.073
-0.678
0.611
0.596
1.670
2.195

-0.228
0.331

"l
-2.170
-0.506
-3.390
-1.762
-1.090
-0.722
-1.313
-3.490
2.666
1.119

-4.641

*1

-2.150
0.214

-2.125
-0.964
-1.960
-0.718
-0.736
-2.868
-0.019
0.130

-3.492

Camera 2

Index

1
2
3
4
5
6
7
8
9

10
11

Specimen

10
9
8

14
11
7
6
5
2

15
13

^ 2

-1.339
0.057

-3.230
-1.492
-1.989
-0.324
-0.677
-2.167
2.99
0.536

-4.016

^ 2
0.874

-0.392
-0.038
-0.112
0.988
0.319
0.025
0.846
1.716
0.438
0.584

^ 2

-2.906
-0.523
-2.411
-1.342
-0.748
-1.097
-1.470

1.716
0.134
0.917

-4.168
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Fig. 4-23 - Approximate Float Time as a Function of Gravity Level
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Table 4-4

TOTAL FORCE DUE TO ELECTRON BEAM

F = Ie

2M E
e

I
(amp)

0.05

0.10

q
(coulomb)

1.6(10)-19

1.6(10)"19

M

(kg)

0.9(10)"30

0.9(10)"3°

E

(V)

2(10)4

2(10)4

Fe
(N)

2.38(10)"5

4.76 (10)~ 5

F
e

(dyne)

2.38

4.76
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An energy balance was made between the initial and final states and

from this the kinetic energy is found as

This kinetic energy was calculated as a function of penetration (H) of

liquid into orifice. The value of H simulates the effect of the spring in pulling

the liquid down via adhesion between liquid and solid sting. The results of
,• • ' i

this calculation are

Penetration, H
(cm)

0.0

0.1

0.5

i.o

Kinetic Energy
(ergs)

0.0

62.7

293.0

597.0

The value of the kinetic energy must then be greater than the work of

adhesion (or energy of adhesion) for deployment to occur. The work of

adhesion was found to be 265 ergs; thus for depressions of more than 0.5cm

deployment will occur due to cohesive effects alone. These criteria are in-

cluded in the trajectory computer program to allow initial conditions for

the numerical integration to be determined.

Tables 4-5 and 4-6 show the surface temperature distribution at 3.0

and 3.5 seconds, respectively, for Ni and Ni-12% Sn. These data were used

in conjunction with the L/angmuir theory discussed in Section 2 to calculate

4-35

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC TR D306700

Table 4-5

TEMPERATURE DISTRIBUTION AT 3.0 SECONDS

Node
No.

36
37
38
3.9
40
41

42
43
44
45
46
47

48
49
50
51
52
53

54
55
56
57
58
59

60
61
62
63
64

65
66
67
68
69

Nickel

Temp.
(°C)

2036
1463
2193
1900
1728
1677

1677
1728
1900
2193
1801
1695

1609
1573
1573
1609
1695
1801

1633
1584
1537
1513
1513
1537

1584
1633
1535
1515
1492

1480
1480
1492
1515
1535

Vapor Pressure
(mm Hg/cm^)

.3959

.0006

.464

.0395

.0067

.0037

.0037

.0067

.0400

.4644

.0202

.0063

.0022

.0014

.0014

.0022

.0063

.0201

.0030

.0016

.0009

.0006

.0006

.0009

.0016

.0020

.0006

.0005

.0003

.0003

.0003

.0003

.0005

.0006

Nickel - 12% Tin

Temp.
(°C)

2013
1537
2157
1903
1757
1716

1716
1757
1903
2157
1815
1731

1663
1634
1634
1663
1731
1815

1680
1642
1605
1586
1586
1605

1642
1680
1602
1585
1567

1557
1557
1567
1585
1602

Vapor Pressure
(mm Hg/cm^)

.7001

.0069

.6965

.0962

.0253

.0168

.0168

.0254

.0963

.6965

.0602

.0266

.0132

.0096

.0096

.0132

.0266

.0602

.0159

.0105

.0069

.0056

.0056

.0069

. 0105

.0158

.0049

.0041

.0033

.0030

.0030

.0033

.0041

.0049
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Table 4-6

TEMPERATURE DISTRIBUTION AT 3.5 SECONDS

Node
No.

36
37
38
39
40

41
42
43
44
45

46
47
48
49
50

51
52
53
54
55 . •

56
57
58
59
60

61
62
63
64
65

66
67
68
69

Nickel

Temp.
(°C)

1689
1601
1685
1679
1672

1667
1667
1672
1679
1685

1675
2668
1658
1652
1652

1658
1668
1675
1657
1651

1642
1636
1636
1642
1651

1657
1634
1630
1624
1621

1621
1624
1630
1634

Vapor Pressure
(mm Hg/cm2)

.01249

.00429

.0041

.0038

.0035

.0033

.0033

.0035

.0038

.0041

.0050

.0046

.0041

.0038

.0038

.0041

.0046

.0050

.0040

.0037

.0033

.0031

.0031

.0033

.0037

.0040

.0022

.0021

.0020

.0019

.0019

.0020

.0021

.0022

Nickel -12% Tin

Temp.
(°C)

1678
1624
1676
1674
1671

1670
1670
1671
1674
1676

1672
1669
1665
1662
1662

1665
1669
1672
1663
1660

1657
1654
1654
1657
1660

1663
1649
1648
1645
1644

1644
1645
1648
1649

Vapor Pressure
(mm Hg/cm2}

.0332

.0185

.0111

.0109

.0105

.0103

.0103

.0105

.0109

.0111

.0144

.0140

.0135

.0131

.0131

.0135

.0140

.0144

.0131

.0128

.0123

.0200

.0200

.0123

.0128

.0131

.0083

.0082

.0080

.0078

.0078

.0080

.0082

.0083
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the net vaporization force as a function of time. A sample calculation is

presented in Table 4-7 for both Ni and Ni-12% Sn for the first second after

eb cutoff. It is seen that between 3.5 and 4.25 seconds the vaporization

force is of same order of magnitude as the eb momentum force. During

the first half second thb calculations yield a large vaporization force (com-

parable to surface tension forces) and represent an intolerable situation as

far as the free-float time is concerned. However, due to the large temper-

ature gradients existing, the resulting surface tension driven convection will

tend to reduce these values.

The Skylab orbit effects are included in the analysis by the method of

Ref. 8. The computer program developed in Ref.8 was used as a subroutine

in the present analysis to couple the effects of M512 position and orbit to the

physical phenomena occurring in the vacuum chamber.

4,5 CONCLUSIONS BASED ON TRAJECTORY COMPUTATIONS

It has been shown that free-float times from 32 to 48 seconds (depending

on the material) are required for complete containerless solidification to occur.

The magnitude of each of the physical forces was discussed and general com-

ments made concerning the effect of each on free-float time in the previous

section. This subsection summarizes some of these conclusions.

• Electron beam force for a 460-g spring load has
a duration of approximately 100 milliseconds and
gives rise to a float time of 40 seconds.

• Kinetic energy of sphere due to spring effects
(deployment technique) gives rise to float times
of greater than 50 seconds.

• Vaporization force produces float times that are
probably the critical link in process. Best esti-
mates of the corresponding float time between 1/4
second after eb cutoff and occurrence of an iso-
thermal outer layer range from 5 to 20 seconds.
For some cases the time could even be consider-
ably less than 5 seconds.

• Skylab orbit effects give rise to 29 to 46 seconds
of float time.
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Table 4-7

SUMMARY OF VAPORIZATION FORCE CALCULATION

Nickel

Vaporization
Force

(dynes)

f
X

f
y

f
z

Time (sec)

3.00

882

1480

292

3.25

55

126

25

3.50

8

25

5

3.75

1.5

5.8

1.0

4.00

0.3

1.3

0.25

Nickel- 12% Tin

f
X

f
y

f
z

1400

2470

485

102

240

47

9

41

8

1

6

1

0.16

1.0

0.2

4.25

.07

.3

.06

.02

.16

.03
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• Superposition of all of these forces produces an additive
(as opposed to canceling) effect In most cases. Trajec-
tory calculations show that even with conservative vapori-
zation forces float times of less than 15 seconds will occur.

Lockheed documented in December 1972 (Ref. 9) an early projection of

anticipated float times less than the required containerless solidification times

and again in April via the Science & Engineering Information Technical Note

(Ref. 10), presented in Appendix A for reference. In the latter report a con-

servative estimate of less than 20 seconds was forecast.

Another potential problem area, discussed in the 27 March 1973 presenta-

tion at MSFC, is that even with the relatively large forces on the sphere during

the critical time of deployment, the possibility of "sticking" exists. Films of the

KC-135 flight test showed that an adherence to the ceramic occurs on occasion

that finally results in deployment due to acceleration transients in the ballistics

trajectory- of the aircraft. Atypical sequence is shown in Fig.4-24. The events

are referenced to the time corresponding to what appeared to be the fully molten

condition, t = 0. For the ensuing 0.300-second, adherence to the ceramic occurred

with periodic motion due to the acceleration transients is evident in the film se-

quence. At 0.310-secoud, deployment occurred with the trajectory shown in Fig.

4-24. The important point remains, however, that without the acceleration tran-

sients (relatively large compared to the Skylab gravitational environment) specimen

retention could have occurred. Thi.s adhesion is probably due to contamination of

the ceramic from previous melts. The conclusion is that the possibility of un-

intentional retained specimen may occur in the actual Sky lab mission.

4.6 LIQUID DYNAMICS

This subsection presents a summary of calculations made for Ni and Ni-

12%Sn based on the thoughts outlined in Section 2. First, the formation times

are shown in Table 4-8 wher<- it is seen that the transformation to minimum

energy occurs very rapidly. However, due to inertial considerations, the spherical

free surface is "overshot" and oscillations are set up which continue until dissi-

pated by viscous damping. Table 4-9gives the oscillation frequencies while

Table 4-10 shows the time required for viscous effects to dampen an initial

perturbation to 0.01% and 1% of its initial value.
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t = 0 t = .250

t = .275 t = .290

t = .295 t = .310

Fig. 4-24 - Trajectory Sequence - March 1972 KG-135 Flight (Nickel)
(Continued)
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t = .325 t = .360

t = .395 t = .400

t = .450 t = .515

Fig. 4-24 - Trajectory Sequence (Concluded)
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Table 4-8

FORMATION TIMES FOR M553 MATERIALS

M553 Materials

Ni

Ni-12%Sn

P

(g/cm3)

7.85

7.80

a

(dyne/cm)

2050

1500

R

(cm)

.3175

.3175

T

(sec)

.011

.013

Table 4-9

FREQUENCY FOR M553 MATERIALS

Material Frequency
(Hz)

Ni

Ni-12% SN

41

35

Table 4-10

DECAY TIME FOR M553 MATERIALS

Material

Ni

Ni,.12% Sn

n
(g/cm-sec)

.05

.043

P

(g/cm3)

7.85

7.80

R

(cm)

.3175

.3175

Time

(constant)

3.14

3.62

Time

(.01%)

28.8

33.0

Time

(1%)

14.5

16.7
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4.7 SOLIDIFICATION PATTERNS

The theoretical preferential solidification pattern can be determined by

determining the order that the individual nodes reach the solidification temper-

ature on the cooldown cycle. For deployed specimens it has been shown that

isothermal layers develop within one second after eb cutoff and as shown in

Fig. 4-26. Solidification occurs from this outer layer inward as expected.

The time that solidification begins on the surface is seen to be 10.5 seconds

compared to 10.7 seconds for the center of the sphere as there are only a few

degrees difference between the outer and inner portion from 4 to 10 seconds

after eb cutoff. However, the retained specimen exhibits an entirely different

phenomenon. The initial solidification point is the sting as expected. The

pattern develops (namely, solidifying from the outside in) as areas 1-2-8, 3-4-8

and 5^6-8 begin to solidify. As areas 7 and 8 reach the solidification temper-

ature, area 9 is still superheated; area 11 is, however, molten at this point and

no shrinkage should occur. The same is true of area 10-11-8, but as area 12-

13-8 approaches the solidification temperature at area 13, shrinkage could occur

as this is the last region to begin the solidification process — thus a possible

void. This occurs as a result of the relatively large vaporization losses in the

vicinity of the eb impingement, giving rise to large cooling rates.

These calculations were made with the eb impingement location corre-

sponding to actual operating procedures. This corresponds to only one-half of

the beam impinging on the surface in the region of area 10-12 in Fig. 4-25.

Additional calculations were made with full eb impingement in the center of

the specimen 7-5. It was found that, depending on the power (or beam dura-

tion after sting release), the region opposite the heat addition point (lower

left of specimen in Fig. 4-25) would not melt before deployment. Then depending

on the amount of superheat the remaining solid could melt in the free-float con-

dition. Alternately, if eb impingement was lower than the center and sting

release occurred early in the melt cycle, a large unmelted portion would remain

in the final product. As stated previously if eb impingement is near the "one-

o'clock" position, a fully molten specimen will result.
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No. 1 = 10.5 sec

No. 3 = 10.7 sec

No. 1 = 8.4 sec

No. 13 = 9.0 sec

Deployed Retained

Fig. 4-25 - Sphere Solidification Sequence (Pure Nickel)
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TECHNICAL NOTE

Huntsville Research & Engineering Center

Contract NAS8-28729 Date 30 April 1973 Doc. LMSC-HREC TN D306615

Title: SCIKNCK AND ENGINEERING INFORMATION FOR M55i AND M553 EXPERIMENTS

FOREWORD
• • -

This technical note was prepared by the Fluid Mechanic Applications Group, Aerd-

Mechanics Section of the Lockheed-Huntsville Research & Engineering Center for

the Process Engineering Laboratory of Marshall Space Flight Center under Contract

NAS8-28729. This task was prepared at the request of Mr. Paul H. Schuerer,

S&E-PE-MX.

INTRODUCTION

The informatipn contained herein is for the purpose of updating the documentation

for Skylab experiments M551 and M553. To incorporate the latest observations

and opinions of contractors supporting development of the experiments and evalua-

tion of resulting specimens and data, the following questions are asked:

1. What do you consider to be the most significant results of your
studies to date?

2. What are your projections for variations-in-sample properties,
composition, structure and experiment data attributable to
"zero gravity effects"?

3. What specific properties or effects will you be concentrating
your efforts on in evaluating the flight samples and data?

4. How can the proposed variations noted in (2) above be used
to structure additional experiments, improve commercial
materials and processes and develop new materials ? List
specific examples.

5. What particular statements should be included in the experiment
objectives as a result of your specific studies and projections
of zero-g effects?

Each question is answered for both the M551 metals melting and the M553 sphere

forming experiments.
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DISCUSSION

Question 1

General: Lockheed -Huntsville is responsible for all process phenomena with

particular attention given to adhesion-cohesion studies with emphasis on the

fluid dynamics of the molten metal. The effects of cohesion of the molten metals

and their capability of relating their shapes have been inter re lated<with the

adhesive influence of the molten metals in contact with ceramics and metals in

a low -gravity environment.

Also the impprtance of fluid dynamic considerations has been established in

that all expected variations in terrestrial versus space processing are created

as a result of the dominance of capillary motion (instead of gravity-induced

flow), minimal segregation (sedimentation) and a decrease in hydrostatic pres-

sure gradient — all hydrodynamic phenomena. This conclusion can be restated

that gravity has no direct effect on grain structure or any other property of the

solidified material. The gravity effects all occur as a result of differing fluid

motion.

M551

Establishment of the role of vaporization in the cavity shape

Performance of three-dimensional temperature calculations for
weld and dwell modes of melting for multi- component variable
property material

Establishment of magnitude and direction of gravity during actual
Skylab mission to allow meaningful conclusions to be drawn from
micrographs about zero-gravity effects.

• M553

a Identification of physical forces affecting the trajectory of the
molten sphere

• Development of unifying calculational technique to predict tra-
jectory of molten spheres during free -float condition

• Development of three-dimensional thermal model to predict
temperature history of sphere during melting
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• Establishment of the role of vaporization on temperature history
and motion of sphere

• Establishment of the magnitude and qualitative motion of surface
dynamics

• Performance of detailed analysis of KC-135 flight data and ground-
based experimental tests.

Question 2

General: As discussed previously, the only expected differences in zero-g .

versus one-g processing are the dominance of capillary motion instead of

gravity-induced flow, the absence of segregation and a decrease in hydrostatic

pressure. There are, however, many indirect effects (advantages) due to a

lack of gravity. In general, the factors affecting the final sample properties,

composition and structure can be divided into three major categories, i.e.,

• Nucleation

• Growth

• Reaction kinetics.

The absense of gravity might allow better control of the independent variables

affecting each category; this occurs directly through the three aforementioned

fluid dynamic effects and indirectly through other mechanisms that are a function

of fluid motion (gas content, composition, foreign particles, imperfections, cool-

ing rate, nucleation rate, etc.)

• M553

• Less heterogeneous nucleation will occur due to foreign particles
as segregation effects will be minimal.

• If the material has any gas content that comes out of solution during
solidification, an increase in porosity may result as there will be
minimal tendency for the gas pockets to surface (except for convec-
tion effects).
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For the materials with high vaporization rates (Ni-12% Sn, and
Ni-30% Cu), a substantial increase in surface cooling occurs —
thus greater nucleation and surface tension gradients.

Even though the cooling rate is dependent on the amount of con-
vection, the cooling rate will be determined by radiation con-
siderations only as the sphere reaches isothermal superheat
conditions in approximately a second. This in turn dictates the
solidification rate.

Since solid formations in poly crystalline materials is highly
dependent on the distribution of foreign particles and the liquid
motion, the associated differences should be discernable (homo-
geneous nucleation).

• M551

• Since all fluid mechanic phenomena require a finite time to occur
(due to inertia considerations) an effect due to gravity during the
weld portion of the experiment may not occur (except for a more
spherical bead when beading occurs) as large cooling rates are
available via conduction.

• A more homogeneous dwell structure will occur due to lack of
sedimentation.

• The liquid cavity shape will be determined by vaporization effects
and should be nearly symmetric (different temperature gradients
do exist in positive and negative radial directions).

• If degassing is the cause for the splattering as noted in color
films of the process, porosity may result in the zero-gravity
dwell as the driving force for the pockets to surface is less.

Question 3

9 M551 and M553

• The flight films will be analyzed in detail and compared with KC-
135 and ground-based results.

• Observations from other contractors will be analyzed and compared
with expected and predicted phenomena.

• Correlation of actual gravity direction during Skylab experiments
with experimental observations and results.
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Question 4

• M553

To achieve the objectives of the current M553 experiment for all the selected

materials, free-float times on the order of 60 seconds are required. Since it

is highly unlikely that all of the physical forces will add in such a fashion to

negate each other (as the system was not designed to do so), actual float times

will be much less (probably less than 20 seconds). However, the concept of the

sphere forming experiment is extremely exciting as the production of a nearly

perfect homogeneously structured spherical specimen has important terrestrial

applications.

• Future experiment design should emphasize non-mechanical
deployment, uniform heating and cooling and filming rates
of at least 3000 pps.

• M551

• The results of the weld portion of the experiment will establish
the feasibility of "space repair."

• Additional experiments with the same unit with high-speed color
movies (3000 pps) with a different lens system should allow the
fluid mechanics of welding to be analyzed in sufficient detail to
answer many currently unresolved problems.

Question 5

9 M553

• Emphasis should be placed on fluid mechanic consideration as
outlined previously.

• Study of deployment dynamics as experiment success and final
product are both dependent on this important phase of the ex-
periment.

• Role of temperature history on the final product.
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M551 '

• Role of temperature history on the final product.

Approved

B. Hobson Shirley, Supervisor
Aero-Mechanics Section

(.
M. R. Brashears, Ph.D.
Fluid Mechanic Applications Group
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