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ABSTRACT

The time synchronization problem in an optical communication system

is approached as a problem of estimating the arrival time (delay variable)

of a known transmitted field. Maximum aposteriori (MAP) estimation

procedures are used to generate optimal estimators, with emphasis

placed on their interpretation as a practical system device. Estimation

variances are used to aid in the design of the transmitter signals for best

synchronization. Extension is made to systems that perform separate

acquisition and tracking operations during synchronization. The closely

allied problem of maintaining timing during pulse position modulation is

also considered. The results of this report have obvious application to

optical radar and ranging systems, as well as the time synchronization

problem.



Introduction

An important requirement in a successful communication system is to

maintain accurate timing between transmitter and receiver. This timing

is generally achieved by having the transmitter continually send a known

clock signal to which the receiver can synchronize. For the system to be

time locked, the receiver synchronization subsystem must determine the

exact time at which the clock signal arrives. This measurement of clock

arrival time can be considered a measurement of transmission delay time,

which can be used to continually adjust the receiver clock relative to that

of the transmitter. An analytical approach to the design of synchronization

subsystems is to consider this arrival (delay) time measurement as an

estimation problem. In this context, optimal estimators for measuring

delay can then be implemented as practical devices for achieving

synchronization.

In an optical communication system the arrival time measurement is

hindered by both the quantum effects of the photodetection operation and by

the reception of background noise radiation in the optical antenna. In this

report the design of synchronizing subsystems in optical receivers is examined

from an estimation point of view. Maximum aposteriori (MAP) estimators

of delay are derived for both quantum limited and background additive oper-

ation, and their interpretation as practical subsystems are explored.

Problem Formulation

Let the timing information be sent from transmitter to receiver in the

form of a known optical field f ( t , r ) where t, r_ are the temporal and spatial
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variables. The transmitted field is detected by the receiving system shown

in Figure 1. A photodetector, having spatial area <3 normal to the beam

propagation, intercepts the optical field producing the detector output signal

i |2
x(t). The detected field has the intensity | f ( t -T , rJ | where T is the time

delay during transmission. If we assume the field was transmitted at

t = 0, then T is alternatively the time of arrival of the field at the receiver.

The detector output x(t) is given mathematically by the shot noise process

M0,t)
x(t) = c V^ h(t-t ) (1)

m=0

where h(t) is the detector response function, c is a proportionality constant

related to electron change and detector impedance, {t } are the random
m

location terms of the emitted photo electrons, and k(t , t ) is the random
J. LJ

number emitted during (t ,t ). The latter is called the detected count
J. £*

process and in the absence of background field noise, is known to have a

Poisson count probability with intensity parameter

.t,
2

t
m(t rt2) = J n(t-T)dt (2)

'1

where

n(t-T) = J |f(t-T,£)|2d£ (3)

a = photodetection parameter

The function n(t) is the spatially integrated field intensity and is called

the count intensity function. When bandlimited Gaussian white background
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noise is present, the count over (t , t ) is known to have a Laguerre count
1 Lt

probability:

k

where Q is the number of time-space modes observed over (t , t ) and Gt , .
1 L*

and N is the average noise count per mode.

The detector time process x(t) in (1) is then processed in the sync

subsystem, herein considered a device that produces an estimate of the

arrival time T. This estimate can then be used to clock all subsequent

receiver operations requiring transmitter synchronization (e. g. bit timing,

ranging, etc). In typical system operation, this timing must be continually

updated and the estimation of T must be repeated by continually retransmitting

the optical field. For this reason the optical field, and therefore the intensity

n(t) in (3). is considered a periodic wavefrom in t with repetition period T.

A receiver observation of T sec therefore corresponds to one period of the

intensity waveform. The estimation problem is therefore one of observing

over (0 ,T) the photo detected output due to repeated optical field producing

the count intensity n(t-r), and estimating the variable T. Although we shall

concentrate on the estimation problem over a single inverval, the resulting

processing may then be repeated over subsequent intervals, making use of

earlier estimates. Only maximum aposteriori (MAP) estimates are

considered. The procedures of MAP estimation are discussed in References

[l-3] , and the specific application to optical systems is reviewed in [4].

The pertinent equations necessary for this report are summarized in the

Appendix.
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MAP Estimation of Delay

The MAP estimate of T under Poisson counting follows directly from

the Appendix, with T replacing 9. Since n(t) is periodic with period T, it

can be expanded into a Fourier series at harmonics of frequency 1/T,

each of which integrates to zero in the third term of (A- 5 ). Furthermore,

dn(t-T) _ dn(t)
dr dt (5)

t-n-T

The MAP estimate T is then that T for which

[ T
f.

max] I x(t)log[n(t-T)]dt + log p(r)
T

(6)

or that satisfying

'

when the intensities are differentiable. The optimal estimator in (6)

corresponds to determining the maximum of a bank of crosscorrelations

of the detector output with all possible delay shifts of In n(t), as shown in

Figure 2a. Alternatively, the integral can be interpreted as the output at

time T of a passive filter whose input is x(t) and whose impulse response

is In n(-t), as shown in Figure 2b. The filter output at every t is then

weighted by log p(t), and the value of t producing the maximum is the MAP

estimate of T.

2
When p(T) is Gaussian •with mean m and variance o then (7) is

convenient to use, and takes the form
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2 i* c
T = a x(t) —7~& "'"' \ dt +—~ (8)

T , I dt «. 2
'0 L Jt-T a

T

The MAP estimate T appears on both sides and an explicit solution is not

immediately available. However, we can interpret the integral as a

correlation of the detector output with a delayed version of the bracketed

expression. Hence, the MAP estimate is the value of T which forces this

right hand side to equal T. This suggests an estimator similar to that

shown in Figure 2c, employing a feedback loop to generate the proper T

to force the loop to lock in (when T is correct the output of the correlator

is that necessary to maintain the loop). Note the loop involves crosscorrelations

with the time derivative of log n(t) and the specific form of the loop signal

generator depends upon the transmitted intensity. If n(t) is a pure sinusoidal

intensity the feedback loop specializes to the tan-lock loop [4] . If n(t) is

periodic, but non-sinusoidal, the form of the MAP estimator loop changes.

For example, let

<* -(t2/2D2)n(t) = TS5F; e . - T / 2 * t * T / 2 (9)

representing a Gaussian shaped intensity pulse of width D and energy S,

extended periodically in time, as in Figure 3a. We assume T is many

times larger than D so that the pulse occupies a relatively small portion

of the observation interval and end effects can be neglected. For this case,

d In n(t) _ _d_

•
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and (8) becomes

T - m , T
1 = — J x(t)(t-T)dt (11)

a2 D- "0
T

Hence,

(12)

The integral in the denominator is the observed total number of counts

k(0,T). The numerator integral is the "mean", or "center of gravity",

of the observed detector process x(t). The MAP estimator therefore

computes the "mean" or "center of gravity" of the shot noise locations in

time and uses it in (12). In the typical situation the initial delay uncertainty

2 2
is many times the pulse width so that a ^ D , and the MAP estimate is

precisely this mean location time.

It is interesting to see how the estimator changes form as the optical

pulse becomes sharper in form. Consider the pulse in Figure 3b, with its

log derivative shown in Figure 3c. Equation (11) becomes instead

T - m - r+e T+D+2e
5—- = | x(t)dt - I x(t)dt (13)
£ J/V J A _

CT T T+D+C
T

The feedback estimator now corresponds to the short term integration over

the front and back end of the expected optical pulse, as the pulse is swept

through the observation interval. In essence, the estimate is that value of
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T that "locks up" equal e sec integrations separated by D sec, as shown in

Figure 4. Effectively the detector output is being "gated", and the tracking

loop that implements (13) is often called an early-late gate loop. Note that

as e -» 0 in Figure 3b the pulse rise and fall time decreases, and the

estimator integrates over a smaller portion of the observed output. Hence,

as the optical pulse used for delay estimation is changed from a smooth

Gaussian pulse to a sharper pulse waveform, the optimal estimator form

changes from a center-of-gravity estimator to the early-late gate loop.

The dependence on intensity waveform can be further pursued by

investigating the Carmer-Rao bound for delay estimation given in the Appendix.

For a given density p(i"), the CRB decreases as the time integral in (A-7 )

increases. Using (5) this integral can be rewritten as

""" ^ * . « » * . ^ / J « . / A \ \ / J l __ _•. /A. \ \

(14)

where the integral is over all t in (0, T) for which n(t) ̂  0. By applying the

Schwartz inequality to the right integral, we note that (14) is maximized if

dn(t) _ d log n(t)
dt ~ dt

in which case it becomes

rT [dn(t)/dt] = rT /MtA /dj^njtAd t
J n(t) J \dt / \ dt /

- g p - J g . J ^ l «

Thus, the integral in (14) is bounded by the energy of the time derivative of

the transmitted intensity. By applying Parcival's Theorem, we can further

write
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T / \r /f ini^j i

where F (U)) is the Fourier transform of n(t) over one period. The integral

on the right can be interpreted as the mean squared frequency of the bandwidth

of the intensity. Thus, the CRB for delay estimation is minimized if a

transmitter intensity n(t) is used that satisfies (15) and has the largest mean

square bandwidth in (17). The equality in (16) occurs only if n(t) = log n(t) +

(constant) •when n(t) £ 0. This can be satisfied only if n(t) is constant whenever

it is non-zero. Thus, (15) and (17) together suggest that best estimation

(minimal CRB) corresponds to flat intensities, •with as wide a frequency

bandwidth as possible. The limit of such waveforms would be an ideal,

rectangular, narrow pulse in time, although theoretically (16) is not valid

for such intensities (the derivative of a pulse is not squared integrable).

This pulsed intensity corresponds to transmission of a narrow burst of light

and, in spite of the analytical difficulties, we intuitively expect such optical

fields to indeed yield best delay estimation. (We may also note that the CRB

for the intensity pulse in Figure 3b is approximately e/ZS log(d>/AD), which

decreases directly with e and D, forcing the intensity to approach the ideal

rectangular pulse. ) Even though the rectangular intensity is not differentiable,

the correlator-integrator in (6) retains its meaning as a short term integration

over the pulse width, starting at each value of T. This is often called a

"sliding window" integrator, and the delay point where the window maximizes

(6) is the MAP estimate. Unfortunately, this theoretically requires a search

over all values of T in (0,T), although this search time can often be reduced
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by carrying out separate acquisition and tracking operations as discussed iri

the next section.

When background noise is present, the counts are governed by the

Laguerre probabilities in (4). The estimation equations (6) and (7) for

Poisson counting must then be replaced by the discrete operations:

R (18)
T L i *i

and

M \ ^~^ [ d l o g m . ( T ) ~ |
(19)

max / , (log Lk ) + log p(-r)
T L i i

where k. = k(t .+At,t .) , m.(T) = m(t +At, t.), At is the counting interval
1 1 1 1 ^ i

(reciprocal of the detector bandwidth), and

C(k . ,T) = 1 -

with the Laguerre functions having argument m.(T) /N- (1+N ). The summations

represent modified forms of the correlation operations, and involve the

count sequence over At sec intervals at the photodetector output.

Acquisition and Tracking in Pulse Delay Estimation

Let us consider the delay estimation problem using ideal rectangular

pulses of width D, and let us write the delay T in the form

T = jD + T , k = integer; 0 ^ T £ D (20)
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We are here dividing the delay into an integer multiple of pulse widths plus

an additive excess portion T . We can now show that the MAP estimate of

T can be obtained as T = jD + T . That is, by simultaneously determining

MAP estimates of j and T and substituting into (20). This follows since

the joint MAP estimate of j and T must satisfy the simultaneous equations:

= 0

(21)
9p(j ,T0 /x( t))

A A
where p(j, T /x(t)) = p(T/x(t)) with T = jD + T . On the other hand, the MAP

estimate of T = jD + T satisfies d (p (T /k ) /9T = 0. However,

» A — "N " 1 ' ^ -I

OT O 1 dT OT dT
0

dp(jb+T /k) dp(jD+T /k)
= r*-3 H + ^—- = 0 (22)

oi D OTJ 0

If j and T simultaneously satisfy (21), then (22) is also satisfied with

T= jD + T_. Thus, delay estimates lean be obtained by estimating individually

the number of pulse shifts j and the amount of excess, T . The estimation of j

can be considered an acquisition problem (acquiring which interval the pulse

is in), while estimation of T can be considered a tracking problem (tracking

the excess shifts within a pulse interval). In synchronization, the time

delay T generally does not vary more than a pulse width from one observation

interval to the next. This suggests an alternative, suboptimal procedure in

which we obtain first a pure MAP estimate of j alone in one interval, then

using j to estimate TQ in the subsequent interval. The system achieves initial
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acquisition first, then carries out tracking over later observation intervals.

The system is easier to implement and reduces search time, but we

emphasize that it generally does not yield the joint MAP estimates required

in (21).

To formulate the initial acquisition problem we model the observable as a

vector sequence k of counts k. over disjoint pulse widths D in (0, T). [This

is equivalent to considering the h(t) functions in (1) as rectangular of width

D and sampling the shot noise x(t) every D sec. ] If we assume an initial

apriori joint density p(j, T ), then we can determine the MAP estimate of j

alone from

(23)maxp(k,j) = max J p(k/j, TQ)p(j, T JdTQ

j J 0

For quantum limited operation we see that when conditioned on a particular

j and T , the received rectangular pulse will influence only the j and j+1

interval counts, all others producing zero counts. Thus,

k.!
J

o . -(<ST0 /D)

-<$
k.!k.

J

(24)

where <$ is the received pulse energy. The MAP estimate of j is that value

at which a maximum occurs in (23). Clearly, if we observe a count sequence

of which two are non-zero, (24) is maximum for the non-zero k. for any T
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(i. e. , j is the index of the first non-zero k.). If only one count is non-zero

it can be labelled either by k? or k* , and the MAP estimate is that producing

the maximum. Thus, if the q count is non-zero, we must compare:

A P i 0 1 q
p(k;j=q) = J II - — 1 H p(j=q)p(T0 /q)dTQ

,D kqq /k \/ T \i

sCq)H-°
l\\ /ziV m,,,
\ i / \ D / '

(25)

to

.k

fG?)P(k, j + l=q) = p( j=q-l) J 1~J p(T 0 /q- l )dT

\k

where m. (q) is the i moment of the conditional density p(T /j=q). Thus,

if only one count is non-zero the above moment sequences of the apriori

density p(T /j) must be computed to determine initial MAP acquisition. If

we assume the most practical case where p(j) is uniform over the integers,

and p(r /j) is uniform over (0, D) [initial delay is uniformly distributed over

0, Tlthen m.(q) = D1 /i+1 for all q, and both (25) and (26) have the value

A

D/k+1. Thus, in the uniform case, we can equally likely select q as j or

A

j+ 1. If no counts are non-zero we can only estimate j from its apriori density.

A

Once j has been determined (initial acquisition achieved) in a particular

observation interval, it can be used as the true j in subsequent observation

A

intervals in which tracking (estimating T ) is accomplished. With j given,
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A . . _ A

the estimate T is that value for which d In p(k/j, Tn)/dT = 0, or that

satisfying

-k- / i \

-^+ V fe- • «

The solution is then

„ = D < 2 8>
Thus, estimation of delay with rectangular pulses in quantum limited

A

detection can therefore operate by first acquiring j during one observation

period, then computing (28) in the next. The latter uses the bbserved count

ratio as the fraction of the pulse width for the excess shift. As observations

are made over subsequent intervals, (28) can be continually recomputed to

keep track of changes in T . We emphasize that we have assumed that j

does not change throughout all intervals. If for some reason the delay
A

jumps by several pulse positions, j must be re-estimated and the delay

reacquired.

The variance of the above estimator is difficult to determine explicitly

since T. involves a ratio of random counts. In addtion, the CRB is

hampered by the non-differentiability of the pulsed intensities. However,

a variance upper bound on T can be determined by noting that Var T SD .

Furthermore, if all counts are zero the variance is at most that of the

2
apriori density on T, a , if we use the mean as the delay estimate. Thus,



-14-

Variance T = a [Prob k = 0] + (Var T )[Probk = 0]
0 T — 0 —

^ a2e~S + D2(l-e" ) (29)

This shows the estimator variance is reduced to no more than the square

of the pulse width D as pulse energy d?-»0.

When background noise is present, initial acquisition is more complicated

since the non- signal intervals produce noise counts also. In this case (24)

is replaced by

\
p(-/j'V = —FTN— \ I+N / "k v"'~kU + WQ V+JNg/ kj k. + 1 (3Q)

where k =k , A = £(1-T /D)/N (1+N ) and B = £T /DN (1+N ). For a

given count sequence k over a particular interval, we must determine

j maximizing (23), which is equivalent to determining

D
maxp(j) f L (A)L (B)p(T / j)dr (31)

«J_ K.. K. , i <J U
J 0 j j+1

Unfortunately, this maximization must be found after integration over T .

However, we note that in comparing two different pair of indices, say

( J i » J o ) anc* ( J v J A ) > maximization of (30) is equivalent to comparing
L Li .3 rr

D

P^j j )

D
(32)

when each j is equally likely. We now see that for any T density, if
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j > j and ]_*> J4» then (32) exceeds one, due to the positiveness and

monotonicity of Laguerre functions with their indicies. Thus, if any pair

of successive counts are each greater than the corresponding members of

A

any other pair of counts, the optimal estimate of j is always the index of

the first of the larger. If no one pair dominates any other pair in this way,

then one must resort to integrating first in (31). When T does not depend on j,

and is uniformly distributed over D, the integration in (31) can be performed,

using the identity:

f LQ(y-x)L (x)dx = LQ~ l (y) (33)
•L m n m+n+1

After substituting, and using again the monotonicity of the Laguerre functions,

(31) becomes

max<r;k+k ' > = max U.+k. J (34)
j ( j j+1 L 0 0 J) j J J+

Thus, j is the index of the pair of consecutive counts having the largest sum,

and initial acquisition is achieved by determining the maximal consecutive

count pair.

Lastly, we point out that the well accepted procedure of basing initial

A

acquisition on the largest of the counts (selecting j as that j for which k. is

maximum) is equivalent to an assumption that T = 0. For then B = 0 and

A does not depend on T in (31), and maximization over j is equivalent to

maximization over k..
J

Delay Tracking in PPM Digital Systems

A problem closely related to pulse delay estimation in synchronization

occurs when considering the tracking of pulse shifts in an optical PPM system.
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In this operation an optical pulse D sec wide is sent in one of M possible

D sec time intervals, and a random time-shift T is added during trans-

mission, independent of which pulse position is used. This added shift will

cause PPM detection errors if not compensated, £5j. A sync subsystem

of the receiver attempts to measure the added shift during each word

interval for proper receiver compensation. This measurement must be

made, however, without regard to the pulse position modulation. Thus

during each word interval the transmitted pulse arrives with a total delay

T = jD + T as before, where j is the integer position due to the modulation

and T is the added excess delay during transmission. The tracking problem

can be formulated as one of estimating T in the presence of the parameter j.

Because of the position modulation, j must be considered independent from

one observation interval to the next, and estimates of j in one interval cannot

be used in subsequent intervals. Thus, during each observation of k_, T must

be re-estimated in the presence of j. The resulting MAP tracking system for

estimating T depends upon the manner in which the index j is modeled. If

j is considered an unknown parameter (no apriori density specified), then

the maximization over T must take into account all the possible values that

j can take on. Thus, T is the value for which

max p(T./k) = max
T0

ax max p(TQ/k, j)
J L Tn J

= max [p(T /k , j ) ] (35)
j 'T0
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This is equivalent to determining simultaneous maximizing values of T

and j, and therefore correspond to simultaneous estimates of these parameters.

In other words, the MAP trackers must estimate both parameters each though

only the estimate of T is of interest. Furthermore, both estimates must be

obtained during each observation, and cannot be subdivided into acquisition

and tracking, if real time solutions are desired.

If a delay of one word interval is acceptable, a suboptimal tracking

procedure would be one that first estimates j during the original observation;

s-tores the observation (detector output) for one word length, then reuses the

stored observables, along with the estimate j, to determine T , as shown

in Figure 5. The estimate of j can be made using the techniques similar to

initial acquisition in synchronization. The tracking system is therefore

attempting to first detect which interval contains the pulse (i. e. , decode the

PPM •word) then uses the decoded word to estimate T . In the literature,

this is referred to as decision-directed estimation [2] and the resulting

sync systems are called data-aided trackers 16, ?].

If the word delay in data-aided systems in prohibited an alternative scheme

A

is that shown in Figure 6. Here estimates of T are made consecutively

with each successive pair of observed counts, and stored until the end of

the observation interval. The estimate of j is then used to select the

T corresponding to the most likely T . This operation avoids the word

interval delay, but requires a bank of estimators. Both these systems are

of course suboptimal since they do not necessarily produce the simultaneous

maximization required in (35).
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A

If, instead of treating j as a unknown parameter, we model it as a random

variable taking on the values 1, 2, 3, . . . , M with equal probability, the MAP

estimate of T can be obtained by averaging over these j values. Hence we

write

max
To

= max

T0

M
(36)

Since each term p(T /k, j) is the conditional density of T when the pulse is

transmitted in the j position, only the k. and k. counts are necessary to
J J

estimate T . (All other counts are either zero in the quantum limited case,

or contain only noise counts, when background is present.) Hence, p(T /lc, j)

can theoretically be computed immediately after k. and k. are observed.
J J

The summation in (36) is therefore a superposition of all such aposteriori

densities, each delayed until the end of the observation interval. The

estimate T is then made from this superposition. The system is shown

in Figure 7. Note that the delaying of the aposteriori densities can be

considered as modulation removal-eliminating the position shift due to PMM-

and shifting the excess delay T to the end of the interval, where the estimate

is made. Note that this latter estimate is not simply the average of the

individual MAP estimates at each value of j. If it is known that T is confined

to a narrow region about each pulse position, then (36) is approximately

max [p(T /k)} « max {p(T /k, j )}
(j (J XTlcLX

T To o
(37)
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where j is the j maximizing p(T . / j ,k ) over all T . The last term is
u u

identical to the simultaneous estimate of j and T , and therefore corresponds

to the optimal MAP tracker defined in (35).
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APPENDIX

Let k be an observable vector containing a real random parameter 9,

and let p(6) be an apriori probability density on 9. The MAP estimate of 9,

A

given an observable k, is that 9 maximizing

l ogp(9 ,k ) = logp(k/6) + logp(9) (A- l )

where p(k/8 ) is the conditional density of k given the parameter 9. In

optical systems, k represents the sequence of observed photoelectron

/•w
counts (k , k , . . . ), each observed over a At sec counting interval. (At =

•L £

1 /detector bandwidth). Under quantum limited operation, the conditional

density is

p(k/9) = C 3 ( @ ) ] e X p [ " S ( 9 ) ] / k ! (A"2)

where 5.(9) is the count parameter over interval (t., t.+At):

t.+At
5. (9) = f1 n(t,8)dt (A-3)

1 t.
i

and n(t, 8) is the count intensity. The MAP estimate of 8 in (A- l ) is that

achieving

maX)Z^ Lki log 5i( } + V )J + log P(9)f (A-4a)
9 \

A

The solution 9 must also satisfy the extremal condition:

P' (B)
P(8)

= 0 (A-4b)
A '

8=8



where the primes denote derivatives with respect to 6. As At -+ 0, the

continuous versions of these equations can be obtained, since S-(9) ~*

n(t, 9)dt and k. -*x(t), the detector shot noise process. Hence (A-4) becomes

[ T T
f x(t) log n(t,8)dt + log p(6) - f n(t, 9)dt (A-5a)
Jo Jo

max
9

and

The Cramer-Rao Bound lower bounds the MAP estimate, and is given by

CRB = <-E,
* 2o log[p(k/9)P(9)]

(A-6)

where E is the expectation operator of k and 9. Using (A-2) in (A-6) and

averaging, yields

2 1 ~*

nM/"1 H (A-?)CRB = log p(9)
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