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ABSTRACT

NASA has funded two separate contracts to apply pulsed laser holo-

graphic interferometry to the detection of shock patterns in the outer

span regions of high tip speed transonic rotors. The first holographic

approach used ruby laser l i g h t reflected from a portion of the centerbody

just ahead of the rotor. These holograms showed the bow wave patterns

upstream of the rotor and the shock patterns just inside the blade row

near the tip. Much of the region of interest was in the shadow of the

blade leading edge and could not be visualized. The second holographic

approach, on a different rotor, used l i g h t transmitted diagonally across

the inlet annulus past the centerbody. This approach gave a more exten-

sive view of the region bounded by the blade leading and t r a i l i n g edges,

by the part span shroud and by the blade tip. These holograms showed

the passage shock emanating from the blade leading edge and a moderately

strong conical shock originating at the intersection of the part span

shroud leading edge and the blade suction surface. Due to a l i m i t e d

viewing angle, the bow waves upstream of the rotor could not be observed,

and only limited details of the t r a i l i n g edge shocks were obtained. The

results of these studies were extremely promising. Reasonable details

of the shock patterns were obtained from holograms which were made without

extensive rig modifications. These studies indicated several advancements



that would give even better results. Larger viewing windows, and holo-

graphic plates would permit a wider viewing angle and give much more

coverage of the regions of interest. Shorter time delay for double-pulsed

holograms is also desirable. This would minimize blade movement and give

clearer holograms. With these improvements of technique effective

visualization of shock configurations at least outboard of part span

shrouds should be possible. Accurate definition of shock configurations

w i l l aid in attainment of improved transonic fan and compressor rotors.

INTRODUCTION

Present day transonic fan and compressor rotor blade rows operate

with supersonic velocities relative to the blades over a large part of

the blade span. Blade blockage and velocity diffusion combined with

supersonic inlet relative velocities lead to strong Shockwave systems

in the blade tip regions. To minimize shock losses, it is desirable to

maintain a system of weak oblique shocks or compression fans as opposed

to strong normal shocks. Achievement of low loss shock systems requires

an effective three-dimensional design system which accounts for e q u i l i b r i u m

of flow throughout the fan or compressor. Some progress has been made

towards development of fully three-dimensional design procedures, but the

most common design systems currently in use consist of iterative calcula-

tions in separate planes. First, an axisymmetric calculation is made

to determine the stream surface locations in the meridional plane. Then

the flow patterns in the blade-to-blade plane are defined for a number

of the streamlines determined in the axisymmetric plane. For each blade-

to-blade plane-an assumption is made with regard to the shock pattern



for that section, and the blade shape is selected to provide that shock

pattern. Solutions between the meridional and blade-to-blade planes are

iterated u n t i l consistency of axial distribution of work input is achieved.

Success of this quasi three-dimensional design system is dependent

on achieving the shock configurations assumed in the design of each

blade section. This system, however, has a severe shortcoming in that

the shock for each spanwise section is considered separately, whereas in

operation the shocks from one section to another must form continuous

surfaces. Furthermore, e q u i l i b r i u m of pressure must be maintained through-

out the flow. The e q u i l i b r i u m of pressure considered in the meridional

plane solution is based on axisymmetric flow and does not account for

discontinuities of pressure across Shockwaves. If the assumed shock

configurations are not consistent with e q u i l i b r i u m requirements, the

desired flow and, therefore, performance w i l l not be obtained.

To aid ip the development of high performance designs, it is desirable

to know the actual shock patterns and flow conditions wi t h i n the rotor

blade rows. Because of the high centrifugal force fields that exist in

high speed fan and compressor rotors, only l i m i t e d success has been

achieved with actual flow measurements. In recent years, high response

pressure transducers mounted over the rotor blade tips have been used to

obtain pressure contours for the blade tip section. Interpretation of

these contours has been complicated by the wall boundary layers, tip

leakage vortices, and by the blade-to-blade and revolution-to-revolution

variations of flow. Correlation between static pressure rises, inlet

Mach numbers, and shock angles have been very poor. Therefore, at best,

Numbers in brackets designate references at the end of paper.



this approach gives qualitative data with regard to shock patterns at

the very tip of the rotor blades.

Many techniques have been considered in a search for better methods

of determining the three-dimensional flow patterns in high speed rotating

blade rows. These include laser-doppler velocimeters, hot-wire anemometry,

several reflected l i g h t schemes, and holography. NASA chose holography

as a promising approach that could be applied without excessive develop-

ment. Two contracts were awarded to apply holography to two separate

existing high speed transonic fan rotors. The first approach used diffuse

laser li g h t reflected from a portion of the centerbody just ahead of the

[21
rotor inlet. It was applied to a 5̂ 8.6 meters per second (1800 ft/sec)

tip speed transonic fan rotor which was designed to use precompression
[3 41

to reduce losses in the rotor blade tip region. ' The second approach

used light transmitted diagonally across the inlet annulus past the

centerbody. The fan rotor for these tests was a low loading, k88.6

meters per second (1600 ft/sec) tip speed stage designed with two weak

oblique shocks in the tip region. ' In the reflected light program,

only short double-pulsed holograms were made. In the transmitted li g h t

program, both short and long double-pulse holograms and scattered l i g h t

holograms were made. For short double-pulsed holograms, the laser is

fired twice with a very short time interval between pulses. For long

double-pulsed holograms, the first pulse is made at a low rotor speed to

obtain a reference field and the second pulse is made at a higher rotor

speed. For the scattered l i g h t holograms, the flow was seeded with small

particles. The laser was fired twice within a short time interval, and

local velocities were measured by observing in the hologram reconstruction



the displacement of i n d i v i d u a l particles. In both investigations high

response pressure transducers were installed over the rotor blade tip

to obtain pressure contour data for comparison with holographic data.

Neither stage had inlet vanes.

This paper w i l l discuss briefly the results of the holographic data

obtained, and the significance of this approach as a tool to improve

design of high speed transonic fan and compressor rotors. Comparisons of

tip shock patterns indicated from pressure transducer data and from holo-

grams w i l l be made, and suggestions for obtainment of more complete data

from the holographic approach w i l l be discussed. Details of the holo-

cameras used are given in references 2 and 5,and general details of holo-

graphy are given in references 8, 9> and 10. This paper w i l l concentrate

on results obtained rather than on the principles of holography.

TRANSONIC RESEARCH ROTORS

The reflected light holographic program was conducted by Pratt and

Whitney Aircraft, and used a highly loaded, high tip speed research rotor

from another NASA contract. Pertinent design variables for this rotor

were as fpllows:

Tip speed 5̂ 8.6 m/sec (1800 ft/sec)

Tip diameter 0.84m (33.1 inches)

Specific flow 188.9 kg/m2sec (38.7 Ib/ft2sec)

Corrected flow 78.8 kg/sec (173.8 Ib/sec)

Rotor inlet hub-tip ratio 0.5

Rotor pressure ratio 2.28

Number of rotor blades 38
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This rotor used precompression type blade sections for the outer

63 percent of the span and mu l t i p l e circular arc blading for the inner

32 percent of blade span. There was a transition region between these

two types of blade shapes. The objective of the precompression type blade

is to minimize losses by designing fpr a series of weak shocks instead

of a strong normal passage shock. A schematic of the blade section is

shown in figure 1. The effective blade section in this sketch is indicated

by the dotted lines. The actual blade section as shown by the solid lines

was obtained by subtracting a calculated boundary layer displacement thick-

ness from the effective profile. From points A to B on the suction surface

of the airfoil, the effective surface follows a calculated free streamline

along which no energy is added to the fluid. Point B represents the o r i g i n

of the first captured Mach wave. B to C is the precompression section of

the blade and is shaped tp provide a series of weak compressions which

are focused just inside the leading edge of the adjacent blade. The

objective of these precompressions is to reduce the strength of the passage

shock and thereby reduce total losses. From C to D the effective suction

surface is designed to adjust the flow direction to be compatible with the

conditions for the strong oblique shock so that no reflections exist.

Flow downstream of the strong oblique shock is subsonic and the effective

blade section from D to F is set to provide the proper leaving flow angle.

The effective pressure surface of the blade follows a free streamline from

A to E, and is then smoothly faired from E to F. The rotor had a part

span shroud at 65 percent span from the hub.

Tests were made for a complete stage consisting of a rotor and

stator, but only rotor performance is considered in this paper. Complete



aerodynamic and mechanical design details for this stage are given in

reference 3. The overall performance of this rotor is given in figure 2

taken from reference k. Design values of pressure ratio and efficiency

are shown by the solid symbols. As can be seen at design corrected speed,

the flow was higher than design, and the rotor stalled at about design

pressure ratio. The maximum efficiency of 84.8 percent at design speed

was considered good for a test rotor with this high tip speed and high

blade loading. A study of radial distribution of pressure ratio, however,

shows that the tip section did not achieve design pressure ratio even at

the stall point. Therefore, even though the overall performance of this

stage is good, it is obvious t(iat design flow conditions were not achieved

in the high speed tip region qf the blades.

Transmitted light holography was applied to a low loading, high tip

speed, rotor designed and tested for NASA by the AiResearch Division of

the Garrett Corporation. The holography work was conducted by TRW Systems

as a subcontractor to AiResearch. Details of the rotor design were as

follows:

Tip speed 488.6 m/sec (1600 ft/sec)

Tip diameter 0.7:5 m (28. Ik inches)

Specific flow 205.1 kg/m2sec (42 Ib/ft2sec)

Corrected flow 67.09 kg/sec (147.9 Ib/sec)

Rotor inlet hub-tip ratio 0.5

Rotor pressure ratio 1.512

Number of rotor blades 40
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This design used weak oblique shocks in the high Mach number tip

region to minimize losses. A schematic of the blade sections in the

tip region is given in figure 3- Again the dotted lines represent the

effective blade surface, and the solid lines the actual blade surface

as obtained by application pf boundary layer displacement thickness

corrections. From A to B the effective surface follows a free streamline.

B is the emanation point of the first captured Mach wave. From B to C,

the effective suction surface follows a free streamline. C is the point

of intersection of the weak oblique leading edge shock and the suction

surface. The effective surface at point C bends sufficiently to cancel

the weak oblique shock and prevent any reflected shocks or expansions.

From C to D the effective surface follows a free streamline. A second

weak oblique shock enamates from the t r a i l i n g edge, point D, and is

cancelled on the pressure surface at point E.. The sharp corners at C

and E are rounded slightly on the actual blade to improve off design opera-

tion. The pressure surface from A to E is defined by a third degree

polynomial, and from E to D it is defined by a free streamline. The rotor

blades had a part span shroud at 70 percent span from the hub. The design

relative discharge flow was just sonic at the spanwise location of the

shroud. A complete description of the aerodynamic and mechanical design

is given in reference 6.

Tests were made of a complete stage consisting of a rotor and stator.

For this paper only rotor performance is considered. Rotor and complete

stage performance are given in reference 7. The overall performance of

the low loading-high tip speed rotor is shown in figure 4. At design

speed and pressure ratio, the flow was k percent above design, and the

efficiency at this point was 85 percent. The peak efficiency at design



corrected speed was 90 percent. Design flow and pressure ratio were

obtained at a corrected speed of 9^ percent of the design value. At 90

percent speed, the peak efficiency has dropped to 86 percent, and at lower

speeds, the peak efficiency increases to 92 percent. This dip in the peak

efficiency is due to the change in shock configurations with starting of

the supersonic flow in the rotor blade tip region. The rotor starting

condition is shown by the holograms which w i l l be discussed later.

TIP TRANSDUCER RESULTS

High response pressure transducers located over the rotor blade tips

have frequently been used to define shock patterns at the rotor blade

tip. - For bpth stages discussed herein, ten transducers were distributed

axially from a point somewhat upstream of the rotor blade t r a i l i n g edge to

a point somewhat downstream of the rotor blade t r a i l i n g edge as shown in

figure 5. Conventional static pressure taps were also located at each

axial station to provide an average level of wal1 static pressure. The

high response pressure transducers are used to measure the fluctuating

component of static pressure. This is added to the time averaged pressure

measured by the conventional wall static pressure taps to obtain the

actual fluctuating static pressures. Typical time traces of fluctuating

pressure are also shown on figure 5. These pressure traces are first

indexed to the circumferential blade position and then used to obtain

contours of constant pressure in the blade-to-blade space.

The resulting contour plot for a near design point for the 5̂ 8.6 m/sec

rotor is given in figure 6. The contours on this and succeeding s i m i l a r

plots are given in psia rather than S.I. units to be consistent with the

references and because the gradients are more significant than absolute
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magnitude for this discussion. Shock waves should appear on this figure

as a coalescence of contours. Interpretation of these contours is rather

difficult as many contours are normal rather than parallel to the antici-

pated shock directions. Based on design intent, there should be a series

of weak compression waves in the region bounded by the dot-dashed lines,

and a strong oblique passage shock at the location indicated by the dashed

line. These waves are not clearly defined by the pressure contours, but

the general levels of pressures in the entrance region are somewhat

consistent with a series of shock waves. The pressure contours within

the passage show a reacceleration after the forward passage shock particuT

larly on the pressure surface. This is followed by a second shock near

the passage exit. This is shown by the dotted line.

Results for the W58.6 m/sec rotor at a near design pressure ratio

operating point are shown in figure 7. As for the higher speed rotor,

there is no wel 1 -rdefined pattern of shocks shown on the contour plot.

The dashed lines follow the general Ipcation of the tip section shock

specified in the blade design. One could surmise the existence of rather

weak shocks along the dashed lines shown on the figure.

It is clear from figures 6 and 7 that tip pressure transducers do

not give an undeniable, picture of even the tip shock patterns. The

patterns are obscurred by such factors as wall boundary layers, finite

size pressure transducer active surfaces, blade-to-blade variations of

patterns, tip leakage vortices, and a general difficulty of indexing

data from several transducers located at different circumferential loca-

tions. A single plot does not generally give a clear picture of tip

flow conditions. Comparisons of plots for various flow conditions,
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however, do show trends of shock pattern changes, and tip transducers have

been effective in defining passage unstart and t r a i l i n g edge shocks.

The tip shock patterns shown in reference 1 are much more definitive than

those defined in figures 6 and 7. The data of reference 1, however, was

for a somewhat lower blade passing frequency and for stronger shocks.

Both these factors would lead to better definition of shock patterns.

HOLOGRAPHIC TECHNIQUES

The first hole-graphic technique of the program reported herein

utilized diffuse light reflected from the centerbody just ahead of the

fan rotor inlet face. A schematic of the light path is shown in figure 8.

The i 1 l u m i n a t i n g beam enters the test fan through a small forward window,

is reflected from the stationary hub, passes outward through the blade

tip section, through the viewing window, and onto the holographic plate.

The remainder of the holpcamera details are given in reference 2 and w i l l

not be discussed herein. Figure 9 is a conventional photographic view

of the rotor and hub section taken without the rotor tip viewing window

in place. From this view it can be seen that the view of the blade

passage is severely limited by the shadowing effect of the blade leading

edges. Holographic techniques w i 1 1 increase the viewing angle over that

seen in figure 3, but even so, only the entrance region of the passage

can be studied with this light path arrangement. These limitations were

recognized at the outset of the program, but the simplicity of installation

of reflected light holography made it an attractive approach to study.

To make a hologram with this setup, the fan operating point was set.

Then the laser was pulsed twice at a time interval of about 10 microseconds.

In this time interval the blade passage density field moves about 10
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percent of a blade passage, and the resultant double exposure gives a

differential interferogram which defines density variations. The double

pulsed approach cancels out the effect of imperfections in the windows.

Therefore, low quality plastic windows can be used as long as there is

no movement of the windows between laser pulses.

The second holographic technique was originally designed to transmit

the scene beam into the hub through a strut, reflect this beam axially

to the fan inlet face, and then reflect it outward through a window in

the centerbody, and thpough the blade tip region onto the holographic

plate. This scheme was abandoned because it was difficult to mount the

optics within the centerbody and s t i l l maintain a low level of optics

vibrations, and because this system had the same Ijmits of viewing angle

as the reflected light system. Therefore, a system was evolved which

transmitted diffuse light diagonally across the inlet as shown schematically

in figure 10. In this technique light enters the test fan through the

large window ahead of the rotor inlet, passes by the centerbody, through

the blade tip region, and out through the window over the blade tip onto

the hologram plate. Details of this holographic system and its installation

are given in reference 5. In this program three types of holographic

procedures were tried. The most successful was a rapid double pulsed

approach in which the fan operating condition was set and the laser pulsed

twice at a time interval on the order of 5 microseconds. In the second

approach, called the long double^pulsed approach, an operating condition

was set at about 60 percent speed and the first exposure was made. The

fan was then accelerated and set at a second speed condition (near design

speed) and a second exposure made. Window movement led to extraneous
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fringe patterns and made interpretation of this type hologram ineffective.

As a result, only a limited amount of effort was applied to this approach.

This approach w i l l not be covered further in this paper. Further details,

however, are given in reference 5.

The third approach was to seed the flow with 30 micron diameter glass

microballoons and then double pulse the laser at a short time interval.

Scattered laser light reflected from the microballoons was recorded and

stream velocity could be calculated from displacement of a specific micro-

balloon and a knowledge of the time between pulses. If a sufficiently wide

viewing angle is obtainable, the axial, radial and tangential components

of velocity can be approximated by this technique. Because the pulse

duration of the laser was on the order of 50 nanoseconds, clear definition

of the microballoon could only be obtained at very low velocities. With

a rotor speed of 8 percent of design and a time delay between laser pulses

of kO microseconds, displacement at individual microballoons could be

determined. Holpgrams made at this low speed indicated promise for this

technique. Application of this scattered light approach to higher speeds

w i l l require much shorter laser pulse times. These can be achieved by

using pulse choppers. However, the addition of such equipment was beyond

the scope of the reference program.

REFLECTED LIGHT HOLOGRAPH 1C RESULTS

A series of holograms covering a range of corrected speeds and operat-

ing pressure ratio? were made on the high speed, high loading research

stage. These holograms were made using the short double pulsed technique.

With a sufficiently wide viewing angle, these holograms should produce a

complete interference fringe pattern from which density variations wVthtn
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the rotating blade passage could be determined. Due to limitations in

viewing angle imposed by the rig geometry, only abrupt changes in density

such as occur across shock waves can be determined. In the pictures

obtained from the holograms, changes in fringe spacing occur where large

density changes such as the density increase across a shock wave exist.

The holograms obtained in this study were analyzed to obtain a three-

dimensional location of shock systems in the rotor blade tip region.

To determine shock locations, the holograms were set up in a laser

system, and photographs were taken from five different viewing angles

with the lens system focused at each of several different radial positions

in the blade passage. Figure 11 is a typical photograph of this type.

This photograph was taken from a hologram made at a maximum flow condition

at design corrected rotor speed. The camera was focused on a plane about

38 millimeters in from the blade tip. The rectangular grid is from the

reference lines on the outer window. These lines are fuzzy because they

are out of focus. Bow waves from two blades are clearly v i s i b l e as

variations in fringe spacing. An oblique passage shock is also indicated

by a change in fringe spacing. Bow waves could be detected to a point

forty percent of span from the hub. The leading edge of the rotor blade

restricted the view of the passage shock to the outer 20 percent of the

passage depth. By viewing a specific shock wave at various radial posi-

tions and from various angles, the plane of the shock wave was determined.

Sketches of shock locations for several different radial positions for a

maximum flow point at design speed are shown in figure 12.

From these sketches it is obvious that the passage flow is started

in the tip region because the bow,waves emanate from points close to the
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leading edge, and the passage shocks near the tip are swept back into the

passage.

Schematics of the shock patterns for a 70 percent speed, intermediate

flow point are shown in figure 13. For this speed and flow a bow wave

appears attached at 100 percent span (tip section) which is not apparent

at 69 percent span. The effect of the precompression ramp is evident by

a strong, almost normal shock standing appreciably ahead of the blade

leading edge and across the passage. Further data from these tests are

given in reference 2.

The reflected light system of holography does give a good picture

of bow waves, but the limited field of view available severely l i m i t s

the portion of the blade passage that can be studied. Larger windows

and larger holograms plus variations of circumferential blade positions

for taking holograms would help increase the viewing area, but the

shadowing by the blade leading edge would s t i l l impose a rather severe

limitatiQn to the extent of blade passage that can be studied.

TRANSMITTED LIGHT HOLOGRAPHIC RESULTS

With the transmitted l i g h t holography using the short double pulsed

technique^ holograms were taken of the 488.6 m/sec rotors for a range of

speeds and flows. For some of the operating points, holograms were taken

with the rotor blades in different positions with respect to the viewing

window. Several techniques to analyze the resultant holograms were tried.

These included mounting the hologram in a laser light system and photo-

graphing the image through the hologram, mounting a photographic plate

in the image field, and simply viewing the image field by eye. The latter

scheme proved most effective when an actual set of blades was mounted in
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the imago field and the magnification of the image was set to match the

blade scale. A photograph of the blades in the image field is shown in

figure }k. By placing wires on the observed shock planes in the model

blades in the image plane, the locations of specific shock planes can be

defined. Viewing from several angles and using holograms with the blades

in various positions with respect to the viewing window aids materially

in defining the shock plane locations. After the shock planes were

completely defined by the system of wires, a model was made using sheets

of transparent plastic to define the various shock planes.

Figure 15 shows two views of the blade model with shock waves for

a 100 percent corrected speed operating point and a pressure ratio near

design. The holographic viewing angle for these tests was too small to

permit observations of the bow waves forward of the blade leading edge.

Therefore, only shocks within the actual blade passage are shown. This

model also shows a tip leakage vortex along the suction surface at the

tip. This tip. leakage vortex tends to obscure shock definition near the

suction surface in the tip region. There is a rather weak oblique shock

starting from the blade leading edge and terminating on the suction sur-

face, near the blade t r a i l i n g edge. This shock is s i m i l a r to the forward

passage shock specified in |:he design, but appears to be nearly normal to

the blade at; the suction surface. The design assumed that this shock was

always oblique. This deviation from design intent may be due to blade

boundary layer effects or to effects of the tip leakage vortex.

Another Shockwave identified in figure 15 as first shroud shock,

starts at the leading edge of the part span shroud and extends from

blade to blade. It is swept back in the flow direction and intersects
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the outer wall near the blade trailing edge. The exact leading edge

of this shock at various positions across the passage cannot be determined

due to a limited viewing angle, but this appears to be a somewhat conical-

shaped shock emanating from the shroud leading edge on the blade suction

surface. On the pressure surface and at other positions across the blade

passage, this shock is ahead of the shroud leading edge. Further back

in the passage a secpnd shock is observed which appears to emanate in the

region of the intersection of the part span shroud and the pressure surface

of the blade. This shock very nearly coincides with the passage shock

near the blade t r a i l i n g edge. These part span shroud shocks obviously

affect the flow in the passage in the tip region, but were not considered

in the design of the blades.

From other holograms presented in reference 5, a blade trailing

edge shock is also observed. This shock appears to sweep forward at

smaller radii, and becomes nearly normal as the stage is throttled toward

stall. Because of the l i m i t e d viewing apgle, definition of this t r a i l i n g

edge shock is not as positive as those in the forward part of the passage.

Figure 16 is a photograph of a hologram for a 90 percent speed mid-

flow range point. From this view, it can be seen that at this speed the

passage is not started in the tip region and the forward passage shock is

a strong normal shock. This strong normal shock probably accounts for

the dip in peak efficiency which is shown on figure k for 90 percent speed.

There was an amazing consistency of shock patterns for different

holograms for a given operating condition. This was not expected because

hot wire studies of b,lade wakes and high response tip pressure transducer

data indicate large variations from blade to blade and from revolution to
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revolution for the same blade. The shock patterns from holograms taken on

two completely separate runs, however, showed good agreement.

More details on the results of this program are given in reference 5.

In general excellent results were obtained from the short double pulsed

holograms insofar as shock locations for the forward part of the passage

are concerned. Details ahead of the blade row and in the t r a i l i n g edge

region were not so well defined, Several things could be done to improve

the quality and viewing area fpr this type hologram. Most important would

be to increase window and hologram plate size. This work was done with a

three by five inch viewing window and four by five inch holographic plates.

Use of much larger windows and larger holographic places would increase

the fjeld of view and permit better evaluation of conditions in the lead-

ing and trailing edge regions of the blades. Shorter pulse separation

times.would reduce blad,e movement and provide clearer holograms.

SCATTERED LIGHT HOLOGRAMS

A limited number of holograms were made using a scattered light

technique in which the flow was seeded with 30 micron glass microballoons

and the laser double pulsed at a short time interval. By focusing in the

hologram reconstruction on a given microballoon, measuring its movement,

and knowing the time interval of exposures, a flow velocity can be obtained.

Figure 17 is a photograph of 9 hologram taken with the camera focused at

20 centimeters in from the tip. This hologram was made at 8 percent speed.

In this figure each pair of dots represents one microballoon and the dis-

tance between dots as indicated by the A is a measure of flow velocity at

that point. The hologram from which figure 17 was made was taken at a

very low rotor speed. Therefore, no shocks existed for this test condition.
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At higher speeds the pulse duration was too long to obtain clear micro-

balloon definition. Shorter pulse duration could be obtained, but this

would require system changes which were beyond the scope of this specific

program. The data obtained, however, do indicate that at least qualitative

velocity measurements can be made by this technique.

COMPARISON OF TIP SHOCKS LOCATION FROM HOLOGRAMS
AND TIP PRESSURE TRANSDUCERS

Rotor tip shock patterns as measured by high response pressure trans-

ducers were given for the two test configurations in figures 6 and 7.

These data are for design speed operation. As noted previously, the

location of passage shocks in these contour plots are not extremely exact.

Figure 18 is a repeat of figure 6 for the 5^8 m/sec rotor with the shock

locations as determined from a hologram for a comparable operating condition

superimposed. The pressure transducers did not cover a sufficient distance

upstream of the rotor blade leading edge to determine bow shock configura-

tions, and the holograms did not cover much of the blade passage region.

Therefore, the region of overlap for the two systems was extremely limited.

A general agreement between shock locations from the holograms and regions

of maximum pressure rise from the pressure contours is noted.

Figure 19 is a repeat of figure 7 for the 488.6 m/sec fan rotor with

shock waves determined from the hologram at a similar operating condition

superimposed. Also shown on this figure is the region of tip leakage

vortex observed in the holograms. This tip vorticity may have an effect

on the static pressure contours and thus complicate the interpretation of

pressure contours. The region of overlap for data with this rotor is

much larger than for the reflected lig h t holograms for the higher speed

rotor. The forward passage shock appears to bend in the vic i n i t y of the
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tip vortex and become almost normal at the suction surface. The shock

from the part span shroud and the t r a i l i n g edge passage shock intersect

the outer wall in almost the same location. These two shock intersections

with the outer wall are both almost normal to the mean flow path. Although

the static pressure contours as obtained from the tip pressure transducer

traces do not explicitly define the shock locations, the regions of maxi-

mum static pressures are in general agreement with the shock patterns

defined by the holograms.
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Figure 8. - Optical paths for reflected light holography.

Figure 7. - 488.6 m/sec rotor blade tip static pressure contours, 100%
design speed, near design pressure ratio.



Figure 9. - Interior of reflected light holography rig as
seen without window in place.
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Figure 10. - Optical paths for transmitted light holography.

Figure 11. - Reflected light Hologram taked at the 100 percent speed
line, maximum flow (camera focused 38 mm below tip, f 11).
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Figure 14. - View of transmitted light hologram image coincident
with rotor blades.

(a) TOP VIEW. (b) REAR VIEW.

Figure 15. - Views of 488.6 m/sec rotor blade model with shock system at design speed and near design pressure ratio.



SCALE IS 1 MILLIMETER PER DIVISION (AT BORDER)

Figure 17. - Enlarged portion of reconstruction of hologram made with
scattered light. (Reduced 50 percent in printing.)

Figure 16. - View of transmitted light hologram for 9C percent speed.
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Figure 19. 488.6 m/sec rotor blade tip static pressure contours, with
shocks indicated from transmitted light holography.

NASA-Lewis


