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ABSTRACT S

.‘Atconcise, systemotic procedure io giVen for detérmining the
'Rayleigh~8chfodinger energies and wavefunctions of degenerate\states to
arbitrarily high orders even when the degeheracies of the varioos states
are resolved in arbit ory orders. The procedure is expressed in terms of
an iterative cycle in which the energy through the (2n+l)st Porde:ais
expréssed in terms of the partially determined wavefunction through the
n-th order. Both a direct and an operator deri vation are given.-'The two

approaches are equivalent and can be transcribed into each other. The

= i ¢

direct approach deals with the wavefunctions (without the use of formal
operators) and has the advantage that 1t resembles the usual troatment'of
non~ degpnerate per turbaticns and maintains close contact with the basic
Physics. In the ogerator approach, the wavefunctioﬂs are e#ptessed in

terms of infinite order operators which are determined by the sucﬁessive

tesolution of the space of tho;;groth order functions. The oEerator




=y e

treatment has somecéimilarit§ to that of Cboi (1969), but it is more
closely related to that of either Hirsehfelder (1969} or Silverstone-
Holloway (1971). The operator expres;ions are uséful fc?: double
perturbations, expectation valueg of physical propertiles, and problems
involving finite dimensional Hilbert space (for example, wévefunctions
approximated gy linear basis sets). The use of variational princiﬁles

for degenerate perturbation problems is discussed.
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The object of this article is to provide a practical method for

systematically determining the n-~th order'Réyleigh~Schrodinger energiles

(n)

5(“) and wavefunctions wq of perturbed degenerate states q ‘to

arbitrarily high orders, even when the degeneracies of the various states

ave resolved in arbitrary orders. o

We start‘ﬁith a set of solutions ¢§0§ to the zeroth order -
equation. Next the ¢§g§ are used to help us find ¢Eg% and ¢§i§q ’
a set of particular ‘solutions to the zeroth and first order perturbatloq

( ) () and make the

equations which correspond to the’ energies and €

-~

first order equation consistent. Then we use these particuler:sqlurions

 to help us find ¢§g§ R ¢§§3 and ¢§3§ » a new set of particular :
golutions which correspond to eéO) . eél) » and 822) and, make the

first and second order perturbation equations consistent. Iﬁ this way we
proceed in an iterative fashicn. Ve cali‘éheﬁreiationship between.the
particular solutions of the first n _equations to the particular salutions

of the first (n-1) equations the magic formula. Once it was dis&éﬁered,

- the completion of the formulation became relatively easy. In the early!

‘w(n)

. are only partially determined.

(n)

At a later stage, after the degenerac1es have been resolved the w

R . ..‘?L

stages of the iterative process, the

become completely determlned However, at all- stages of the calculatlons
the particular solutions of the first n equations sufflco to determine

the energy through the (2n+l)st order. (in accordapC° with Wigner s rule

vhich states that if the error in the Wavefunction is :O(Xn+l

22

) rhen the
error in the energy is 0(l Y. . B SRR



Let us explain'the contents of this pszper. Iﬁ Section I, those
features of Rayleigh-Schrodinger theorf are presehted which are common to
both the degenerate and non-degenerate problems.'.The equations and coancepts
developed In Section I are used‘iﬁxthe formulation of.the.dégenerate treat—

ment. In Section 1I, the Special.notation‘and concepts required for the

- degenerate problems are discussed. The detailed treatment of the first

and second order perturbations of degenerate states is given in Sectibh
I111. The basic iterative patterg which appears in the tre;tmént of‘theSe
l;w orders is then éeneraiized_in'Section Iﬁ to apply‘to the n-th?order..
i Thié basic cycle is then provedAbf iﬁduction.. In Sectiéﬁ v, it is éhown_
how fo gchieve greater solutional economy by calculating thevenergy
throﬁgh the (2n+l)st order after calculaiing the* ?'s‘ through the n-th
-order. How boﬁh the basic and the (2n;l) procedures can be incorporatéd
into cycles, suitable for computer progrﬁméihé, is'shoﬁn in éecgion VI.—“
~ The special simplifications which occur in orders higher than the cme in
which the degeneracy is completely resolved are given in Séct;;nhﬁil{ Up
to this point, it has been assumed that all of the perturbation equations
are solved exactly. 'In Sectipn VIII,_the'usé of variational pr;nciples -

-~

and/or fixed linear basis sets to approximate the ¢'s and determine

approximate energies is discussed. Finally, Sectioq IX 1s'dev62;a téwr
deriving the formal operator trgatﬁgﬁt of dégenerate pert&rbati;ns in a
!'form such that our. f's ,gnd energieg:caﬁ be exﬁressed in terms of ﬁhe
formal operators Qéé) ang the rgso}vents- 3(_3) which have beeﬁ‘used
Y p;evious papérs of Bi;sghfeldérl ané Siiverstqne‘agé Hollowayz. _Thése

. operator reiations should be useful in de?eloping interchange~type

j relations to use in the determination of phyéical properties.



Those readers who are interested in the solution of the perturbation

equations but are not concerned with the derivations are advised to read

Section 1L, then skip'tg.Section VI.

Qur original intention was to improve the operator treatﬁent given in
Reference (1). In this respect, we succeeded In deriving the operator:'
formalism given in Sectio.n IX whichis pot inituitive and is more con.ci_s.e
and easiér to use than Reference (1). 1In the first part of the gpétatot
treatment, the Hilbert space is first compacted into the ¢[0] ;pace-to
give the familiar "infinite oxdex" perturbation relations. Then, by .
successive resolutions, the Hilbert space is furthpr compacted to the space

4,(0)

of the O ] . At this point, our treatment resembles the imglicit

3
formulation of Choi In order to make further progress, we focus our |

attention on the iterative cycle of starting with the relations after L

(n) (0)

(n-1) resolutions; determining 3[ 1% and ¢[ ]£>' and then satisfying_”"

the consistency equation which leads to the n~th resolution. In this phase;
our operator approach, except for a number of significant improvements, has

.- . * -z

a very strong resemblance (including notation) to that of Reference (1).

However,.it became apparent that if we‘defined ¢§m;z = éﬁi¢f0§£ (Wh???,
é:i is one'ofuour operatpts)? we could ttansctibe our operator treatpg9§
into the direct formalism in which the only cperators igvolyed are thg
Hamiltonian and the resolvent. :The direct treatment has the advantage of

'baving_é very close Yesemblance:-to the usual treatment of non-deggnerath
Problems and it maintains a cioée ctntact with thé basic physics. On the

other hand, the formal operators may be useful in their own right since

they can be split up in many different ways and their Hermitean components

. -
PR
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Van Vlecka, Lennard—JonesS, Brillouins, Kato

Silverstonez; Choi3, and many others

‘variables and then he discusses the many interesting mathematical A‘.;;

may be moved around to form a variety of identities, such as the
interchange-type relations which arise in connection with double
perturbations. The formal operators may also be convenient when the

wavefunctions are approximated by fixed linear basis sets [see Section

VIII]. .
We believe that this paper is more ccmplete and easier to use than
previous formalisms. However, our treatment is not basically new since

it represents a restructuring (by algebraic_manipulations) of the work of

7, Blochs, Lawding, Priﬁaslo,

3 17
Moritall, Epsteinlz, des CloizeauxlB, KirtmaqlA, Kleinls, Sackls, Chong™ °,

. Indeed, there have been a , 32
3 - . . - .

greaﬁ many implicit treatments (wheie the energy is embedded in the PR

operators); and there have been a great many explicit treatments of  .:.*

degenerate perturbations.  All of them are- really different ways of saying

p! .
_ the same thing. Thus, Klein“s has made an extensive review of the explicit

formulations and shown how they are interreiated. Then, too, des - "~ . .. u %"

Cloizeaux13 has shown how the implicit developments are<re1ated.to the

explicit. - Sackl6_goeé even farther iﬂ”Shbwing how all of the operator . . .. -

developments are related to the Lagrangién expansion of implicitly defined

YRS

properties of the Lagrangign expansions.- Thqs, there .1s nothing Eééicélly
iew to be diséovered in the RayleighfS§hrOAiﬁger treatment of degeneréée
pgrturbation;. As Einstgiﬁ said of such problems, "It is simple, it is
just hard to do". Degenerate perturbations are very complex. waever, as

Abe1123 said, "A complexity is nothing more than a disarrangement of
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simplicities". Thus, we hope that we have sutceeded in fearganging
the disarrangement.

After we had recast our development into its present diréct form
(without the use of formal oper;tors) we discovered many péints of
similarity with_é éreliminary régéafch note given to Qs 5& Sambé and
Roothaanl8. Their approach 1is similar in vieWpoigt to the Chong ghd
Larcher17'meth;d.of "contrained secular eqﬁ;tion;ﬁ; The Sambé.ané
Roothaan "wavefunctiqns" are really our pafgicélar solutions, the ?'s s
but they 1acked the relationship betweénvthe ?‘s and the true
wavefunctioné; They discovered the ﬁaéic forﬁ;la (quit; independant pf ;
us) and theif relations for the energies, including the (2n+1)
development, are similar'to‘ours. Ve ﬂope thaf our paper will not

~

detract from theirs. T



I. GENERAL FEATYRES OF k—S;THEORY WHICH APP LY TO BOTH DVGE NERATE

AND NON-—DEGE(NERATE PERTURBATIONS.

In Rayleigh—SchrﬁHinggr‘perturbation theory we seeck the solutions to

the perturbed Schrodinger equations - -

O - B (I = 0n @

where the Hamiltonlan H (asoumed to be Hermitean}, the wavefunction

wz , and the energy Ez are assumed to be expressible as power series

in the perturbation parameter,. ) ” . s -§?~.
o m o= 1@ Z ™ 1 (“) ’
—-.h . ’ ..‘..q 4..\. n—l ' -
I S = (0) + Z A wz(n) - L (2)
o . - u-.'. T o
B S OIS S
. : ) . . -n=1. '.

)

The unperturbed Hamiltonian H 'ls assumed to possess a complete set

C ok I Lisl e

of elgensolutions

[H(o) - 52('0,)]4)(0) = -0 5 1 i:a i gz :’:A .ﬁ.“. &‘ - (3) e
where the ¢( ) are a gz-fo¢d ortho—normal set of degenerate eigen-v
‘ functlons corresponding to the energy level e(o? «. The zeroth order

0)

wavefunction w( (which 1s defined as the limit of wz(l) as A

(0)

tends to zero) is a linear combination of the ¢2 .



. where we use the notation

v

In the present paper we fix our attention on a particular state q

which arises from the perturbation of fheAdegenerate. (gq > 1) energy

) n

level aq . However, our results also apply to ﬁon—degenerate (gq =

cases. As a matter of fact, the following expressions for the pertur-

" bation equations, the perturbation energies, ‘the perturbed wavefunctions,

and the normalization are all equally applicable to.degenerate or non-

degenerate problems.

The Perturbation Equatioas.

5%

3y

Substituting the power series expahsions (2) into the Schrﬁﬁiqger‘ :

equation (1) for the state q yields Voo

-

) » § g0y _ . )
n=0" " t=0 I E :

‘

TP A

R )

ﬁ(ﬁ)

Assuming.thaé'Eq. (4).is valid for all values of k' within the radius

of convergence of the series (2), the coefficient of each powér of A

in Eq. (4) must vanish. Thus, the n-th order Ravleigh-Schrodinger

2
perturbation equation. is

© _ (0, @ _ _§F ), @t) .
@ - e g .tgl B . (6

,' " -
In this manner the original SchrOdifiger Bq. (1) is resolved into an

infinite number of inhomogeneous perturbation. equations.
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- repeated use of the perturbation equations (6). Thus, for 0< k<n-1,

.
3

In order that Eq. (6) be mathematically comsistent, 1ts right-hand
side mﬁst be orthogonal to each of the gqi eigenfunctions ¢(2)

these conditions is used to determine the n-th order energy; the other

(g~ 1) conditions are used in the determination of the w(O)

w(l’,.f.,w‘“ D

T%e second feature of Eq. (6) to observe is that insofar as the n-th

order perturbation equation is concerned, wén) is the sum of a

particular solution plus an arbitrary linear combination of the ¢(0)

- i . . n . .
However, such extra terms in wé ) affect the mathematical consistency

.. -

oflﬁhe higher order perturbation equations and the determination of the -
higher order wavefunctions. - i - ' -
, .

], - - ~
oo .o

The Perturbation Eﬁergies.

;4‘

*
The n-th order energy is obtained by multiplying Eq. (6) b wéO)

24
and integrating,

»

-Fén) = w(O)lH(n)lw(0)> + E (O)IH(t)lw(n t) N
‘ﬁere the eén) is expreséed in terms of thg,wavefunction ﬁhrqugh the

fkn-l)st ordexr. For n > 3 , equivalent expressiodé requiring the

i

}&néwledge_of lower order wavefunctions can be obtained by algebraic

manipulations making use of the Hermitean property of the H(t) and

k n-—k—
RO <w(°)ln‘“’|w(°’> s P <¢(S’IH a~s- "lw‘t)

(8)
T §=0 =0 :

where the primed summations mean that the term s=it=0 is omitted.

In accordance with the Wigner (2n+1) rule, ,E(Zn) and €(2n+l) can be

. One of
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cxpressed in terms ‘of the wavefunction through ¢§n) by using Eq. (8)
with n replaced by 2n and k=n -1 » or with n replaced by (2n+l)
and k=1n . Thus,

() (O)IH(Zn)I¢(0)> " 2 Z <W( )IH 2n-s —t)lw(t)

(9)
q '§=0 £=0"

and
E(2n+l) - <w(0)lH(2n+l)lw(O)> + z X' <U(S)|H(2n+l s~ t)H(t)> (10)
q §=0 t=0
Although Egs. (7)—(10) apply to degenerate,  as well as to nou—dégeherate;
" perturbation problems, they are not'direcfly useable until th? calcula-

tions have proceeded to a sufficilently high order that the degeneracy

is resolved and the Wéo),-~-»¢én) are known.
The Perturbeéed Wavefunctions. : _ ' . ~

The n-th order wavefunction can be expressed as a linear combination

of the complete ortho-normal set of eigenfunctions of H(o) ’

wén) X E ¢(0) (O)lw(n) Z ¢ég) O, (n) y an

-7 -
RN [

where the prime indicates that k # q . Substituting (11).into the n-th .

order perturbation Eq. (6), e _
lxcl Z (E.éo) - €£0))¢(0)<¢k0)“}(n) Zl H(t) én t) - :('12).
a t= o
so that - - .;:‘57::“ﬁrfﬁ. I

<o 10> = 0 - (O <¢k°>|z ‘t’lw‘n DL aw

K PR
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g Thué, if we know the function F, we can determlne R

Athe riormalization and the consistency conditioms.

- Thus, e
b - 2 © :21 (9 (o) 2 oD <) 4,<n) (14
vhere R‘? 1is the resolvent
RO - @ (0)] 12 16D5<p O 15y .
"~ The Vre'solveot has the property 'fhét if T is any funceion,
-(11(6) - séo))R(b)F = 'F - §¢§2)<¢(§2)]F>‘ ) ,4 , : (1.6),

5253,

(Q)F by solving

A Eq. (16) “? In this manner, if we know the wavefunction through the

(n)

Cn—l)st order, we can determine the part of w

to ‘the ¢(0) . The'coefficients ?¢§3)]w§?)> must be determined from

which is orthogonal

The Normalization.

'The normalization of the wavefunctions is not determined by the
cwooe T - R

' pertorbation equations .and remains arbitrary. In the.present paper we

adopt intermediate normalization so that.

a——tn -

e §¢é°1[¢q>\ = 1 and <¢§0)|¢én)? = 8.0

< a7z -

However, it is easy to convert our results to any other type of

normalization A perturbed wavefunction x (A\) corresponding to'a

dlfferent normallzation scheme differs from our w () by a constant



| ]
[ aid

Xq (%) =-wq(k)0q(k) Expanding the constant in powers of

Ao, C (A} = P=0 Apcén » 1t follows that the n~-th order wavefunction
. ‘ 2 )
coxrespoading to XQ(A) is . ) . 1;
PR el . .

For degenerate wavefunctions Egq. (18) can be expressed in the form of

En. (36).

Y

-

Svlution of the Perturbation Equations.

The RayJe;gh—acnrbdinger pertur bation tﬁeory is an iteretive urocedu*e

=3

for determining wq and Eq to any desired precision. We begin with the
solutions to *he u“uer;u bed problem, Eg. (3), and proceed recurs1ve1y to
{
oive the pe:turbaiiop eqations (6), together with the normalization
condizicns-(l7) .To successively higher oreergvof perturbatiocn. The
details of How thi iz 1s done dapends upon whether the state q under

_eons ‘dsratiﬂﬁ is noa~-degenarate or degeneraee°

{1) The Non-Degenerate Case. .

. 0 L o
Fer the case that E; ) is non‘degenerate, the unperturbed

Schrodinger Bq. (3) has only one 1ndependent solution ¢(0) . Thus, N

(0) éco) is knowm. As a result of the normalizatlon condition (17),

the n-th oLder wavefunction (14) can be expressed in terms of the lower

order wavefunctions

< R | : oL
. ‘ - . ~ %
The explicit determination of ¢én? then requires the solution of a

partial differential equation of the Eq. (16) type'.25 Egq

(19) together

sio'
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+
with the Egqs. (9) and (10) for EéZn) and €(2n L

then forms the basis
for the recursive procedure.

(2) The Degenerate Case.

For the case that Eéo) is degenerate, méo) is usually not known
at the beginning of the calculation. The functions ¢ég) provide a basis
for the wéO) so that
,(0) (0) ., €0) (0).
= < 2 . 20
U L Saq <0qq |V (20)

a

Similarly, according to Eq. (14), the w(n) involves g unknown
q q

, . . (0)y, (n) . ,
expansion coefficients <¢qa lwq > . For each order n , starting with
n = 0, the normalization condition (17) provides one condition upon
the expansion coefficients. The other ‘(gq - 1) conditions are pro-
vided by the mathematical consistency conditions for each order of the
perturbation equations. Before discussing exactly how these equations
are made consistent and solved, it is best that we introduce our notation
and concepts.

Symmetry Considerations
(0)
q

In some cases, Y can be completely or partially determined by

. . . 9 .
group theoretic considerations. The unperturbed Hamiltonians have

(0) (0)
G q@ are

symmetry groups and G respectively. The functions ¢

(0)

bases for the irreducible representations of G s whereas,

(0)
Yq

and wq transform according to the irreducible representation

(@)

D(q) of G . Thus, if Aq is the projector of D s then

Ay = .
qwq LPq
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1f, now, Aq commutes with H(O) as well as with H(A) , then:
=(0). (0)
A = A
¢qa q¢qd
order Schrodinger equatidn'éna'are“orthogonal to the functions
() I )}
= (1-A
boq = (-A)00 .
vanish which link the states arising from the 532) with those which
~(0)

arise from the ¢
qo

(1) ‘The 'set of functions are solutions to the zeroth

. (2) All of theé energy and:oveflapfmatrix elements

. (3) Thus, in determining Eq and wq , only the

‘zeroth order- functions 5;8)4“need to be considered and the'fdnctions
"éég)' can be ignored. The hydrogen atom Stark effect provides a good

(0) (0)

example where Aq commutes with both H and H(A) . Here H

has spherical or parabolic symmetry while H(A),6 has .only parabolic

symmetry. Thus Aq corresponds to a particular set of parabolic

(0)
qo.

the hydrogen orbitals for a particular value of the principal quantum

quantum numbers and Aq¢ is one particular linear combination.of

number. Thus, if one treats the hydrogén.Stark effect in parabolic co-

ordinates, the other degenerate functions (l—Aq)¢ég) can be ignored
and the problem becomes equivalent to a non-degenerate perturbation.
(0)

Even if Aq does not commute with H , symmetry considerations

may be useful if there exists a subgroup G, which is common to both

1
(0)

G and G . The irreducible representations of G are then sub-

2 . . .5 - . e -
duced 7 (or decomposed) into irreducible representations of its subgroups.

The functions wq and wéO) belong to irreducible representations

Diq) of the common subgroup. Gl . If Aql is the projector cor-

responding to Diq) , then Aql commutes with both H(O) and HQA) .
(0

Thus Aqlwq = wq and the functions Aql¢ play the role of the 552)

qa

in the previous paragraph. Furthermore, the quantum number associated
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with Aq remains unaffected by the perturbation (an example would be

1

the magnetic quantum number in the Stark effect).

If all of the ¢ég) belong to the same- gq-dimensional irreducible

representation of G(O) , the degeneracy is symmetry-related and not
"accidental". If w;O) and wq belong to an m-dimensional irreducible

representation of G , then the block of states containing q-.will

remain m-fold degenerate even after an infinite order of perturbation.
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II; NOTATION FOR DEGENERATE STATES.

A clear, concise, and consistent notation is very important for
treating degenerate perturbation problems where the pattern of degeneracy

splltting caunot be predicted berorehand. The set of degenerate states
(0) '

having the zeroth order energy e

()

by the first order energies eqi [where we might number

(1) < e(l) ...i[

splits into subsets characterized

These subsets are further spllt in second order into

(2) -

smaller subsets characterized by equ . After calculating the energy

through the n—th order, the states are split into subsets corres nonding

<o> D) 2 NS B -

to.the energies » q1 s Fqij s ece s q1j...t . ?hus’ fn‘ -

particular state can be characteriéed by the genealogy qij...t... of
its energy through the order in which its degeneracy is resolved The
degeneracy is resolved if either ite subset is reduced so that 1t

contains only one state, or else, no further splittings occur in higher

27 - . : : \
orders .. _ e _ - - PR



e v

e g oo

14

In calculating the energy and wavefunctions of a set of perturbed

~

degenerate states it may be nacessary to use this complete genealogical
nomenclature. However, in the development of the theory, our concern is

with a particular state which we denote by q rather than by its full

genealoglcal characterization. In additlon, we use:

[nlq labgls.Subsets heving 1e(0),s§l),...aén)

[n)k - labels subsets having the same energy as ¢ through (n-1)st
(n) 4 8(n)

order but €y ."Such states comprise the n-th class ~

with'reSpect te q .

[n]2 ~ labels subsets having the.same energy as q through (n—l)st

(n) o «{n)

may be either equal or not equal : eq -

To make our nouation more concise, we adopt. a vector notatlon with a

order but e

set of functions ‘denoted by a_Yow vector. Thus, for example, the set

(0)
bea

with 1 :_aAf;gq is deuoted by - ¢§g§q

In terms of our vector notation, we can discuss the resolution of the

degenerécies more precisely. In tﬁe first order, the function set ¢(O)

[0]q
(0) (0) ~

_is split into the set ¢[1]q and the sets [l]k Similarly, in the

-~

n-th order, the function set ¢§321] is split into the set ¢E 3q. and
the sets ¢§O§k . The new functions ¢[0\2 are ortho—normalollnear
'combinations of the ¢§0)1] .' Thus,
i 0 _ 40 (0 (0) :
®fajy ~ Q"[n-nq [n—l}q'¢[nlz > @
a‘nd A ’ o : -‘ N ' (U T
@@ @ |
Unlelemier” = S0l (22)
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Since the ortho-normal 9%3%2 functions span the same space as the ortho-

(0)

normal ¢[ “1lq fuﬁctions,

© . _ ¢(o> (0)

¢ (0) (0) (0) (0) n
[n~-1lq

$rnlq" n]q’¢[n-11q> * Z Sl Pl Snc11” B

)

Furthermore, the projector onto the ¢£ “1lq basis has the resolution

‘¢(0) ¢(0) | = l¢(0) (0) E ‘¢(0) (0) .

[a-1)a" 2la-21q nlg”“¥nlq [nlk” ¢ nlk '(24>
. And the projector onto the ¢{g) ~ basis has the resolution |
el - 600+ £ 110 fs;kr-;
if n > n', tﬁen by;tye repeated use of Eq. (21), - : )
¢§g§z . ¢fg)]q fg)]ql¢fg)+liq ¢{g)+1]ql . '¢§gzl]q ¢§g)15q ¢fg%2 (26)

*

Aé,a result of_Eqs.'(22) and (26), for all values of n and n'
’ ) L ety

>

(0) (0) =

bfa'y2 |¢aly” T 'Gn,n 52 2'1 - L@
_ Our conception is that the ¢§0% is a 1inearlcqmbin§tion of fhe

; zeroth order wavefunctions of all of the states which have the energy E

: through the n-th order. . Thus, the ¢(0) is a basis for expressing

) ~[nlq

; ’«Pq ) . »i »
S0 L (0) 1) (0, 285
- AR ST ¢[n]q|w = 28

Y- Tl

-

. Since zeroth order wavefunctions corresponding to. different states.are.

orthogonal,



VSR

'beginning with ihe zeroth order. . . S » .: -~

16~

\0) (0)

Glaqel¥y > = O - : 29)

The other notational convention which we adobt~is to define

.nggq» wfg;k’ and wfﬁ%z as the zeroth order wavefunctlon of ny -of the
perterbed states whose energy- genealogy corresponds to [nlq, [nlk, or
[n]J% . Thus, the functions ¢§ %k are linear combipations of all of the

‘p(o) i ) : ': . . . ’

[n ]k

functions

III. THE LOW ORDER DEGENERATE PERTURBATIONS.

Having discussed the general features o- the RajleigH~Sehrod1nger
theory, as well as the special notation and concepts 1equired for

degenerate problems, we are ready to proceed with the iterative process

A. - The Zeroth Order. . o 3 » A

We can write the zeroth order perturbation equation either in terms

of the functions Eg% which we know,
: i
-(0) (0)
=-0, . .
or in terms of the "correct zeroth order wavefunctions" p§o§q
" 5(0), (0)
= 0 . -
Vo = O e

Both the w%g%q and the’ Eg% are taken to be ortho-normal,

[}

© 2 . . v .
Dojglllolg " r 6D



All that we can conclude by comparing Egs.

(0)

the w[O] can be expressed as a linear combination of the ¢(0>

W(O) = 0 (0)

- 17

(30) and (31) is that each of

1[0)q ’

(0)

[la ¢mq 2otql Vo1 * 39

B. - The First Order.-

(o)

Each of the functions W{0] " can also be expressed by the notation

(0)

w{lll where, at this point in our development, the fnergy e(l) is not

determined. The first order perturbatlon

57(0),(0)

(1) - (1)
¥ 1]2 -

+ [H [1]

[112
Eq (6) can be written

(0) >

© T

‘But w[l]l is a linear comﬂination'of the ¢ o

(0 . 4O (O
w[llﬂ d’[om fo]

Substituting (35) into Eq. (34),

(0)

5O ) W @
Vrage * MM [1123¢[01q

(112

(l) The _ ¢Eg} Cousisteﬁcy; 8%%32

~[0]q

qlwfggz S tF35)

i

(0) (O)

[o]qlw[llg = .0 . .:(?ﬁ)

and ¢Eg§z .

h Before solving Eq. (36), we must guarantee that it is consistent.'

In order to do this, we nmultiply- the equation by ¢(O) and-integrate.

~[0lq
This results in the eigenvalue—elgenvector equation
(1) _ (1) (0) ;,(0)
‘5(01 €90l Vye” = 0 - G

" where’

(1) )
St0la = (ol

- «© IH(l)l¢(°)

ol - (38

%



Our attention shifts to the properties of the Hermitean matrix

(1) It has a set of eigenvalues CE&%% which are determined by

$10]q |
solving the secular equation ’

L _ Q@ - B -
'6[03 et =0 (39)

(0)

particular value of efgal Théy are dgfined by the matrix equation

We designate to be the eigenvectors cérresponding to a

@) (1) () . (0) o g ~
[6[0] [1]211<¢[o]q'9{1]2 =.0 . - (40)

(1)

Since 8[0] is Hermitean, we can arrange so that these elgenvectors are

orthogonal and have unit length. 'Furthe*more, we can definquhe new sét,

of functions ¢§g§£. as the linear combination of the. ¢Eg§qv

©) 4O 5(®) 140 T
1l T $lolq¢ [0]q|¢[1]£ : TG

The dimen81onality of the ¢Eg%2 is the same as the degree of degeneracy

) .
*[1)8

eigenvectors, the functions ¢[1]2 arg‘prthofnqrmalﬁén‘the gense that

L T S

BTN

of the € Because of Eg. (32)land the ortho-normality of thé“

~

e el O 150 5 L g

<¢[1]z > = Seli T ED

>

Making use of Eq. (41), Eq. (40) can be restated

(0 15,00, _ () (1) ©) 4, (0) ~
O |¢[112 e % V¥oygltnye L @
| Or using Eqs. (41) and (42), ‘
@ 5 © 5 o @ LWy
brel® ey > = Ay - )dz prov. L 48

[1]2

18
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At this point we select one particular value of €

(1) , (1)

19

(1)
[1)2
(1)

to call

. gq ; the other values of 2[1)2 are designatedlgs [l]k Then we . -

nust consider two possible cases!

(a) 1If’ e(l) fis ndn-degenerate; comparing Eqs. (37) and (40), it
(112
(8)) , (0) (0) (0)
follows that ¢[l]£ V[l]ﬁ . ~Furthermore, the eigenvector < [0]‘Jw[l]2

is uniquely determined by the eigenvector of Egq.

wfg%z is completely determined by Eq. (35).
(b) 1If e(l) - is degenerate, then comparin
. (112 - .
follows that w(O) " must be some linear combiﬂat
{112
0
¢El;£ . Thus,
© - _ (0 <o> (0)
g T et $a)el¥ine’
where the expansion cogfficiééts <¢fg§£]yf23£
(2) The First Order Equation; ¢§i32 .

(37) or (40). ?hus,

g Eqs. (37) and' (40), it

ion of the functions

N
57'

o . .-

. Tl
\

N

are not yet determined.

Now-we are ready to return to first order perturbation equation.

Subsfituting Eq. (45) into‘Eq. (34),

(1)

()

@ _ @ ]¢(0) . (0)

+ [H [1]2

[112° {1]2lw[l

- On the basis of Eq. (435,-Eq. (46) is consistent.

solve it. According to Eq. (14), the first order

expressed in the form . ) R

W(l) = g0 (0 (0) (0)

(0)

1= 0. W6

Thus we can proceed to

wavefunction can be

(1)

e Ya12." $oq" [OJq”’mz D
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which, with the help of Eq. (45), we caen rewrite as

(D) (D) L (0) 1,(0) (0) (40 1,(1)
Ve T e tiel¥inne * 2o)e? [01q“"mz S
where ?Ei%z is défined to be | |
(1) Oy @y |
From Eq. (16), it is clear that ¢Ei32 is .completely specified:by the
equation ’ . o .
(0) (l) (1) (l) o) .
¢[1]£ + [H Yﬁa¢[l]2 0 . - (50)

subject t6 the condition that ) .

n .>' ' . | -

I¢fﬂ2 o.. (s1)

To verify that Eq. (48) is indeed the ég}gtiqn of Eq. (46), it is only
necessaiy to substitute (48) into (46) and remember Eq. (50). However;
we should note that in Eq. (47) the expansion coefficients <¢[8§ ‘¢Ei§2 s .
) |¢(0)

as well as the <¢[ (1] 2 s are not determined by the first order

equation. -

C. The Second Order.
' 0)

" Each of the functions w[l]q can also be expressed by the notation

[2}% where, at this point, the energy 6[2]2 is not yet determined.

The secondlorder perturbation Eq. (6) can be written’

@), 0, =D <z> (0)

_(0) . -
“’[2]2 Yo t [2]2”’[2]2 =0 - 2)
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And since Egs. (45) and (48) apply to any function w[l]ﬂ including
|-~ those which we label w[z]% s . '

(0) - o) (0) (0} S
Vi2)e ¢[11q ¢[11q'V[212 - (53)

and

@ - _ L@ (0 1, (0) L, () . (0) 1, (L) 5
RIS TRRE I ¢[11q'w[21z> A ¢[01qu[z]z ., (54

Substituting (53) and (54) into Eq. (52), -

. . hd

-(0), (2) (1) (1) @ _ (0) (0) N
H 0oy + 8779 + @ [2]%)¢[11q] ¢[l]qlv[2]£¢ L
-(1).(0) 5 . _ g, L
PRS0y o) Y2y 0 6

First we must insure that Eq. (55) is mathematically consistent with

pect to the functions ¢EO% However; the function space of the
(0 (0)

zr»

[0] isispanned by the ¢[l] together with the ¢[l]k for all valpes

' of k. . Thus, we divide the problem into two parts: first, to obtain
" (0)

. conslstency with respect to the ¢[l] and then consistency with respect
to the ¢fg3k .
0 (2 0)
*(1)- The ¢$l§ Consistency; . fZ%l and ¢E2§£

- Multiplying Eq. (55) by ¢fg% and integrating, - S

T @ @ 11,0 () |
- lende el g lw[2ll ° R

where

L@

(1) 1)y | 57(2),€0)
£11)q <¢[l]alH ¢

Y{1lq d)[l] ' ) .(57)

I



' Note that as a result of Eq. (43}, thé last term in Eq. (55) does not

2
contribute to Eq. (56). As a result of Eq. (49), efl;q is Hermitean

~
-~

so that
(2) - (l) (1) (2) (0) 9 48) )
Slllq ®11)q T H " %1lq i¢ LACS VT
(2) (2)

The matrix € has the set of eigenvalues 8[2]2 which are

~[1]q
determined by solvxng the secular equation
) _ @ 4 Lo . .
l = . . N 5
lerayq ~ er2nedl = 0 - (59
. (@ 150 ' , S
We designate [l] |¢(2]£> to be the eigenvectors corresponding to a
particular value of eéi%z . They are defined by the matrix-equation
(2) _ @ (0) 1,(0) S
[E[l] [2]2 ] d’[1]ql¢‘[z]sz, 0. (60)

(2)

' Since e[l] 1s Hermitean, we can arrange: so that these eigenvectors are

orthogonal and have unit length. Furthermore, we can dgfine the new set

¢( )

$i232 as the linear combination of the ¢§l% such thét

of functibns

©  _(0) (0 |.(O)
"’mz “’mq r13q 2212 (61)

Because of Egq. :(4Z)and the ortho—normality of the eigenvectors,

-

<4(0) 14(0 - " SR
[2]£l¢[z]z' =1 5g,g: ‘s (52)

Making use of Eqs. (58) and (61), Eq..(60) becomes

5D

(1) (2) _ <z> O ;. . _ . .
LTSI [zn""’tuq”’[zlz m.0 8D
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(2)

At this point we select one particular value of 6[2]y

(2) (2) < (2)

sq ; the other values of 8[212 are designated as [Z]k . Then we

to call

must consider two possible cases:

(2)

(a) " 1f 6[2]2 is non-degenerate, comparing Egs. (56) and (60), it .
(0) (0) S (0) (0)
foliows that ¢[2]2 w[z]l « Furthermore, the elgenvector [1] Iv[zjg

is uniquely determined by Eq. (56) or (60). Thus %2%2 is com?;etely

determined by Eq. (54).
(b) If a§§§£ is degenerate, then comparing Egs. (56) and (60),
(0) ' '

it follows that ¢[2]£ must be some linear combination of the functions

0 o et
$[a)g - Thus, | | o 5 /
(0 1 4€0) ,(0) 1, (0) .
MO ¢[2]2 [2]2'”[2]2 R (64)
(2) The ¢§2§k Consistency; Qfégz . o | S

' Multlplylng Eq. (55) by ¢fg;k and.integrafing gived,.as the rééulﬁ
of Eq. (43), :' L , NI , . LT

Y

(0)

Gl g * H(2)¢§g§q fgaqlw[ZJK

lllk'“ [11q

k(e ) _ (1)) ¢(0) (1)

lllk [llklw[zjz =0, (65)

v And,. if we let - . R IT el =t R T
S I c NI c DI IO "
a = q [1]k] ’J (66) .

.'./'

the consistency conditions (65) become ...

0 ,Q1) - ( 1),(2) (0) (0) Sy
¢[1]k|w[2]9« 8 [l]k [1]ql\b[2]2 y . .~(6.71)
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where we have defined

2 .
A2 o (0) (t) (2-t),
z~[1]g - z <¢[l]g,H )¢[11 (68)

Let us how express w{i;ﬁ in terms of the [2]2 functions. Making

use of Eq. (64) in the firstiterm of Eq. (54), and using Eq. (25) ?o

project the ¢Eg% functions onto the ¢[1]£ subspacess -and then using

Eq. (67), ﬁe obtain

: (1) _ @ 0, (0) co> 0) 1, (1)
L Ve ﬁﬂzﬂﬂﬂ%nf+¢uh¢nhwun €9)

"where we have defined

; ) (1) (0) 2(-1),(2) 4.,(0) 1,(0) '
= S T ¥paiet X $11: ‘éll]k} ¢[l]q]¢[2]2 e . @O

| (69 the 5O

: 'In qu (§9) thg functions [l] and ¢§;3£ are comuletelf specifiéé

4n£yhereas thé cdeffic%ents <¢Eg%z]ng;£ . and <¢[gqupfé§2 . are as yet

;T~0ﬁdetermined. | ‘~ ‘ ‘ .\

| . An alternate definition of the ¢§§32 is that tﬁéy satisfy tﬁe .
eqﬁation : ’; - :“ . T

which'follows from Eq. (50), subject"t6 the orthogonality conditién '

(0) . . .
[l]ql¢[2]l ) Y ;’ . '.(72)

which follows from Eqs. (51) and (70). A physical explanation of Eq. (72)
is that up to this point'in the development, the functions w[&jl are

1‘lid:[st:ingu:i.shable from thé- ¢[2]2 « Thus, Eq. (69) must remain valid if



>consistent both with respect to. ¢[l] and with respect to the ¢

25

* we replace the §[2]£' by the corresponding w[zlit functions. The

orthogonality relation (72) makes this‘substituted Eq. (69) a trivial
identity.

(0) (1) .
A useful property of ¢[2]£ and ?[2]2 results from Eqs. (70) and

(68),

<o> @, (D) (0) (4@, 5 . 5.
Pt e+ oDl G770 O

. The second order eigenvalue Eq. (60) - can be restated in terms of

¢fg§2 and ¢§;;z by using Eqs. (70) and (44).
L@ L L@ ), (0) R
Ayg = € NOLCS emgleine - - aw

-where we used the definitlon (68) with 2 =q . _

(2) The Second Order Equation;

PREIIN A .
"At this point we are ready to reconsider the solution of the second

orderAperturbation equation. Substituting Eqs. (64) and (69) into Eq.

(52),

50,2 " [H(1>Q<1> s @® - @y 36(2) 1¢(@) [4€O)

[2)2 ‘[2]8 e121272[238! [2]1 1218
DO L0 @)
¥ H_ [llq ?[l]qlw[Z]R 0 . S . (75)

Using Egs. (44), (74), and (73), it’is easy to verify that Eq. (75) is

(0) (0)
<[1)k

Thus, we seek a solution. According to Eq (14), the seoond order wave-

-

function can be expressed in the form



0 (2) (0) ,=(1) (1) (2) _ (2) (0)
Yrajg = ROIHTTL), [v]z)wtz]z]
(0) (0 (2)
+¢[01q<"’[01q (218 © | (76)
Using Eqsf.(ég), (64), and (69), Eq. (76) becomes

2 _ @2y _, (0 0) (1) (0) , (1)

Vi21e T 2 ¢l2}2tw{212 ¢mq mql (2187
(0) ,€0) (2)
| * 8014 mq'”tm 77

E'.where the ¢f2§2 is.defined to be

(z> OTHONC @ _ 2 <o>‘ :

From Eq. (16) it is clear that ¢E§§2 is completely speciiied by the

equation

-(0) (2) | =(1) (1')‘ (25' (2) (0) R
¢[2]2 T ¢{2]2 * (5 [2]2)¢[2]z = 0% (9

subject to the condition that

P

l¢(2) o 0 - oot LI (80-)'"'

[2]2 .

LR NPV,

S
L -
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In line with the remark after Eq. (72), if the w[Zii functions -in Eq.:

(77) were replaced by correspondlng ¢[2]2 functions, uhen both Eqs

(72) and (80) would be required in order to make thlS a trivial identity.

[l

IV. THE BASIC ITERATIVE PATTERN.

o -

‘Most of the basic iterative pattern is developed in the first and

second order treatments. The remainlng features _appear in the third order

Lo 1,

‘A

v,

Sl
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-

aﬁd were confirged by considering the fourth and £ifth orders.
-However,'there is no need to present the third and higher orders here,

seince we prove by induction that the pattern appiies'to all orders. By

. pattern, we mean all of the relationships which are found in carrying out -

oot

the general n-th ordex itéfative‘step."

In the n—th'order iterative step, the n-th order énergies { %g
and the new sgts qf functions ¢Eoiz,¢fi§2,...,¢fn§2 are determined. Any

(0

.zeroth'order.wavefuﬁgﬁion .w[nlll which corresponds to a gtate having the

e;ergy ge“éalogy [Q]g‘ is @' linear combination of the fundtions :95232',
© L0 5@ 1,(0) N
Ve ¢[n]2 [n]zlwtnn . T oen

».The first n orders of wlﬁll are related to the ¢[n]2 and the

functions determined in the previous steps by the relations

@ @ @ @),
Ve T X Pln-mte]e” ¢[n—m+t1q"”(n1sz .
.o (m) <o> 0 '

" In this equation, the functiomns Q. are completely specified but the

expansion coefficients are not determined unless the;deééﬁeracy has been

completely resolved.‘_ o L ) ' .

The ¢[ 12 are the particular solutions to the first n orders of

the Rayleigh—Schrodinger pertgrbation,equationSv

O E .'."v(n). (n) ,(0) R T
0 .. 4’[n]2 ‘Sm-,r;g?q. [n]z)¢[n]2 ° i fi“}f..n (83)

MR

t MB

t

-~

~ -

which satisfy the orthogonality cpnditions



(0) (0)

s .

fn12’¢[nlz' T %er? (84)
(0) (m) _ B : .
[n-m]qld)[n]z =0, lmwm. (89

The Eqs. (83)-(85) specify the ¢[n]2 ,to within a unitary transformation.

(0) -
[n]e °

The wavefunctioas ¢[n]2 are ihtermediately nofmalized_in acccrdance

of the set ¢

i with Eq. (17). A wavefunction X[n]l having a different normalization
"~ differs from w[n]l- by a constant factor C[n]i(k) . Thus, substituting

z Ed. (82) into Eq. (18), the n-th order of X(aje I8

1 .

» @ L gm0 @) /
N X[n]l = $n)e? [n]z”’[nzz mle ... .

i ’ -1

e (£) (0) (s~t), o (-s) . -
SN 1 {5 mrlq S§t<¢ln—m+c1q""[n]z [nls (86)
L ; (n &)

Since the constants [ 12 are determined by the normalization scheme,

it is easy to convert our wavefunctions into functions having a different

normalization.

. i

The new sets of functions ¢[ 1% are determined in terms of the'

o e — e

previously determined functions by requiring that the n-th order pertuf~

(0)
[olq

{ bation equation for w[n]% be mathematically consistent with respect to
I

the combleté set of zeroth order degenerate eigenfunctions ¢ The

(0)

function space of the ¢[0] is reaolved into the subspaces:

§ ¢§231]q fgzllk’éfg)z]k""’ and ¢Eg%k Y Tae consistency Y}th respect

to each subspace is con31dered in turn.

? ) The ¢fgzl] consistency requirement leads to the secular equatlon
: (n) - L :. ) 2
[nl2 ) - T . SRS

| . . A PR

i
¢

for the n—th order energy €



i

i
i

e

S DA

. (n) () :
'~[n~11q fmiekl 7 0 &7
where (n) is the Hermitean matrix
.~[n—1]
(n) (0) 7(t) 4 (a-t) (r) (0) ‘
" £ln-1lq ®[n- l]q, Z ®ln-1 ] (n- l]q> (88)
.Af this point we musé choose which value of eEgaz to call Eén) » the N
ég}ofher valées_a%e thé? desigﬁated as E %k . The éigenvectois of’ Ezzl]q
ar?'the expaﬁs%o§:c9efficients $¢(O)l]ql¢§g§2 o
(n) £ 11,0 o) L o
[E[n~1]q “In ]1~ ®n- l]qI [n]Z ? ) (89)
The ngy funét?ons ¢[ ]2 are then linéér combinatioﬁ-of'the4 ¢Eg)l]q
(0) _ (0 (0) (0)
- - fmie "’[n—llq netal $als” ¢ 0
The ¢(0) requirement 1eads to the d?te;mina;ion of the funﬁtions
¢ {:%2 .by means of “the magic formula, ’ . g
(m) (m) (p) (- n+m—p) (n) i "
[nll E&)[n—l]q * 2 Z ¢[n-nﬂ'p]k 2 [n-mip]k )
(0): 1,(0) ' '
('3’ ¢’In-1]q $ln)e” o limi“‘l S
where we hgve defineq the matrfceé: -
= () 0y (t) (n t) R
Bejer ~ 5 “%s w'“ ""tn—llq oL D
and 1et- _ - -" = - ‘,' " -
Cw L o W) | ‘ ’
€ = 1 Mk] 0N

LIRSS BRI
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'7We call Eq. (91) the magic formula because it is really the key to the

.general iterative procedure.

: And, finally, the n-th order perturbation equation is solved to obtain

¢[n]z Pnye -

() _ (0) Z H(t)¢(n t) o (94)
- ) _Y.J't"l .

Eq. (94) is, of course, exactly equivalent to solv1ng Eqs (83) and“(SS)
with m=n . Note that the functions ¢[ ]k are never required in the

T . H

iterative procedure for determining w
In our derivations, we make use of the fact that when I

(ti."l)?_S?_P s

e o (p) ORIRG S
o ..[s]z' - ([p]z' ' )¢[p]2'I¢IP llq

(95)

W~

-~ The Inductive Proof of the Iterative.Pattern.

P

..., .Qur proof of the iterative scheme is inductive. We know that the
pattern corresponding to Egqs. (81)-(95) applies through the first two
iterative steps. Assuming that these equations apply for the first (n-1)

.steps, we prove that they apply to the n—th step. N

_In treating the n—th order step, we follow the same format which we

. used for the flrSt two steps./,In this section we focus -out attention on

a- w[ 1% which is one of the set of w[ 1] . Thus, in the previous

order, the equation correspOnding to Eq. (82) has ‘n. replaced by (n-1)

-

-~

in the subscripts of the functions ¢-:

C -

w(m) = Z ¢(t) (0) (m-t),

E [n]2 : [n—m—l+t]q ¢[n_m.1+t1q,w(n32 0<m<n-l.. (96)



. . respect to the functiops ¢(0)

H
i

i the form

Although the energy aEIiK remains to bé.determihed, the n~th order

perturbation equation (6) can be written

n-1 . . ,
N o —(t) (n t) (n) (n) (0) _
t=0 w[ ]g t @ [nll)w[n]i = 0. ’ (87)

Sﬁbstituting Eq. (96) into Eq. (97), we 6ﬁtain

31

Yiajet ¢[ 11q "Etnlﬁ (n- 11:; *in-1lg ‘“lnlz
) . ’ {
: .n=1 n-s , S -
:.m 5 (6) (a-tos) _(0) - | (6" C
+L tzi tn-t-sla “’[n—l—s]g""[nn T 8

At this point, we are ready to assure: ‘the con81stency of. Eq. (98) with
RO ¢(0) . ¢(°)
[ 1]q ? [n l]k * Iln-~ 2]k »orrr [l]k )

A (1) The ¢§ )l]q Consisﬁencz, fngz and ¢§2§2V.

(0)* -

I Multiplying Eq. (98)? by ¢[n—l]q4 and infegrating,.?

LEY,

@ o e W@ - o,

[e[ﬂ-l]q [n]l 1] ¢[n-l]q [n]l

where the Efnzl] is given by iﬁ. (88) Because of Eq. (95), the

last line of Eq. (98) does- not contribute to Eq. (99) By repéafe&

(99)

manipulatlons 1nvolving the equations (83) [see Eq. (132) with u=n-1" ].

(n)

we can show that [n l] is Hermitean and it’can also be -written in

(n) <} H(t>¢cn't> 4 @, ©

(0)
z[n-].] t=1 [n l]

h—uq"’[n-uq S
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As explained previously, the e[ ]2 are the roots of the secular equation

-

g (n)

(87) and the correspondlng e;genvectors of a[n—l] are the expansion

coefficients <¢Eg)l]q[¢§05£> which satisfy Eq. (89). The function

¢§0%2 is deflned by Eq. (90) Since the eigenvectors are orthogonal

and taken to have unit: length Eq. (84) is satisfied.
Making use of Egs. (100) and (00), the conjugate cowplex of Eq. (88)

becomes a new member of the Eq. (95) family,-

A L@ <n)) ¢<o> 1600,

1 ¢ ) [n)g'.” Il X[n~ 1]q -
Also i . _ B . (101)”;
(p) (0 1,(0 (p) ot ‘
A[ 18t {n]2'|¢[n l]q [n-—l]q 05> ' .;J.~_<P__:n il‘

oy ey

: .[A(n) + (e(n) (n)z) ¢(0) l¢(0) >]< ¢(0) lw(O)

1-..
L LY

) }. .-

N Therefore we have proved that if Eq. (95) is valid for ssln-l) , then

it is also valid for s .. - Y
S N T T
(2) The ¢§0) Jk __Co.nsiste.nci‘.. o s EE e

- Mnltiplying Eq. (98) by. ¢§0) Ik and integrating, we obtain

2.3:'4;.

~[n—-s]k - q - [n] <[n- s]k [n 1]q [n—l]q [n]z
G2y (0 Gy Lt e e e
+ pgl A[n-s]k ¢[n- ‘P]qlw[nll 0. , ) .:Er-;_ (102)

Howvever, b& repeated use of Eq. 190), ': e IR v
(0) (0)

(0) LT (0) - (0) (0) - ;
¢ ¢ Iq)[n—ss+1]q ¢[n—s+l]ql N>[n—l]q> » (103)

*In-1]q [n—s]q [n-SJq
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so that according to Eq.A(84)

(0)

) o ,
¢[n_s]k | ¢[n—l]q 0.. ‘. . (104)
Also, from Eq. (95),f
~§2:§§k =0, pre, . aom
RS 5)- (m-s) _  (a- ey (0 (. (0) PR
~[n—s]k : ( [n-s]k - q )< ¢[n—s]ki¢[n- -—l]q> . (106).
Tppé,,since bylﬁq.-(QO), > ) -
(e) () 5 - (@ (4O () Gy .
{n—-s)kl“’[n]z [n-s)kl¢[n- -1 ¢[n- -1]q“’[n)z oo am
£ ’ : ’ ".”“" ~7 b
.Eq;~(102),.the éfg) Ik consistency condition, becomes
(@ (s) S @ (emn) ,.(np) ., (0) Gy, e
[n—s]k”’[n]n péogk | ~[n—s]k ¢[n—l—p]ql")[n]2. (108)

-

i

In deriving the magic formula, these consistency conditions are

vet PO
hd \e . b

‘used in the folléwing.connectian;A Since, -

© ONPRCIERONS R
d)[n--s--.'!.]q ¢ n-s]q [n-SJq' [n—s-l]q R
© NONEROIES RN
¥ z d>[n--x-:]k [n-s]kl¢[n— -l]q> A : “1(;?9)

-~
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- (0)

P (0) (s) (0) (0) ()

| ¢ n-s- 1Jq'win12 $a-s-1]q!$in-s1q” ¢{n~slq|“[n1z

| ' ) | L ;

i (0) Q) (0) (s) : »
: R E Ln-5 —l]q1¢(n~"‘“ ¢[n*s]klw[n]2 S

| (o) S RSSO S

. Thus, using che ¢{ 8]k conslstency condition, -

’ ¢(0) Iw(s) ¢(0) l¢(0) ' (O)

| ]W(s)

; [n—s-l]q [n]2 Z{n~-s-1llq [n s]q [n s]q [n]£ ' -
- : - h 5% (111)

i ~ () 16(® ' s-n) , (a-p) _, (0) ,(P)

3 + E ?in—s~l]q [n-s]k 2 E&; ~[n~s]k ¢;ﬂ—l-p]qlv[n].%
oo T : .

i. (3) The Proof of the Maglc Formulajt ¢Em%2 . )

% We seek to show that 1f the magic formula is valid for the deter-

|

b mination of all of the ¢Cm') : for n'<n and m'<n' , then it is also
- Z[n']L' . .

fe
‘ valid for the determinatlon of the- ¢Em;2 with m@m<n . We do this by

. comparing the two erressions for wfmaz » Eqs. (96) and (82). Iﬁ

; Eo. (96), all of the ¢Em,3 which occur correspond to nf<n and
~therefore'we can assume that they are known at this stage of the develop=

ment. In Eq. (82),.except fer th ¢(m -t) the only unknown function at

[n}2°
¢(m)

this point is [n]ﬁ By start*ng out with Eq. (96) and making"‘

" repeated use of Eq. (109), we obtain a new equation which agrees with
' Eq. (82) provided that ¢§m§£ is deflned in accordance with the magic .

formula (91)
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%,

In oxder to make cur derlvation less cumnersome, Jet us define the

following functions:

Y '-.1 . .
3 = o) P (w (~nm-u) | (a-mtt)
ft(p) ¢{n—m+t -1llq + ‘ZO ﬁ 9[n—m+u]k§a; S T (112}
(0, Ty @) S {113
aod - . : : I . -
= (t) . ., (0)' { .(m—s.) B R ,
% 7 $incwrele Ypmweel | VIl L, (114)
We note that, according to:the magic formula’le), - ) P
: (t) - (0) - oy . _ a _
- é[n—m+t]£’ . (t> ¢In m+t l]q]¢[n~m+f]0'> . g (119) E

ice s "

Then, using Ec. (111) where we izke s=w—t ,33d p=m-~u; also- using Egs.

{113) _ (3‘15): ) DL S e ( Tt . o .
. = T om . o
R : -' (£) C—n+m~t) (n-artu) (0 R ¢ uj,
V\ =
1“.:ctl, ’Gt+u=g+1 z ¢ v~m*L]1€ : ﬁ@rﬂﬁ*}k ¢[n*m—l+ﬁl§!bin]£
' : ' (116)
" In"the new noéééipn,,Eq. téZ)A_is -
@ () (©) L
m) _ % ' m .
Ylale 7 Lo % * fingp © rnn!“rnu 7

o

" 2nd Eq. (96) is

w L L (m)
A w[n‘l
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Now we'aie ready to proceed to revige Eq. (118). Ve start by
applying Eq. (116) onto the term F (0) . The terms'in the'Eq. (116)
" sum provide a con*ribu;ion to each of the remalnlng F (0) so that

"the net result of applying Eq. (116) onto FO(O) is that Eq. (118)

becomes

L e Bae e

| ‘Applying Eq. (116) upon Fl(l) : thén upoh F2(2) 3 ee. 3 and finally

on F (s) changes Eq. (119) into - s J;:' ) o

:' .8 oL . . L A { P

? | W@« § e § onew . oo

| . ' = ¥V e + F_(6+1) . S

- . [D]z V”O . v - t:‘s‘i‘l - - ~ .

; . When s=n-1 , Eq. (120) becomés .“ i;"w' . ‘:ﬁ - :&‘ -

i .. _ w§m§2 mil G, +F (m) o .l S -. (121) i;'i

o . | n . =0 ) wh ,
Comparing Eqs. (117) éﬁd‘(i2l), | - ) . .

T () NONMO © @) SRS

- "’[n]x [nm”’[n]z 2 (“‘) 4’[n 1]q|"’[~1m e

Py .

Using Eq. (8l) [which we have.alréady vérifiéd], it follows that

B R . ) .
t . - . : R -

m o (0) (0) S PR
¢[ 12 fm(m) ¢ l}ql¢[n]l ’, -» . F(123)

i

-

wvhere fm(m) iszgi§en by Eq: (112). Eq. (123) is indeed the magic



'~¢(m)

equation. Substituting theiexpressions Eq. (82) for w( m) with
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'fofmula! Thus, we have compleﬁed the proof.

(4) The m-th Order Perturbation Equations.

According to Eq. (83), the functions é i] satisfy the per-

turbation equations

2 —(t) (m t)

Because of Eqs. (81) [which we just proved] amd Eq. (124), the ¢§m§2
satisfy the first (n-1) st . order oerturbation eqﬁaﬁioné 283) And

making use of Eq. (91), Eq. (89), and the orthogonality conditions (85)

for ¢§ ?]1 with n'<n , it follows that Eq. (85) is satisfied by the

[n]g: ¢ . - ) . . .'"’ : BT A .;. o

it --/’/
(5). The n-th Order Perturbation Equation and ¢§n%£ .

At this point we are ready to solve the n-th order perturbation

(n]& Cce e

m<o into Eq. (97),

(°’w(“) + 1 Z F(E)y(n=t) (e(“)- (n) 3,00 5 (0) Iw(O)
t=1

[n) tne- e[:}n)q’[n]z 2nl2 [n]SL -
n-1 n-g ' _
: ' —(t) (n-s-t). (0) (s) o o
¥ Szl‘mtzl ¢[n-81q In~51qlw[n]2 .0 L (125)
Thus, aocording to Eq. (14), : ~l; - e {_1’;; o T
0 @ (0) ~(8), (n- t) co> 0)
o ’bl P :21 1 % [nn”‘[n]z
n-1l n-s
(0) (t) (n-s- £, (0) (0) (0) (n)
! Szl tzl ¢[n -slq {n—s}q' [n]l {O]q O]qlVrn}z

$n-11¢ = 0 Ogmgn-1 .. e o o(124)

-

(226)
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~ V. THE (2n+l) RULE AND SOLUTIONAL ECONOMY.

(n-s)

fn-slq and

Thus, 1f we use the expressions given by Eq. (S4) for ¢

define ¢§n§2 in accordance with Eq. (94), then fwgggz is given by

(82). Substituting this expression for w{ﬁ%z into Eq.. (125), it

(m)

' follows that the ¢[ 12 satisfy the n~th order equation ﬁ83)e, Since <,

(0)(..;) ¢(0)

[0]q °

follows from Eq. (04) that ¢§n§2 satisfies the orthogenality condition

ady function :of the form R is orthogonal to the it

Eq. (85).

- s -
-

(6) ______rx

I,.

’ Thus we have shown that if Eq. (81) - (95) apply Lhrough the
(n-1)st iterative sten, they also aoply to the n~th step. Since—' )

Eqs. (81) - (95) have been shown ‘to app*y through the first two orders,

iL follows that these relations must hold for all values of n .

The real difficulty'of determining the perturfation energies is
involved in the solution of the partial dlfferentlal equations which.
are required. Thus, there is a very real advantage if we can redﬁ/e

the number of differential equations necessary to obtain 8( n) or

[2n]2 SPE AR
eggn:igz from (Zn—l) or’ 2n to n . This should be possible since

S

Vigner showed that if an approximate wavefunction is accurate through

o a ‘ '
“order: i ", then the corresponding expectatiomr value for. the Hamiltonian

should be accurate, fhrough ordex k2n+1 . Indeed"for non;degenerate_
' (2nrkl)
.Raylelgh Schrodinger perturbatlons, the energy through eq S is

determined by the wavefunction through w (n) . We will show in this

section, how to do. the same thing for degenerate perturbations. This



- first s perturbatlon equations (83); and the ¢

solutional economy is accomplished by means of: (4) The "unwinding

(n)

- and winding" of the A[ e 3 (B) The repeated use of the magic formula

to "unwind" the ¢§m§2 ; and (C) The sequential solution of a set of

léigenvalue—eigenvector equations. . -

(A) The "Unwinding and Winding" of the (n)

. L sl& ’
- In carrying out the '"unwinding and winding" of the %2%2 we shall
be concerned with two sets of functions: the ¢Ep§£ whic% satlsfy the

(v)

¢ ln-11q .which satisfy

‘the fixst (n-1) - perturbation equatlons (§3). ‘Thus, it is obvious that

-

if the first n orders of the ﬁamiltonian‘are Hermitean  and.if U<S,‘of

if we are deallng,wlth ¢§p3 the: u=s is also éllowed, then,
. . N - -i‘ N

u;l

(p) (u- p) (n- u) o (u) (0) (n u)
pz [s]ﬁ'H _ ¢[n-llq , <¢( JRIH In—llq
o T B T PP O S . o
' ERE (u) <nu £), (8) T '
LF .Z‘.-. b _'f'-.: 2 [ ]zlﬂ ¢[n—l]q - g - (227)

t=0

Sen

" The . Eniﬁ defined by Eq. (92) can be expressed in the form

soa® R0 gt ), ~
Q{s]z tE [ IZIH n l¢[n llq ;f’ - (128)

if we apply oth'tbe tei@_yith;vgén—l~,the Eq. (127) wi;h-theﬂ u=1 .

operation, .then we obtain

| a2 o1 P -
T L e,

fl
»
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$ -

Repeating this operation with u=2 wupon the t=n-2 terms in Eq. (129),

- .

) (n) n—3 2 (p) (n Cem p) (t) . )

Thus, after repeating this process -(u-1) times,

n-y-1 u

(n) , (p) (n-t-p), () T ~gga“.;q' N
Mere ™ L 2t Jz'H g e
Where . . o .
u<s .fof ?fg%k 'pr_ u<s for ¢f§%q . s

o
3
‘e

. — : L a, P

v -

* . This "unwinding and winding of A(n) .has the advéntege thet instead

=8l

(t) : T

of requiring ¢[n 1lq through the (n-1)-st order, it is now only
necessary to know it through the (n-U—l)~st order. But 1t has the dis-
advantage that now we must know the ¢(p) through the u-th order;_

~[s]&
Ughally it is best to let u=(n-l)/2 s+ Or close to ‘it.

—_—

(B) The "Unwinding" of tHe Energy.

(n) . (n)
Slnce E [ ~1)q é n—l]q

bl " [ KD S f, - ‘
Cpwlow e
R T ) (a-top) [, (6) XIS

tZO. pZO , [n—l] lH |¢[n—l]q R

+ e;n)} ;'fron Eq. (1315,

(n)
~[n—13q

© +1.Cady. (O) SRR
kA ¢[n 1]q|H '¢[n-1]q>." L

vhere the primes on theisnmmations mean that the term t=p=0 is

excluded. By taking u=n—l » we have demonstrated that Efn)l]q is :



These two equations demonstrate the (2n+1) ‘yule for the energles:
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flermitean and prSved‘"f E@l (100). If in Egq. (132) we replace 1 'by

2n and choose u=n-1 , we obtain

(20 0y (n);, (0) B ®) (2n-t-p) | , (£)
. ~[2n—l]q d>[2n 1]qu !¢[2n l]q + CZO pZO d)[2 l]qIH lq"[2n—1]q>
. (i33)
Wﬂile if we replace =n 'by 2Zn+l' and Ehoosa ';=ﬁ', we 6btain
(2n+1) (0) (2n+l) ) . ' n’ kP) (2n+1-t -P) (v)
Stznle " “Ciznle b M’(znl Y +t§o Loiz01ql® 1#(2036” -
U T asey

yer

fhe- ?E;i;l]q and ¢E§)]q~ with - t<n “in Eqs. (133). and (134) can be
(m') . o
¢

[ ']2 w1th m <n <n . ‘

expressed in terms of the :

. o N T B
N . .o .- Lo

[ ]z ,'.' LN :.4 e

» To demonstrate the (2n+l) rule for the wavefunctions, we note

.(Q) The Unwinding of the ¢(m) et -

that in order to calculate ¢Enij]2 according to the magic formula (91),

we require the matrices -

L (0) (0) T p ()

~[n+j m'l‘p]k ¢[n+3-mr{rp]k|¢[n+3 m+p llq :[Iﬁ’j-ﬂﬂ‘p l] s (135)

R

‘wﬁich accdrdingato Eq. (92); invoi%es up to (h+j-1) order wavefunctions.

However, we may apply Eq. (131) to obtain ) ) f.
Alm3) “*5 TN (s) (ntj-t-s) | (t .
~ln+3—m+p -1 - Lot £ S)l¢ ) K135)

>
t::o R 'sﬂo. [n+J_m+'p 1]‘1 [n‘l‘J'—l]q ’

i - -45':' . ’ ~.:;."‘ .
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where u<{(n+j-mtp-1) . Thus, we can avoid wavefunctions of higher than

n-th order 1f we choose u so that

For example, taking w=j-1,.

. : j ; . ~. ) -
(nt+3) (s) 15 (n+3 t—s) €3)
é[n+3—m+p-1]q tZO szo ¢{n+3-m+p 1]q B . I¢ 7

VI.

(3-2) g ugnn . | ' (137)

(24511 (138)

Of particular interest is the case j=n , vhich establishes the

(2n+l) rule for ~§§2)1] s end'the case j=e+l ,>whiéh establishes the
) (2n+l) <o - . ~;.-._'-"'-‘~' i
_(2n+1) rule tor ~[2“19 | - . N .

I o T -~ T O R G

.-

COMPUTATIONAL PROCEDURES: THE BASIC CYCLE AND THE (2i#1) CYCLE.

ST LT T A,

' There are maﬁy ways in whieﬁ'dur formalism can be used to calculate

the energy and wavefunctions of degenerate states. The optimum pro-

. cedﬁre depends upon the detailed branching of the energy of these states;

whether the wavefunctions as well as the energy are required; whether

tﬁe energies of all of the degener te states are belng calculated; and

to what order should the energies and/or wavefunctions be determined

In arranging the computations, codsideration should be given to two types

of procedures: the basic cycie and the (2n+12 cycles. In the bésfe,

(m)\

the €§n§£ is determined from a mncwledge of the ¢ l]; where

~(2n+l)

0<m<n—l . In the g2n+1 , the energy through [2n+l]2 is determined

from a knowledge of the ¢( ) fore's<h“.- If the determinatlon of
<[2n]q

¢

(s)
~[slq

requires the solution of a partial differential equation and is
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therefore a computational bottleneck, then.the (20+1) cycle is

" benefictal. If, on the other hand, the ¢§S% is belng approximated
(0)

by a.linear combination of basis funct;ons [see Sectlon VII] and R

becomes a finite matrix, theﬁ'the advantages of the (2n+l) are not _

(2n+1)

obvious. - And, finally, if the emergy through the €[2n+l]2 is required,
then one might choose to use the basic cycle through efgiiil

and the ¢Em§2 and complete the calculations by a ‘modification of the

(2n+1) procedure.

In any case, the ¢'s are:relatedzﬁo the wévefunctions'by'Eo. (82)

P d

£ . N B . - Y
b . ., R - s

1JJ(m) ¢(m) ¢(0) (0) S an

[n]2 -~ %[nls [n]lw[n]g | o :._w._.,. .f:/."/ _
. ¢[n-m+t]q ¢[n—m+t]q w[n}g ' ’f, . :-_ <7
(m)

’ ENTEN S . ’:
where the w[n]l is intermediately normalized. For any other normaliza-

tion, Eq. (86) shoold be used in place cf Eq. (82). :

The Basic Cycle - R v s

) The ba91c cycle consists of the following chain;:"

ve .

@ @ (0) (@) .. () . (nD).
--> 5 1] ->e[n]2 . ¢’[n]2f°>¢[ ]2 for 1gmgn- 1-&4;[ % -ia-e[n]q >

The starting sequence is the regular‘basicACYCie with o ;.“??

(1) (1) (o) feb) (2) R (2) (0) | NN R
“”q-) = “’[m""bmq E"E[l]q" Sr2e ¢[2]2-a>¢[m



The steps in the chain are:

L 1) The E%r)l} ;s given by Eq. (88)s
(n) +€0) 7(t), (n-t) @) (0)
Eln-1lq ~[n—l]ql Z ®(n- -1g ¢[n—1}q> (88)
. @ o, ' '
2) The S[naz is given by Eq. (87),
@ @) S '
be fin-1]q ~ ©[n]d 3 1 =0 @D

-

3) The expansionicoefficients <¢Eo)l]ql¢(o)

vectors of efn)l]‘ by Eq. (89), o ' Lo f ‘

.‘ “.\ '

RO 3 (0) 1,(0)

(€13~ e

(LR A

i B The ¢{ ]2 are then given by Eq. (99),

T O L0 (@ (0 S
Ao "’[n—nq 4’[n—1]q[¢[n12 ~ - (50)

L) ‘fhe ¢E 3 for 1lgm¢n-1 are given by Egs. (91)'- (93),

| (m) (m) (p) (nim-p) . (n) 0) | (0)
[nll [q)[n-l]q Z qb[n—nrﬂ‘p]kgk : ~In mﬂ]}d’{n-l]qld)[n]% ’
’ (91)
_where’
RO T SN () 1 (amt)
~[n—nr§'p]k B tZ [Bm’r?]klu “’[n-nq (92)

(n]2> 3re given gg:th; gigen;

¢[n-1]ql¢[n]2 0 T o , (82?:'

Rt R ]
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and . S h . o
(<mtmep) L (ammep) T (newhp) S
ETTT - LT 6
5) The ¢En§£ is the solution of Eq. (83) ,
=(0 (t (n—t n ) 0 o
i€ )¢§“§2+ Z B ) ¢ ]n) + [H( ) gn]zld’%n;z =05 ~(83)
) : 4 51Y
together with the orthogonalityxrequifement of Eq. (85),
@ @y L S T
= 0. . 5%, .- .
[O]ql¢[n]£ S o ‘ .'i._(‘ss)
However, if ¢§n§£ is being approximgted by a linea§ combination of
fixed bésis functions, then R(o) is a matrix [see Eq (158)] and it .
is more conven*ent to determine ¢En§£ by Eq. (94) S T
“The (2n+l) Cycle ' o - o ix

‘The (2n+1) cycTe consists of the following chain.

L

' _ ¢§2§ '*;3‘ ¢§n3_ 3 for 1<j6n-2-)¢?;) 138 for 1<m<n

]

~(2ntl1) (m) (2n) ’ (0) - - (2m)
Etznlg ¥ Srzapefer. J‘é‘“““ € T2a1e "’tznn“" £(20-11q

(2n+1) (0) (n+1) o, e ,
[201)2 * $[2n41]8 "M’[nu]q o

‘)

.. E

The stéfting.éequenée is the same as the regﬁlaf (2ﬁ+1) cyéie with the

following exceptioﬁs: “In the n=0 cycle, only the (8)-th through
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(10)-th steps are performed; in the n=1 cycle, the (2)-nd and.(§)~rd.
steps are omiﬁted; in the n=2 cycle, the Y2)-nd step is comitted.

Figure 1 shows the energies and ¢'s which ire calculated in each

.cycle.

The steps in the (2n+l) cycle are:
(n)

1) The ¢[ la is determined in exacfly the same manner as in step (5)

of the basic cycle.

2). The ¢(n) ‘:gér 1¢jgn-2 - are determined by successive applications

Patylg | ‘
“(Start;ng with j=1 ) of the following relation (taking m=n ) which is

\-

obtained from Eq. (91) with the help of Eqs. (135) and-(138),

yor

o® L fem .
I[ntilR [n+3—1]£ !
¢(0) i¢(0)
+3 z ¢ @) gf-n—j-"m-p) (n+3) Plptsmrla P10
[k p_ < [ntj-mp Kk [n'*'j-nrfpll; | (91)
where ' - '
. @ ln=jim-p) _ _(otj-mip) (k) ’
8k leg - e[n+3*m+p]k] : : (93)
(nt3) 0y (0) (nt3): - . |
é[nﬂ-ﬂﬂ'p]k D otk | € [k § —rrbp— -1]q” é[n—l—g—nri-p—l]q (135)
and _ : o )
(n+3) " v (s) } =(n+j-t-g) |, (t) .
é[nﬁ'mp 1]q tZO s’Zo ¢[n+3-m+p—llqln ‘ 19 [ne5-114> = 130
3) The ¢§2) 132 ‘for' Lgmgr are~detérmined from the same equations,

(91) (93), (135), and (138) as OC”ur in step (2) where now j=n—l .

4) The Eggn)ll is determined by Eq. (133),



(2n)

€

Here the
omitted.
5) The
. step (2)
6) The
step'(d)

7) The
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(0) (n)y, (0)
=[20-1)q ~ ¢[2n“1]q[h lor [2n- 1]q
n n-1l .
' @ (Zn~ -P) |4 (t)
* tZQ pZO ¢[2n-—l]qu l¢[2n—l]q> . | (133)

prime on the summations indicates‘that the term . t=0=p 1is

(m) | L : S
8[2 i 1s«determined by the same equation (87) as occurs in
of the b351c cycle, except that now n is replaced by 2n.. 'f~

(0)

¢[2 1% is determlned by the. same equation <89) as occurs in

of the basic cycle, except.that mow n -is replaced by 2n .

(m)

¢[2 12 for l§m§n are determined from the same equatlons (91), .

(93), (135) and (138) as occur in step (2), where now j=n .

 8) The Efimgl) is determlned by Eq. (134), ,
T T, ‘: . i
. (2n+1) (0) (2n+1 (0) T
- f?tznl | “‘““"tzn]q*“ ‘“’[znlq ' R -
. .
' (p) (2nt+l~t-p), (L)
+ ) X <G roalf l¢ (134)
=0 peo- -120]E £2an o |

Here the prime on the eemmations indicates that the term t=0=p is

omitted.

9) The

.

8(2n+1)

(20412 is determined ijthe same equation (87)'as-occure in

step (2) of the basic cycle, exeept that mow n is replaced by (2nt+l) .

10) Finally, the ¢(0) is deté}mined.by the same equation (89) as

occurs in step (3) of the'bgsic eycle, except that now n is reélaced

by (2n+l1) .. : '_"‘;_'"'-;..':

<[2n-t1]8

[
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VII. RESOLVED DEGENERACES AND SPECIAL CASES.

As the calc;lation outlined in Sec¢tion VI préceeds‘fo higher order,
-the original block of degenerate states is split'into smailer blocks
and eventually becomes non—degene;ate {or re;phes the dégree of degenegacy
" which remains in infinite order). All of the equations aﬁd procedures
in Section Vilremain ﬁalid when this occurs (and, in faét, are correct

even when the degeneracy is resolved in zéroth order, i.e. in the non-

degenerate case). The character of the'é@uations changes somewhat,

however, and the procedures becomecsimpler. - . .~ ! -~ - ..~

-

The major new feature which emerges wheﬁ the degeneracérﬁs-resolﬁed

. is'that thé wavefunctions w;n)

begin to Be completely determined. . When
. i

" the degeneracy of the state q of interest is resolved in r-th order,

the original block of unperturbed states is resolved into (r+l) sub-

0y - (o)  (0) ) "t aT (0) RO
lrlq’ ~[;]k’ ?[Z]R’ oo ?[r]k . Fhe subsetg ?{r+1]k’ 9[:+%Jk’ e

'are empty. Then the magic formula (91) gives

séaces: 0]

-~ . L R

LIS

() O - S
¢[r+n]q - c‘)[1**'n+ss]q" nz0 sl o L a8)

» -

so that Eq.(82) gives

() 3 (;3 | . . .
Yo ' ® 9lnmnlq o qao..f; o (;40)

;n.order to discuss the simplifications which result in the pro-
cedures of Section VI, let us first «consider the special cases when the
degeneracy is resolved in fdrst or second order and then discuss the

general case,
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(A) Degeneracy Resolved in First Ordep.<

In this case Eqs. (140) and (91) give
@ _ ()
¢q .

= ¢’[n+,1]q

] (n) ©) (- 1) Wy
[n] i 11k5L [l]k ' (141)

where, according to Eqs. (140) and (94),

'_;éf'}" ¢(n) - (0) Z H(t) (n t) -

~[nlq =1 Ve T i g(;42)
and, according to Eds._(l&O) and (92), ) -
; a .
@) (0) w <n) ©) y=(t) ), (n+l- t) A
| é[llk <¢[1]PIH l¢ alq >+ Z <¢[1]k|H lw . 49

The computational procedure involves solving Eq. (142) for 6§n3q
which allows $§é3 to be calculated. Then the (2n)~th and (2n+l)-st

order e#érgiesxare célculated by Egs. (9) 3941(10)1

(B) Degeneracy Resolved in Second- Order

In this case Egs. (140) and (91) give a g ' : ffj»
D L o@D @) 0 g2,
Yo " 4310 7 ¢tzlq fapre 22l (a4
and
NELJI NCORRW (S (D, T 1,0 5
tzlp i?[l] +z¢[11k f1];}<¢[’]ql¢ﬁ2]2 (243)
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Then the higher order wavefunttions are given by

() _ 4@ 5 () <o> (-2) <n+9) | |
Vg ' = Plnt2lq [n+l]q £ [2]¢8L ~[2]k ' (146)

and

(n) (n) (0) ( l) (nt+1) 1) el- 7) (n+1)
¢[n+1]q d’[n]q }:¢[l]k S ” 2"’[2]1:8 Aoqra (4D

where the coefficients in Egs. (144), (145), (146) and (147) are

(1) 2 (0) T g, (c) £(2), (a-) 5 (1), ()
é[llk kg <¢t1]k' 2 e $nlq ¢tn1q S
e Y L) (e eop) (£) (- Py, g
| ~[2]P | Z ¢[21k| Z H S e

S

(n+2) (») = (a+2-t-p)  (£), = (2-p) (n)
A2k X ¢[2]k’ 2 H by ¢[n+1]q>

. o b o

The energiee_are determined by Egs. (9)Aand‘(10)1

(C) ' Degeneracy Resolved in r=th Order.

In the basic cycle, if the degeneracy is resolved in r—rh order we

(0 by Eq. (140). Then in each succeeding cycle,

immediately obtain w
'we obtain one additional perturbed wavefuncticn. The only modification
of the procedure is the omission of step (3). Of course, steps (1) and

(n)

_(2) are much simpler because € a-1lq is a—number, not a matrix. In
step .(4), 1; is necessary to con31der only n—r<m<e;l and the upper
iimit'in the sum over p in Eq. (91) becomes m-(n—r)

. In tké (2n+1) cycle, if the degeneracy is resolved 1n-r-th order,

again we immedlately learn w(O) . In the next cycle we obtain wé ).



.fesolyéd in fourth order is i1lluétrated in’ Figure 1.
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in .
and :wéz) ; and/each subsequent cycle, two additdonal .

(n)~

until
q .

n=r . Thereafter, each additional cycle yields one additional wén) L

The modifications in the procedure are that steps (6) and (10) are

_omitted, while in steps (3) and (7), it 1s necessary to consider only

those perturbed functions which are not complete according to Eq. (140).

(x)
q

Thus after . is.obtained, steps (3) and (7) are omitted entirely. -

Wnen the perturbed wavefunctions are known completely, Egs. (133) and

-~

(134) reduce to Eqs. (9) and (10).

[}

The computational procedure fbr the case when the degenéracy is

b

=
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VIII. VARIATIONAL METHODS FOR APPROXIMATING THE ¢€2§§1.

As mentioned in Section V, the most intractable aspect of degenerate
perturbation problems is the solution of the partial differential

equation {83) with the Eq. (85) constraint (or equivalently, the solution

(n)
[nlq

to those of determining the n~th:order wavefunction in a non-degenerate

of Eq. (94)):for the function ¢ . The problems involved are similar

example, ‘In this section, we cqﬁsider variational methods-of approximation
which can be used wﬁen'Eq. (83) éannoy‘be:solved-éxactly.‘ In this s;cfioh,
.tildes ;re ﬁsed to indicate épprokiqate fughtions or engfgies. B

The basis of the variational method is the usual variatiZnal :

principle:l Define the functional J -as -
S T S ' . £

) 3= G B - E QO[T > -, (149),

- . u,," N

Holding Eq fixed, vary wq so'as'to’make 8J = b... Repeat this process
for différent'values of Eq. untii'simultaneously

J =0 and 6J = 0. ‘ (150)

‘ The application of variational methods to degenerate problems has been

considered previously by Epsfeinrlz'

- (A) Linear basis éet;zg

-~

A generally applicable method is to express wa as a linear

combination of the ¢E8}q and a fixed set of basis functiéhs fk .

is convenient to express the set 6f'_fk in vector form as f . Withoit

It

~

loss of geherality we can’require®that the £ be ortho-ﬁormél;-ortﬁogonal

to the éfg;q , and diaéonalize H(O) ’




54

«<£[£> = 1, <fl¢fg; = 0 ' (151)
. and
<f ]H(O)lf > = Eé0>6k . ' (152)

The effect of the linear basis approximation is to reduce the infinite

dimensional Hilbert space to the sum of the two finite subspaces; f and

¢(0)

®r0)q ° The projector onto this reduced subspace is

P = |f><£| + l¢§83q %g%ql , _ (159)
In this ﬁotation, : o : - Y - J‘; L
- I S S (0) (o) L
‘l’q ..Pll)q f<fN} > + ¢[0]q [O}q]w - | (154)

' Here the expansion coefficients <f|w > and <¢(0) ]w > are variational

<[0]q
parameters. Substltutlng Eq. (154) into Eq. (149) and satisfying the

variational condition Eq. (150), we obtain the familiar eigenvalue-eigen-

vector equation
HA) ~EJW = 0 » : 155)
[.() ¥ ” Q55)
where

B = PP and E® = m®™p .. (156

From Eqs. (151) and (152), the zeroth order equation becomes

0. (157):

(0) 2O I and (5O <o> (0)
[n S - J§, =.0 and [u‘. "1810)q



55

ﬁ(O)

The resolvent corresponding to is then

S0) |y g (0) | AO) -1y L. '
R E leq - €x ] E 230 N ¢ £ 1))

Thus, if PF is an arbitrary function in the reduced space then

=(0) _ <o> FOpp = pr - 400 (O [ops ‘
- )R ; PF ¢[0] $10]q IPF - (%59)‘
The resolvent §(0> then plays the same role in the reduced space as tﬁe
(0) - 1 mi1h : S

resolvent R plays in the full Hilbert space.

.-_ Thus, we May apply the formalism of Sections II- VII to solve KEq. (155)

-

exactlz to any desired order by using the tilde matrices in place of the A

correspondlng operators and by using PF in place of all functions F .
X , ‘ , .
Thus, the solution of the degenerate perturbation equations is reduced to

" the solution of a set of matrix equations.

PN TP AN

(2) . [ .
zl1]q ‘

.The general application of variational methods to degenerate problems .,

(B) Variational principle for ¢

. leads to considerable ambiguity. Here we restrict our consideration to

the determination of the energy through second order.

Let us consider a trial wavefunction of the form’

A w‘°) + Aw‘l’ S <0
}

W

where, as sugéésted by Eq. (28),

L@ L <o) (0,
Vg ¢t11q [l]qlw

Lo

ey

t

—




say ¢[l] - is obtained by puttlng 8J

yariafions 6<¢(0) ]w(o) , which give

......
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S - 3 ,00) (o) (0) (40 (3,
Voo 7 tmguielle Tt flogoglly v (6D
The notation implies that we know the sets ¢§g; and ¢E2§ exactly,

and the quantities with tildes are -to be obtained from the variational
principle. Substituting Eq. (162) into J and expanding in powers of

A gives as the leading term

52y <w(0)l¢(0) ~(2) _ (2)] ¢(0) lwéo)> ;

[l]q [l]q [l]q
where i
2@ . G O W) 1@ O . et e
Mg “@ra)qlH Wu1>+@umm l¢mq e
4 <¢[°) [H(l)l¢fi§ * <¢l°) ]H(2)|¢Eg% (63)
. Néte that when 5%13 is exact, ~fi% pecomes §1; exactly. Also,
-the @) does not 1nvolve the coef£1c1ents <¢Eg% |¢(1>> at all.
The varlational equation for one of the members of the set ¢(l>

<{llq °’
< (1), (2)

=0 for variations

6¢§i%qa . This gives

1

.\: @
4 {(1lqu [1] {1]lqa [1]q l]q 1

N f

Z;5¢<1> |H<0)|¢<1) s+ <6pD |H(1)|¢(o) 3’ (0) |v<o>

. 's_;i R comﬁiex coﬁjugate = 0. (164)

The vafiationél equation'for the <¢Eg% ]w(0>> ~is then obtained by

[lJ

{€<2> - 221

e, lllqiw(O) =0 (s3)
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Thus, as discussed by Epstein, the equations for the 5%13 and the

615>

are coupled together and presumably must be solved by an

iterative procedure.

(c) Quasi-variational procedure.

It is easy to write down a set of functionals whose stationary points

are the exact solutions ¢fn§q . If ¢§3%qa is a member of the set, then

(2n) _ (n) 7(0) 15 (n) rCONETIOINCILN -
Yoo T [n]qal l¢[n]a + Z {<¢[ ]qal Joppyen + e} (15@

is such a functional, where we assumé that the lower order fupctions are

| known exactly. The most straightforward procedure is to use . GJéin)=0 to

" determine 5% % , and then to use this set in the céméutétional procedure
outlined in Sections VI and VII, treating it as though it vere exact. ‘It |
should be emphésized, however,.thaﬁ this.is not a truly variational
procedure in ;he‘sense of making the total energy‘staéionary.

T

IX. THE OPERATOR TREATMENT.Z9

In the present section, we wish to develop the operator approach

independently of the direct treatment and then show how the two are related.

-~

A. Definitions and Basic strategy.
Before préceeding with the derivations, let us introduce some of the

new He;miteanhoperators which we: require: First of all, tkere is a

family of resolvents , -f ig - '  ?U;. ': - - :1‘}

R(fs)r- Zaﬁ S)l¢f2§k><¢§2§kl S (167)
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Then, letting V = H - H(O) ,
= o _ (0)..(0).t ; : (Oj : » )
o tZO L= B €q %) V- Eg*eg?) ngl AQp 7 . (168)

Here the n-th order of QO. is’given by the recursion relation

Qén) - -(n) + 2 Erit t) (0) (t) (169)
R . ) t=1 . o .
And, finally, ;here is the set of operatérs
[ n (n) o
Q= K+ X [(Q - K HrOP)) CR 4 Z A ,  (170)
.. P . =0 -1 L ' l P n:l ° '
where | | o - .
S e S I ,‘ NI SN S “
Kl = ,QO_ and Kp 0 mEZQm_2~ . . Q7).

‘One of the most Important properties of the Q0 aﬁd Qp is that

. O AR COYI h
Q@ = IV - Eq_ L + Qg amy

— - - - M -

= Q. . B GP)y - -

' Using Eq. (173), it is easy to show by induction that the Qény are

given by the recursion relations,

an) = Q;fi. =. }-' Qéf; R n<p+2
Q§E;: = Qé (n- l).( n+2) :231) . .n§p+%.‘ a7t
Co®) L o) <p)<mw-ai Cnpiz o
- , 2
Qp Qp s*p+1 p l BopE
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In order‘to explain the‘sighificahce of these operators, let us
briefly sketch the strategy of the 6befator development which is given in .
subgection B. Our attention is focused on the wavefunction wq » which we

relate by means of infinite order operators to the unperturbed functions

¢E8% The most general form fér wq. is. .
o (0 14(0) (4 (® o
Vg = AF RTINS dorlVe 0 @

4

where Q0 1s an operator to be determlned so that w satisfies the

Schrodinger equation. Here W might be any of the f“DCFi°nS ¢[0]q )

Since R(O) annihilates all of the funqtions ¢§0§ N Qe complete the
definition of Qq by . . » - _ .

¢(0]q!QOI¢[0]q [oqu‘l’q 0 . e
(0)
. ~[0]q °
This is not a true secular equation, however, since Qq is not linear in

Thus Qo becomes an effective Hamiltonian‘operator in ‘the space )

Eq . However if we consider the leading term in Eq. (176), ﬁ;'obtain.the

standard eigenvalue equation

(0)

N o ¢[0]q|Q01)l¢fg%q fggqlw(O) =0 (77
vhere N T e . L k_'ﬁ-{:

This is identical to Eq. (37) of the direct treatment and defines ‘the

resolution of ¢€g3 ontoithg subspéces ¢§l; d ¢§g§k Then we

resolve’ w " in the more specific manner,
q . . BN




0y _,(0)

IS (0) (-1)
v (1+R QO)(l + R Ql)¢[l]q ¢[13q}wq>

q .(179)

where Ql is an operator to be determined so that wq satisfies

(176). Here w might be any of the functioms In this

Yrag
way we proceed progre581vely to resolve the degeneracy in exactly the

(0)

same manner as in the dlrect treatment so that &I 1% and the ¢[ 10.
have the same significanée in the two formulations. If the degeneracy

resolved in the r-th order, the final expressioﬁ for wq is -

v o= h @+t Pl >w‘°’ , o azo)
7 0 | .
where the Qp is an. effective Hamlltonien in the subspace ¢§ 3
(0) (o> T
p]qlqpl¢[p]q %1plql¥y” O \s‘lal)_ ,

A key step in the development is to shoﬁ tbat Q is given by Eq. (170)

or (173) and that, as a result, the expression for w can be:

-—

rewritten in the more useful form of Eq. (231) below. Ol

From this analysis it becomes evident that . "rsl
fﬁiuq = < %gillqu(“) (n) |¢§§le‘ . (182)
. 80 that eg %2 nd. ¢§0§2 are determinee in exeétly'the same manner in
the operator and in the dlrect approaches. The operator equiveleqe.gf.
¢Em§2 is obtained in subsec;ion C.-; . o PR

We turn now to the detailed derivation of the operator treatment.

B. Infinite Order Perturbation.Theory.: . oo

We.start with the unperthrbed Schrodihger equation

(a‘°) (o))¢(0)

¢ tolq ° 9..> . (183)



61

At each stage of the development, we seek the energy Eq and the wavefunction

wq corresponding to the perturbed Schrodinger egquation

H-E -0 . . 184)
@ - E ¥, _ (184)
Thg‘ﬁ&éﬁsgeneral fusctional form for the wavefunctior is . »)
() (©) N,
= +
Vg = IR + dpg)¢¢ qu“’q ;- A
where JO is an operator which we w1sh to-determine Sipée ;R(O) is
orthogonal to the space of'the ¢f03 , without loss ﬁi gsnefalitzkwe . /
can require that : C ‘ S }_: ‘
| o (0) ©) ., (0)
; < CL
S "’mq'“‘ l#103¢™ [Olq]w 0 (186)
© L (0 (0
Since ¢[0] -%an be resolved 1nto the spaces of ¢[n]q apd s—l ¢[s]k ,}
Eq. (186) is equivalent to the set of equations IZJ
@@ 15 16©@ @ 1y L0
< J < > = (Q . o
cf’[nlql l¢[0]q ®0lq H)q - ‘ .(3‘»8;73.
ama T .
z .
£l NG s) (0) () - o 1<acn sy
L _..\Q?IOJq IOJqlwq . _.lfsf'n T ('_188)
Apélying the operator ﬁ( ) onto Qz.~és givéh by Eq. (185) g ;.<’:L
) 50 <oi © ,©f ) (0) 0 :'.
B R o t01at101q Yy Q¢[0]q [olql"’“' (189)
But rew?ifing the perturbed;S;hrodipger qquation,- -
‘ H & =[V~E +° = R I I
,‘Pq_ ) { 5 €y _wq 4 e _ -
(0) ,(0) 5« (0) ..(0) ! L '
- + € + > . 190
v - Eq ][R J 1]¢[0]q ‘P[O]q ‘pq . . (190)

0
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Then, comparing Egqs. - (189) and (190),"

(0) _,(0) 1,(0),- v (0) ,(0) (0) (0)
= -E +¢ I1+R7J > 1
o¢{01q $1olq'¥q v -+ el ]%Jq 2o]qlVg> - A9V
i Applying the operator R(O) on both sides of Eq. (191), we get a Lippmann-
Schwinger type of equationao, P L v
; a =  b(£3+ a) = blec+ b(c+ a)] = ble + bic+ %(p + a)jj. Y
: -’ w : . ; . ) .-.‘-’
| | e = Tt . L @e2)
; .. L - ) i .\' t=1 . - : ’
l Thus,'ﬁe obtain -

L K05 4O @1y (0); ,(0) (0) . '

: . . 193
o o"’mq "" Qod’{O]q [o]q“’q , B

i where Q0 is the infinlte order Hermitean operator glven by Eq (168)

! . and

. Substitutlng Eq (193) into Eq. (191)/ making use of Eq (172),

DR V)

%' : g (0) - (0) (0) - :
- ~Jo?io)q® “’tom"”q %2l01q ¢lo]al¥e> ) s
L ) ‘ ) """it i
i The wavefunction (185) can then be written in the form
‘ () ©) ,(0) o
‘, R wq ] [R QO + 1]¢[0]q [O]qh} :(J;QS) .
i Also, thé conditioﬁ on J0 becomes - ' ' ... ‘;'%.L )
| (0) © 5, (0) } i
: : o ¢[0]qu0|¢[O]q ¢[0) I\P 0 . f196)

: The energy Eq is one of the roots of the “"generalized secular
'equation” o 4":'3 .

(0) ) I
5 ¢I01q'Qol¢{qu 5 “. - _f?l:??)
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Eq. (197) is not a true secular equation since Q0 is not linear in E_ .

Except for notation, Egs. (195)-(197) have been derived and rederived many

times in connection with "infinite order perturbaoion tHeory".' If eéo)
wero non—degenerate, then p ¢E0§q 5 ng§ = I “(O)Qé?)wéo? ;Aaod  .
eé?) (O)IQ(n) (n)!w(O) For degenerate states, it is not

resolve the-
necessary, but 1t is convenient, to successively/fet of degenerate states.

(1) ¥irst Resolution.

In the Iimit that * A becomes small, - Q0 becomes Qél) : (1)

and
wé' becoﬁes W;O) . -In this lémit, Eq.‘(196) becomes _ -
: (0) 1,(2);.(0) __,(0) |, (0) T
. <¢[o]qlqo l¢[0]q Plojqlty > = O . Q99
.- . b 4
~ Of course we recognize that ‘ B ’ ) o
e . @ (1) (1)l¢(°) - (199)

£10)q [0]q [0lq

and Eq. (199) is exactly the same eigenvalue-eigenvector equation as. the

first order Eq. (99).. Thus, in exactly the same manner as in the! direct

(1) (0) .

treatment, we determine the 8[112 and the corresponding ¢[l]2 . The
adjoint of the eigenvalue—elgenvector equation Eq. (102) is then
A L <40 )y, , . _ 1)y (1) (o) (,.€0)
Aue = <bage 19 1203 ‘8[112 €0 7 %[1le ‘¢[01- ' ‘2°°’
Hooevor, wvhen 8 > t : .
(0 ) $(® 1,10 0 - (0) (0) (0) :
$le1 ¢[t1q [t]q’¢[t+11q ¢tt+11q""|¢rs 1367 e- 11q'¢£ 10 201) ;.

It follows that 1f we "back—load" Eq.- (200) by u51ng Eq. (201), when T

s >1,
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<i>)(S 00 140

)y . (0) @y, 0 o @ :
A log ‘¢[01q > (= EV I ?ras (o]q >. (202)

N -3 § 2 : [8]2
_Then, if we "front-load" Eq. (202) by using Eq. (201) and Eq. (84), '_

(0)

®reJar” T e T8 0%,1%,1%,0L o 821, €21 . (209)

Eq. (203} can then be stated compadtly in the form of two relatioms

rG S)Qél)¢fg§q' = 0, s, L o
and .
( S)Q(()l) (-t) _ -R(-l)as -1‘51: 10 As_>_l, t>1 ‘ - (2@5)1_

"Now let us return to the problem éf'completing the first resolution..

If we define R(_l)J so that

© _ (0 ) “00) 2, (0) | ‘
p) ¢111k ¢[1]klwq> RER TR ¢[11q'wq R G
Then, tesolving the ¢§g% onto the space of the ¢§232', Eq. (l?@)
becoﬁes_
(0) . (0) - (1), 1,(0) 4(0)
o¢[01q $lojql¥e> = Qft + BT Ieh [l]qlwq> L. (200)
It follows from Eqs. (188) and (207) ‘that N e
. A
m(?:oﬁ%n)+ﬁlhghu+R()JM§L Q%M; = 0. (208)

Making use of Egs. (204) and (205) and rearranging, Eq. (208) becomes-

( -1); ,(0) (0 . ( -1) 1) (-1); 4.(0) (oﬂ" -
; 1¢[1]q [l]qlw g ‘Qo i+ 2 ]¢[11q bl1]ql¥y> (209
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Eq. (205) is another equation of the Lippmann--Schwinger t9§£3° which has

as its solution

Making use of Eqs.‘ (174) and (204), Eq. (207) becomes -

RED 5 50 (0 S oD ©) ,(0)
I ¢[1]q {1]qlwq R . ,(Ql )¢{1]q {1]qlw
] '( Dy (0 (4@ o
2r11¢° lllqiw s (210)

: <0> <0> - W rC 1) <o> (o) | s

Thus, making use of Eqs. (206), (210), and (211),'the’wavefungtibh (185);

v A
becomes

-,

(0) (1) (- l))Q
: 1

@+ qp R

= IR +1+R( Do, 1669 < 5O lw - (212)

[1]q {1]q

Also, making use of Eq. (204),'the condition £187)‘on .JO gives the new

elgenvalue-eigenvector equation for Eq s

¢

<¢§g%q|Qll¢§g;q gg%qlw = 0 a "14{213)

(2){,Séc6nd.Resolution.
. The subsequent resolutions follow*rather_closely'to the pattern
eétablisﬁéd By the first resolution-éo thag i; is notinecéésafy;to g;vé'
as much ‘detail. | : =_£.‘1§ , | o p L |

-

In the limit that X is small Eq (213) becomes

0) (1) (0) (0) (0) (0) (1) (0) (0) (1)
‘%nJQ Bri1g>< [”lw + 2% %u IQo"qu [uJ%

PO

:+*<ﬁmlqunﬁﬁq 0)lw“”>+oa> -0 (w

e P
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According to Eq. (203) the first two terms in Eq. (214) vanish so that in

the limit that A is small,

(0) (0,

(2)),(0) 5., (0) - 4
%13q/% 18 brglYe > = 0 | (2;5?
Here Qéz) (l)R(O)ﬁ(l) + ﬁ(z)..' Thqs, ye-recognize toet
<2> = <@ 1@ 4 (2) (0) L e
‘~[1] [l] ’Q ch[l]q ) (216)

and Eq. (215) is exactly the same as the second order eigenvalue-elgenveetor

Ed. (99)u Thus, in exactlv the same manner -as the direct. treatment we

(2) (0) o =
determlne the 8[212 and the corresponding ¢[2]£ . Also, in~thf_same

— .

manner as Egs. (200)-(205) we can prove‘that - o -

( s) 2), 0 - . - Ty tLw,
Q 9[eyqg = 0 822, €22 BT

and ’ ) g . » . .. \- o . ‘,~, e b -
R(—S)Q(Z)R(—t) - U2 s s §>2, 2 . (218) )
0 S,Z t,2 b - ~ P i
_ - Trgi
- in order to complete the second resolution, let us define R(_Z)J2
so that
(0) (€0 1,5 - g2 (@) -
. Z PSPPSR 2¢[2]q 2]q'“ IR CE
" The ing ¢ " ,(0) L (0)
Then, reSOIV1ng the space of the ¢[l] onto the spaces of the ¢[2]2 R

Eq. (211) becomes

(0) "¢y (®) i (1), (-1) 235 1400 O 1 o
Jo¢10]¢" [01q”’ ‘ (”Qo Q@ % % J)4’[21«1 Bla)ql¥g> ©220)

) Thus, using Eqs. (188), (205), and (218),
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"’ -xpa R(f2>J2) - REDy00 0 oD > = 0. 2
Eq. (221) is a Lippmann-Schwinger type equation30.whose.solution.,.is
i@ sBabe © P maBaGe
- <. )Qz ¢fg§q|¢, . ) (222)

Then with the help of Egs. (173),'(204), and (217),'Eq. (220) becomes

(0)

3 d’[om ¢[014

) _,C0) L
o < ql?%?° (223?

© 1y« @ o®r (”x1+x§‘”xbﬂﬂqgn]

-

(173) and (217), Eq.\(212) becomes - e

&

- o
\

-

Making use of Eqgs.

R(o)(l + Qél)R("l))(; + K , )
' {0 ¢(°’ !w . (228)

2
[2]q [2]q

+ 1+ R(’I)Ql)(l + R("z)Qz) '

O .' . PN

- =

Also, making use of Eqs; (204) and (218), the condltion (187) on J0

gives the new eigenvalue-eigenvector equation for Eq ;, e BYg§ o
(0 (0) . 4(0) S

< = . 225) .

$121q1 %14 [2)¢¢ (2]q'wq 0 (225)

.. S8 -

(3) . The General (n+l)-st Resolution.

The géneral pattern £or the resolutions seems to be wéll eét;blisﬁéd

in the first and second resolutionsu: We wish to prove by induction that -

it applies in general. The proof con51sts in demonstratlng that if the

pattern applles to the first n resolutions, it also applies to the
~(n+l)st . The Eatte may be outllned as follows

- *- -
[ F - .




68
First, 1s the n—th order energy—eigenvebtor relation
(0) (n),(0) (0) - .
CUn-11a/ %2 a1 ac11g Ve 7 O - (226
éomparing Eq. (226) with Eq. (99),_it appears that
(n) = (0) IQ(n) (n)M(O) , .. ' .(227)

{n-1]q [n l]q [n—l]o

The real proof'of Eq. (227) for a general value of n 1s made in the -subsec-

tion €. Thus, in exactly the same manner as in the direct treatment, the

(0)

(n) and the corr esponding ¢[ 12 are determined. Also, in the same

‘o)L

manner.as Eqs. (200)-(205) it follows that ' ’ &%f
CONCHING I o T \ :
28fe] T O smoEm ~(228)
and h
r$ S)QIEI:; -t) _ —R"‘?)a nét;; ’- ' ..SZ}?, en. 229)
After thé n-th resolution, we assert that A fpdi L i
) $¢O - (-p) (0) ,(0) '
o%Mq[mJ% %L‘l*KR >M¢MM 319 lv> , @30)
i n 1 ot N
_ RO -+ KPR(—p) )l .
R L (0) (0) - T
%y T (=) - B L PO P [n]qlwq . (231)
+ 1 @+rCP Q ) | A
L p=l 3
and - |
SRR (0) (0) (0) | o P

This completes the_gattern.
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Now we will start on the iuductive proof. According to Eq. (174),

IR ST PP , o tp)
. Q, AQ + pgz ATQ P=§+3.A Q> . (233)

Thus, Eq. (232) can be expanded in powers of A to obtain

n+l t - . R
£t L, et D 0™ < 0
s=0 - .

@ g

Here, for convenlence. we have let Q_ Then, making use of

Eqs. (201) and (226), . L e

(0) (s) (0) - (0) (o) - (0) (0) (0) _
[n]qIQ |¢[n]q ¢[ l¢[s l]q [s l]qlQ ld’[s—l]qt)
Cocp@ 130 5 | R ;
¢[s—l]q [S]q ' 0, s>n c- “‘:(2?5)

PRE

&hus, the only term in Egq. (234)'which.has not préviously been shown to

be zero corresponds to t = n+l = s . This means that in the limit of
. - XN - )

- o~

X becomes small, Eg. (232)‘becomes

4O el

[n]q

(0)

(0) 1,0, _. e
[n]q ¢ l'\b 0. . *.’t'j_j(236>

[nlq

From Eq. (236), the séﬁuence of Eqs. (227)-(229) with n replaced by
(ntl) follows easilf. s . .

-~

Iﬁ order to cdmplefe our (n+1)st resolutiaﬁ, leﬁ us definew

(0) (0> - gD, L (0) _
Z ¢[n+l]k [n+l]k,w '_ . n+l¢[n+l]q ¢[n+l]q'v >« (237)
Then, 1esolv1ng the space Of the ¢§ % onto the.subspaces of the

¢f211]z > Eq. (230) becomes -; - ;
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) ., (0)
Jo‘i’[O]q ¢’[01qlvq>
(-a-1) 4 (0) (0)

+1>¢ [n+l]q [n+l]q l ‘P (238)

n (-p)
[T (QA+KRPHQ@A+Rr
. p=1 P o .
R (-8=1)

But according to Eq. (188), if is applied to Eq. (238), both

sides of the resulting equation vanish. Making use of Eq. (229),

resulting equation is i C ‘ . - e

(-n 1) (0) (0) l¢

n+1)¢[n+1]q [n+1]q

Qn(l + R( 1)y 0. . . (239)

First we replace the Q by (Q - (n+1)) + Q(n+1) .

Then remembering
n n kg

-~

that by the Eq. (229) with n replaced by {(n+l) {[which weuﬂava,jﬁst

sﬁdwﬂ], R( n= 1)Qéf+l) (—n-l) R(—n-l)v, Eq. (239) becomes
{
(nl) (nl) (nn' (0) (o>
R (Qn (l + R n+l) +1]¢[n+l]q [n+l]q,w

v
k]

. A ; _ . (2405

K

Actually, in Eﬁ. (240) we have done one more thing. We have replaced

) r o
.énil) in the first term by K Our justification is that the extra

n+l °
" terms, K - it _ K do not contribute to Eq.(240) because of
> Thtl -1 n °’ qd-

Eqé..(228) and»(229). The Eq. (240) is of the Lippmann-—Schwinger__vtype30

- -

and has as its solution - : . .

-

(-n-1) ) 50 (-n -1) (o> <o>

R n+l¢[a+l]q [n+l}q|w (Qn+1 n+1 ¢[n+1]q [n+l]qlw
: S _ (n-1) (0) (0) .
- S B St qb[n+1lql‘”q>_' (24D

Ngxt, let us note tha? as a result of Eqs. (173) and (228)




' since these equations apply to the fixst and second resolutionms, it follows
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(- -n- -1) 0 .
inl + R (Q n+l)]¢[n+l]q
' (—n—lh) g gl 1) (0)
= [(l + Kn+1R )Qn-i-l'— Kn+l n+l]¢[n+l]q
: BRSSPI (1) ~ o
= QA+ Kn+;LR )Qn+l¢ [n+llq ° ' g } (242)
Thus, substituting (the first form of) Eq. (241) inte Eqn“(238),_ye
obtain Eq. (230) with n- replaced by (n+l) .
Then, comparing Eq. (185) with Eq. (231) and using the second form
oqu. (s, .;' g . .
(©) ,(0) - () 1, (0) 5 (©) ST
¢(0]q {Olqlwq le (o R0 0] [n]qH)q -
. ' L PR
. ‘ n . - )
e - (-n-1) (0) (0)
R pgl +Rr"" Qp)(l + R n+1)¢{n+1]q [n+l]q,w
n+1 t *
- (-p) o) (0)
- 1 (brre )¢(n+l]q [nﬂ}qw ' (243)

Thus, substituting Eq: .(230) with n replaced by (ntl) togetherTwith

“Eq. (243) intc'Eq. (185), we obtain Eq. (231) with n replaced by (ntl) .

And finally, using Eqs. (228) and (230) with n replaced by (n+i)

) Eq. (187) with n replaced by (otl) becomes Eq. (232) Wlth n replaced

e RESES
- R

by (ntl) . 'This completes our proorl
We have shown that if Egs. (226) (232) are Valid for the first n

resolutions, they are also valid for-the (n+l)-st -:esolution, And

that they are valid for all values of n .

-
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C.. - The Qperaﬁor Expressions for the ¢§i§£ - and the Operators Qif; .

Having completed our formal development of the infinite order pertur-

bations, let us make a closer examination of the operators which occur in

(n)

0 in the form .

that treatment. First of all, we can write Q

Qén) = .): (@) (M)~ (0)5(e) ,  nl, o (244)

vwhere the éummation is taken over all possible terms such that

a+b+ ...+¢c = n

'.i '5‘ Aa,_'i,, vees € < 1‘1'.‘ PR - (245)
Aléé, bgn) can be expressed in tbe cémpact_ﬁorm
' . . B AN ) ;
fo) =Y (ﬂRg—p)Qﬁi ---ﬁ("p)Qéfi , o mdpt2 L “ (246)

Here the summation is taken over all possible terms such that  ~F3!

: M.M,§“+-(bnf,p)%iu,«.figic_:fng_s_vn,

and

ptl < a,.ﬁ;';}., c < n. : . f (247)
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FT¢) o, 2 (-s) |
Q, B[+ RV7Q 321'{1 +.R Q. - X))}
s
o n ’
) A0+ %1 1 @+ rCP@Q -x)]
T t=2 0 s=1 s s
(t) N CT) -
o+ 2 Q. olr - I {1+ R - k) . ©(248)

t=2 s=t
(248) can be proved by induction in the following manner: first,
expand (ﬁ - Eq.+‘€ ) in Eq. (152). Then use Eq.(l73) tooepher with
the new. Eq. (172) to express Ql in the form of Eq. (248) Next, express

Qp by Eq. (173) in which Qp 1 is given by Eq. (248).. Flnally, rearrange

the terms so that Qp is glven by Eq.‘(248)

-~

(n )

_Of 211 of these opeiators, the special amlly of Q is especially

(n)
2

important. And, of all the expansions of Qn the most useful one is

K n~-1 : .
Qég% - Eo ﬁ(n-t)Gét) . ZO G(t)? (n- t) (249)
. t= t= - o

AlthLough the 'ﬁ(n> s, the Qn , and the resolvents‘are all Hermitean; the
. :Ar:-.i
(1) ()t

operator G is not Hermitean. However, its adjoint G is easily

obtained by reversing the order of the Hermitean operators which form

c(t) (t)
n

. The operator expressions for G can be obtained by expanding

(t)

(248).A The expre351ons for G through n=5 are given in Table 1.

For all values of n , o R S ' A
¢ - 2. . (250)

For values of n.> 2 , we found two equivalent recursion relations for.

() ,

determing the. G,

s




Table 1, The Operatdxrs Gét) through n = 5 .

74

G:O) 1 _foi all values of n
(). _ RO (D)
GZ_ R™7Q,
G§1> _ R(o>='(1> +R(—1>Q<z>
@ <o>[1 + oMy (- 1)]Q<2> :
3 o ¢ I ) _
(1) 7 (@), (D), (2) (20 (3
G4 ST R QO 1 o L . =
Gz<‘2) - <°>[’(1+ Q(l) -1, <2) <1> 22 (3)3 o
R ) (z> 2), (3 Lo
|  + [1+ Q"R 1q; | .-
cff’ - (0)[1 . Q(()l)‘( Dy + Qé"‘) .< z>]Q<3> |
| 9§1> _ R.(O)Qu) + 10V (2> + gC2 (3) - R(—s)Q§4>
- 2). 0 F.(2) , (1) (1) (z) .(—2' (3) | 2(-3) (&)} "
6B = rRO[of? 4 o{P " 29 + 20f")]
T RO 4 RE z))Q<3> N QéZ) 3) <4)j )
+rCP s Q§3)R(’3)]Q2({’) _ sE ”‘°- ‘
GS(B) - (O a+ Q(l)_( Dyfa + Qoz) (- 2>)Q(3) + QSZ) (-3) (4)_]
Ay Q(()1) (2>[1 5 Q§3) (3)]Q(4) -
+ R( 1’[1 + Qéz) ( 2>m + Q§3) (3>]Q<4>.
ng.) co>[1 . Q(()l) D s Qoz) (- 2’]{1 N Q(z) (- .:)]Q(A)




.

1y
(2)

..,~

(3)

»e
S

(248) to successively expand Q

’Ql

gese .

In using Eq.

(248) to
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The first set of relatioms is obtalned dlrectly by using Eq.

( ) (t )

express ’ only the previously expanded Q are needed for the

" p=1
L E < I : A &

(2) The second set of relatlons is the ¥perator equivalent of the

right-hand side of Eq. (298). Thus we obtain
c® o g@@ | TP e (e (251)
n - 0 Lo s-~1 ? /
L s=1 . -
B *’: . R;(t-—l)R(—rH'Z)" g 7
) _ _n—2 .
(t) - (t) ' (n-1)
- G = G + Q ]
N S n-1 . n-2- n-3
- i . (t-s) (- n+l+s) (P) (-p
) + (n_l_s) o+ % b i
_ | 8= p~n-s
‘ 2%t<n-2 | © ir (252)
- ) .
and % T
g e ,n‘_- » , "‘!:_. .

- .o ST
magic formula .’
(0-1) (0) nz ( 3 0] (1) '
oD L O e
n -l V- )
and o -: N . y : i . -- - :~i-ik
- (@ § s D | pienh. o

p=l

.Eqs. (254) and (255) can be proved by startlng with Eqs. (251) (253),

maklng use of the identlty )
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n-2 R
T q) e g
: p=n—s o ',

s*3. n-u-3 o
+ 2 il (l + Q(U) ( V))Q(H-Z‘U)R("HTZ‘FU)

, (256)
~u=0 V=n-s . .

interchanging the order of the eummations-over 8 and u. ; and'tbenA
- making use of. Eqs (251) to (253) to identify the terms which go together
to form G‘ “on the right-hand 51de of the resultino equation. ’

The point of the greatest interest is that

(m) ‘&= (m) (0
¢{n]z _’ v n+1¢ R

Eqs. (250), (254), and (255) provide the operator equivalent of the

. magie formuia. ‘On account of Eq. (256) -Bq. (249) giVes .

g ':»-- ' (t) (n t) (n) (0) . "j R
Thus, : . R
Ty O @)1, o
“fleln " el IQn-z|¢[n-11q K R

.

and our whole direct formulation can be transcribed into the formal

f operator language.' The "unwinding of the A( m) ‘as given by Eq, (90)

z[s]%

corresponds to the unlikely—looking identity .,‘“lijf‘ ;_:z '5‘ w f?ﬁﬁiiﬂffé._;

STy iy '5~?-?*‘
L 0:) S f " ) (p)‘?‘ﬁ(mp—t) (t)
| %.2 T . pwo t=0

’where u <'s+1 <n. If 8> u, then the eapressions for Q(n) are

" more Cﬁm?’icated than che ones obtained with a d . However, the {ff’. '

-:'.

additional terms cancel each other because of Eq (205)

e e

o e
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'. functions, it is the functiloans
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In the order-by-order development of the energies and the wave-

(t) (0) (t)

¢[n] I 19 "which are determined
and these functions, in turn, determine the énil)¢Eg§9 . The

(t)¢(0)

2 . - —_ r ’
determlnatlon of the Gn+l~[n]2 and the order:by order developuent of

the operator formalism proceeds in'exactly the same manner as for the

direct formalism given in Sections III—VII. If r 1is the order in which

the degeneracy is resolved, then Q = Q if a>r. Thus, the

-~

relationships between our prcsent work and the prev1ous formal. Operator

treatments becomes apparent. The,one approach can be completely transerlbed

B . o i R ;o n !’;’_" N ' )
into the other. . P C IR AR SR PP .
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