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CHAPTER |

ROTOR DYNAMICS: BACKGROUND AND STATEMENT OF THE PROBLEM

I.I  Inftroduction

From the time the wheel was invented man has been plagued with
problems of bearing lubrication and shaft dynamics. His ingenuity has
produced the high-speed turbine rotors that power the giant jet liners
of the present age and the vast array of process machinery that the
American industrial community must keep in operation to meet the demands
of our society.

A typical example of a small high-speed rotating unit is shown in
Fig. I.I. This is a cut-away of the Brayton-cycle furbine-generator
unit that has a design speed of 50,000 RPM and is being developed for
the NASA space program. The six~-stage axial compressor and single stage
drive turbine compose one integral shaft system with the generator rotor
and drive fturbine composing tThe second integral rotor-bearing system.

Of great Importance in such a unit is the design of the bearings and
bearing housing mount structures. The present analysis will be concentrat-
ing on methods of coupliing bearing and rotor~shaft dynamics.

A vast amount of information has been developed to date concerning
the problems of lubrication or separately the kinematics and dynamics of
machinery. The interest and means of solution for the combined problem
of rotor-bearing system dynamics has been evolving since the early 1960's.
The earliest works in the fields of shaft vibrations and bearing whirl
are Important to the overall understanding of the scope of the problems

of rotating equipment. The following background section will briefly
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review a portion of the earliest work but will concentrate on the

present state of the art in the field of rotor-bearing dynamics.

1.2 Background

The study of rotor dynamics may be broken down into four distinct
areas which have been treated in the liferature. These are as follows:

1) Critical speed analysis

2) Unbalance response and the inverse problem, balancing

3) Analysis of self-excited instabilities resulting from:

a. Fluid-film bearings
b. Infernal friction damping
c. Aerodynamic and hydraulic cross~coupling

4) Time-transient simulation

The well-known method of Holzer for finding the forsional natural
frequencies was extended by Myklestad (1) for application to the analysis
of aircraft wing structures and separately by Prohl (2) who formulated
the problem specifically for flexible rotors. A tabular approach as
advanced in their original works has been formulated for solution on
digital computers and is currently being widely used for critical speed
analysis of rotating shafts.

One other major paper of the 1940's concerning critical speeds was
the work of Green (3) which presented much data on the effect of gyroscopics
on the single overhung disk, simply supported single disk and double disk
rotors, and finally the infinite disk case. His work indicated the
presence of both forward and backward critical speeds resulting from

gyroscopic effects.



More recent investigations (4-10) have made slight extensions of
the excel lent work of Green and Myklestad-Prohl +to include the effects
of shear deformation and special ized cases such as the two-bearing
machine with an overhung disk. Yamamoto(ll) in 1954 presented a major
contribution to the study of critical speeds in which he presented both
Theoretical and experimental observations on the phenomena of forward
and backward whirl due to gyroscopic effects. Most current critical
speed codes calculate only the synchronous critical speeds of forward
precession.

Closely related to the problem of critical speeds is the analysis
of unbalance response. A major contribution to steady-state response
was the method of Lund (12,13) which uses a modified Myklestad-Prohl
technique o solve for unbalance response. A detailed discussion of this
approach is presented in Section 2.4. The analysis can include known
speed dependent linear fluld-film bearing characteristics and support
flexibility and damping. Analysis of multi-mass flexible rotors has also
been conducted by Tang and Trumpler (14) and Koenig (15). The effect of
support damping is very important from the viewpoint of reducing vibration
amp |l itudes but even more important for the reduction of forces transmitted
through the bearing and to the support (16,17,18).

The rotor modeled in Fig. |.2 has been studied (i9) as an extension
of the early work of Jeffcott (20) and others (21,22,23) to include
support flexibility and damping. The critical speeds of the resultant
- Two-degree of freedom system aré shown in Fig. 1.3 where the critical
speeds divided by the rigid support critical are plotted versus the

ratio of support to shaft stiffness, K, for various values of the ratio

L
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of support 1o rotor mass, M.

The unbalance response of this simple model can be used to illustrate
several important aspects of rotor-bearing response characteristics. For
example the absolute rotor response is shown in Fig. 1;4 (@) for various
values of the ratio of supporT‘To rotor damping. A lightly damped support,
¢ = 0.01, produces two distinct resonance zones in the given response
range. The accompanying phase shift of the deflection with respect to the
unbalance is shown in Fig. 1.4 (b) for the response of |.4 (a). The
lightly damped system is observed to go through a 180° phase shift at the
first critical and another phase reversal as the second critical is
passed. This phase reversal is suppressed for higher support damping as
indicated in Fig. 1.4 (b). The force transmitted to the bearings is
shown in Fig. 1.4 (c) where the addition of proper damping clearly would
reduce the level of the forces transmitted for the bearing support. The
phase shift to 180° and continuing up to 270° at the second critical is
a very important concept to note and can be of great importance in the
analysis of experimental data. The damped support is cleariy‘advanfageous
for reduction of the forces transmitted in or near the critical speed
regions of operation.

The inverse problem of unbalance response is The ever present problem
of balancing of rotating equipment. The method of Thearle (24) is still
being used for flield balance procedure. Two basic approaches to the
problem of balancing flexible rotors have been presented in the literature,.
The first, modal balancing, consists of balancing at a speed corresponding
to the first mode, Then successive trials at each of the higher modes to

reach the desired speed of operation. The other method known as the

7
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influence coefficient approach utillzes information obtained from added
trial weights and response data at each of several runs to produce a
matrix of coefficients which Is used to predict the resultant unbalance
in the rotor.

A new approach presented by Little (25) uses the influence coefficient
technique coupied with the application of [inear programming to arrive at
the optimum response by proper choice of correction weight size at |imited
locations along the rotor span. The problems associafed with balancing
will not be directly treated in this presentation but the |iterature on
this subject is a valuable portion of the theory of rotor dynamics (14,
26-34).

The literature contains many references to the observation and
probable cause of self-excited instabiiities. The earlier reports by
New&irk (35), Robertson (36), and others (37,38) on internal friction and
hydrodynamic bearing instability are well referenced by Gunter (39),

Ruhl (40} and also in (41,42,43). A review paper by Newkirk in 1957 (44)
points out one distinguishing feature between "cramped-shaft whirl" (ie.,
internal friction damping) and oil-film whirl. The former may become
resonant above the critical speed whereas the later does not become
resonant at speeds below twice critical speed. In an earlier presenta-
tion (45) Newkirk had distinguished between certain phenomena that may
occur as a result of journal bearing instability.

(1) A "half frequency whirl" may accur at any running speed

the whirl frequency being siightly less than half the
running speed ] :

(2) A "resonant whirl" which occurs: when the running speed

Is equal to or greater than twice the natural frequency of
the rotor for transverse vibration at that speed.

11



the oll film
(4) A subharmonic vibration of an unbalanced rotor, the
frequency being a definite fraction of the running
speed.
Morrison and Pa}erson (45) presented an approach to describe the stability

threshold of symmetrical TWo-bearingvflexible rotors by one equation and

thereby reducing the criterion of other investigators such as Hori 473,

Holmes (48) and Pinkus and Sternlicht (49) to the general form

wn2 wn2
(E—') _<_P(—w-—) - Q I:l.']
9
where
) = velocity of rotor
0 = npatural frequency of simply supported rotor
P,Q = functions of the running condition
and
“ni2 Kk mc _c
% mW"3
g
where
c = radial clearance of bearing
§ = static deflection of rotor centerline under gravity
loading

Ruhl (50) has recently presented an analysfs of the stability of the
short journal bearing having shaft flexibility and plots w/w versus
eccentricity for various values of shaft static deflections (8/c). The
“inftroduction of the flexible shaft reduced the stability boundary below

the value for rigid rotor analysis. (See Fig. 6.6).

12



A recent work by Choudhury (43) has examined the effect of |inear
support flexibility and damping on the plain journal bearing. Numerous
stability maps were presented for various ranges of support mass and
flexibility. The analysis then investigated the stability of a multi-
mass rotor system by producing the characteristic polynomial of the
system by numerical methods. ‘The stability study of a particular rotor
system was presented which investigated the effect of support flexibility
on the system and results verified that an optimum damping exists for a
given support stiffness to improve the stability of the rotor system.

Two text books on the subject of rotor dynamics have been published
which give detailed derivations of the equations of motion of the
fundamental rotor models. DjmenTberg, in 1961 published a Text (51)
which treats flexural vibrations in rotating rotors and considers various
aspects of critical speeds, balancing, stability of rotors operating
near critical speeds, and the influence of shaft internal friction and
shaft asymmetry on stability. Experimental results are reported in the
text which add to its importance in the rotor dynamics |iterature. The
text of Tondl (52) investigates instability in rotor systems due to
internal friction damping, unequal stiffness, and oil film journal
bearings. This extensive treatment is also supblemenfed by reports of
experimental investigations carried out by the author. Tondl has one-
fourth of the total volume dealing with the effect of journal bearings
on stabllity. Experimental results for plain cylindrical, elliptical,
lobed, grooved, and flexible element bearing are presented and discussed.

Tondl points out one major fact that should be emphasized. For

machines of high power rating, measurements made directly on the rotor

13



are the only reliable guide for the correct assessment of the danger
of vibrations. Pedestal mounted pickups are not reliab!e for determining
the level of vibration on the rotor shaft.

Another mechanism creating instabilities in furbomachinery has been
reported by Alford (53). Aerodynaﬁic forces afising from fabyrinth seals
and blade-tip clearance in’axial compressors and turbines can cause a
resultant driving force component and should not be negiected in
simulation studies of real machinery. The analysis of Choudhury
discussed earlier in this section had examined this form of instability
in the example rotor system presented in that work.

Kerr (54) reported experimental observation of a flexible, damped,
air lubricated journal bearing in which a region of whir!l could be
passed through to a stable operation zone. Gunter (39) had earlier
presenfedAa thorough freatment of the effect of internal friction on the
flexible éupporT rotor system. Support symmeffy and absence of support
damping was shown To lower the stability Thréshold of the rotor system.
An added observation pointed out the fact that the stability threshold
predicted from |linearized theory using for example the method of Réufh,
did not necessarily represent the limit of safe operation. The growth
rate of a given instability may be very low and operation may be possible
above Theoreficalisfabilify boundaries. This fact poinT; out the
necessity for The Tfansienf solution technique which can examine the
nonl inear growth rate of an instability predicted by a linearized
stability analysis. |

An;log computer simulation of Transient whirl for a symméfrical

rigid rotor in cavitated short journal bearings was reported by Jennings

4



3

and Ocvirk (55) as early as 1962. 'STeady-sTaTe orbits for balanced rotors
wére presented which had whirl rates of approximately one-half but no
orbits which encircled the origin were produced in that analysis resulting
from | imitations of the analog system. Gunter (39) also presented analog
computer produced orbits fbr'boTh linear bearing characteristics and
nonlinear fluid-film bearings. Orbits showing combined effects of
synchronous unbalance response and half-frequency whirl instability were
presented. The nonlinear case formed finite |imit cycles whereas the
linear systems were unbounded.

Reddi and Trumpler (56) in 1962 examined the stability of the 360°
full journal and the 180° partial-film bearing.v End leakage factors
were applied fo the film force expressions and the resulting equations
of motion linearized and examined for stabilfity about the equilibrium
’posiTion‘by the Routh criteria. The complete equations of motion were
programmed on a digital computer and the resulting orbits presented for
the 3606 Jjournal. ‘Reddi also demonstrated that if cavitation is not
included the bearing will be unstable at all speeds.

Castelli and McCabe (57) presented transient simulation of a rigid
rotor éuppor?ed in Tilting pad gas bearings. Results of two case studies
afe given with expefimenfal verification and excellent agreement.

'Elrod, McCabe, and Chu (73) reported an approach to determine
stability boundaries of gas-bearing systems by a combination of the
transient orbit and linearized equation methods. The system linearized
characteristics are calculated using gas-fubrication theory and these
Iineaf éharacTerisTics are then used in transient simulation to deter-

mine stability in the smalil. Digifal‘compufer transient simulation was
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also reported by Badgley and Booker (58) who presented stability
boundaries for the rigid, balanced rotor system having cavitated Jjournal
bearings and several transient whirl orbits illustrating the balanced
system response. Kirk and Gunter (18) used the cavitated short bearing
Theory developed in a fixed coordinate system to study the effect of
unbalance and external loading on the stability of the horizontal rotor
system. The values of the instantaneous forces fransmitted were given
for selected cases in addition to absolute whir! rates. The maximum force
transmitted was indicated for all whirl orbits in the presentation. The
stabilizing effect of certain levels of unbalance on the otherwise un-
stable vertical journal was also investigated by the time-transient
digital computer simulation program.

Akers, Michaelson, and Cameron (60) reported an analysis of finite
length journal bearings including friction effects and out of balance
loading. Stability boundaries were compared fto the work of Badgley and
Booker (58) and was found to be in fair agreement. Shapiro and Colsher
(61) presented an analysis of a resiliantly mounted hybrid journal
bearing and an elastic, gimbal mounted Rayleigh-step thrust bearing.
Both time~transient and step-jump dynamic analysis was used for the
results on the stability and response of the systems studied. The
step-jump approach is used to calculate bearing system characteristics
at a glven position. Then these linear equations are placed in
characteristics to diminish the time that would be required for a com-
plete honlinear transient solution and is similar to the work of Elrod

reported earlier (73).
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The development of pseudo-transient techniques (73) for the predic-
tion of journal bearing performance in internal combustion engines has
al lowed accurate determination of minimum film thickness, bearing loads,
and overall system performance. The stability and transient motion of
a vertical finite three-lobed bearing with cavitation was investigated
by Falkenhagen, Gunter, and Schuller (62) and compared to experimental
work and the analytic work of Lund on the three-lobe bearing. Transient
orbits for both balanced and unbalanced systems were presented using an
approximate finite bearing solution which represented a time saving
factor of 100 over the complete numerical finite-difference approach to
the solution of the governing Reynolds' equation.

The time-transient approach is not |imited to the study of lubrica-
tion problems and the power of the approach has been realized in many
sciences. The transient analysis of multi-link mechanisms has been
implemented (63,64) as well as the transient solution of the dynamic
behavior of a closed-cycle gas turbine system (65). The numerical
solution to any time dependent system of equations has become a usable
tool for the engineer-scientist due to the speed of the present generation
of digital computers.

Shen (66) has presented a formulation for the flexible rotor using
influence coefficients and the assumptions of small displacements and
a torsionally rigid system. Provision was made in the derivation for
analytical representation of nonlinear bearings. The derivation also
assumed that the bearing mass was negligible at tThe two major bearing
stations and a chord approximation was used to define the gyroscopic

forques and thus reduce the number of parameters in the solution.
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However, at the same time additional fictitious stations must be specified
for the desired accuracy of angular deflections. The procedure outlined
by Shen also involves a transformation to rotating coordinates which is
not required or thought to be advantageous in the following analysis.

‘Childs (67) has also presented a formal derivation of the dynamics
of flexible rotating system in terms of a spinning reference coordinate
system using vector mechanics. These equations are then reduced to the
fixed cartesian coordinates by a transformation. This formulation takes
into account bearing constraints which may be nonlinear, but no provision
has been made for bearing support flexiblity. The approach by Childs
requires that the system eigenvalues and eigenvectors first be obtained
to allow a modal coordinate transformation and omission of modes higher
than running speed if desired.

These formulations for the transient solution of flexible rotor-
bearing systems are excellent approaches to a very difficult problem.
The following analysis presents a derivation of the equations of motion
by yet another approach which readily allows the inclusion of nonlinear
time dependent bearing, seal or external shaft forces. Fluid-film
bearings with the option of flexible, damped bearing support structures
is included in the simulation model. Linearized gyroscopics are Included
in the derivation and the effects of acceleration on the transient
response is included in the analysis and is an option in the computer
code developed from the theory. The following analysis investigates
steady-state and transient response of both rigid and flexible rotors
and stability programs for spec}al rotor systems are also presented and

used in connection with the transient analysis.

18



1.3 Sfafémenf of the Problem

The purpose of this analysis 1s to present the formulation of the
time transient solution of a flexible rotor on nonlinear fluid-film
bearings that may be used for design studies of real rotor-bearing
systems including the determination of?bearing support characteristics

for optimum system performance.
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CHAPTER 11
FLEXIBLE ROTOR DYNAMICS

2.1 Description of the Simulation Model

The large class of rotating machinery operating near or above their
first bending critical must be analyzed under the general field of study
known as flexible rotor dynamics. A fypical rotor in general has multiple
bearings and the rotor shaft may have disks or impellers located inboard
and outboard to the main bearings.

The cross-section of the complex Brayton-cycle turbine-compressor
as shown in Fig. 2.1 is typical of the high speed units which can be
studied for dynamic behavior by analytical simulation. This particular
unit has a six stage axial compressor supported between the main bearings
with The single-stage drive turbine located on the right overhang. A
thrust pad is Iocafed on the front of the compressor as noted in the
diagram.

The continuous rotor shaft may be regarded as a series of concentrat-
ed mass stations connected by massless elastic shafts. For practical
purposes the gyroscopic effects should be included in the analysis of
overhung rotor stations but may be neglected in most cases for rotor
stations inboard of the main bearings. Although the notation flexible
rotor is appropriate, the deflections considered are small in comparison
to the dimensions of the rotor and simplified equations for the rotor
shaft mechanics may be incorporated into the analysis.

Fig. 2.2 represents an idea!ized rotor system reduced to the model

used for the analytical description. This analysis will consider the
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rotor to be supported on two main bearings which may in turn be elastically
mounted. Any number of additional bearings or seals may be incorporated in
a given analysis and is included as an option in the computer code (see
Appendix B).

The rotor station deflections will be denoted by‘The deflections
relative to the main bearing cenTerIine‘(ui,vi) and also by the correspon-
ding absolute deflections (xi,yi). These are shown in Fig. 2.2 for the
y-coordinate deflection in the y-z plane. The relative and absolute
angular displacements for the iTh rotor station are also shown in Fig. 2.2.
Angular displacements of each disk will be denoted by the angles Gy,
which is a rotation in the y-z plane about the negative x-axis and ex
which is a rotation in the x-z plane about the positive x-axis.

A cross-section of the i*h mass station is given in Fig. 2.3 which
indicates a possible whirl configuration for the eccentric disk at
some instant of time. The absolute and relative deflection nomenclature
for the station geometric center, og,is illustrated and the displacements
of the bearing support and journal are denoted as (7'., 7'.) and
(7},7}) respectively. These deflections, which repreéenf ;he rigid rotor

center{ine and support centerline at this instant in time, are referred

from the first bearing location as follows:

X, = X
- Ja Ji
X, = X, + () x [&, - a] [2.1]
i Jl b-a 1
X = X
— ( S2 51)
=X o+ - .
XSi 5) — x,[zf aj [2.2]
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Similar expressions hold for the y-coordinate deflections referred to the

ifh station.

2.2 Equations of Motion

The equations of motion of multi-mass flexible rotor are derived in
the following sections. The equations are developed in fixed cartesian
coordinates and include the effects of gyroscopics and acceleration.
The relative deflections of the mass stations are assumed to be small so
that |inearized gyrosccplic moments can be used in the equations. The
flexibility influence coefficients for the rotor shaft are assumed to

remain constant for the order of approximation being considered.

2.2.1 Gyroscopic Moments

Consider an isolated mass station with symmetry about the z-axis as
shown In Fig. 2.4 with the polar and transverse moments of inertia given
by Ip and IT respectively. The standard Eulerian angles are shown in
Fig. 2.4 and are denoted as & the nutation angle of the shaft axis
referenced from the fixed Z-axis, ¢ the precession angle as projected in
the X~Y plane and referenced from the X-axis, and ¥ the local body
rotation about the z-axis. Also shown on the figure are the angles
(ex,ey) which are the projections of the nutation angle 8 in the fixed
X-Z and Y-Z planes respectively.

For a rigid body the angular velocity may be expressed in terms of
the Eulerian angles and referred to the body-fixed coordinates (x,y,z).
The expression for this relation is readily available in most dynamics
texts but a rigorous derivation is usually not incfuded. A derivation

of this expression using unit vectors and orthogonal transformations is
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presented in Appendix A.3. If the unit vectors ;x’ ;y

the (x,y,z) coordinates, then the angular velocity may be expressed as

> s
, and n, lie along

fol lows:
8= (8 sinv-¢sin 6 cos ¥) ;x
+ (6 cos ¥ + ¢ sin 6 sin ) 'ﬁy + (¢ cos 8 + §) 'ﬁz [2.3]

The equations for the inertia torques are most easily derived by

energy considerations and the application of the Langrangian.

d 8L, _aL

(—) - =— = Q, [2.4]
dt aqi aqi i
where
L = T=V
T = Kinetic energy
V. = potential energy
Q = generalized forces
q = generalized coordinates

The kinetic energy Is expressed as the sum of the translational

kinetic energy and that due to a rigid body rotation of 3. That is

T, =% mX; X; 8,

2= % I;; @ w; 8 -(no cross products of inertia)
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Concentrating on the contribution due to rotations it is desired to obtain

the equations of motion in terms of the angles ex, ey and angular velocity

We
- > . -> 2 -> . +2 . - 2
To= 3 L@-np2+ ¥ L@ n2 + % Ip(fi. n)
R ->
or substituting Eq. 2.3 for Q
To= & 182+ ¢ sin2 9) + # I @+ ¢ cos 8)2 [2.5]
. This expression is in terms of the Eulerian angles and must be

transformed to the ex, ey coordinates. The following relations are valid

for small 6 (from Eq. 2.3).
w, = b+ P [2.6a]

For infinitesimal rotations the angles may be treated as vectors and

the following expressions may be written.

6, =6 cos ¢ [2.6b]
éx =0 cos ¢ - 84 sin ¢ [2.6c]
ey =9 sin ¢ [2.6d]
éy =8 sub ¢ + 04 cos ¢ [2.6e]
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For small 8 the kinetic energy T, reduces to

. . . . 2
To= 3 L2+ ¢02) + 3 LG +4a - 2

As shown by Yamamoto (I1), -
0.2+ 6 2=1082+ 02)2
x Y

. - . - 2‘
6.8 GXGY 6<¢

Y X
Hence,
Tp= F L6 2+8 0+ 10 +3§ - ¢02/,0
T, = % IT(éx2 + éyz) + % Ip[w2 - m&BZ + @6“/4]
or
= A2 48 2 2 4 (8 - B
To= 3 162+ 6,2 + % LLw? + w0 - 6607

For a torsional stiffness K

- y 2 2
V= % Ko 2 + 6,

Application of Eq. 2.3 to 2.9 gives the desired equations for the

[2.7]

[2.8a]

[2.8b]

[2.9a]

[2.9b]

general ized momenTs.Mx, My where the rotations (-ey,ex) correspond to

M_,M ).
Xy
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( %Ipwex) + Key = -M_ [2.10]

Likewise

1o + % I wd + HI 0 + Iwh +Ko =M .
10 * ¥ Lub + L6+ FLud, + Ko, y L2.11]
and
. d s . _
1o+ ¥ I, ar¢0,0,m 6.0,) = 1,
or
Ipw + % Ip(exey - eye*) =M, [2.12]

The present analysis is not concerned with the drive torque MZ. The

inertia loads due to the gyroscopics and torsional stiffness are given by

(inertia) _ , _~ 1 a _ PR .

M, = -M_ ITey ﬁ-Ipwex IpweX + Key [2.13]
(inertia) = . :

M - =-M=-Ig - 1w -1 wo - Ke 2.14
y y© oIre - B Il - Two - Ko [2.14]

2.2.2 Equations of Motion - Rotor Stations
The equations of motion of the flexible rotor may be obtained by
application of the flexibility influence coefficients. A discussion of

the method of obtaining these coefficients for a stepped round rotor
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shaft is presented in Appendix A.l. The influence coefficients are

defined as
i = the relative deflection at the ifh station due to

a unit unidirectional load applied at the jTh station.

BiJ = the relative deflection at the ifh station due to a
unit torque at the jTh station.

¢ij = the relative angular rotation at The iTh's+aTion due
to a unit unidirectional load at the jfh station.

Yij = +the relative angular rotation at the ifh station due

to a unit torque at the jfh station.

The relative deflection of the ifh major mass station can be expressed

in terms of the flexibility influence coefficients as follows:

up = aij ij + Bij Cyj [2.15]

[2.16]

<D
1}
©-

+y..C [2.17]

6, =¢,. P -vy,.C 2.18
i b5 Y, Vi x; [2.18]

where the resultant loads 3j and couples Ej are composed of both inertia
loading and effective external loads created by unbalance, internal

damping, cross-coupled aerodynamic loading, and any reactions from
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fluid-film bearings or seals at the particular station.

The sign convention for the loads and couples is shown in Fig. 2.5
which gives a top view of the iTh mass station. Also shown are the
absolute and relative transiational and angular deflection notations.

The inertia loading acting at The‘ifh mass station is readily derived

=
by differentiating the position vector, Ri (see Fig. 2.3).

-> -> > > >

Ry = x. 1 +y.J+e coslwttd)i + e; sinlut+é,)] [2.19]
T &R

R = I = o¥), + (-ew sinlut+d), ew cos(ut+d)), [2.20]
x - .

R = (x,y),+ (-e w? cos(wt+d ) -e w sin(wt+¢),

~ew? sin(ut+d) + ew cos (wt+)) [2.21]

The inertia loading including unbalance is then given by D'Alembert

principle as

?ginerfia) = -m, X(accelerafion% = (—m;,- m;/‘)i +

+ (mew? cos(wt+$) + med sin(wt+d),

mew? sin(wt+d) = mew cos(w++¢))i [2.227

The expressions for the gyroscopic inertia torque and angular.
stiffness were previously derived (Egs. 2.13-2.14) and in terms of
the absolute angular rotations (ex.,ey.) these may be written as

J J
fol lows:
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(inertia) by .

C =M . =(Le -wld - %I de +Ko). 2.23
xj X J Ty = “p°x pCy v’ [2.25]
c. =wmiinertiadl _ 15 _uIpd - % Iae - Ko ). [2.24]
Y; y J T x y ° px x"J

Combining this expression with the representation of internal damping (68},
cross-coupling (53,69), and allowing for other nonlinear forces that
might occur described in general terms by Fx(x,y,k,y) and Fy(x,y,k,?),

the components of 33 may be expressed as follows:

Px = (-m; - cX = kx + mew? cos(wt+d) +
J
+ mew sin(wt+$) - CI4 - wCIv - Qy + Fx(x,y,k,9))_ [2.25]
J
Py = (-m; - cy - ky + mew? sin(wt+9)
J

med cos(wt+¢$) = CI v + wCIu + Qx - W + Ey(x,y,k,?))j [2.26]

Rewritting Eqs. (2.15-2.18) and using the notation

Px. = -mjxj + Fx. [2.27]
J J

P =-my.+F 2.28
Y "5V Y [2.28]

c =I.90 +H [2.29]
=1 e,

% RAT

c =-lLo +H#H [2.30]
i %Y
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then,

u; = ain—m; +ED+ BU(-ITESX +H ), [2.31]
v, = a”(-m;; +F) - _BU(ITéy + ﬂx)j [2.32]
exi= ¢U(-m§ +FO, * Yij(—ITéx +H ), [2.33]
eyi= ¢U.(-m; +F), - YiJ(IT(;y +H), [2.34]

The equations of motion of the rotor may be expressed in matrix
form for convenience. On the following page is the matrix formulation
for two major mass stations.

The formuiation for larger systems is simplified by defining the

following variables.

a11Mmy a1y o « alnmn
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Then the equations may be expressed very simply as

-
A(n)

O(n)

O(n)

(n)
Lp

where

(n) .

(n) _

o) =

(n) -

O(n)

A(n)

C(n)

O(n)

-u
n

O(n)

(n)

B 0

D(n)

O(n)

+ u1JFx.

-0

D

- -

B(n) %

(n)

(n) 8

(n)

K

-y

»{n)
«(n)
v n

(n)
y B

(n)
X

&

©

e

F(n)
X
F(n)

Y
(n)

y
(n)

X

[2.35]

This formulation presents the equations of motion which are in

the desired form for application of standard integration procedures.
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The method of solution employed in the computer code MODELJ will be
discussed in Section 2.3.
If the system experiences an acceleration &, then one additional

relation must be given To fix The Instantaneous angular velocity. That

is
o= do
dt
Hence
dw = wdt
or

For a constant acceleration rate then

w, = wTo + o(t - TO) [2.36]

The angular velocity can thus be calculated for each time step of
the integration process. The external torques necessary 1o supply

this constant acceleration is given by Eq. 2.12.

2.2.3 Equations of Major Bearing Support Stations

The previous equations are all that are necessary when considering
a flexible rotor on two rigid bearing supports. If the bearing or
supports are allowed o have flexibility, then additional information
must be obtained to solve the system. Taking the moments of all

external and inertia forces and torques acting on the shaft abcut the
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first bearing station (see Fig. 2.6):

n n
1c, +1IP (g -a)=0 [2.37]

M, =F  (b-a) +
N 2 =1 Vo= Xy

Hence, the total resultant-force component acting on the shaft at the

second major bearing in the x-direction is given by:

n n
-yc, -)P (& -a)
=t Vi =1 %5 !
Fx = [2.38]
2 (b - a)

This resultant force is composed of the bearing reaction denoted as

(B.F.) and the inertia load at the second major bearing. That is

F =

X —szxJz + (B.F.)Xz [2.39]

Therefore, solving for the journal acceleration §J2 at the second major

bearing station yields

. | n n
><Jz = K—- {(B.F.)Xz + B =ay (.Z Cy + z PX.(R.i al))l [2.40]
Jo i=t 1 i=1 i
The bearing reactions can also include unbalance excitation acting
at the journal. 1In a similar fashion the acceleration for the first

bearing may be expressed as

| I 1] n
w _ = {(B.F), A p——(-)]C +])P_ (b-2 )} [2.41]
X5 ™y S MR AR E !
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The acceleration of the bearings in the y-coordinate are |ikewise found

to be given by the following expressions.

n n
i | |
S AR -Yc, +3P (4 -a) 2.42
o Ty Y2 b-a iZl X izl TR L2.47]
and

I | n n
o=t {(BF). 4+ttt TC +VP (b-2)) 2.43
YTy { yi b-a izl X iZI Yi ) L2431

If the bearings are supported by flexibly mounted structures, the
equations of the supports are readily deduced using The representation

i
given in Fig. 2.7. A force balance on the support gives

ma. = -(B.F.) + (5.F.) [2.42]

XFsupporT B s

where

(S.F.) = support force

a_ = absolute acceleration of the support in any given coordinate

direction.

The bearing and support forces have been left in the general terms
since the bearing type assumed dictates how the reaction forces are
expressed. These forces may be either linear or nonlinear functions
of displacement, velocity,and time. For a more detailed analysis of
the bearing and support forces refer to Appendix B where the types in
the computer code MODELJ are discussed. More detailed discussion of
fluid film bearings is presenfea in Section 4.2 and discussion of the

fluid film squeeze damper Is presented in Section 6.3.
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2.3 Method of Sofution

The equations derived in Section 2.2 can be solved for the time
transient solution once the inverse of the modified flexibility matrix
is obtained. Expressing the equations of motion given in Eq. 2.35 as

follows for simpliicity: .

[cxal [X] = [u] [2.457

where
£xJ = column vector of absolute acceleration of the
major mass stations.
[u] = column vector of relative displacement as
represented in Eq. [2.35]
[cxal

]

4n x 4n matrix given in Eq. [2.35]
Then, premultiplying both sides of Eq. 2.45 by the inverse of the
4n x 4n matrix CXA gives the absolute translational and angular

acceleration rates which is expressed as follows:

[X] = [exal™ vl [2.467

With the acceleration values known at time t, the bearing accelera-
tions can be obtained from Egs. 2.25 and 2.26. As for any time integratior
of second order equations, the displacements and velocities at time To
must be specified for all the coordinates being solved. The actual method
of solution may be chosen from several available formulations. For the

type solutions given by unbalance response the modified Euler method has
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been used successfully (57,59,62) and is especially desirable when it is
necessary to calculate nonlinear hydrodynamic bearing forces at each step
of the solution. A modified Euler method which is equivalent to a second
order Runge-Kutta procedure can be utilized at no extra time loss in the
integration of the bearing forces. A 4+h order Runge-Kutta procedure

can be used but becomes time consuming since four calls of the bearing
forces are required for each step forward in time of the solution. The
numerous predictor-corrector integration schemes such as the Milne,
Adams-Bashforth, and Hammings (18) are even more time consuming and have
a greater tendency to exhibit numerical instability. The 4Th order
Runge-Kutta procedure is used in the time transient programs listed in
Appendix E and G.

The most Important Information needed to produce readily recognized
trends Is the starting conditions. For the |inear model the gravity
loading can be removed from the solution and any external loading can
be investigated from the static equilibrium position. For nonlinear
solutions (bearing and support forces) the gravity loading cannot be
ignored and the initial conditions given may produce transient motion
that the system would never encounter in actual practice. The following
section is presented to review work that has been completed on the
steady state response of flexible rotors and a computer code modified
from (12) is presented in Appendix H that may be used to obtain initial

conditions for the transient solution program.

2.4 Steady State Response

The transient solution as proposed in Section 2.3 is indeed very
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Time consuming and hence very costly to produce even with the fremendous
speed of the present generation of digital computers. Poor or misjudged
starting conditions for the time transient solution may produce misleading
results since the system would have to encounter a transition period to
attain the correct phase relation for the many variables being integrated
simultaneously. |

The equations of motion as presented in Section 2.3 can be solved
for The steady-state for The case of assumed |inear bearing characteristics.

By assuming solutions of the form
q; = A, cos(wt) + Bi sin(wt) [2.47]

the solution requires that a system of equations be solved. For the
assumption of N point-mass rotor stations then. a 4N x 4N matrix must be
solved. However, if the shaft properties are isotropic then only a

2N x 2N system need be solved. The introduction of support flexibility
increases the system of equations to a 8N x 8N manix representation
and increases the solution time per case. by approximately a factor of
64 for a simple 2 station rotor. The inclusion of gyroscopic moments
at each rotor station in addition jo support flexibility increases the
system o a 12N x 12N representation and is 216 times as difficult as

a two station point-mass rotor with isotropic constraints. Recall that
the fransient solution requires only a 4(N-2) x 4(N-2) matrix inverse
be taken even when gyroscopics are included in the solution. For point-
mass assumption the transient solution requires only that an (N - 2) x

(N - 2) matrix be inverted. The (N - 2) expression represents the total

L6



number of shaft stations in the simulation minus the two major bearing
stations. A more efficient procedure for obtaining the steady state
solution has been reported by Lund (12) which uses a modified Mykliestad-
Prohl technique to obtain the steady state solution.

Without reproducing the entire analysis of Lund the basic equations
for this type analysis will be sumarized in the following discussion.
With reference to Fig. 2.8 the moments and deflection relations can be
derived by applying simple beam theory for the shaft secfions and noting

that

= M
N+l Mn + LnVn [2.48]

2y
By integrating the equation from simple beam Theory, d j%; and using

the above expression for the moment

: n
6/, =0 +[ f dz] Mo+ [ f 24z [2.49]
=0
X . =X +Le +L[ ?n dz j 29z
n+i n nn n~ g

Ln Lh 2
v [ - i a3 [2.50]

o

-+

For the case of constant shaft properties (EI constant for each different

shafTﬂsecTion), Then

!
Mn+| = Mn + LnVn [2.51]
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L L<

_ no, n
8t = O TET M *3ET Vi £2.52]
L2 L3
= n_ ', N
it = %0 Y E8 e My togET [2.55]

The moment change across a mass station includes the gyroscopic
action and angular spring rates of the bearing. The shear change across
a mass station includes the effect of inertia loading, bearing reactions,
and unbalance loading. Detailed equations for these contributions are
given by Lund (12). Harmonic motion is assumed and the bending moment,

shear, angular and lateral deflections may be expressed as

M, =M  coswt +M _ sinut [2.54]

Vx = ch coswt + sz sinwt [2.557
o = ec coswt + 6_ sinwt [2.56]
x = x_ cosut + x_ sinwt [2.57]’.

and for the y-direction the variables My, Vy, ¢, y are used in similar
equations. The resulting equations needed to describe the rotor

reactions include the change of moment across a mass station and shaft
length (8 equations), change of shear across a mass station (4 equations),
and the angular and lateral displacement along a shaft length (8 equations)
for a total of 20 equations to step across one mass and shaft section.

For a beam with free ends the bending moment and shear are zero at

the extremeties, or they can be calculated for an assumed deflection and
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given support characteristics. The unknown quantities are the angular
and lateral displacement components at the left or first rotor station.
Using the superposition principle, each unknown is given a unit value
with all the others set to zero and the twenty equations as mentioned
above are used to calculate the bending moment and shear at the right
rotor end. An additional calculation is made applying the given un-
balance loading with the other unknowns set to zero. The result of

the superposition of the applied unit loads produce a set of equations
which may be solved for the unknowns at the first rotor station. This

procedure is best described as follows:
Let 6¢cy = 1, set Bs1 = ¢c1 = 51 T Xc1 = Xg1 T Ye1 T Ys1
=u, =u, =0 (u__ and u_ __ are unbalance loads)
xn yn

Calculate the residuals at the right rotor end. Call them

M M M M

1 o t N 1 . 1
xcy,l’ “xsy,l’ “yer,l’ Tysr,l|

v ;5 v H H
xcr, | xsr, 1 ycr, | ysr, |

Let esl= | and set the other variables to zero. Calculate

the residuals and denote them as

YT B VY B T M
xcr,2’ str,Z’ Mycr,Z’ Mysr,2

M

chr,Z; szr,Z; vycr,Z; Vysr,2

Repeat the procedure for.the eight displacements and then

apply the unbalance loading and call the residuals

50



M M

1 .
xcr,9’

v

1 .Ml .
xsr,9’ ycr,9’

1
Mysr,9

xcr,g; szr,9; Vycr,9; vysr,9

This produces a set of influence coefficients which allows the

unknowns to be solved. The solution can be expressed as

fol lows:
BYL
chr,l

M'
xsr, |

Ml
ycr, |
4

Mysr,l

v
xcr, |

v
xsr,1

vycr,l

v
ysr, |

-

1 1
chr,z v chr,8
: .
str,z L) L] [ ]
Vysr,2 . o e vysr,8

Xs1

Yc1

¥si

1
—Mscr,9

‘—M'

xsr,9
_M;cr,Q
—M;sr,Q
-vscr,9

—szr,9

-vycr,g

-V
i ysr,9

[2.58]

The unknowns at the first station can thus be determined and the

response all along the rotor can then be calculated for a given speed.

Lund's original analysis included an iterative approach to the

solution of the gyroscopic conTribution but the linearized gyroscopic

equations as presented in Section 2.2.l1 have replaced this iterative

approach in the computer code given in Appendix H.

One additlional

modification has assumed circular synchronous precession which restricts

the bearing and support characteristics to be symmetrical. This allows
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a tremendous savings in solution time and rofots having unsymmetrical
bearing and support characteristics may be studied by this program if
the gyroscopic coupling is small in comparison to the other shaft loads
and reactions. The results of this computer program, LUNDJR, may be
plotted by a companion program LUNDJRP which is given in Appendix H

also. A sample case is given in the following rotor system.

Example 2.1
Total rotor weight 1301 ib.
Center span approximate weight 676.0 1b.
Journal weights (each) 312.5 |Ib.
Diameter of shaft sections 6.0 in.
Length of each shaft section 34.5 in.
Youngs modulus 30 x 105 1b/in2
Symmetric bearing stiffness 448,000 1Ib/in
Bearing damping 501 Ib-sec/in

(Rigid bearing support pedestals assumed)

Unbalance at center station 5.4 oz.=in.

This system may be visualized by letting KXX = Kyy = o in Fig. 5.1
and Kyy = Kiy = 448,000 Ib/in while C1x = C1y = 501 Ib-sec/in. Th?
equivalent shaft stiffness is 280,000 I1b/in for this example case study.

Fig. 2.9 represents the undamped critical speed mode plots
corresponding to the rotor of example 2.1. It is seen that the rotor
first critical speed at 3300 RPM is symmetric with the largest deflec-

tion at the rotor midspan. This should be the predominant mode

excited by unbalance placed at the rotor mid-span or center. The
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second critical speed is a conical rigic body mode and will not be
excited by a centrally located unbalance. The largest amplitude occurs
at the bearings and hence should be a highly damped mode for typical
bearing damping as given in Ex. 2.1.

The third critical speed shows considerable shaft bending with the
largest amplitude occuring at the bearings. Note that the amplitude
at the bearings are out of phase to the rotor amplitude at the midspan
section. This mode may be excited at the rotor center if the bearing
damping is not excessive. The steady state response of the center mass
station is shown in Fig. 2.10 and the corresponding phase angle with
respect to the unbalance is given in the joining plot. In the speed
range shown one critical speed is evident at 3300 RPM and the phase
shift through 90° to 180° is shown in the adjoining plot. The bearing
amplitude and phase is shown in Fig. 2.11 where the phase angle is
observed to ciimb beyond 180° to more than 300°. The second critical
is not excited by the given unbalance and the third critical is com-
pletely damped out of the response curves.

It should be quite evident that this computer code alone could
be used to optimize a rotor bearing support system over a given speed
range. Once a given configuration was decided upon the transient
response analysis could be used to defermine the sensitivity of the
design to shock loading and to determine the stability or instability
of the system.

The fourth critical speed shown in Fig. 2.9 is a direct consequence

of including the gyroscopics of the lumped rotor mass stations. A point
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mass model calculation would only have produced the first three criticals
shown in Fig. 2.9. The steady-state response given in Figs. 2.10 and
2.11 did not cover the speed range of the fourth critical speed and
unbalance at the center station would not have excited the mode even if
the range was extended to beyond 14,600 RPM. This mode could be
excited by an unbalance moment such as that caused by a skewed disk.
The inclusion of gyroscopics in general will lower the critical speeds
if the transverse moment of inertia is larger than the polar moment of
inertia. However, in most applications to compressor and turbine disk
locations the polar moment of inertia is larger and the inclusion of
gyroscopics will tend to stiffen ths shaft and hence raise the critical

speeds.
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CHAPTER 111
DYNAMICS OF A TWO STATION ROTOR HAVING

ONE SECTION OVERHUNG

3.1 Description of the Simulation Model

One class of industrial rotors may be represénTed by a model as
suggested in Fig. 3.1.(a). This class of machines has a massive mid-
span section and an overhung section supported in fluid film or rolling
element bearings. |f the effect of the bearings can be neglected and
gyroscopics are neglected on the midspan, then the model is reduced to
the system as shown in Fig. 3.1.(b). This representation has a point

mass at the midspan station and a massive disk at the overhung section.

3.2 Equations of Motion

The system being analyzed must be represented by six equations of
motion. The midspan characteristics are denoted by the subscript |
while the overhung station will be denoted by the subscript 2. The
equations for the deflections are given in Chapter |l and may be written

as follows:

xp = up = anaP +agpP 4 812C, [3.1]
1 =v1=anP *aP - 810 3.2]
Xp = Up = a21Pxi +4022Px2 + BZZCYZ £3.3]
y2 = vz = a21P o+ agaP = BaoCy [3.4]
xo™ Ox,= 021P * 22P + v2C [3.5]



(a)

)

FIG. 3.1(a) TYPICAL TWO MASS ROTOR WITH MASSIVE MIDSECTION
AND AN OVERHUNG STATION
(b) ASSUMED SYSTEM FOR ANALYTIC FIRST APPROXIMATION
SIMULATION
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3] = 8 = P + P - C -
Vs b21 Vi $22 xy Y225, [3.6]

Y2
where
Py =-mjX) - €1%1 - kix; - CI1%; = «Clyy; - Qiyy
= kX1 T kxyyl - dxXil - cxyyl [3.7]
Pyr™ -my1 = €11 - kiyp = CIi¥y + wClyxg + Q1X1‘
- kyyy1 - kyxxl - cyyyl - cyxkl [3.8]
sz = -mgyXy = CoXg = koxy = CloXs - wCloys - Quys [3;9]
| P ™ -maya = C2¥2 = Kaya = CIa¥p + uwClaky + Qoxy £3.10]
'sz = ITé’yz - «»IPéX2 + K29y2 £3.11]
C =-I6 -l - Kpe [3.12]

Y2 T"%xz Pya

This formulation requires that the flexibilify influence coefficients
be known and the resulting equations are coupled in the acceleration
terms as were the equations in Chapter I1. The method and computer code
used to Investigate the stability of these equations will be explained
in the following section and the results of the time transient solution

is presented in Section 3.4.

3.3. Stability Analysis
The equations of moTion'giVen by Egs. 3.1-3.6 may be examined for

'sTablllfy by applying the Routh criterion (69). This procedure requires
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that the system characteristic equation be known. If solutions of the

following form are assumed:

X1 = Alekr
V1 = Az’
Xg = AgelT
y2 = Auelf
' - Asekf
eyz = AseAT

the equations of ymotion may be readily written as a six by six matrix
formulation. Substituting the above expressions into Eqs. 3.1-3.6 and
collecting terms produces the matrix formu]aflon presented on the

fol lowing page.

A computer program, OCSTB, was written to expand this matrix which
has elements quadrafic’jn A tTo obtain the characteristic equation,
examine the resulting charécferlsfic equation for stability by the
Routh criterion, and to flﬁd}éll the roots of the resulting twelth order
polynomial (63). The real pgrf of the roots indicate the sfabilify of
the system (positive for instalility) and the imaginary part gives the
natural frequencies of the system. A lléfing and explanation of the
input required for OCSTB are presented in Appendix C.

The stabil ity analysis produces the natural frequencies of the

system. As an example consider the foilowing rotor system.,
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Example 3.1

Wy = 1.86 Ib.
Wo = (.86 Ib.
I, = 0.00542 Ib.~in.-sec.?
I, = 0.00274 Ib.-in.-sec.?

overhung span = 3 In.
bearing span = 12.75 in.
shaft diameter = 0.375 in.

E =30 x 106 |b./in.2

The influence coefficients were calculated from the procedure

described in Appendix A. The results are as follows:

a11 = 1.483 x 1073 35 = -1.047 x 1073 By, = 3.489 x 07"
agy =-1.047 x 107%  app = 1.622 x 1073 Byp =-5.923 x (0~%
$p1 = 3.489 x 1074 ¢y = =5.923 x 107™%  y,, = 2.49 x |07

The natural frequencies were calculated and are given in Fig. 3.2.
The solid lines are the forward critical speeds and the dashed |ines
give the backward criticals (3,43). Note that the scale on the ordinate
is broken and the gyroscopic critical is very high indeed. The
gyroscopics increase the two lower forward criticals as the speed in-
creases. The synchronous forward cfiflcal speeds are approximately
2750 RPM and 6250 RPM'as taken from Fig. 3.2 The critical speeds and
mode shapes of syn;hronous forward precession were also obtained by a
program (70) using the Myklestad-Prohl technique. These results are

given in Fig. 3.3~4 where it Is noted that the bearing characteristics
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50— CRITICAL SPEEDS OF FORWARD AND BACKWARD
PRECESSION
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FIG. 3.2 CRITICAL SPEEDS OF FORWARD AND BACKWARD PRECESSION
FOR A TWO MASS ROTOR SYSTEM
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were chosen to approximate rigid supports. The critical speeds were
given as 2745 RPM and 6284 RPM by this computer code and it was con-
cluded that the two programs were in agreement. The mode shapes given
coutd be méde smoother by simply taking more points along the rotor
shaft. The rotor of Example 3.| was modified slightly and will be the

basis for the analysis of the remainder of this chapfer.

Example 3.2

This rotor is the same as the rotor of Example 3.1 with the
fol lowing exception:

overhung station = 5 in.

The influence coefficients for the rotor are:

ayp = 1.483 x 1073 4y, = -1.744 x 1073 gy, = 3.489 x {073
a1 = -1.744 x 103 app = 5.079 x 10°3  Byy = -1.159 x 1073
0p1 = 3.489 x 1074  dpp = ~1.159 x 1073 vy = 3.176 x 107

The resulting critical speéd plot is given in Fig. 3.5 where it
is observed that the extended overhung section has lowered the fwo
forward bending criticals NIf’ NIIf to 1825 RPM and 4960 RPM respectively.
The corresponding mode shapes are given in Figs. 3.6 and 3.7 Also
indicated on Fig. 3.5 Is the effect of internal friction damping acting
at station one and at station two. With a value for internal damping
of 0.2 Ib.~sec./in. acting at the rotor midspan, the system threshold
occurs at a shaft speed of 2500 RPM and whirls at 75% of running speed
which is observed to be the lowest critical NIf at this operating speed.

For the same internal damping at the overhung station the system

threshold occurs at 1890 RPM and whirls at 95% of running speed which
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corresponds once again to the lowest forward cr%fical of the system.
At higher speeds the whirl remains at that frequency corresponding to
the iowest critical speed. The results for a rotor speed of 3000 RPM
produces a whirl which is 62% of the running speed as shown in the
computer results given in Table 3.1.

The rotor specificafioﬁs are printed at the top of the table with
the corresponding influence coefficients. The matrix for the system
is shown and corresponds to the elements of the system as shown on
page 60. Each element of the 6 x 6 matrix has three coéfficienfs with
the first one being the coefficient of the quadratic term, A2, the
second the coefficlent of A and finally the constant term. The roots
to the resulting characteristic equation are also shown with the real
and imaginary parts, then the imaginary part in RPM and finally the

fraction of running speed for each solution.

3.4 Transient Whirl Analysis

The simple model of Exampie 3.2 was chosen to test the transient
program which was formulated in Chapter 2. Of particular interest is
the effect of the inclusion of gyroscopics on the results of the time-
transient analysis. The rotor shaft specifications used in the analysis
are presented in Table 3.2 along with the approximated rotor specifica-
tions which correspond to the rotor of Example 3.2. A gyroscopic station
on the overhang énd a dummy seal (bearing) location are also specified
in Table 3.2. For the purpose of simplifying the initial conditions
required a zero gravity field is assumed.

For a rotor speed of SOOO'RPM the results of the stability program

with no internal friction damping are as given in Table 3.3. These
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TABLE 3.1 SYSTEM CHARACTERISTICS OF A TWO MASS ROTOR
- CONFIGURATION HAVING INTERNAL DAMPING AT THE
OVERHANG
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TABLE 3.3

SYSTEM CHARACTERISTICS OF A TWO MASS ROTOR

CONFIGURATION SHOWING STABLE RESPONSE FOR THE
CASE OF NO INTERNAL DAMPING
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resulfs.predicf a stable operafing condition. Since the gyroscopics
are not predominant at this low speed a point mass rotor simulation was
run using the code MODELJ. 1Thesrofor specifications for this assumption
are given in Table 3.5 (see page 76).

The initial conditions were inen to exclte the first mode response
with a synchronous initial whirl rate. Fig. 3.8(a) represents the
ftransient- response of The overhung disk for five cycles of running speed.
The mofion has an average whirl of nearly 60% and is stable as predicted
by the stability analysis.. The midsection response given in Fig. 3.8(b)

jindicafes %he presence. of o higher mode developed in the x-direction.
The running speed Is between the first and second criticals and a
combination of the modes is to be expected for free response of the
system.

If internal damping Is introduced at the midsection the stability
analysis indicates an unstable whirl of 62% as given in Table 3.4. The
rate of growth of the insfabjlify should not oe too great due to the
relatively small real part of The root. The specificéfions for the
transient simnlafion are given in Table 3.5. The transient orbits for
synchronous first mode exciTaTion are given in Fig. 3.9. The first
five cycles for the overhung and midsection aré given in Fig. 3.9(a)
and 3.9(b) respectively. The orbits indicate an approximate whirl of
60% with definite indication Tnaf Tne motion is orbiting out into an
unstable pattern. The continuation for cycles six  through ten are
shown in Figs. 3.9(c) and 3.9(d) with definite indication of an

- unstable system. The 60% whirl has predominated the response at the

midsection as indicated In Fig. 3.9(d).
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The inclusion of the gyroscopic properties of the overhun§ section
should not drastically alter the transient response from that ;bfained
for the poiﬁf mass simulation. With the same time step as for the
previous solution but including the gyroscopics at the overhang the
transient response indicated from the program is ;hown in Fig. 3.10.
The initial response is smooth but smé|l cusps are developed which grow
into inner loops and finally the response is dominated by an abproximafe
10/1 whirl rate. The cusps and inner loops are actual solutions of a
simple gyro (71) but the large jumps in the later portion of the
solution are clearly inaccurate. There are no energy producing mechanisms
in the system and hence the physical considerations do not allow this
type response (72).

The system-has been excited by a frequency ten times running
speed and Fig. 3.5 shows that the gyroscopic critical is very nearly
ten times running speed for the case of N = 3000 RPM. The initial
conditions on the angular displacements of the overhung were specified
as zero and hence induced small excitations of the order of 10/1 of
running speed. The time step of the solution was not small enough to
accurafefy track these excitations and they eventual ly became dominant
due to numerical difficulties. The solution at the end of the third
cycle of running speed was used for initlal conditions with the step
size reduced to H = 0.0l (radians). This gives 628 steps per cycle or
for a 10/1 whirl there would be 63 steps per whirl revolution. A
sustained whirl of 10/1 should resuit from such starting conditions and
the solution should be bounded. The results for one cycle of running
speed 1s shown in Fig. 3.11 where the expected sustained 10/l whirl is

evident.
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The next case considered was to start the solution with the initial
conditions as in Fig. 3.10 but using a reduced time sfépfof H = 0.0l.
The rotor specifications are indicated in Table 3.8 énd the results for
two cycles are shown in Fig. 3.12. The overhung sfafibn‘is observed to
have a slight excitation of approximately 10/ as indicated by the whirl
path from cycle | to the end of this solution orbit. The reduced time
step has not allowed the excitation to grow as it had in the previous
case with the larger time step.

The next example case considers the influence of unbalance on the
resulting transient including gyroscopics. The unbalance specifications
are as given in Table 3.9 which indicates 0.002 oz-in. unbalance at each
of the two major mass station and 180° out of phase. The response for
five cycles is given in Fig. 3.13 where the gyroscopics are observed
to once again excite the solution and alter the orbits much the same
as before. The step size in this case was the larger value of H = 0.05.
A smooth orbit is obtained up to the end of the third cycle of motion.
Additional transliational damping at both stations was introduced as
indicated in Table 3.10 with the results obtained shown in Fig. 3.14.
The initial response is suppressed but the gyroscopic influence persists
to enter the solution in the fourth revolution. The point mass model
as indicated in Table 2.11 produces the response shown in Fig. 3.15.

The overhung station has a very regular symmetric péTTern‘and would
approximately repeat itself for the next five cycles ;SVWOUId the mid-
section. ’

The next consideration was to again reduce the Time step and start

the solution at the end of cycle three for the case of Fiqg. 3.13.
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Fig. 3.16 shows cycles four and five and no indication that numerical
instability is present In this solution. A small amount of angular
damping was next considered fo control the gyroscopic harmonics and
prevent them from producing inaccurate results. Five cycles at the
larger step of 0.05 is shown in Fig. 3.17 and indicates that the
instabilities have been suppressed.

For the same initial conditions as the previous orbit the response
for ten cycles with an initial step in speed to 10,000 RPM is shown in
Fig. 3.18. Fig. 3.19 indicates the effect of an acceleration rate of
50,000 RPM/sec. on this same motion for ten cycles.

These results indicate that the proposed transient solution can
produce whirl orbits that may be used to study the performance of rotating
machines. The predicted unstable whirl from the stability analysis
program was verified with good agreements. The inclusion of gyroscopics
in a multi-mass system must be handied with exireme care so as to avoid
numerical instabilities in the solutions and it Is suggested that a
point mass model simulation precede any run including gyroscopics.

Additional results for flexible supports using this computer code

+

are presented in Chapter V.
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CHAPTER IV
STABILITY OF SOFT MOUNTED JOURNAL BEARINGS

The favorable increase of stable operating speed range as a result
of support flexibility and damping has been reported in the (iTerafure
(16,74,75,76). A recent analysis by Choudhury (43) has examined the
effect of simple soft mounts on the stability of the plain cylindrical
short journal bearing. The present analysis will present the equations
necessary for the time-transient solution. The resulting computer code
results are then compared with the stability boundaries presented by
Choudhury. The influence of unbalance on the horizontal and vertical
bearing system is also discussed and several transient orbits are present-

ed in connection with that discussion.

4.1 Description of the System

An idealized rigid symmetric rotor supported by identical bearings
on elastic supports is shown in Fig. 4.1. If the rigid rotor is excited
only in the cylindrical mode then the equivalent system shown in Fig.
4.2 may be used To examine the resulting response. A fluid-film bearing
is shown in Fig. 4.2 with a region of cavitation which must be included
in the solution to simulate the behavior of actual fluid-film bearings.

The journal motion may be represented by the coordinates as shown
in Fig. 4.3, The absolute support motion and the relative journal
motion will be used to formulate the equations of motion. Unbalance
response may be expressed as a small eccentricity, eu, of tThe mass center

from the geometric center of the journal. The journal orbits will be
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FIG. 4.2 CROSS-SECTION OF EQUIVALENT RIGID ROTOR SYSTEM
SHOWING REGION OF FLUID CAVITATION
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presented as the trajectories of the journal center inside of the
clearance circle as has been the practice in journal bearing transient

studies (18,41,60).

4.2 Equations of Motion for the Transient Solution

The equations of motion of ‘a rigid rotor supported by journal
bearings can be written if The‘expressions for the fluid-ff]m bearing
forces are known or can be calculated. One approach has been To‘assume
that the short-bearing theory is applicable when L/D < |. Booker (77)
has reported that the short bearing equations compare favorably with
finite difference solutions. The expressions for the forces can be

written as (18)

{Ex} uRL3 2w (wb + wj)(x sind - y cosf) - 2(x cosb + ¥y sin 9) {cose
"y Z =0 (c - x cos® - y sing)3

sine}de

(4.1]

where the integral is to be calculated numerically and negative pressures
set to ambient to model cavitation.

The coordinate system is shown in Flg., 4.3 where the absolute bearing
and relative journal displacements have been chosen to describe the

system behavior. The position vectors are given as:

>
Pb/o

>

pi/o . gb/o , Fi/n [4.3]

where

PJ/b .T >

n
X
+

~<
[

[4.4]
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The position vector of the mass center of the journal is given as

j >
ﬁJg/o = (x; + x, + e cos(w, 1)) i
J H J

->
+ +y, + . j .
(yy Y;*e, sin(mJT)) Jj [4.5]

The acceleration of the journal mass center is found by direct

differentiation of the above expression.

s >
VJ/o = (X + X%, - eum\j sin(mjf)) i

J
. ->
+ (y; + Vi + e cos(mjf)) J [4.6]
;j/o = (;1 + ;j - euéj sin(mjf) - euwj cos(wjf)) ?
F (L + Y. + e, cosw ) 2 Sintw, ) ] [4.7]
Y1 +y; +ew; coslu, o0 sinlu, Jj .

Once the bearing force expression and acceleration components are
known the equations of motion are easily written by applying Newton's

Second Law:
.+
$F, =ma., i=1,2 [4.8]

where

| refers to the bearing motion

2 refers to the journal absolute motion

Hence for the journal equation:

oy 8 +
my (%ol + ¥ol) =} Fi T+7 Fy [4.9]
x y
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x-component:

mz(;l + ;j - eu&j sin(wjf) - euwj cos(wjf)

=F cos(anT) + (Film Force)| ... [4.10a]
y-component :
mz(;l + ;J + eu&J cos(wjf) - euw§ sin(wjf))
= F sin(nmJT) + (Film Force) y=dir. " Wy [4.100]
The bearing equations of motion are as fol lows:
x=component:
ml;l =Y Fbx = -kx1 - c % = (Film Force)| . [4.11a]
y-component :
myy = ) Fby = -k - €91 - (Fiim Force)| 4\ = ¥y [4.11b]

The expressions for the film forces can be expressed as equivalent

linear stiffness and damping at any given instant. That is,

F = (Film Force)lx = DhoX) + koY * ok +e )] [4.12a]
PN ]
F = (FilmF )l =-[k y. +k x, +c V. +c x. 4.12b
y m Foreel|y = -Lhyyvy * kyXj + oy ¥y + op%;d [4.120]
where R
oF
XX = - 9X. [4.13]
oF
kXY = - -5'»7 [4.|4:|
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!

kyx [4.15]

& e

[4.16]

Y
~

k
Yy

and

(¢]
1i
]
@l @
X1 T
X

L4.17]

XX

(¢}
i
§
wl @
¢ >
»

Xy [4.18]

[4.19]
yX

0O
1
]
QJLQJ
X >
[

[t}
I

o5
|5

[4.20]

Q
~Z

yy

The limits of integration and the force components are determined
by the steady state equilibrium position (42,43). The equations of

motion may be made dimensionless by defining the following variables:

X1 ., 5(1 . ;1 eu
=g Ntgn Xt BT
J J
fi. . X, .“ X,
Xj=<h %= 5%33 X = 3%323 T= gt
where ¢ = radlal clearance of the Journal bearing.

Rewritting the equations of motion and solving for the acceleration

terms results in

»

v mo k C F
. 2 % R
Xy = ™ [ 5;;}2 X1 02 X1 5;35}2] [4.21]
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- M2 k c., . F Wy
2 e— _._._%. [P L - Y - s

Yl my E maw. Yl Mmow . Yl mzcm.‘ mzcw.zj E4.22]
J J J J

- - F, Ex

XJ = =X +‘Eu cos(T) + EZEB}Q cos(nT) + EZEEEE [4.23]

I . FO ‘ Fy W2

YJ = -—Yl + Eu sin(T) + -m—z-éEJ:-z sin(nT) + mZCmJZ - mzcwjz [4,243

These equations may be integrated forward in time by any one of
several methods of integrating first-order differential equations (42).
This means that fto solve the above equations, eight first order equations
must be integrated. The fluid-film forces can be solved at each time
step and the solution tracked for a given rotor system. This method of
solution is essential for determining the dynamic loading under different
transient motion caused by shock or unbalance forcing functions. This
approach Is not the appropriate method to determine the threshold of
instability. The characteristic equation can be examined for instability
by solving for the roots and notfing when a positive real part of the
root, A, exists. Moreover, the method of Routh does not require the
roots to be solved for but only that an array derived from the coefficients
of the characteristic equation be formed and examined. The results of
this type analysis (43) produces stability plots that will be discussed in

The following sectlon.

4.3 Hortzontal Journal Bearing Stability
The plain cylihdqibal bearing has received much attention in the

literature (78-85). Recent investigations (18,41,69) have presented
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stabil ity maps that have agreed that the stability boundary is
approximated at m/wg = 2.5 for short journal bearings loaded up to an
eccentriclty of 0.80. At higher eccentricities the bearing is stable
at all speeds. The whirl orbit in Fig. 4.4 represents the motion of
the journal in the clearance circle for five cycles of motion. The
Jjournal was released with all initial conditions zero and operating at
an angular speed of 6500 RPM which is very near but below the stability
threshold (m/wg = WS = 2.45). The journal is spiraling in ftoward the
equilibrium eccentricity € = ES = 0.211.

If a step increase of speed to 10,500 RPM occurs at the end
condition of Fig. 4.4 the resulting motion is shown in Fig. 4.5(a. The
Journal whirls out In an orbit that has an average whirl rate of close
to one-half journal speed as indicated by the smail timing marks on the
orbit path. The maximum force has doubled to 145.6 Ib. and occurs at
8.96 cycles as indicated by the asterisk on the orbit. The motion is
continued for another five cycles in Fig. 4.5(b)showing the orbit forming
a limit cycle and whirling at slightly less than 1/2 running speed. The
maximum force occurs at the end of the IBTh cycle of motion and has
Increased to almost four times the static loading.

The equations in Section 4.2 for the soft mounted journal bearing
have been examined by Choudhury (43) for stability. If solutions of
The form Xi = Al exf are assumed the equations of motion produces a

determinant given by:
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HORIZONTAL BALANCED ROTOR

NO. 11sm
N = 6500 APM Wl = 1.00
BR= 1.00 IN. W= S0 LB.
L= 1.00 IN. MUaS = 1.CO0 RCYNS
C = S5.00 MILS FHRX = E4.4 LB. RND
TASMAX = 1.28 0COuURS AT 0.53 CYCLE
S= 1.733 WS = 2.45
§S = 0.433 ES = 0.211

i LI DL L L

¥

L L L L]

FIG. 4.4 JOURNAL ORBIT OF A BALANCED HORIZONTAL ROTOR ON
RIGID SUPPORTS (N=6500, W=50, C=0.005, L/D=%)
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The bearing characteristics are calculated at a given equilibrium
eccentricity and the resulting characteristic polynomial which is eighth
order in A was examined by Choudhury using the Routh criterion (86).
Many stability maps were produced by the analysis and one series Is
given in Fig. 4.6-4.8, The series of curves is for a support to journal
mass ratio of 0.1 and stiffness ratio Ré of 0.0l, 0.1, and |.0. The
effect of support damping is shown by the family of curves for the

damping ratio C The length to diameter ratio, L/D, was chosen as 0.5

B.
for this series of plots. The rigid support stability boundary is shown
by the dash-dot curve and is as described earlier in this discussion.
The constant load Iines given by the dashed curves represents the

eccentricity that a ﬁarficular Journal would have as the journal speed

is varied.
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Examination of this series of plots reveals that there Is an opTimum
support stiffness and damping that will produce the greafesf stable
operating range. The lightest stiffness ratio (Rér= 0.0l) éppears to
produce a great increase of w, even if the support damping is very light.
Consider the effect of a support stiffness of KB = 1000.0 Ib/in, damping
C, = 20.0 lIb-sec/in., and weight of 5 ib. Considering these values for

B
the example of Fig. 4.4:

g = vYg/c = 278 rad/sec

my/my = 0.1
_ 1000

K o= 1000 _ 4

B 50/386 g

C
.= —20 . 0.55
B 30 (57g)
386

The stability boundary should occur at w, = 12 as indicated by the
stabil ity maps of Fig. 4.6 for Ré = 0.l. For the case of journal speed,
N = 10,500 RPM, WS = w, = 3.96 and should be stable for this support
system. Fig. 4.9(a)shows four cycles of the time transient of the
journal on the support system and it is apparent that the journal has
been stabilized. The support motion is given in Fig. 4.9(b)and has no
instability apparent in the motion. The high bearing force is completely
damped out by the support system. The force to the support is only 6.1 Ib.
over the static loading of the system.

For a rotor speed of 31,500 RPM the stability parameter w, = 11.86

and 1s at the threshold. The orbit shown in Fig. 4.10(a) indicates that
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the journal is indeed unstable and growing at a very slow rate. The
support motion is neglibible and is absorbing the large journal forces
very well but is no doubt increasing at the end of the fourth cycle.

For a journal speed of 45,000 RPM the system is well above the
threshold and as indicated in Fig. 4.1 (a) the rate of growth is greatly
 increased. The bearing force is 20 times the static. loading with the
~'support force at the fifth cycle given by 21.9 Ib. over the static
loading. The support motion given in Fig. 4.11(b)is, even in this case,
"sTiII negligible after five cycles of motion.

Stability analyses such as that conducted by Choudhury must treat
baianced rotor systems and do not give any indication of the behavior
~under external loading or the degree of stability. Some indication of
the rate of growth can be obtained if the roots of the characteristic
equaTion are solved for in addition to applying the RouTh criterion,

The time transient technique is capable of giving this ftype information
and is the reason this type solution is so important to practical design
theory. Unbalance or any other timewise describable force is easily
included in the solution. Considerable attention has been given to the
rigid mount short journal bearing tTime transient behavior (i8,41). The
following discussion will extend this rigid mount journal to include the
effect of support flexibility on the unbalance response.

Fig. 4.12 represents five cycles of motion of an unbalanced rotor
running at 6500 RPM. This is the same rotor that was examined earlier
in this section. The journal mass center is eccentric by 0.20 of the
clearance (ie. EMU = Eu = 0.20).. The orbit indicates that the motion is

a combination of synchronous and fractional frequency whirl. The Timing
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HORIZONTRL UNBRLANCED ROTOR

NO. 2178
N = 6500 RPM KT = 1.00
R 1,00 IN H e S0 L8.
L= 1.00 IN, MJsS = 1.000 REYNS
C = 5.00 MILS F¥RY = 135,28, AND
TRSHRX = 2.70 OCCURS RT  0.86 CYCLE
S= 1,733 WS = 2.45
SS = 0.433 ES = 0.211
EMU = 0.20 FU= 58.95 LB,
Su = 1.446 FURRTIO = 1.20
TROMRX = 2.26 ESuU = 0.24%
/ -0
0.8
0.8

T v 1 vV 1T 177

FIG. 4.12 JOURNAL ORBIT OF AN UNBALANCED ROTOR ON RIGID
SUPPORTS FOR FIVE CYCLES (N=6,500, w=50, C=0.005,
L/D=%, EMU=0.2)
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marks indicate that the average whirl is somewhat less than synchronous
and the Inner loops indicate the presence of a fractional whirl component.
As the rotor speed is Increased to 10,500 RPM Fig. 4.13 indicates that
the fractional whirl dominates the motion as the inner loops disappear
and the timing marks begin to fall two per whirl cycle. Consider the
following support system for this example.

Let

mass of bearing = 5.0 Ib.; my/my = 0.1

stiffness of support = 10,000 Ib/in; K, = 1.0

B
damping of support = 200 Ib-sec/in; C, = 5.56

B

From the stability map of Fig. 4.8 the system should be stable at
6500 RPM (ws = 2.45) and possibly close the threshold at 10,500 RPM.
Figure 4.14(a)shows the ellipfical’sfeady state orbit for the case of
6500 RPM. The next figure, 4.14(b) indicates the corresponding motion
of the support system (ie., bearing housing mass).

When orbits are calculated by any type integration scheme there is
always the possibility that the results are meaningless. To illustrate
this fact, the case just considered was run with a larger time step and
produced the orbit of Fig. 4.14(c). It Is quite obvious that the orbit
is not correct due to the oscillations starting near the end of the first
cycle of motion. The next figure, 4.14(d) is not nearly as obvious that
the Solufion is incorrect. The support motion i; very nearly the same
as the orbit of Fig. 4.14(b). Extreme caution must be exercised by the
researcher when producing the time-transient solution for just these

reasons.
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HORIZONTARL UNBRLANCED ROTOR

M, 23781
N = 10500 APM Wl = 1.00
A= 1.00 IN H= 50 L8,
La 1.00 IN. MieS = 1.000 REYNS
C = 5,00 MILS FMRX =  248.7 LB. RND
TRSMAX = Y4.97 OCCURS RT  8.95 CYCLE
S= 2.800 WS = 3.56
§S= 0.700 ES = 0.138
EMU = 0.20 Fu = 156,45 L8.
SU = Q.88 FUFRTIO = 3.13
TROMRX = 1.58 ESu = 0.342

D
2

FIG. 4.13 JOURNAL ORBIT OF AN UNBALANCED ROTOR ABOVE
THE STABILITY THRESEOLD FOR CYCLES 6-10(N=10,500)
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For the support system being considered and journal speed of 10,500
RPM, Fig. 4.15(a) indicates that the whirl is dominated by a fractional
whirl and is indeed beyond the threshold speed. The corresponding support
motion is shown in Fig. 4.15(b).

Figure 4.16 was an orbit run as a check case while the computer code
was being developed. The support system was frozen (KS = | mitlion,
CS = ]100) and the resulting orbit can be compared to fﬁe orbit of Fig.
4.12 which was presented in (18). |

A lighter support system has been indicated (19) to give better
steady-state response attenuation. Reducing the stiffness 1o Ks = 1000
Ib/in and damping to 20 lb-sec/in, the unbalance response is given by
Fig. 4.17 a for an unbalance eccentricity of Eu = 0.20. The improved
response attenuation is readily apparent and the forces transmitted are
moderate since the unbalance load is 156.6 Ib. for this example. The
support motion and forces are referenced from static conditions and
Fig. 4.17(b) indicates the bearing housing motion for this particular
case. The support experiences a maximum force of 33.5 |b. over the
static loading (55 Ib.). |

An increase of the unbalance eccentricity fto 0.80 produces an
unbalance load of 626.4 Ib. Fig. 4.18(a)glves the fransient and
resulting synchronous orbit and a maximum force to the bearing of only
474.7 Ib., less Tﬁan the unbalance load. The corresponding bea%ihg
motion is given in Fig. 4.18(b)and the maximum force transmitted is
only 136.7 Ib. above the static loading.

This type unbalance attenuation of both amplitude and transmitted

forces is very desirable when considering the extended |ife of a machine.
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HORIZONTAL UNBALANCED ROTCR

N= G500 RPHM. W18z
WJ= 50.0 LB. MUsS = 1.0000 REYNS
WB = 50.0 LB, L/D = 0.0
EMU = 0.20 CL = 5.00 MILS
FO = 0.00 LB. EN = 0.00
FHX = 0.00 LB. ENX = 0.00
FHY = 0.CO LB, ENY = D.00
KBXe-3 = 1000 LB/IN KBYe-3 = 1000 LB/IN
CBX = 100.0 LB-SEC/IN CBY = 100.0 LB-SEC/IN
g WA AR B A S A A A MR B A B A
3 ]
o
ai ]
S’ ]
§.l -
.57 B
T |
Ea: ]
¢ ]
g h
?-
- I
1,000 -D.667 -0, 333 =0.000 D.232 0.687 1,000
X‘Dlﬁ.

FIG, 4.16 JOURNAL TRANSIENT UNBALANCE RESPONSE FOR FROZEN
SUPPORT SYSTEM (N=6,500, EMU=0.2)
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In many cases the forces transmitted increase when the amplitudes are
reduced but this case demonstrates that damping can be designed into
nonl inear fluid film bearings to reduce the fransmissibility to the

bearing surface as well as to the support housing.

4.4 Vertical Bearing Whirl

The balanced vertical journal bearing is unstable at all speeds.
Yet there are machines running in the vertical mode that exhibit
reasonable response. It has been shown (18) that net external unidirec-
tional loading can improve the stability of rigidly mounted journal
bearings. The addition of a damped support system does not improve the
stability of the vertical balanced journal bearing. The system that
was stable in the horizontal mode is shown to be unstable in Fig. 4.20(a).

The journal was given initial conditions

X =Y=0.0
X=-Y=0.15
where
X =x/c, Y =y/c
X = x/(cw), Y = y/(cw)

The transient response indicates that these initial conditions
were compatible with the natural response. Although the system is
unstable the rate of growth is considerably less than that of the rigid
case, Fig. 4.19. Although the support does not stabilize the journal,
it does effect the degree of instability. The corresponding support
response is given in Fig. 4.20(b). It was shown in (18) that an unbalance

eccentricity greater than 0.16 was required fo cancel the nonsynchronous
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VERTICAL UNBRLANCED ROTOR

. 2%
M » 10500 APM Wl = 0.00
Re 1.00 IN W= SOLSB.
L= 1.00IN MUsS = 1,000 REYNS
C = S.00 MILS FMAX =  148.8 LB. AND
TRSHAX = 2.98 OCCURS AT 9.40 CYCLE
S= 2.800 WS = 3.9 -
$s= 0,700 ES = 0.139
EM) e 0.0t FUes  7.82LB.
SU= 17.897 FURRTIO = 0.16
TRODMAX =  18.02 ESU= 0.023

FIG. 4.19 JOURNAL ORBIT OF A SLIGHTLY UNBALANCED 'VERTICAL
' ROTOR FOR 10 CYCLES (N=10,500, EMU=0.01)
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instabil ity whirl and produce a synchronous |imit cycle. It was also
demonstrated that even the unbalance did not alter the fractional whirl
above the cérrespondlng horizontal stability threshold. Thejfof[owing
series of curves will have an unbalance eccentricity of O.Z;fﬁA support
stiffness of 10,000 Ib/in qnd damping of 20 lb-sec/tn;results'in the
Transienf orbit shown in Fig. 4.21(a)f6r}é speed of 6500 RéM.‘ The
supporf motion is double that of the joufnal relative motion as indicated
in Fig. 4.21(b). If the journal were on rigid éupporfs the mofion would
be stable synchronous as indicated in Fig. 4.22 with the maximum force
less than the unbalance load. This example illustrates that an improperly
designed damped support can glve undesirable response. If the damping is
increased to 200 Ib-sec/In the journal relative motion is shown in Fig.
4.23(a)and indicates that the amplitude has been reduced by the increased
support damping. The support motion is also suppressed as indicated in
Fig. 4.23(b).

The preceding analysis of horizontal journal bearings"indicafed
that a lighter support stiffness would give improved‘re§ponse. Figure
4.24(a)shows the transient of the improved support ssteﬁ operating at
10,500 RPM. This |ighter support stiffness of 1000 Ib/in gives a
highly attenuated relative journal response. The supporf system motion
given in Fig. 4.24(b) has an initial transient that is damping out to a
reasonably small whirl orbit. The forces to the support isinofed to be
about one=fifth of the unbalance Ioad. The bearing force is also less
than The unbalance loading. The rigld support journal is shown in Fig.
4.25 with a substantially larger response and also a larger maximum

force transmitted to the bearing support than that of Fig. 4.24(a).
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VERTICAL UNBALANCED ROTOR

. 0. Wuse3
N = 6500 APH KT = 0.00
B« 1.00 IN, Kae SO L8,
L= 1.00 N, MUed = §.000 BEYNS
C = 5.00 HILS FHAX = S4.6 LB, AnpD
TRSHMAX « 1.09 OCCURS BT 6,76 CYGLE
$= 1.733 HS = 2,45
SS= 0.433 ES = 0.21)
€U = 0.20 FU= 59,95 LB,
SU = 1.%46 FURRTIO = 1.2D
TROMAX = 0.31 EsU = 0.244

FIG. 4.22 JOURNAL ORBIT OF AN UNBALANCED VERTICAL ROTOR
FOR CYCLES 6-10 SHOWING MOTION APPROACHING
SYNCHRONOUS (N=6,500, EMU=0,2)
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VERTICRL UNBRLANCED ROTOR

., usss

N = 10500 RPY Wl = 0.00
A= 1.00 IN. W= SG LB.
L= 1.00 IN. MUeS = 1.000 REYNS
€= 5.00 KILS FMRX = 201.0L1B. AND
TRSMAX = 4.02 OCCURS AT 6.49 CYQLE
S= 2.800 WS = 3,96
SS= 0.700 €S = 0,139
B = 0.20 FU = 156.4S (8.
SU= {.895 FURATIO = 3.13
TROHAX = 1.28 Esy = 0,342

0.8

[ﬂ.‘

FIG. 4.25 JOURNAL ORBIT OF AN UNBALANCED VERTICAL ROTOR
FOR CYCLES 5-10 (N=10,500, EMU=0.2)
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An increase of unbalance eccentricity to 0.80 produces an unbalance
loading of 626 Ib. The resulting response Is given in Fig. 4.26(a)and
has a maximum force of 538 Ib., less than the unbalance loading.- The
support transient is shown in Fig. 4.26(b) where the maximum force to
the support housing is only 139 Ib.

The influence of unbalance on vertical bearings has recently been
found to be effective in producing stable operation of vertical water
pumps for use in nuclear power plants. This design procedure is just
the opposite of what is desirable for horizontal machines where unbalance
induces a synchronous whirling motion. This particular case of vertical
bearings is another example of the power of the time-transient solution

in real bearing design.
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CHAPTER V

MULT|-MASS FLEXIBLE ROTOR WITH LINEAR
SOFT MOUNTED BEARINGS

5.1 Description of the Rotor Model

A rotor shaft supported by two similarkbearings can be reduced to
the study of motion in a plane if the exclfaffon to Thé‘sysfem is
symmetrical about the rotor midsection. The'continuous rotor mass may
be lumped at the shaft center and journal locations aé illustrated in
Fig. 5.1. This model then allows the effects of cross coupling Q,
internal damping Ci’ unbalance, and bearing housing flexibility to be
studied from a relafivély simple mathematical model. The coordinates
used to study the response are given in Fig. 5.2. The bearing housing
motion is noted as (X3, Y1), the journal relative motion as (xj, yJ),
and the rotor absolute motion as (xj3, y3).

The influence of the support flexibility and damping with the
journal mass neglected was discussed in Section |.2 and gives a good

basis for understanding the results to be obtained from this analysis.

5.2 Equations of Motion

The system represented in Fig. 5.1 Is best described in terms of
the shaft stiffness and equivalent mass, ks and my respectively. If
each journal has an equivalent mass m‘j and each support has mass mj,
then the equations of motion are easily derived (59) and result In

the following equations:
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-2 =

FIG.

5.2

CROSS SECTION OF ROTOR MIDSPAN INDICATING
DEFLECTION NOMENCLATURE
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Rotor Equations:
bt . + o: - . - J . + - - .
maXp + € X3 c](>2 X1 xJ) ks(xZ X3 xJ)

2 cos(wt) [5.1]

i

+ Qyz2 + wCi(‘y’z -y1 = Y.) mzeuw

+

may2 + ¢ Y2 + ¢ (2 = V1 = Vi) + Kk lyz —y1 - yy)

1}

- Qxp - we (xp = X = xj) mzeuw2 sin(wh) [5.2]

Journal Equations:
ZmJ(xl + xj) + (ci + 2cxx)xJ - ci(xz - X1)
+ (2kxx+ ks)xj - ks(xz - x1) - ciw(yz -y - yj)

+ 2k y. +c V) =0 5.3
KeyYs * CxyY] [5.3]

2mj(y1 + yJ) + (ci + chy)yj - Ci(Yz - yj)
+ (2kyy + ks)yj - kS(Yz -y) + c]w(xz - % - xJ)

+ 2(kyxxj + nyxj) =0 [5.47]

Support Equations:
2m1;21 + 2mJ.(§1 + ;;J) + (2¢ci1x + Ci)).(l - Ci()'<2 - >'<J.)

+ (2Zkyx + kIxp - kg (x2 = xj) - cyulyz - y1 - yj) =0 [5.5]
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2my; + ZmJ(yl + YJ) + (2c;y + CI)YI = c'(yz - yj)

+ (2kyy + k)y1 - k (y2 = yj) + cpulxy - X1 = xj) =0 [5.6]

The support equations can be reduced to the following form by

using Egs. 5.4-5.5.

mxp ey +kixy = e K kX me Y - kv =0 [5.7]
myy +eay¥r * Kayvr - o ¥y - kv - e X - kxp =0 [5.8]

5.3 Steady State Solution
5.3.1 Amplitudes of Motion

" The equations of motion of the symmetric three-mass rotor may be
solved for the steady-state solution by standard procedures available

in the literature (87). |If solutions of the following form are assumed,

x2 = A cos(wt) + B sin(wt) [5.9]
y2 = C cos(wt) + D sin(wt) [5.10]
x; = E cos(wt) + F sin(wt) [5.11]
¥; = G cos(wt) + H sin(wt) [5.12]
x1 = K cos(wt) + L sin(wt) [5.13]
y1 = N cos(wt) + P sin(wt) [5.14]

the resulting equations will be a 12 x 12 system of equations which may
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be represented in mafrix notation as shown on the following page.

If the following variables are defined,

ZZ = maow

272 = myw?

Zl. = cs/ZZ, 2 = c‘/ZZ, 3 = ks/ZZZ, F4 = Q/7Z2

5 = mzlmj, 26 = (ci + ZCXX)/(Z x Z22), 722 = 72/2

Z7 = (2K, + ks)/(Z x 272), 2132 = 73/2

28 = (c; + 2cyy)/(2 x 72), 29 = (2kyy + ks)/(z x 272)
Z19 = kxy/ZZZ, 720 = cxy/ZZ, 22| = kYX/ZZZ, 223 = cyx/ZZ
ZI0 = mo/my, Zil = kyx/ZZ2, 212 = cy1x/ZZ, Z13 = kxx/ZZZ
Z14 = cxx/ZZ, ZI5 = k1y/ZZZ, 216 = cly/ZZ

Z17 =

k /772, 718 = ¢ /7Z
vy vy’

then the elements of the matrix may be obtained from the listing of the
computer program SSFROLS in Appendix E as the array ALI,J]. The maximum

amplitudes in the x and y coordinate directions are then given by

|xa| = Xp = /AZ + B? [5.15]
lyal = Yo = /£Z + D2 [5.16]

with similar equations for the journal and support equations.

5.3.2 Phase Angles for Elliptic Orbits

If a particular motion is described by the equations:

x = A cos(uwt) + B sin(ut) [5.17]

y = C cos(uwt) + D sin(wt) [5.18]
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then tThe resulting motion is given (87) by the major and minor ellipse

semi-axls, a and b, and angle of Inclination, e: as shown in Fig. 5.3,

where

as/tn+ ¥ AT-aE2 [5.19]

b i/]% n- % /mZ-agz [5.20]
with

n=A2+BZ+C2+D2

B=AD - BC
and

8 = % arctan (2&/y) [5.21]
where

y =A% +B2 - C2 - D2

g =AC + BD

These equations may be applied to the rotor, journal, and support
displacements to describe the motion. An alternate representation is

to write the x,y components of motion as

X
fl

X cos(ut - B,) [5.22]

~
[i}

Y sintut - ey') = Y cos(wt - By) [5.23]

These ampiitudes and phase angles can be obtained from experimental
results as indicated In Fig. 5.4 if the direction of whirl can be

determined. The phase angles are dependent on whether the whirl Is
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FIG., 5.3 ELLIPTIC ORBIT SHOWING ELLIPSE ANGLE ©, MAJOR
SEMI-AXIS a, AND MINOR SEMI-AXIS b
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FORWARD WHIRL
x= [Xlcos(wt-R,)
y= Wisin iR )= Vicoswt-8,)

BAC_%WARD_ WHIRL
x=X] coswtr ;)
Bula

yﬂ?hmmﬁfﬁg

7
. BY‘

BAGKWARD
@ WHIRL

TIMING MARK

FIG. 5.4 CONSTRUCTION FOR OBTAINING CIRCULAR PHASE
ANGLES FROM ELLIPTIC WHIRL ORBITS
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forward or backward. |If whirl direction Is known, then the amplitudes
and phase angles are easily measured with akcombaés;'sfréjéhf3§d99; ahd
protractor ‘as shown in Fig. 5.4. The Invehsekpfdblem'5f’+ryfﬁg'+o
determine the unbalance level usiﬂékan orbl¥ fracé beﬁ an oscilloscope
requires that these phase angles be determined for ah orbit that is
usually noncircular. Computer codes Have been developed (88) which will
calculate unbalance correction if given amplitudes and phase angles for

a coordinate direction in two planes.

5.3.3 Forces Transmitted
The forces to the bearings and support system can be found with ease
once the bearing and support amplitudes are computed. The force to the

bearing is expressed as:

e o A\ *
?éearing - (kxxxj ekt kxyyj * cxyy\j)l
- J +
+ (k .+ . Kk + X) 5.24
y’i T CyyYy T e T Gy [5.24]

~

If the following variables are defined (corresponding to computer code):

Z19 = kxy/(mzmz)
7220 = cxy/(mzw)
Z2| = kyx/(mzmz)
223 = cyx/(mzw)

then the dimensionless force expression is

> > \ +
4 - ; 2 - . i + y » PRy "
FB FBearing/mzm (ZI? xj + 714 Xj Z}9 yj + 720 yJ)i

+ (27 - gy £218 « g, P2zt ks xj)j [5.25]
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This can also be expressed by the component forces in terms of the

amplitudes of the formulation of page 147/

FBX = (ZI3 « E+ 714 « F+ZI19 « G + Z20 * H) cos(wt)
+ (ZI3 * F - 214 « E+ ZI9 « H =720 * G) sin(wt) [5.26]
FBY = (217 « G+ ZI8 « H+ Z21 « E + 723 * F) cos{wt)
+ (Z17 « H=-2718 * G +2Z21 * F - 723 + E) sin(wt) [5.27]
or
FBX = FBA cos(T) + FBB sin(T) [5.28]
FBY = FBC cos(T) + FBD sin(T) [5.29]
where
= 2 2 =
IFBXI /FBA * Fgg [5.30]
= 2 .
|FBY| /FBC "'+‘FBD2 [5.31]
Hence,

2 2 2 2 . = -
ng = Fga® * Fgg” * Fg” * Fp” 5 Bz = Fafp ~ Fgfec

FBC + FBBFBD

2
Faa + Fg

2 . 2y .
Y A B (FBC2+FBD )3

5 = Fma

and the major and minor semi-axis can be found by equations similar o
the equations for amplitudes of motion.

The support forces may be found by defining the following variables.
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1x 1
=Zil, —=1712, = Z|5, — =716

mow? mow mow? mpw
Fs = (ZIl « %y +2Z12 - >’<1,)T + (ZI5 * y; + 2i6 - ‘71)} ,[5.32],
Foy = (ZI1 = K+ 212 + L) coswt + (ZIl * L - ZI2 * K) sin(wt)

= Fo, cosut + Foo sinut [5.33]
Foy = (215 + N+ ZI6 + P) cosut + (ZI5 * P = ZI6 * N) sin(ut)

= Fo, coswt + Fgpy sinut [5.34]

Hence,

ng = Fga? + Fog? + Foo? + Fop®i Bg = FoaFp = Fogfse
Ys = Fop? + Fop? = (Foe? + Fop®)s &g = FopFop + Fogfop

and the solution may be obtained in terms of the elliptic characteristics
as before.

The previous equations for forces give expressions which have units
of length. A transmissibility may be defined as the force divided by

the unbalance loading for a rigid rotor. Then

TRB

x Z/Eu - maximum force to bearing [5.35]

B 4 unbalance foad

where

kg = major semi-axis for the force expression.
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Likewise

TRS = Apg X 2/Eu, [5.36]

For a linear system the dead weight component may be removed from
the solutions without effecting the resulting transmissibility solutions.
It must be remembered that the system weight must be added to the above

forces to give the true loading values.

5.4 Transient Analysis
5.4.1 Equations for Transient Solution

The equafidné of motion as presented in Section 5.3.1 are easily
solved in terms of acceleration. The linear equations may then be
solved for the time-transient solution by integration using any of
several standard procedures available for digital computer simulation.
The program SMFROLS developed for the transient solution is given in
Appendix E. Since the equations are linear the solution is obtained
very quickly as compared ‘o anvanaIYSis including nonlinear fluid=-film
bearings.

The solution mey be obtalned in terms of mils and dimensionless tTime

(wt) by the following transformation. LetT

d(1000x)

X = x x' 1000 ; X = x x 1000/w where X = T T = ot
v . * _ d2(1000x)
X = = X X X 1000 or X = T

with similar expressions for the y-coordinate variables. Then the

equations are:
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c gl
5%y =) (Rp = Xy - X

e - 3 i ‘
Xg = (eu x 10°) cos(T) (mzw T i

H

K c
: RO i Ay
o (W) (Xg = Xq = Xj) (W)\z (mzm)(YZ Y1 Yj) [5.37]

)

c c
> S * i ° - . »_ o
Yz = (e X 103) sin(T) - (E;BOYZ - (EEEQ(YZ Y1 Yj)

K Ci |
S e ’ - —— .
o (———Tmzw )(Yy = Y1 - Yj.) + (_Q—fmzw Y (Xo) + (mzw)(xz. xl Xj) [5.387]

- . my_ C, +2C, . c, . )
= =Xy = (=) {(——=2IX, = (e - X
Xj = =X (mj){( e X (o X2 1)
XMoo * T s M Y VRSV
+ (W)XJ . (W)(Xz - X1} - (Zmzm) 2 - Y j
Sy vyt [5.39]
+ ¥y .
+ LY+ GO
o o mz Ci + 2C - i . ‘.Y )
YJ = "Y]_ - (r—n}'){( 2IYI20.) )YJ - (W)(Yz = 1N
2y * 5 % ) b ol = Xg & X))
SER (- - + i - X.
t e T e (T2 = Y1) * (ggg? 2 = M 7
fﬁ_ E.Y.’;‘. % [5.40]
+ (msz)Xj + (mzm)xj} .
ae m2 le Clx » Kxx ! Cxx .
X1 =—(r—nT){(W)X1 + (-'h-;n-)xl - (W)Xj (-lfl—zTﬂ-)X.j
R IRYe U [5.41]
- (EZ£2°YJ - DY) .
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ma Ky C

Y1 =—o—-){(——-zovl + (--ovl - (-IXIVY o YY)

K
- X3 - _1_
‘mﬁmz9x Y5% }

mow

5.4.2 Time Transient Whirl Orbits

Consider the following example rotor system.

Example 5.1
Rotor Weight = W, = 675 ib.
Journal Weight = wj = 3|2 Ib.
Support Weight = Wy = 50 Ib.

Bearing Characteristics:

K. = 1,287,000 Ib/1n.
Kyy = 1,428,000 1b/in.
Coy = 1,200 Ib.-sec./in.
Cyy = 1,290 Ib.~sec./in.

Support Characteristics:

Kix = K1y = 130,000 [b./in.

150 Ib.-sec./In.

1

Cix = C1y

The shaft stiffness is 280,000 Ib./in. for this example.

J

[5.42]

The anti-~

symmetrical bearing characteristics given are typicai for a rotor of

this weight. The critical speeds for rigid support housings are 3630

RPM and 3647 RPM for the x and y coordinate directions respectively.

A series of orbits represenflng steady-state solutions were calculated

using the transient solution computer code and the steady-state
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starting conditions as calculated by the program SSFROLS. The mark on
the orbits represent a timing mark such as that produced by a keyphasor
probe detecting a -mark on The“rofor shaft. Examination of the three
orbits (ie., rotor, journal, and support motion) indicate phase angles
of approximately 30° at the speed of 1800 RPM (Fig. 5.5). The next
series of orbits at 3600 RPM indicate phase shifts of hearly 180° which
indicate that the rotor system including the support ha; passed through
its fiﬁsf critical speed (see Fig. 5.6(a),(b),(c)). The last series
of steady-state orbits (Fig. 5.7) at 18000 RPM indicate that the absolute
rotor motion phase remains at 180°. The journal relative motion phase
is approximately 280° while the absolute mofion:phase is close to 350°.
The support motion has a phase shift of 360° at %his speed of 18,000
RPM. 1T is noted that the rotor amplitude is approxima+e|y equal to
the unbalance eccentricity, EU = By = 5 mils. 2

The maximum force encountered during the corresponding cycles of
motion has been indicated on the previous series of figures. The
absolute rotor motion orbit has the unbalance fqrce, FU indicated. The
force Tfansmiffed to the bearing is indicated on the journal motion
orbits as TRDB. The time of the maximum force is ind}cafed in parentheses
following the value of TRDB. The maximum force transmitted to the
support is llkewise‘indlcafed oh The éupporf motion plots. For reference
the TRDB values for 1800, 3600, and 18,000 RPM are 2.88,;0.926, and
0.007 while the TRDS values are 2.984, |.043, and 0.005 respectively.

|f the support system is rigid then the rotor motion fof EU = 0.5
mils, CI = 20 lb-séc/!n, and N = {6000 RPM is shown in ng.‘5.8(a) for

ten cycles of motion and continued for cycles 10 = 20 in Fig. 5.8(b).
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The system is highly unstable under these conditions. The journal motion
given in Fig. 5.9(a) and 5.9(b) indicate the same instability. The
maximum force for the motion Is given as 0.33 of the unbalance loading

to the bearing.

If the rotor system in the previous rigid support orbits has a
damped flexible support of stiffness 130,000 Ib/in and damping of
300.0 ib-sec/in the results are shown in Fig. 5.10. The motion indicates
that the support has absorbed the instability and would feduce To
circular synchronous motion after the initial transients have decayed.

Fig. 5.1l represent the system motion for a reduced support damping
and increased internal damping CI = 132 Ib-sec/in. The unbalance level
was reduced and the motion was started from steady-state conditions by
an initial velocity perturbation on the rotor. The instability is
observed to begin in the support system and would eventually drive the
absolute rotor motion fo an unstable whirl orbit.

The computer code SMFROLS can be used as an additional check on
the program MODELJ developed in Chapter |l. The same rotor system as
Example 5.1 will be used to compare the results of the ftwo programs.

For a rotor speed of 10,000 RPM and an unbalance of 0.500 mils the
rotor absolute motion is shown in Fig. 5.12(a) for ten cycles of motion.
The unbalance load in 958.73 |b. as indicated on the figure heading.

The corresponding journal motlon is given in Fig. 5.12(b) where the maxi-
mum force transmitted to the bearing support is indicated to be 314 Ib.

This Is calculated from the dynamic transmissibility factor as follows:

Fmax = TRDB x FU/2 = 0.656 x 958.473/2.0 = 314 |b.
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The force occurs at 0.76 cycles of motion as indicated in parentheses
foilowing the TRDB factor.

The same rotor system was programmed for the multi-mass flexible
rotor program ahd the results of the calculated orbits are given in
Figs. 5.13(a) and 5.13(b). for five cycles of motion. The orbits are
similar to Figs. 5.12(a) and 5.12(b) for the first five cycles of motion.
The maximum force to the bearings)is predicted by MODELJ fo occur during
the first cycle of motion and is given as 290 ib. for'eacg bearing (see
Table 5.1). This represents an 8% derivation in the two program on the
maximum forces calculated. This is due to the fact that the 0.5 mil
eccentricity is equivalent to 5.4 oz~in unbalance. The orbits of
Figs. 5.13(a) and 5.13(b) were produced from an unbalance level of only
5 oz-in and explains the slight difference in the orbits and forces.

A similar comparison is now made for the flexible, damped support
system having support stiffness of 130,000 Ib/in and 300.0 Ib=-sec/in
damping. The absolute rotor, journal, and support mofion calculated
by SMFROLS are given in Figs. 5.14(a), (b), (c). The dashed lines in
Fig. 5.14(b) represents the journal absolute motion while the solid line

is the relative motion. The maximum bearing force to each bearing is

Fahax = TRDB x FU/2 = 958.473 x 0.402/2 = 193 Ib.
The support force Is
Fe = TRDS x FU/2 = 958.473 x 0.429/2 = 206 Ib.
max ’

The orbits produced by the program MODELJ with unbalance level of 5.4

oz-in. are given in Fig. 5.15 and are in good agreement with the orbits
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FLEEINLE POIN? Wads MOGTON TRANSIENY NESPONME estt? by CANLUR KIKK=e
LUNTTS ARE 1MoL hevnt Ty VALESS UTALWRYSE SPECIFIEVY
€A hukatR & (32811

ML SHATY SNPECYEICATIUNG

HUTUR ALCEL & U0 WPHISEC
SECTI0A  LFNGTr LIAuFYER  YRUNGS wuDULUS  PhulCY UF $e3  Iak)UF DIAWFIER
ssesens erbees sescness aue
1 100 4.00 0008 07 3,270¢ a8 0,00
2 19,00 2,00 S.000t 0 37708 0N A0
3 19,% 4,00 3,000, A7 3,719, M 0,50
_ '] 300 4,00 S,000¢ OF 3.770¢ na 0400

BEARING wU. 3 IS 000 1MCHES FRNM THE LEFT LDy STATION a0, §
PEARLING NUs 2 I8 80,00 INCAHLS fl’\ﬂu ¥HE JEFY gND: SIATION Wi, §
BEARING SPAN 15 40,00 INCHES

APPRENIMATLD WL TOA SPECIFILATIUNG

= RTATION AYNGTH FRGW FAD  WETeHT uASS  STIFFNESS DawPinG  INYVo DAuP STIFFw0 £V, W1 EWY ~ PWD T
Spas - L2 *nan®
L ) 21,00 815,018 1.Ta07 0.0 0,000 #0.n00 8,0 73,00 5,80 ..

_»u.nu GIVEN T LZ=IN UNTIB)
CALL UTLER STATINAS EXCEFY THE AFARINGS MAYE £LERD WasS)y
YOTAL LENRTH W RUTDY = 40,000 lu.

ACTUBL L IGHT LF AiTiH & $alv,2%1 LAS, -
TOIAL wt]AFT 1 AREKUKIMATE WUIUR = 12074018 LES,

SEARING MTATIUR SPLCIFICATIUNS

. L1 STATION LENLYH FRUM END  SELGHT  NASS  LXTIEANAL aT1GNY §YiFax §TiFey DANPeY DAuF‘"
cue - wores eospavessrvosws
R 4 0,00 112,778 0,.010) 311,000 $.20870¢ 06 $.6260t 04 1,7000€ O3 . 1.2%00L 03
2 s ‘0_.50 2,778 ©.610) 311,000 1.POT0E OF 1,4200L 04 3.2000F 03 18,2900t O3
BEARIMG PETESTAL SFLCIFICATIUNS
NDo STVATION LFnGTH SHiM END  HEIGHY RALS SVifex Stifey bAnpPey DenfPey
.o - cons
N | 1 ’ 0400 R0G.000 G, 1295 $43000¢ 0% 1430000 A% 2,00008 82 D U000 02
2 H 20,00 50000 U,129% 1+2008E 73 3,3000F 0% 3,00ubL 0% 2,U0001 02

CRSE NO.  677.11

SEGMENT | N-INIT, JRCCEL. JN-FINAL IT-FINAL | FHAXB~1 |FMAXB-2
(RPMY _ERPM/SECS| ¢RPM) | ¢RADY !iBw30-3 liBm10~3

10000.0 __0.0110000.0 6.3 0,19 0,18

2 160C0.0 0.0 1000:0.0 12.6 0.18 0. 19

3 110000.0 0.0, 10000.0 |__18.8 0.07 0.07

4 110000.0 0.0 10000,0 | 25,1 0.05 0.0

5 10000 0.0] 100000 | 314 0.05 0.05

TABLE 5.2 ROTOR SPECIFICATIONS FOR UNBALANCE RESPONSE ON
FLEXIBLE, DAMPED SUPPORTS INDICATING MAXIMUM FORCE
TO BEARING AND SUPPORT HOUSINGS
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of SMFROLS. Table 5.2 indicates very good agreement with the maximum
forces calculated and indicates the maximum force to each bearing to be
190 Ib. and the maximum force to the supports is indicated to be 210 Ib.
This excel lent agreement of the two programs indicates that the theory
of Chapter || produces results which are accurate and acceptable for

study of ccmplex rotor support sysTemé.

5.5 Stabillity Analysis of the Three Mass Rotor With Aerodynamic
Cross Coupling and Internal Friction

If ¥t ) rotor analyst is primarily concerned with the design of
flexible support systems to promote stability and for the attenuation
of the rotor amplitude and forces transmitted due to unbalance, it would
be difficult to utilize the transient orbit program for the solution of
the optimum support parameters.” For example, in the case of the rotor
in Example 5.1 with internal friction it would be desirable to know the
range of the permissible values of the support system stiffness and
damping that may be incorporated for optimum performance. It is difficult
to determine from the observation of the orbits of Figs. 5.10(a) and
5.11(a) for support damping values of 300 and 150 Ib.~-sec./in. respectively
whether the optimum damping is higher or lower or whether the support
stiffness should be reduced or increased. [t would be exiremely expensive
and time consuming to develope the necessary series of rotor orbits for
all the ranges of variables required for the desired results.

For this reason it is therefor desirable to first develop stability
maps showing the relationship of the various variables on rotor stabllity.
Variables of interest would consist of support housing damping and

flexibility, bearing characteristics, rotor shaft flexibility, internal
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damping, and aerodynamic effects. The stability analysis for the |inear
system is identical to the analysis that will be presented in Chapter Vi
for the stability study of the nonlinear squeeze damper. The computer
code SDSTB of Appendix F may be programmed for given bearing and support
characteristics and hence may‘be used o develope stability charts for
The given rotor bearing system.

For example consider the effect of the damped support on the
suppression of aerodypamic instability as shown in Fig. 5.16 which has
the value of the real part of the major root plotted versﬁs the support
damping for various vailues of support stiffness. The support mass for
this example is noted to be |5 Ib. with the other variables remaining
the same as given for Example 5.1. This plot is for a rotor speed of
10,000 RPM and an aerodynamic cross-coupling of 20,000 Ib./in. The
figure indicates that there is a definite value of support damping that
will promote stability for a given support stiffness. For example
a damping of 500 Ib-sec/in. would be optimum for the support stiffness
of 50,000 Ib/in. As the support stiffness increases the required optimum
damping also increases and the system becomes less stable for the
increased support stiffness. |If the support system loses +the damping
then the rotor system is easily driven unstable as indicated on the
left-most portion of the stability map.

The importance of the tuned support damping is even more evident
for the increased level of cross-coupling glven In Fig. 5.17. It Is
noted that the range of damping that will promote stability has been
reduced considerably from a range of 100 to 10,000 for the lesser

cross=coupl ing value to only a range of 370 to 1600 for the higher
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level of aerodynamic excitation. The stiffer support systems are
indicated to be unstable regardliess of the damping chosen for the
support system for the case of the higher aerodynamic cross-coupling.

At this point in the analysis the transient program could be used
to establish the effect of unbalance and external shock loads to the
support system. The transient analysis becomes of even greater Importance
when nonlinear system are being analyzed for stability by |inear
approximations. These nonlinear systems may exhibit stability for small
pertubations but may also give large sustained whirl orbits for suddenly
applied unbalance and impact loads. The nonlinear damper will be

discussed in greater detail in the following Chapter.
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CHAPTER V1
MULTI-MASS FLEXIBLE ROTOR WITH NONLINEAR

SQUEEZE DAMPER SUPPORTS

This chapter will introduce the nonlinear squeeze damper support
system into the model analyzed in Chapter |V with the added feature of
allowing for rotor shaft flexibility. Thus the model of this chapter
will be closer 1o real |ife machine performance than the |inear model
of the previous chapter. The inclusion of nonlinear elements in the
transient analysis can be very time consuming unless approximate
stabil ity boundaries are known. A computfer code to determine the
stability of the rotor model described in Section 6.1 was developed

and will be discussed In connection with a tTime transient program for

the same model.

6.1 Explanation of the Rotor Bearing Model

The rotor-bearing system shown in Fig. 6.l represents a three
mass symmetric flexible rotor supported by journal bearings suspended
in squeeze damper housings. The analysis will not consider the
gyroscopic action of the rotor disk and hence the problem may be
reduced to the study of motion in a plane. The characteristics of the
fluid=film bearing have been discussed in Chapter IV and will be
used to model the bearings itn the present analysis. The squeeze
damper supports will be derived from the same analysis. Fig. 6.2

indicates the cavitated bearing model and the fluid film damper recess.
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The bearing ring has an anti-rotation pin and is suspended by‘éésumed
| inear retainer springs which may have unequal stiffness characteristics

for the two coordinate directions.

6.2 Equations of Motion
The equations of motion of a symmetric two bearing rotor may be

written in terms of the following coordinates.

X2,¥Y2 = absolute displacement of rotor mass, myp -
XYy - absolute journal displacement
XpoYp T~ bearing bush motion

The equations are easily derived considering |inearized stiffness and
damping terms to mode! the hydrodynamic bearings and squeeze bush. A
simple force balance and inclusion of the internal friction components
and cross coupling expressions at the rotor station produces the
following equations.

Rotor Mass:

maXp + k (xp = x|) + IC(xg = X)) + wIClys - y))

+c Xy + Q2 = mzeuwzcos(wf + $) (6.1)

mays + k (y2 = y;) + IC(2 = ¥,) = wlClxy = x)

+ c592 - Qxp = mzeuwzsln(wf + ¢9) (6.2)
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Journal Bearings:

2my X, - ks(xz - %) - IC(xy - x
+ 2kxx(xJ - xb) + 2kx

+ 2¢
X

2m) y; = klyz = y) = IClys = ¥
+ 2kyy(yJ - yb) + 2kyx(xJ
+ ZCYX(QJ ~‘9b) =0

Bush Damper

2m X, + 2Ky X+ 2k, Xy + 2K
- kax(xJ - xb) - 2kxy
- 2cxy<9J -yl =0

2mb§/'b 2k Y F 2Ky 20,
- 2kyy(yJ Yp) - ZKYX(XJ -
- 2cyx(>'<J ~ %) =0

J

Y

y(yJ - yb) =0

(yJ -

- u)IC(\/z - \/\'l)

yb) + ZCxx(x - %)

+ wIC(xy - x )

J
XE? + 2cyy(yJ - yb)
* 2Clxxxb * 2Clxyyb

[6.3]

[6.4]

[6.5]

[6.6]

These equations are basically the same as those presented in the

previous chapter.

The difference is due to the absolute coordinate

chosen to describe the journal motlon.
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bearing ¢haracteristics have been discussed in Chapter !V and the

squeeze damper characteristics will be presented in the following section.

6.3 Sfabjlify Analysls
Manufacfurers are presently installing floating squeeze damper
supports into thelr high speed machines. Tanaka and Hori (89) have
recently reported on the stabillity of the spinning floating buéh
damper. They included rotor shaft flexibility but excluded the journal
mass from the analysis. Several curves were presented showing that regions
of instability could be passed through as rotor speed increased.
Experimental results were presented and the agreement with the analytical
results was satisfactory. |
The major conclusions of Tanaka-Hori may be summarized as follows:
(1) Floating bush damper bearings are superior o cyllndflcal
bearings due to the damping effect in the bush.
(2) Stability is generally improved when
a) the shaft Is stiffer
b) large floating bush radius
c)\large bush clearance
d) small L/D ratios
e) small oll supply pressure fo allow cavitation
(3) The stability criterion is complicated and a particular
case must be checked to assure best design.
As early as 1958 Hill (90) reported on the improved performance
of small gas turbines running at 36,000 RPM by using slipper bearings

which actually introduced a damped support system into the bearing
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configuration. Dworskie (91) later reported successful use of floating
sleave bearings in a 44,000 RPM gas generator.

In 1968 Orcutt and Ng (92) presented steady-state and dynamic
properties of plain cylindrical floating ring bearings but the
equations were reduced by the assumption of synchronous motion which
limits the validity of these results since fractional frequencvahirl
is to be expected in the fluid-film bearings. Experimental tests
indicated several different types of instabilities were possible. The
Journal was usually the source of instability but at times the outer
film was unstable while the inner flIm was stable. One conclusion
reached was that the amplitude of the instability was more impoffanf
than a calculated stability threshold speed since low-level whirling
could be tolerated in any given application.

The present analysis will consider the damper bearing as a non-
spinning journal deriving damping only from the fluld film squeeze
action. Considering a pure squeeze action for a velocity in the +y
direction the positive film extent is from 0 to m as shown in Fig. 6.3(a).
For a positive x veloclty the positive film extends from-n/2 to /2 as
indicated In Fig. 6.3(k). The expression for the force is obtained

from Eq. 4.1 for the case of mj = 0.0.

32‘"’_- ¢ e
F(s) =“u§} f 2(xcos8 + ysin@) ; {COSY} 4o [6.7]

X:Y 0 (c - xcos6 - ysing) sin8

Differentation of this equation produces the damping coefficients

as follows:
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0) JRL3 n/2 2cos26

an(i,Q
Clxx X 2

7 d6  [6.8]
-n/2 (c -~ xcos8® - ysin®) -

3F (x,y = 0) 3 w/2 2cos® sing
SR Al =¥ do  [6.9]
4 ‘ ~n/2 (c = xcos® - ysing)3
_ R X =0y s T 2005 sine
Clxy = " 5 = / de  [6.10]
o (c - xcos® - ysing)3
»« _ aFy(X = 0,y) _ I.IRLS }T Zsinzede ™
“lyy T 7 3y S 2 Lo.

0 (c - xcos® - ysing)3

IT is of inferest to note that McGrew (93) has derived a damping
expression for circular synchronousiprecession (short bearing solution

using rotating coordinates) which is expressed as

_ uRL3 T

C = -] [6.12]

Also by assuming &€ = ew cos(wt) a pseudo stiffness term may be derived

and is given by

K = 2uwl3R o

= 3 ”

° ¢ (- €2)
o

[6.13]

The results of the computer calculated damping coefficients are
presented in Fig. 6.4(a) along with points calculated from the expression

derived from McGrew's analysis. The circular synchronous damping values
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are observed to equate to ¢ while the stiffness term is actually a

IXxX
cross coupled damping force as it must be since the damper can in no
Instance develop a stiffness in the absolute sense.

Figures 6.4(b) and 6.4(c) indicate that preloading the damper
produces damping expresslons that are converging to equivalent values
for the two coordinate directions. This characteristic may be very
desirable when trying to design a tuned support system for optimum
performance. |

Figure 6.5 illustrates the effect of the additional pseudo stiff-
ness term on the rigid rotor supported by a damper bearing with re-
tainer spring rates of 5772 Ib/in. The initial condition was given for
the zero speed sag of the retainers. At the running speed of 9500 RPM
the journal |ifts up from the steady-state balanced equilibrium
position and has a stable whirl orbit due to the unbalance level of
0.08 of the clearance. This |1ft of the nonlinear fiuid damper must
be considered when designing real machines which do have unbalance,
The additional psudo stiffness (damping) contribution could shift the
operating conditions with unbalance into a region where aerodynamic
excitation could drive the system and produce large unstable whirl
orbits. ’

Once the damping expressions for the floating bush and journal
characteristics are known the stability analysis is easily programmed

on a digital computer.

Assuming solutions of the form

X, = Aie ; 1 =1,6 [6.14]
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SQUEEZE FILM BERRING

HORIZONTAL UNBRLANCED ROTOR ¥0.11971)
N = 8500 RPHM KT = 1.00
R="1.20 IN. W= 28 LB.
L= 1.00 IN MUaS = 1.000 REYNS
C= 9.00 MILS FMAX = 31.4 LB. RAND
TRSMAX = 1.1% OCCURS AT  1.89 CYCLE
KAX = 5772 LB/IN KAY = 5772 LB/IN
EMU = 0.08 FU = $50.71 LB.

= 1.332 FURRTIO = - 1.84

TRDMAX =  '0.862 &S = 0.200

FIG. 6.5 SQUEEZE DAMPER UNBALANCE RESPONSE FOR RIGID ROTOR
AND RIGID BEARINGS (N=9,500RPM, W=28LB, C=9MILS, EMU=0.08)
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where

i = 5

i = 6

corresponds to
corresponds to
corresponds to
corresponds to
corresponds to

corresponds to

The homogeneous equations of motion may be examined for stability by

determining the solutions of the characteristic equation and examining

the real part for a positive value.

The characteristic equation can be

obtained by expanding the determinant given on the following page.

A computer code SDSTB has been developed to carry out the

necessary operations to determine the stability of a given rotor-bearing

syste

Appen

examp

Examp

m. A listing and explanation of the required input is given in

dix F.

To demonstrate the

le case study.
le 6.1
Rotor weight

Journal weight

Bush weight

Journal clearance

Journal radius
Journal length
Viscosity

Radius of bush

capability of the program consider the following

40 1Ib.

5 |b.(each)

2.5 Ib.(each)
= 5 nmils

in.

| in.

1 x 10~5 reyns

- 1.2 in.
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klx = kly = retainer stiffness = 5772 Ib/in.

The bush clearance was varied from 5 to 30 mils for each of two
shaft stiffness values of 5,000 and 500,000 Ib/in. These produce &/c
values of 1.6 and 0.016 respectively. The result from Ruhl's analysis
(40) of the flexible rotor on short journal bearings is shown in Fig.
6.6 for reference. Comparing the above values of §/c to the flexible
rotor stability chart of Ruhl the stability of the flexible rotor (&/c =
1.6) should be lowered considerably from that of a rigid rotor.

The results of the analysis Is given in Fig. 6.7 where the stability
boundaries for both shaft stiffness values are plotted. For a bush
clearance of 5 mils the stability of the flexible shaft is indeed.
considerably reduced from the rigid rotor values. This is as predicted
by Ruhi. As the bush clearance is opened up the stability boundary
increases first for the flexible shaft and then for the rigid shaft.
For a clearance of 12 mils the stability boundary has increased from
/37?:?= (1.0, 2.54) to (8.0, 13.0) respectively for &/c = (1.6, 0.016).
As the clearance increases their is a lower region of instability which
can be passed through fo a region of stable operation. As the rotor
speed increases the whirl reduces from 0.50 to 0.25 at |7 mils and
encounters another instability of whirl frequency of approximately 0.50
as predicted by the stability program. As the clearance is opened
further the lower instability region increases in width and finally
converges with the upper instability boundary at higher bush clearance
values (T 28 mils for 8/c = 1:6). This plot was developed by keeping

the retainer spring rate fixed and increasing the bush clearance. This
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of course produces results which vary from an analysis that has fheh
bearing always centered in the bush clearance.

This phenomenon of passing through regions of instability with the
damped supports has been reported in the |iterature for experimental
results (54,74) and increases the significance of this analytical simula-
tion results. The results of a time transient computer code to verify
certain boundaries shown in Fig. 6.7 will be presented and discussed in

the following section.

6.4 Transient Behavior of a Rotor Supported in a Floating Bush Damper

The equations of motion including the nonlinear journal bearings
and squeeze bush damper force evaluations have been programmed for
verification of the stability program SDSTB. This computer code, TMASSNL,
which calculates and plots the transient solution is given in Appendix G.
The equations programmed were written in terms of journal relative motion
for the transient solution and are identical fo Egs. 5.37-5.42. The
program has an option fo use either a 41]-h order Runge-Kutta or an Euler
integration technique. The type integration chosen determines the step
slze necessary for a realistic whirl orbit. The step size required
depends on the loading, rotor size (weight) and stiffness, and the type
support chosen for the simulation. As the number of degrees of freedom
increases the step size generally must be decreased to insure a valid
salution.

Several cases have been computed that were chosen to verify the
stability map of Fig. 6.7. Consider first the rigid rotor (§/c = 0.016)

with a bush clearance of 17.5 mils. From Fig. 6.7 the system upper
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stabitity bound is at wg = 12.3 or 32,000 RPM for our system. Fig.
6.8(a), (b}, (c) indicates two cycles of motion at 29,000 RPM of the
absolute rotor, journal relative, and support motion respectively. The
system was started near the steady-state equilibrium position and the
Journal relative motion is approximately a half-frequency whirl and the
damper Is moving in a non-circular path as indicated In Fig. 6.8(c). The
next series of figures continue the motion for cycles 2-5 and indicates
that the rotor motion 1Is negligible (Fig. 6.8(d)) while the journal
relative motion is still whirling but decreasing as indicated by the orbit
of Fig. 6.8(e). The damper motion (Fig. 6.8(d))also indicates the motion
is tending toward a stable mode of response.

For a rotor speed of 37,000 RPM the response for five cycles is
given by Fig. 6.9(a) -(f). The rotor still shows a very small amplifude
in comparison to the jéurnal relative motion which is indeed unstable
and spirals out in cycles two through five at an average whirl of 0.50.
The damper motion is also observed to whirl at large amplitudes as comparcd
to the motion at 29,000 RPM.

[f the bush clearance is reduced to |10 mils the stability map indlicates
the system should be unstable. Figs. 6.10(a) - (f) give eight cycles of
motion and indicate that the journal relative motion has a sustained
circular whirl of 0.50 while the rotor motion is very small and the
damper motion has non-circular motion but similar to the stable case of
Fig. 6.8. It must be remembered that the stabillity chart Indicates the
stability at "a point". As soon as the bush motion begins the equilibrium
position changes and so does Tﬁe stabllity of the system for cases near

the threshold speed. However the journal relative motion in Fig. 6.10(e)
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does have a sustained whirl even though the limit cycle is very small,
and verifies the predicted instability.

When the bush clearance is reduced to 5 mils the same type limit
cycle motion fbr the journal is indicated in Fig. 6.11(b) and the bush
motion of 6.11(c) indicates less stability than for;fhe 10 mil damper.

To demonstrate how the damper has improved fhe:roforfmofion a rigid
support case for five cycles of motlon was computed (see Fig. 6.12).

The rotor and journal spiral outward In a very unstable whirl orbit after
the initial drop of the rotor and lift of the journai to achieve the
proper rotor-journal force balance.

The flexible rotor (8/c = |.6) has the same upper threshold as the
rigid rotor for the larger clearance values. The same speeds of 29,000
andi37,000 RPM were run for four cycles beginning from the end conditions
of +he rigid rotor case (plus a static bow for the flexible shaft).

These orbits appear in Fig. 6.13(d) - (f) wheré the journal relative
motion is observed to go into the half—frequéhcy whirl above the predicted
Threshold speed. The bush motion is considerably larger than in the rigid
rotor case but the rotor is noted to be seeking another position than the
one given as a starting condition. Fig. 6.14(a) and 6.14(b) indicate the
unstable journal motion for rigid supports and The fact that the rotor
motion has not gone unstable during these five cycles of motion. The
damper support has improved The response a great deal as‘compared to the
whirl orbit obtained on the rigid supports.

In order that the lower region of instability could be verifled
the 17.5 mil bush damper was fegfed. The system specifications appear

in Table 6.1 and the information in Table 6.2 indicates an unstable whirl
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STABILITY ANALYSIS OF THE FLOATING BUSH DAMPER

ROTOR SPECIFICATIONS

w000 LB CS

<
A

0.00 LB-SEC/IN Q =

8.0 LB/IN

BG00.0 LB/il. 1C 0.00 LE-SEG/IN

JOURNAL BEARING SPECIFICATIONS

1.0 IN.

F
WJ = T5,00 L. RJI =
= 1.0 IN.

_CJ = .0u56 INe LJ

MUJ = 1.008E~-05 EEYNS

FUOATING GUSH SPECIFICATIONS
WB = 2,50 LB, R3 = 1.22 IN,

MUB = 1.000E-05 REYNS

€8 = 3175 IN. L8 = 1. 09 IN.
PRELOAD=X = 0.00

TRRELOADSY = .00

K1XX = 5772.9 LB/IN
KiYyYy = Sr72.0 LB/IN

STEADY=-STATL POSITION

ROTOR :
X28 JT438 MILS

Y25 = ~12.9096 MILS
__ DLTA = 1.6000

JOURNAL ,
«TW38 MILS

= 1452 WILS
BUSH

UL 000U FITS

Xed> =
= =4.7644 MILS

YB8S

€0 " CD/CJ  TAR.SPEED=W W/SURT(G/CJT ECTEN.=
. L0173 3.500 4iThe 7 1.80 .152

TKONTBI™ KOUNT
0 2

TABLE 6.1
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of 0.35 when the running speed is 4775 RPM. This information was obtained
from the stability program SDSTB. The transient program response plots
are presented in Fig. 6.15(a) - (i) where cycles 0-2 were started from
approximate steady-state conditions and show no large transients. Figs.
6.15(d), (e), (f) for cycles 2-6 indicate a large whirl developing at
the rotor and support with the journal loosing some of its load capacity
(Fig. 6.15(e)) due to the whirl of the bush as indicated In Fig. 6.15(f).
Cycles 6 through 10 indicate a sustained whirl of the rotor and bush at
slightly over one-third as shown by the fiming marks (this was as pre-
dicted by SDSTB - Table 6.2). Note that the journal relative motion is
actually very "stable" in this mode of operation (Fig. 6.15(h) and is
thus tracking out the same motion as the bush damper ie., = /3 whirl
rate).

For a speed ratio of 4.52 (12,000 RPM) the system is stable as
indicated by Fig. 6.7. The transient response for both a large initial
displacement of the journal and a very small pertubation were calculated
and are given in Figs. 6.16 and 6.17. For a large pertubation the damper
response is not readily reducing. The journal decreases initially
(Fig. 6.16(b))but has a sustained limit cycle due to the bush fransient
motion. Fig. 6.16(k) Indlcates that after 16 cycles the journal relative
motion Is very slowly reducing in amplitude whereas the rotor and bush
(support) motlion has a relatively large motion. However these are not
in phase as they were for the case of 4775 RPM (unstable condition).
Figs. 6.17(a) .~ (f) indicate eight cycles of motion at 12,000 RPM for

a very small pertubation. The motion is considerably more stable than
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for the large pertubation but the bush damper and rotor are giving some
initial motion. The motion would eventually reduce to the steady-state
equilibrium position as predicted by the stability analysis.

The sustained transient due to the large perfubafioﬁ in what should
be a stable system is the greatest drawback fo.squeeze damper design.

This type of performance could be catastrophic in an actual rotor system.
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CHAPTER V|1

CONCLUSIONS

7.1 The Importance of Analytic Simulation

Due to the ease of manufacture and installation of plain journal
bearings in pumps, transmissions, and small motors, there is need for
the dispersion of information on the stability characteristics and
unbalance response of plain journal bearings. Plain journal bearings
operating under reduced-load conditions can exhibit large whirling and
eventual failure of the bearing surface caused by the cyclic loading
from the whirling journal. Isolated journal bearing performance studies
can produce this much needed stability data and unbalance response in-
formation.

Manufacturers of turbine and compressors conduct test runs on actual
equipment to verify the design and performance of their products. Each
test unit may represent from $200,000 to in excess of a half-million
dollars in hardware and instrumentation. A single bearing failure or
rotor-shaft instability could destroy the entire test facility in a matter
of seconds if the unit malfunction were not detected or the worst case
would be if the test group could not recognize the presence of the in-
stability and its eventual growth leading fo a system failure.

The instrumentation necessary to observe the rotor shaft and housing
motion is readily available and easily installed in existing test rigs.
The complete shaft orbit should be observed to prevent the possibility
of choosing the incorrect plane t6 observe the greatest motion. Systems

having asymmetric bearing characteristics may exhibit instability in one
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plane and stability in a plane at right angles to first. The incorporation
of timing marks on the rotor orbits by the use of 5 referencé mark on the
shaft and a keyphasor probe is also of importance in the determination of
the rate of whirl. Subharmonic and superharmonic whirl is easily dis-
tinguished if Tfming marks are placed on the whirl orbfT Trace.

| The analytic simulation is important due to the facf that controlied
excitation can be introduced in the model and the reaction observed from
that isolated excitation. Combinations of external forces, unbalance, and
internal damping can also be studied under controlled conditions and
their response characteristics observed. In an actual system the exact
form of excitation might be very hard fo determine and the only informa-
tion available is the response of the unit. The machine analyst must be
aﬁle to infer from the performance of the machine the likely forms of ex-
citation and the approximate magnitude. The easiest way to obtain this
recognition ability is by the study of the controlled digital simulation

of accurately simplified rotor-bearing models.

7.2 Summary of Major Results and Conclusions

This analysis has developed and presented results of steady-state
response, transient simulation, and stability of rigid and flexible rotor
models. The transient models developed included both linear and nonlinear
bearing and support characteristics. ' The results and conclusions may
be summarized as follows:

(1) Nonlinear transient analysis of complex rotor-bearing systems

can be readily produced by digital computation by the approach

presented in Chapter I1.
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(2)

(3)

(4)

(5)

(6)

7

(8)

Simplified steady-state models of rotor systems have been
presented and may be used in the design and analysis of rotating
equipment in addition to providing initial conditions for the
transient computer codes.

Simplified rotor model transient computer codes have been de-
veloped to check the major transient program of this analysis
(MODELJ) and are themselves a valuable ftool to the machine
analyst due to the simplicity of the input specifications.
Transient simulation is necessary to verify the rate of growth
of instabilities in nonlinear systems as predicted by |inearized
stability studies.

The stability boundaries as given by Choudhury and Gunter (69)
for the elastic mounted plain journal bearing have been verified
by transient simulation.

Unbalance was shown to be advantageous in vertical plain journal
bearings having elastic support structures. This was previously
reported for the rigid support vertical journal bearing.

Phase angle measurements may be used in addition to amplitude
response to analyze machine performance. The timing mark on
elliptical orbits can be related to circular synchronous motion
by graphical construction.

1T has been demonstrated that it is feasible fto use the direct
expansion approach on a 6 x 6 quadratic determinant to deter-
mine the stability of several important rotor models which had

not been reported in the literature by this approach to date.
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(9)

(10)

an

(12)

(13)

(14)

(15)

The key to time saving in the expansion is a zero check to
avoid many needless operations.

The phenomenon of passing through regions of instability has
been demonstrated by the stability analysis of damper bearings
and vérified by transient simulation.

It was shown that floating bush dampers indicated as stable in
linearized stability criterions can have 1agge sustained motion
when large perturbations are imposed on the system.

Numerous example rotors have been investigated and illustrate
the versatility of the simulation approach to design and
diagnosis of machine failures.

Damped flexible supports can be used to increase the stable
operating speed range of high-speed rotors. A properly de-
signed support reduces the system transmissibility and maintains
low level response for unbalance excitation in the stable
operating speed range.

Suppression of complex aefodynamic excitation can be studied
for elastic mounted rotor-bearing systems by the stability
program developed for the floating bush damper bearing.

Timing marks on simulation orbits correspond to keyphasor
timing marks placed on actual machines and are excellent

means of helping to interpret the resulting orbits.

The more complex transient programs are more useful for
analysis of exisfing;machine designs and evaluation of proposed
system modifications than for producing extensive general

design criteria.
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(16) Steady-state response information will be essential for large

complex rotor simulations to avoid costly undesired transient
behavior. Zero initial conditions may be acceptable for impact
unbalance studies but instabilities due to aerodynamic excita-
tion, internal damping, and fiuid-film bearings are best studied

from steady-state initial conditions with small pertubations.

7.3 Suggestions for Future Research

This aralysis has developed several computer codes for the simulation

of rotor-bearing systems. Additional design criterion can be produced

from the rotor modeis presented and will be of extreme interest to turbine

and compressor manufacturers. Some of the areas that need extension are

as follows:

()

(2)

(3)

(4)

(5)

6)

Extensive studies of rotor acceleration rates on forces trans-
mitted and transient response.

Inclusion of skewed disk excitation on the flexible rotor
simulation for studies of transient behavior.

Analysis of coupled lateral-torsional modes of vibration for
the flexible rotor.

Extensive stability maps produced showing the effect of damper
supports on aerodynamic and internal friction instability.
Stability and transient response of the flexible rotor-bearing
system on closed-end pressurized damper supports.

Verification of the response characteristics of the damped
support by controlled experimental models of flexible rotor-

bearing systems.
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(7) Verification of the reduction of the transmissibility factors
by experimental techniques.
(8) Extensive transient orbit studies of the response of the non-

linear fluid-film dampers to large perturbations.
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