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ABSTRACT

We describe a model of pulsar magnetospheres which has evolved induc-

tively from the work of Sturrock, where the radiation is produced near

the surface of a neutron star. Those observations which are central to

our arguments are briefly reviewed. As a foundation for our work we

discuss some of the theoretical ideas of others, particularly those of

Sturrock.

The braking index n and period-pulse-width distribution of pulsars

are first re-investigated by relaxing the conventional assumption that

R = TL , where R^ is the radius of the neutral points marking the

transition from closed to open magnetic field lines, and R^. is the

radius of the light cylinder. This is replaced by the parametrization

1 —T| fl
R^ = R^ R. ', where R^ is the neutron star radius. If the radio fre-

quency radiation is created near the surface and beamed along open field

lines, it is found that a good fit to the period-pulse-width distribution

can be obtained for T) in the range 0.5 ^ T] ^ 0.7- The relation n =

1+21] then gives n = 2.2 ± 0.2, which is in good agreement with the

values measured for the Crab pulsar.

Recent observational studies concerning timing irregularities and

the dispersion measure of the Crab pulsar and wisp motions in the Crab

nebula indicate that pulsar magnetospheres may contain large amounts of

non-relativistic gas. We point out that substantial accumulation can

occur only in the vicinity of the force-balance radius RpR> where

gravitational and centrifugal forces cancel. It is argued that R^ «s

For this model, the braking index n = 7/3 and the expected period-

pulse-width distribution and period-age distribution agree well with
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observational data. A glitch is interpreted as an instability leading

to the ejection and/or dumping of accumulated gas.

We have constructed approximate models for the magnetic field struc-

ture, considering in detail the cases of aligned and orthogonal spin and

magnetic axes. If the magnetic field is initially closed (out to the

light cylinder) gas will collect where there is "microscopic stability".

Such locations exist for r > RC.R- Most of this region is "macroscopically

unstable" since, when sufficient gas is collected, the centrifugal force

overcomes the magnetic stress and converts closed field lines into open

field lines. However, there is a small region near r = RpR> both

microscopically and macroscopically staple, where gas can collect and

rema in.

Such a magnetospheric structure leads to a braking index n = 7/3>

in good agreement with the Crab pulsar. We calculate the polar cap

boundaries, and the resulting period-pulse-width distribution agrees well

with an improved sample of pulsars. The surface magnetic field strengths

EL deduced from this model are roughly a factor of ten less than pre-
TV

vious estimates; for the Crab pulsar we find B& 2 X 10 gauss.

In conclusion we discuss the ability of the resulting model to

account for the observed features of pulsars in general and the Crab

pulsar in particular. We mention some shortcomings, and suggest possible

future avenues of investigation.
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Chapter 1

INTRODUCTION

Ever since Gold (1968) made the cogent suggestion that pulsars are

basically rotating neutron stars, theoretical studies have followed two

more or less distinct lines. First are those which attack the problem

of a rotating, conducting, magnetized sphere from first principles. The

aim of these papers has been to discover the structure of the electro-

magnetic fields and plasma surrounding such a neutron star (the magneto-

sphere) . It is assumed that once this has been done, the mechanisms

which produce the observed radiation will be discernable.

The second class of studies contains those which examine specific

processes which might produce radio, optical, x-ray, or gamma radiation

in the vicinity of a neutron star. The magnetic field structure is often

prescribed by fiat, and may or may not be related to model magnetospheres

studied by others. Broadly speaking, radiation mechanisms may be divided

into two groups, depending on whether the radiation is thought to arise

near the surface of the star or at the light cylinder.

In this thesis we describe a model of pulsar magnetospheres which

has been developed inductively around the hypothesis that radiation is

produced near the surface of the star, specifically, at the magnetic poles

(Radhakrishnan et al. 1969; Komesaroff 1970; Sturrock 1970, 1971a).

Analysis of various data has led us to modify our model in stages, to

the point where it can account for a number of important observations in

a unified manner.

A short review of the relevant observations is given in Chapter 2.

To provide a background and in order to introduce some of the ideas and



definitions which will be used frequently, we discuss briefly some of

the important theoretical work of others. The model of Sturrock (1970,

1971a, 1971b) is described in some detail, since it provides the frame-

work upon which this work is based.

The bulk of this thesis consists of three papers by the author and

his advisor, Professor Peter Sturrock. They are presented essentially

as published, with several appendices to elaborate upon certain calcu-

lational details .

In Chapter 3, the braking index n and the period-pulse-width (W-T)

distribution of pulsars are re-investigated by relaxing the conventional

assumption that R = IL , where R is the radius of the Y-type neutral

points marking the transition from closed to open magnetic field lines,

and R is the radius of the light cylinder. This assumption is re-

1\ 1-71placed by the parametrization R = R R ', where R^ is the neutron

star radius. Comparison is made with the observed braking index of the

Crab pulsar, the W-T distributions of two samples of pulsars, and with

the number of pulsars showing an interpulse. It is found that a value

of T) in the range 0.5 < 71 <, 0.7 is consistent with all of the data.

(This material is from Paper I, Roberts and Sturrock 1972a.)

The magnetospheric structure discussed in Chapter 3 (where R^ «

is radically different from that usually assumed (R^ = R^). In Chapter 4

it is shown that such a configuration is a natural consequence of the

presence in pulsar magnetospheres of the large amounts of non-relativistic

gas which were inferred from observations by Scargle and Pacini (1971).

It is argued that in such a case R^ cs RpB; where R is the force-

balance distance, the radius at which the gravitational and centrifugal



forces on a corotating particle cancel out. For this model n = 7/3;

and the resulting W-T and period-age distributions agree well with

observational data. A glitch is interpreted as an instability leading

to the ejection and/or dumping of accumulated gas. (Paper II, Roberts

and Sturrock 1972b.)

This model is explored in greater detail in Chapter 5. We have

constructed approximate models for the magnetic field structure, con-

sidering in particular the aligned and orthogonal cases. The stability of

single particles ("microscopic stability") is studied in detail. The

more difficult question of the stability of large amounts of collected

material ("macroscopic stability") is discussed in simple physical terms.

We find the consequent magnetic field structure and braking index

(n = 7/3) and the boundaries of the polar caps. The resulting W-T

distribution and number of pulsars expected to show interpulses are com-

pared with an improved sample of pulsars. (Paper III, Roberts and

Sturrock 1973.)

In Chapter 6 we review our modifications of Sturrock's model,

commenting on the limitations as well as the strengths of the results.

We discuss areas in which our work may be extended. Finally, we comment

briefly on those observations, as yet unexplained, which we believe to be

of crucial importance to a fuller understanding of the physics of pulsars.



Chapter 2

REVIEW OF OBSERVATIONS AND PREVIOUS THEORETICAL WORK

I. Observations

There is certainly no dearth of observational facts to challenge the

pulsar theorist. Below we present a brief review of those which are

especially relevant to our work. The wealth of data which are not pre-

sented have been more than amply reviewed by Hewish (1970), Huguenin,

Manchester, and Taylor (1971), Ginzburg (1971), ter Haar (1972), and

Backer (1973); among others.

Each of the 89 pulsars presently known was first detected by its

extremely periodic bursts of radio frequency radiation. The observed

repetition period T of the pulses lies between 0.033 sec (Crab, PSR

0531+21) and 3.75 sec (PSR 0525+21), with a median of 0.655 sec. In all

cases where the time derivative T has been measured it is positive, and
-3 Q

the "age" T = T/T varies between 2.5 X 10 yr (Crab) and 2.5 X 10 yr

(PSR 0809+7̂ ).

Another observational fact is the relatively short duration W of

the pulses compared to the period (W/T « 0.05) • Six of the pulsars (in-

cluding the Crab pulsar) exhibit an "interpulse" — a second, smaller

pulse which comes roughly half-way between consecutive main pulses. It

is also possible to classify pulsars according to pulse shape, and whether

they show the "drifting sub-pulse" phenomenon, in which features of the

pulse move through the overall envelope from pulse to pulse (Taylor and

Huguenin 1971; Backer 1973).

A feature of the radio emission unique to the Crab pulsar is the

"precursor". It occurs about 1.6 msec before the main pulse, has no

optical counterpart, and is observed only below 600 MHz. Below ^00 MHz



its energy is comparable to that of the main pulse, and its duration is

roughly five times longer. The polarization is almost 100 percent linear,

and the position angle is the same as that of the main pulse.

The extremely accurate timing data which has been accumulated for

the Crab and Vela (PSR 0833-̂ 5) pulsars exhibit additional features which

• Q • O
require explanation. First, the "braking index" n (n = oxiVo) = 2-TT/T ),

which measures the frequency dependence of the torque which slows the

neutrons star's rotation (torque oc 03 ) , has been measured for the Crab

pulsar; it is found to have a value n = 2A ± 0.2 ( Boynton et al . 1972).

Second, the slow-down is not smooth, but exhibits both seemingly random

"noise" (Crab) and larger, apparently discontinuous, jumps in frequency.

Two such "glitches" have been observed for each of these pulsars;

-9 -6
Aoi/cu ̂  +10 for the Crab pulsar, and AoV'oo » +10 for the Vela pulsar.

According to Boynton et al . (1972), the noise seen in the Crab may be

well represented by mini-glitches of Aac/oo ̂  2 X 10 occurring at least

once per week .

Differences in the times of arrival of a pulse at two different

frequencies may be expressed in terms of the dispersion measure

t(vi)-t(v

When the radio frequency is much greater than the plasma frequency

(l/2c)vfv
 2 *t= 10~2'88fn dt . (2.2)

J P J e



Careful observations of the Crab pulsar (Rankin, Counselman, and Richards

1971; Rankin, Campbell, and Counselman 19?!; Rankin and Counselman 1973)

17 —2show that its dispersion measure (nominally about 2.36 x 10 sec Hz ,

so that In d-t « 56.8 parsec cm ) is not strictly constant, but shows

Ij.
variations on the order of 2 parts in 10 on time scales of months . One

such change in integrated plasma density occurred during a two month

period beginning around the time of the September 1969 glitch. However,

similar fluctuations have occurred without being associated with timing

irregularities, and no increase in dispersion measure followed the Crab

glitch of October 1971.

Careful observations of small-scale features ("wisps") in the Crab

nebula near the pulsar have revealed motions and brightenings that may be

associated with timing irregularities of the pulsar (Scargle 1969; Scargle

and Harlan 1970; Scargle and Pacini 1971) • Correlations are claimed for

small irregularities occurring near March 10 and June 1, 1970, as well as

with the large glitch of September 1969, but there was no activity following

the large glitch of October 1971 . The energy required for these events

U1
is claimed to be at least 10 ergs (Scargle and Harlan 1970).

The high brightness temperature of the rf radiation was seen from the

outset to require a coherent mechanism. (Assuming the radiation comes

from a region of linear dimension less than cW, the brightness temperature

is about 10 -10 K.) It appears that the rf signals display (in

addition to interstellar scintillation effects) fluctuations intrinsic

to the source, notable examples of which are the drifting subpulses, the

"nulling" phenomenon (Backer 1970), and the "giant pulses" of the Crab

pulsar (Button, Staelin, and Price 1971) . There is a great deal of



spectral information concerning pulsars. In general, there is a low

frequency cut-off around 100 MHz and the radio flux is a decreasing

function of frequency. In addition, the rf radiation is frequently

strongly linearly polarized, and is often found that the electric vector

sweeps through a large angle during a pulse (Radhakrishnan et al. 1969).

Pulsed radiation in other frequency bands, coincident (after correc-

tion for dispersion delays) with the rf pulses, has been detected from

the two fastest pulsars (Crab and Vela) . While the Vela pulsar has been

detected only in x-rays (Harnden et al. 1972), the Crab has been observed

in the optical (Cocke et al. 1969), x-ray (Fritz et al. 1969) and gamma-

ray (Hillier et al. 1970) spectral ranges. The ratio of energy in the

interpulse to that in the main pulse, which is small in the radio band,

grows steadily from the optical through the gamma-ray, where it is larger

than unity.

The optical pulse of the Crab pulsar is exceedingly stable. The main

pulse-interpulse configuration is asymmetric, and exhibits a cusp-like

main peak, unresolved on a time scale of 30 microseconds (Papaliolios

et al. 1970). The optical pulse shows some linear but no circular polari-

zation. The electric vector sweeps through an angle of 130 during the

main pulse, and is parallel to that of the rf pulse at the peak (Manchester

1971a). The spectrum of the optical pulses has a broad maximum in the

visual part of the spectrum, and turns over in the infrared. The spectrum

apparently extends into the x-ray band and from there to the gamma-ray

band. There was no change in the optical pulse shape or intensity during

or following the September 1969 glitch.



II. Pulsar Electrodynamics-Canonical Models

One possible approach was taken by Pacini (1968) and Ostriker and

Gunn (1969; Gunn and Ostriker 1969, 1970). They examined the dynamics

of an object possessing gravitational or magnetic fields not symmetric

about the rotation axis. In a vacuum, electromagnetic and gravitational

energy is radiated at rates given by

dEmd/dt

and

dEgq/dt = -^GD^/C? . (2.4)

Here m and D are the components of the magnetic-dipole and mass-
J. J.

quadrapole moments perpendicular to the rotation axis. Such an object, if

rotating almost rigidly, will also loose angular momentum at a rate given

by

dJ/dt = of dE/dt . (2.5)

Thus the braking indices for these models are n = 3 (magnetic dipole

radiation) and n = 5 (gravitational quadrapole radiation).

Surface magnetic fields of 100 gauss are not unreasonable for young,

massive stars, the likely progenetors of neutron stars. Flux conservation

in a collapse from a radius R., of 10 cm would produce a surface field
i\

B on the order of 10 gauss at R^ =10 cm. Thus the magnetic moment

^ on
R-3 B., <« 10 emu for the resulting neutron star, and Eq. (2.3) becomes

dE /dt ss -10 ^ ̂  erg g"1 t (2.6)
md

8



2 3 ~1 "Crab 37 *5 ~1The Crab pulsar has CD » 10 s , so E J « -10 erg s . This
md

interpretation is strengthened by the observation (Gold 19̂ 9) that if it

is slowing down, it is losing rotational energy at the rate

- ̂  [(1/2)Î CD2] = -Î CD to erg s'1 . (2.?)

lik ^ 2
Neutron star models have moments of inertia I =* 10 g cm , the Crab

TV

_n 6-2 37 2
is observed to have CD =- -10 s , so the energy loss is « 10

i
erg s ,. In addition, this is about the right amount of energy that is

required to power the Crab nebula (Shklovsky 1968; Haymes et al. 1968;

Wang and Sartori 1973).

Combining Eqs. (2.3) and (2.7), we may express the surface magnetic

field in terms of the observed slow-down rate:

B*

\1/2
* \

2R CD

It is rather remarkable that although T varies over three orders of

magnitude and T over two orders, the magnetic field (evaluated for a

given neutron star model from Eq. [2.8]) varies by only a factor of four

1/2 3
for the 25 measured pulsars. However, the large range of 1^ /R^ ,

especially for small neutron stars masses, makes it impossible to deter-

mine magnetic fields to better than 3~^ orders of magnitude (Greenstein

1972).

Gravitational radiation will always dominate over magnetic radiation

if the frequency is sufficiently high. However, the measured braking

index of n « 2.4 for the Crab pulsar implies that this is not important

at the present epoch, and we will not discuss it further.



The simplest model of a pulsar magnetosphere starts with a neutron

star possessing a dipolar magnetic field, its magnetic axis parallel

(or antiparallel) to its spin axis. Although it is obvious that such

a time-independent axisymmetric model cannot account for the pulses, it

is usually assumed (and Mestel [1971] has shown this to be very plausible)

than an oblique rotator will be qualitatively the same as an aligned

rotator.

The pioneering calculation was that of Goldreich and Julian (1969),

who noted that the extremely good conductivity inside the star requires

that

lUo. (2.9)

If there are no charges surrounding the star, the potential for r > R

may be found from Laplace's equation. The resulting electric field is

quadrapolar, there is a surface charge

CT = - 4J- Cos29 > (2-10)
Hjlt*

and outside the star

_, _ ^ R* B* 3
E • B = =— cosJ0 . (2.11)

c r

12However, for the magnetic fields (B #» 10 gauss) in pulsars such a con-
vv

figuration is highly unstable, since the non-zero electric force along

the magnetic field is enormously greater than the gravitational force.

Unless quantum effects at the surface are sufficient to bind the charges

(Ruderman 1971; Ginzburg and Usov 1972), they are pulled off into the

magnetosphere and behave as a conducting extension of the star. In this

10



case, as long as inertial and gravitational forces are small compared with

electric forces, the Lorentz force law and infinite conductivity require

.4 -4
that E • B = 0 outside the star as well as inside. The resulting motion

of charged particles is a combination of corotation and motion along field

lines. When the contribution of the corotating charge to the magnetic

field is included, the charge density outside the star is approximately

n -n = I"—VLl-(cur/c) sii

-CD • "S

2itec | , , , ̂c. . c..
-(cur/c) sin 9J

(2.12)

This applies only to the corotating part of the magnetosphere, which con-

sists of those magnetic field lines which lie entirely within the "light

cylinder" . The radius of the light cylinder, where the corotation speed

is equal to the speed of light, is given by

1^ = 0/60 = cT/2jt . (2.13)

Field lines which penetrate the light cylinder must be open in order that

particle velocities remain less than c.

The torque N on the star is obtained by integrating the Maxwell

stress tensor over a spherical surface centered on the star. The result

is

N
= B [B*(

where R is the radius of the neutron star, and B^ the polar magnetic

field strength at the surface. From Eq. (2.1*0 we see that the braking

index in the Gol d re ich- Julian model is n = 3. Equation (2.1̂ ) leads to

an energy loss comparable to that from a vacuum rotator.

11



Although this model surely possesses some of the most important

features, it is not a self-consistent solution of Maxwell's equations

and the dynamical laws. Attempts to extend this analysis have been made

by Scharlemann and Wagoner (1973), Michel (1973a, 1973b) and Julian (1973),

who also neglect inertial and gravitational forces. However, these calcu-

lations seem to require specification of the current at the surface of the

star or the configuration of the magnetic field at infinity. Thus it is

not clear that a unique solution exists, at least as the problem has been

posed. (it is contended that inclusion of inertia will make the solution

unique, but this has yet to be demonstrated.)

The equation of motion

d(l̂ oo)/dt = -N = -Au>n (2.15)

may be integrated easily. Assuming that A and I are independent of
•TT

time, and the present epoch to be t = 0,

<o(t) = m(0) [1 + (n-l)t/T]1/(1~n) , (2.16)

where

T = T/T| = -01/00! . (2.17)
t=o t=o

For magnetic braking (n = 3)> the frequency becomes singular at a time

t = -T/2. For the Crab pulsar, this agrees reasonably well with the

birth of the Crab nebula in 105̂  AD. Or taking the age of the Crab pulsar

as 919 years and n = 3, oo(birth) = 2.3 co(0). Lowering n towards

the observed value decreases oo(birth), but not very much. However, the

largest n that could have operated from birth is about 3-^-

12



An excellent review of pulsar electrodynamics and pulsar dynamics

has been provided by Ruderman (1972).

Ill. Radiation Mechanisms

Although these two models explain reasonably well the kinematics of

pulsar slow-down and the energy budget of the Crab nebula, neither

attempts to account for the observed pulses. Many theoretical ideas con-

cerning the nature of the radiation mechanism were advanced soon after

the discovery of pulsars (see, for instance, Hewish 1970). Most of these

ideas have died quietly, either from neglect or under the weight of ad-

verse evidence. One school of thought, stimulated by an early suggestion

by Gold (1968), holds that radiation is produced by relativistic particles

in the vicinity of the light cylinder. This difficult problem has been

attacked by Shklovsky (1970), Eastlund (1968, 1970), Lerche (I970a, 1970b),

Pacini and Rees (1970), and others. However, Michel (1973a) has recently

shown that in a self-consistent inertia-less model where all the plasma

corotates and does not flow along field lines, the radiation arising at the

o
light cylinder is too low by a factor of about 10 to be the source of

pulsar rf radiation.

Proceeding in the direction first indicated by Radhakrishnan et al.

(1969), other theorists (Komesaroff 1970; Pacini and Rees 1970; Sturrock

1970, 1971a; Tademaru 1971) have explored in detail the idea that the

short duty cycle and linear polarization sweep of the rf radiation are

consequences of emission near the neutron star surface at the magnetic

poles. These models require that the flow of charged particles at the

polar caps should be bunched. It has also been proposed (Chiu and Canuto

1971; Ginzburg et al. 1969) that an alternative way of obtaining radiation

13



of high brightness temperature is through some kind of maser mechanism,

ter Haar (1972) has reviewed these and other suggestions, and the

reader is referred to his article for a thorough discussion of the merits

and shortcomings of these and other proposals. In what follows we shall

be concerned with those models in which the radiation is produced close

to the surface of the neutron star at the magnetic polar caps.

IV. Sturrock's Pulsar Model

Sturrock (1970, 1971a, 1971b) has constructed a model of pulsars

extending the work of Goldreich and Julian (I971)\j DUt relaxing their

assumption that the electric and magnetic fields are everywhere orthogonal,

In the Goldreich-Julian model there is a toroidal (B ) component so that

the integral A B • ds around the light cylinder is non-zero. This means

that curl B is non-zero, which implies that there are currents flowing

in the system. The distribution of these currents, which flow from the

magnetic polar caps out to infinity, may be roughly inferred from the

magnetic field configuration. There must be a positive current from an

angular ring and a negative current from the center of the polar cap, or

vice versa, depending on whether the magnetic and spin axes are aligned

or anti-aligned. This view was advanced also by Goldreich and Julian.

At this point Sturrock departs from Goldreich and Julian by noting

that a laboratory device such as an electron gun will not give a current

unless a voltage is applied to it. In fact there is a source of voltage

at the polar cap, namely the rotation-induced electric field. For the

case of the Crab pulsar, ions would accelerate to about 10 eV per

electronic charge. Because of radiation reaction, electrons will reach

1 it-only about 10 eV. This acceleration occurs very close to the star,

lit-



probably within a kilometer of the surface. Since the ions and electrons

move along the curved magnetic field lines, they are copious emitters of

12
high energy gamma-rays (of order 10 eV).

The key mechanism in Sturrock's model is the conversion of these high

energy gamma rays into electron-positron pairs in the intense magnetic

field. The gamma rays are produced by curvature radiation and initially

move parallel to the magnetic field. However, since the field is curved,

they soon see a transverse component of magnetic field. When the condi-

ift 6
tion E (eV) B (gauss) ̂ 10 ' is met, the gamma ray will annihilate

into an electron-positron pair.

There are two important consequences of this pair creation. One is

that the electrons and positrons are produced with non-zero pitch angles,

and will therefore radiate by the synchrotron mechanism, possibly in the

gamma, x-ray, or optical regions of the spectrum. Some of the gamma rays

produced by the secondary electrons will in turn annihilate into e e

7 5pairs, and so on. The resulting cascade produces about 10 secondaries

per primary electron, and the total number of relativistic leptons in-

kl -1
jected into the Crab nebula is around 10 s . This agrees with the number

required to produce the synchrotron radiation from the nebula (Shklovsky

1968) .

The other consequence follows from the fact that some positrons will

probably be turned around by the electric field and flow toward the sur-

face . If this happens there will be a two-stream configuration which is

known to be very unstable. This is likely to lead to bunched rather than

steady flow. If bunches of electrons are moving along curved field lines,

then radio emission will be produced by the mechanism outlined by



Radhakrishnan and Cooke (1969), and more fully analyzed by Tademaru (1971).

This radiation is beamed along the direction of the magnetic field, and

is polarized along the projection of the magnetic field seen by the obser-

ver. Thus, as pointed out by Radhakrishnan et al . (1969), the electric

vector will sweep in position angle as the line of sight of the observer

passes through the polar cap.

The hypothesis that pair creation is responsible for the radio

emission may be tested (Sturrock 1971b) . Expressing the magnetic field

and the electron energies (via the electric field) in terms of the period

T and the age T, the condition that pairs can be created in the elec-

tron polar zone (EPZ) may be written as

Similarly, for pair creation in the ion polar zone (IPZ), the requirement

is

2
Here I (g cm ) is the moment of inertia of the neutron star. These

conditions are compared with the observed period-age distribution in

Figure 2.1. It is seen that radio emission ceases approximately where one

would expect pair production to end in the EPZ. The condition (2.19) is

satisfied for only the Crab pulsar, and Sturrock (1970) has suggested that

this offers an explanation of why the Crab pulsar alone shows a precursor

(a similar suggestion has been advanced by Pacini [1971]).

The spectrum computed on the basis of this model account fairly well

for the radio emission. The x-ray emission of the Crab pulsar may be

16



understood reasonably well if it comes from the IPZ.

On the basis of this model, Sturrock made three predictions. First,

that gamma radiation should be detectable from the Crab pulsar. This has

been verified. Second, that x-rays should be observable from the Vela

pulsar. This, too, has been verified. The third prediction was that the

polarization of the optical radiation should have an electric vector

orthogonal to that of the radio emission. This has been found to be

untrue (Manchester 1971a)> and has led to the abandonment of the mecha-

nism originally proposed for the optical radiation. Recently, Turk,

Sturrock, and Petrosian (1973) have shown that coherent curvature radia-

tion from first or second generation secondary electrons can account for

the optical radiation from the Crab pulsar.

However, Sturrock's model predicts a braking index of n = 3* and

pulse widths that are much smaller than those which are observed. The

way in which we have modified his model to account for these observations,

as well as provide a basis for understanding the irregularities in the

timing data, is described in the subsequent chapters.



FIGURE CAPTION

Figure 2.1. Distribution of pulsars in period T and age r, compared

with the predictions of Eqs. (2.1) and (2.2) (Sturrock

1971b) . ̂|,S-type structure; A,C-type structure; Q, D-type

structure, in the notation of Taylor and Huguenin (1971).

The theoretical curves are based on the assumption that

KY= V
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Chapter 3

THE BRAKING INDEX AND PERIOD-PULSE-WIDTH DISTRIBUTION

I. Introduction

Although there is some uncertainty concerning the braking index for

the Crab Pulsar, it is generally agreed that the observations cannot be

reconciled with any existing theory (Richards et al. 1970; Duthie and

Murdin 1971; Roberts and Richards 1971) . Likewise, there is a problem

concerning the distribution of pulsars in period (T, sec.) and pulse-

width (W, sec.). As noted by Gunn and Ostriker (1970), one expects that

1/P
the observations should satisfy the law W « T if the (RF) radiation

is produced near the polar caps defined as those areas of the surface of

a neutron star coupled by magnetic-field lines to the light cylinder.

The purpose of this chapter is to show that both sets of observations

may be understood in terms of a modified polar cap model.

II. Model—Braking Index

It is generally assumed that the transition from closed to open

magnetic field lines occurs at the light cylinder, as proposed by Goldreich

and Julian (1969). It is clear that the radius R of the "Y-type"

neutral points (Sturrock and Smith 1968), which characterize the transi-

tion from closed to open field lines, cannot occur outside the light

cylinder, which has radius R = cT/2n. However, it is not at all clear

that R^ cannot be less than R^. Sturrock (I971b) has suggested that

one consider R to be determined as follows:

1 07Gunn and Ostriker find that a better fit is W oc T , which corres-
ponds to Ti = 0.6 in the model to be described.
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(3-1)

where f] is a parameter in the range 0 < T| ̂  1 . If one notes that the

-3
magnetic field strength varies as r in the range R < r < R and

_o
as r in the range Ry < r < R, > and if one notes that one should

retain the assumption that the magnetic-field spiral-angle is about ^5

at the light cylinder, one finds that the formula for the magnetic

torque N given by Sturrock (19713) is replaced by

N = \ ej R* V2 V1 > <3'2)

where R..(cm) is the radius of the star and B (gauss) is the value of
"TV TV

the magnetic field at the surface of the star. On using equation (3.1);

this becomes

12 >*-2n R -1-271 /o
N = g B* R* ^ ' ' ^3>

-1-2TIwhich shows that N « T . Hence the braking index n is given by

n = 1 + 21) . (3-^)

III. Period-Pulse-Width Distribution

We next consider the period-pulse-width distribution to be expected

on the basis of equation (3-l)> by extending the analysis of Henry and

Paik (1969). We assume that radiation is due to charge sheets moving

along open magnetic-field lines at the polar caps. We consider, for

def initeness, that the dominant contribution is produced close to the

surface of the star, but the conclusions are not greatly affected if the

radiation is produced within a few star- radii.
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If the magnetic dipole axis makes an angle ® with the rotation

axis, field lines which are tangent to a cylinder of radius R^ parallel

to the rotation axis, define a polar cap at each magnetic pole. The semi-

1/2 -1/2
major-axis is of angular size R R. and is in the direction of in-

creasing longitude (referred to the rotational axis); the semi-minor-

1/P — 1/P
axis is of angular size R^ n G(®) and is in the direction of

increasing latitude. G(®) varies slowly over the range G(0) =1 to

G(jt/2) = .620. If the radiation polar diagram is defined by the cone

which is tangent to the field lines passing through the boundaries of each

polar cap, the major and minor half-angles of this cone are

-3 R1/2 R ~1/2 ,1, - 3 R1/2
2 * Y ' *b ~ 2 *

The details of this calculation are given in Appendix A.

If (j) is the angle between the rotation axis and the line of sight,

the pulse-width W is given by

w =
n sin (3.6)

for one polar cap, and a similar expression (®-» it - ®) for the other

polar cap. (if W is found to be imaginary, radiation is not detectable

by the observer.)

If we assume that the rotation axis is randomly oriented, and if we

assume that the magnetic axis is randomly oriented with respect to the

rotation axis, we find (neglecting certain terms of order W/T) that

the probability that radiation from either pole is observed and has a

pulse width in the range W to W + dW is

Pw(W,T)dW = T'
1 L(x) dW . (3.7)
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In this expression,

x = ky (3.8)

where

and

The function L(x) is given by

(t

L(x) = 2rt J d®

o

where

1/23 = arc sin x , x
(3.12)

= it/2 , x > 1

In order to make comparison with observational data, it is easier

to consider the probability that a pulsar of period T is characterized

by a value of y in the range y to y + dy. This is given by

Py(T,y)dy =\ T'
7172 y"3/2 L(ky) dy . (3.13)

We denote by F(T)dT the "population" of pulsars (sufficiently

close and sufficiently luminous to be observed) with periods in the

range T to T + dT. If f(y)dy is the number of pulsars which are

observed to be characterized by values of y in the range y to y + dy,

then

23



ff°
f(y) = I dT Py(T,y) F(T) . (:

On using equation (3-13) and noting that N , the total number of pulsars

observed, is given by

f(y)dy , (3-15)
r

o

we find that

where

*(y) = N̂ '1 k'172 y^^ L(ky) , (3.l6)

j»00

= j dz z'372 L(z) . (3.17)

A more detailed, generalized, derivation of equation (3-13) is made in

Appendix B. In Appendix C we discuss the calculation of the function

L(x) and its integrals.

IV. Comparison with Observational Data

Two sets of histograms have been constructed from observational data

for comparison with the theoretical distribution given by equation (3.16).

We adopt R« = 13-5 km, which is close to the values computed by Cohen

and Cameron (1971) for neutron stars in the mass range 0.3M ^ M < 2M .
O * G

The theoretical histogram is taken from Appendix C; its midpoint is found

from the relation x = 1, i.e., log y = - log k, with k given
peak peak

by equation (3.10). Using the values of y computed from the data for

each 7), the observed distribution is constructed for the same bins

around y , that were used for the theoretical distribution.Jpeak



To make Sample A as large as possible, we have included all ^9

pulsars for which pulse widths had been published at the time Paper I

was written (Davies and Large 1970; Maran and Modali 1970). To make

this sample as uniform as possible, we have adopted for the width the

value W quoted by Maran and Modali which, in some cases, is the "full

width" and in other cases is the "equivalent width". Sample B consists

of the 13 pulsars for which Gunn and Ostriker (1970) list more careful

measurements, and 5 additional pulsars from Maran and Modali (1970).

These are listed, with our judgment of the best measure of W, in Table

3.1.

Histograms formed from Sample A are compared with histograms generated

from the theoretical distribution in Figure 3>1> f°r a range of values of

7|. The best fit is found in the range 0.6 ^ f] ̂  0.7. The fact that the

widths of the curves do not match too well is attributed to the intrinsic

scatter in the measured pulse widths. Similar results are obtained from

samples composed of those 25 pulsars with T > 0.7 sec and of those 2^

pulsars with T < 0.7 sec.

Histograms formed from Sample B are compared with the theoretical

histogram in Figure 3-2, for a range of values of 7]. For this sample,

the best fit seems to occur in the range 0.5 ^ T\ £ 0.6. Although Sample

B is smaller than Sample A, it gives a better fit to the theoretical

curve. One may attribute the change in the value of Tj which gives the

best fit, in going from Sample A to Sample B, to the fact that the total

width is greater than the equivalent width.

The above considerations suggest that T) = 0.6 ± 0.1. This uncer-

tainty may reflect errors in the determination of T\, or it may reflect
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a real variation of f| among pulsars and/or in time. We see from

equation (3.4) that this leads to a braking index n = 2.2 ± 0.2. This

quantity has been measured only for the Crab pulsar, for which various

values have been proposed. Among the more recent publications, Richards

et al. (1970) give n = 2.l6 ± 0.10; Duthie and Murdin (19?!) give n =

2.229 ± 0.003; and Roberts and Richards (1971) quote a range of values

(for different time intervals) varying from n = 1.80 to n = 2.88. It

appears that the value of n (and hence of 7]) for the Crab pulsar may

well vary, and that these changes in magnetospheric structure are related

to irregular changes in period, but that the mean value of n for the

Crab pulsar is not very different from that inferred for Samples A and B.

V. Interpulse Phenomenon

We may consider the number of pulsars which one might expect, on

the basis of the above model, to show an interpulse. Geometrical consi-

derations, discussed in detail in Appendix D, show that the probability

P. (T) that an observer will see at least one pulse from a pulsar of

period T is given by

PX(T) = 3(R/RY)1/2 f sin2®G(®) d©= 1.863 (R*/Ry)1/2 , (3-18)

and that the probability PO(T) that the observer will receive radiation

from both magnetic poles is given by

2 = 0.433 (R*/Ry) . (3.19)

Hence we find that the probability that an observed pulsar will show an

interpulse is given by

26



i = Vpi= °-23 (

One may now estimate the expected number of pulsars, of a given

observed sample, which should show an interpulse by evaluating P. for

each pulsar and summing these values. When this is done for Sample A,

considering 71 in the range 0.70 £ 71 S: 0.50, we find that the number

of pulsars expected to show interpulses is in the range 0.8 to 1.7.

This is to be compared with the fact that four pulsars from Sample A

(PSR 0532, 0904, 0950, and 1929) show interpulses. It may also be noted

that three of these have short periods, consistent with the fact that

VI. Discussion

We consider briefly some of the implications of the above results.

If, for def initeness, we adopt fj = 0.6 and R^ = 10 ' cm, we find

8 •? q 7
that, for T = 1 sec., R^ = 10 cm whereas R = 10^ cm. Hence

R is very much smaller than R . These considerations therefore indi-

cate a pulsar magnetospheric structure very different from that envisaged

by Gold (1969), Goldreich and Julian (1969), and Gunn and Ostriker (1969).

-1*5 7 h-
For the Crab pulsar, T = 10 sec., so Ry = 10 cm and R^ =

82 -110 ' cm. On noting that the power extracted from the star is 2itT N,

•oQ

and on equating this to the observationally indicated value of 10 erg

—1 Tl P
sec (Shklovsky 1968), we find from equation (3-3) that B,, = 10 gauss,

TV

12 12 Twhich is considerably less than the values (10 - 10 gauss) which

have been previously estimated.

Scargle and Pacini (1971) have suggested that the "glitch" pheno-

menon may be caused by events occurring in pulsar magnetospheres. This

27



indicates a more complicated model of pulsar magnetospheres than has

hitherto been contemplated. The results of the present study point in

the same direction. In the next chapter we discuss a model magnetosphere

which explains both the period-pulse-width distribution and braking

index, and also offers a more detailed explanation of the glitch pheno-

menon in terms of magnetospheric behavior.
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TABLE 3.1

The 18 pulsars making up Sample B, with their periods (T) and our judge-
ments of the total pulse width (W). Those marked in the last column
(G and O) make up the sample of 13 well determined pulse widths used by
Gunn and Ostriker (1970).

SAMPLE B

G & O

x

X

X

X

X

X

X

X

Pulsar

PSR 0329

NP 0527

NP 0532

PSR 0628

MP 0736

CP 0808
PSR 0833

CP 0831+
CP 0950
PSR 1133

AP 1237
PSR 1508

PSR 171*9

PSR 1919

PSR 1929

PSR 2016

PSR 2045

AP 2303

T(sec)

0.711*5

3.7455
0.0331
1.2444

0.3749
1.2922
0.0892

1.2738

0.2531

1.1879
1.3824

0.7397
0.5626

1.3373
0.2265
0.5580
1.9616

1-5759

W(sec'

.050

.090

.006

.140

.034

.070

.004

.050

.030

.050

.060

.030

.020

.o4o

.016

- .028

.100

.030

X

X
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FIGURE CAPTIONS

Figure 3.1. Distribution of Sample A of pulsars in the variable y,

2-71 -2
y = T ' W , compared with histograms generated from

the theoretical curve (broken line), for various values

of the parameter 7}. The best fit occurs for 7] in

the range 0.60 ^ 7] ̂  0.70- The curves clearly do not

fit for the value 7] = 1.

Figure 3.2. Distribution of Sample B of pulsars in the variable y,

2-71 -2y = T ' W , compared with histograms generated from

the theoretical curve (broken line), for various values

of the parameter 7], The best fit occurs for 7] in

the range 0.50 ^ 7] ̂  0.60.
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Chapter k

THE EFFECTS OF NON-RELATIVISTIC GAS IN THE MAGNETOSPHERE

I . Introduction

In most models of pulsar magnetospheres (Gold 1969; Goldreich and

Julian 1969; Michel 1969; Ostriker and Gunn 1969; Gunn and Ostriker 1970) ,

it is assumed implicitly or explicitly that magnetic field lines con-

tained within the "light cylinder" are closed whereas those which pene-

trate the light cylinder are open. If the radiation from pulsars ori-

ginates at the magnetic polar caps (those areas at the neutron-star sur-

face penetrated by open field lines) and is beamed along the magnetic-

field lines at these locations (Radhakrishnan and Cooke 1969; Komasaroff

1970; Sturrock 1970, 19?la) there is a discrepancy between the inferred

period-pulse-width distribution and the distribution derived from obser-

vation (Gunn and Ostriker 1970; see Chapter 3) . This is illustrated,

for Sample B of Chapter 3, in Figure 4.1; the expected distribution for

R = R is shown as curve 1 .

There is also a discrepancy concerning the braking index n (n =

,
oxu/03 ): if the braking is due primarily to magnetic stresses, these

models give n = 3; if *ne braking is due to a relativistic stellar

wind, n = 1 (Michel 1969) . There is a great deal of scatter in the

value of n derived from timing measurements of the Crab pulsar, but

it is generally agreed that n > 1 always and n < 3 almost always;

Boynton et al . (1972) have found that n = 2.4 ± 0.2, and Rankin, Campbell,

and Counselman (1971) have found that n ̂  2.3 during quiet periods.

II . Non-Relativistic Gas in Pulsar Magnetospheres

The possibility that pulsar magnetospheres may contain substantial

24
amounts of non-relativistic gas (~ 10 g) was proposed by Scargle and
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Pacini (1971) . They introduced this hypothesis as an explanation of

"glitches" (sudden changes in the periods of the Crab and the Vela pulsars)

which, unlike the explanation in terms of "starquakes" (Ruderman 1969, 1972)

would enable one to understand changes in the dispersion of the Crab

radio pulses (Rankin and Roberts 1971) and in the optical appearance of

the wisps in the Crab nebula (Scargle and Harlan 1970) which appear to be

related to the September 1969 glitch in the Crab pulsar. The presence

of a large amount of gas in pulsar magnetospheres, and fluctuations in

this configuration, would offer an explanation of the prevalent "noise"

in the residuals of timing data for the Crab pulsar ( Boynton et al . 1972).

The presence of such a large amount of cool gas in a pulsar magneto-

sphere implies that gas is evaporated from the neutron star surface, pre-

sumably by heating due to bombardment of the surface by high-energy

particles. However, such a large mass of gas cannot be supported against

gravity or contained against centrifugal force by the magnetic field.

Hence appreciable mass accumulation can occur only in the region where

these two forces are in approximate equilibrium, that is, at the "force-

2 -2balance" radius R_ where CD R^, = (M̂ Rp . Gas cannot collect at a

radius appreciably less than R~R. If it collects at a radius appreciably

greater than R-jo centrifugal force will eventually fling out the

collected gas, thereby opening the magnetic field lines to form two open

flux tubes separated by a current sheet. This leads to the conclusion

that R

III. Braking Index

-•?
In this model B « r for R ^ r ̂  R, , whereas approximately

-2
B «: r for R ^ r ̂  R^ , so that the magnetic field strength at the

light cylinder is given approximately by



BL = B*R*

where B is the magnetic field strength at the surface of the star. In

previous calculations of the magnetic torque exerted on a pulsar, it has

been assumed that the toroidal and radial components of the magnetic

field are comparable at the light cylinder. It seems reasonable to

retain this assumption in the revised model, since if relativistic gas

is flowing substantially radially outward at the light cylinder, and is

also moving along magnetic field lines, the spiral angle must be approxi-

mately ij-5 at the light cylinder. (Similar arguments concerning the solar

wind lead to the accepted formulas for the magnetic torque on the sun,

except that IL is replaced by the radius at which the solar wind speed

is equal to the Alfven speed (Dicke 196̂ ; Weber and Davis 1967). Hence,

using equation (2.6) of Sturrock (19T13)>

one obtains the following expression for the magnetic torque:

-4 12 -2/3 2 6 -7/3 ,, N
N = 10 NL ̂ B* R° T '/:5 . 4.3)

•7T TT TV

7/3Since N ex 0) , we see that n = 7/3> *n good agreement with the value

n ̂  2.4 ±0.2 derived from analysis of timing data of the Crab pulsar

(Boynton et al. 1972).

IV. Period-Pulse-Width Distribution

We may compute the period-pulse-width relation to be expected in

the present model. The values should cluster about the relation W/T =

o 1/2
2\|lD/2it, where ty n = -^ (R /IL, ) . This leads to the relation
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This relation is shown as curve 2 in Figure 4.1, adopting M« = M and
* O

R., = 10 ' cm. The overall agreement is good.
TV

Following the lines of Chapter 3 and the generalization of Appendix

2
B [with T| = 2/3 and R = (OHM /4n ) ], we may estimate the scatter

to be expected in the period-pulse-width distribution due to random

orientations of the line of sight and of the magnetic and rotation axes.

The resulting theoretical distribution of pulsars in the variable

2y = (T /W) is compared with the observationally determined distribu-

tion, for a range of neutron-star models (Cohen and Cameron 19?l)> in

Figure 4.2. The agreement is good for neutron-star masses in the range

V. Glitches

o
During active periods, the moment of inertia I (g cm ) of the

star plus magnetosphere will be varying. At all times, in addition to

the magnetic torque, there may be a loss of angular momentum at a rate

2 —2L (g cm sec ) due to the escape of particles from the system. These

effects lead to the following expression for n:

where n = — -r- =4, A glitch is now interpreted as an instability of
o N dco 3

the gas -magneto sphere configuration which leads to the ejection of some

of the gas from the magnetosphere and/or the dumping of some of the gas

to the surface of the star. There is therefore a change 51 in the



moment of inertia and a change 6H in the angular momentum of the star-

magnetosphere configuration. This leads to a change in the angular velo-

city given by

12? = . 61 + If . (4.6)
0> I 0)1 v '

For the process envisaged, both 61 and 6H are negative, which allows

6to to be either positive or negative.

After a glitch, the moment of inertia will return slowly to its

original value. If the rate of evaporation from the neutron-star sur-

face is approximately constant, and if the rate of mass loss from the

collected gas is proportional to the mass of gas, the moment of inertia

of the magnetosphere will relax according to the law

AI(t) =

Noting that immediately prior to a glitch the moment of inertia of the

magnetosphere is Al, we find that (despite the fact that o>T » 6to)

the post-glitch angular velocity m „ may be related to the extrapolated

"no-glitch" angular velocity m by

6H+ AI e-t/TG _ ^

The post-glitch braking index n̂ ., is related to the steady braking
PG

index n by
D

n - n =£L A! _1_ e~
t/TG

PG S .2 I 2
CO TG
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Equations (4.8) and (4.9) are in fair agreement with the post-glitch be-

havior of the Crab and Vela pulsars.

The September 1969 glitch of the Crab pulsar comprised a sudden

increase in rotation rate by three parts in 1CF. The subsequent relaxa-

tion of the angular frequency agrees approximately with equation (3-8)

with 6H = 0 and T approximately two months (Roberts and Richards

19?!; see especially Figure 2). The observed value of &oV(£

(10~ "3 ± °-1; Papaliolios, Carleton and Horowitz 1970) leads to a

similar estimate for T . Equation (4.9) gives an approximate represen-

tation of the behavior of the braking index which was close to 2 prior

to the glitch, jumped to nearly 3 after the glitch, and subsequently

decayed to ~ 2.5 in about six months (Roberts and Richards 1971; Table 1)

—A c 01 ft
The change SuVcu » 10 requires the dumping of 10 * g of gas

from the force-balance region to the neutron-star surface. The potential

or kinetic energy of such a mass in orbit at the force-balance radius is

40 3of order 10 erg, comparable with the energy required to produce the

observed wisp disturbances (Scargle and Harlan 1970) . The inferred

post-glitch time scale of two months implies an evaporation rate of

10 g sec which requires a power of 10 erg sec , about 0.2$

of the power developed in the Crab pulsar.

Preliminary calculations indicate that this model of a glitch is

consistent with published data (Radhakrishnan and Manchester 1969;

Reichley and Downs 1969, 1971) concerning glitches in the Vela pulsar,

but more definite conclusions must await the publication of more detailed

observational data.
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VI. Period-Age Distribution and Magnetic Fields

The period-age distribution of pulsars (Sturrock 1971b) may be

reconsidered in terms of the present model. The results are shown in

Figure 4.3. It is seen that the "turn-off" condition associated with

the cessation of pair-production in the electron polar zone is unchanged

and in good agreement with observations. We still find that the Crab

pulsar is the only one spinning rapidly enough for pair-production to

occur at the ion polar zone, which offers an explanation of the fact that

this is the only pulsar exhibiting a precursor. The most important

change is that the present model leads to estimates of EL smaller by
•f:

a factor of 10 than those based on earlier models. This change goes

some way towards resolving the discrepancy noted by Gunn (1971) con-

cerning the relative magnetic field strengths of neutron stars and

11 ?
white dwarfs. For the Crab pulsar, we find B aa 10 gauss, which is

to be compared with earlier estimates of 10 to 10 " gauss.
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FIGURE CAPTIONS

Figure 4.1. Period-pulse-width distribution for Sample B of Chapter 3-

Curves 1 and 2 are theoretical curves expected on the basis

of the polar-cap model for R = R and R = R , res-

pectively.

Figure 4.2. Distribution of Sample B (Chapter 3) °f pulsars in the variable

2y, y = [T /W] , compared with histograms generated from

theory (broken lines) for R = R^ and various values of the

neutron star mass (Cohen and Cameron 19?l) .

Figure 4.3. Distribution of pulsars in period and "age" [r=T/(dT/dt) ]

compared with theory. £, S-type pulse structure; /\ ,

C-type structure; Q , D-type structure, in the notation

of Taylor and Huguenin (1971).
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Chapter 5

DETAILED MODEL OF THE COLLECTION OF GAS

I. Introduction

A model of pulsars in which the inner raagnetospheric structure is

as discussed in Chapter k seems to resolve two major discrepancies between

the properties of earlier models (for which 11^=1^) and observational

data, it is therefore desirable to analyze this model in more detail.

More complete knowledge of the magnetospheric structure would make it

possible to improve the calculation of the theoretical period-pulse-width

distribution and to estimate the current distribution in the polar caps

which would then provide a basis for calculation of pulse shapes. Calcu-

lation of the dynamic properties of the magnetosphere would provide infor-

mation which could be compared with irregularities in timing data such as

the persistent "noise" and "glitches." We shall find that this model also

suggests an explanation of the "drifting sub-pulse" phenomenon (Hewish

1970) which is a puzzling feature of pulsars.

If a pulsar magnetosphere is initially free of gas, so that R is

approximately IL , and gas evaporates from the surface of the star due

to the bombardment of the surface of the star by relativistic particles,

we can determine the locations at which gas may initially collect. This

is a question of microscopic stability, in which we may for simplicity

consider a single particle constrained to move on a corotating magnetic

field line under the influence of gravitational and centrifugal forces.

This problem is set up in Section II. If there is a progressive accumu-

lation of gas, there will at some stage be sufficient gas in the trapping

zones that the configuration will become unstable. This question of



macroscopic stability is much more complex and will not be discussed in

detail in this thesis. Instead, we discuss in simple physical terms

the motion of collected gas in the limit that the mass becomes very large.

These physical arguments show that matter collected substantially beyond

the force-balance radius will be flung outward, opening the magnetic field

lines to which it is tied.

In Sections III and IV, we discuss the aligned and orthogonal cases

in detail. In each case, there are small collection zones which are

both microscopically and raacroscopically stable. By determining where

macroscopic stability changes to instability, we determine the separa-

trix between closed and open field lines, and hence determine the sizes and

shapes of the polar caps. With this information, it is possible to re-

examine the period-pulse-width distribution and to compare it with observa-

tional data; this is done in Section V. The interpulse phenomenon is exa-

mined in Section VI, and further topics are discussed briefly in Section VII

II. The Model

To investigate the trapping of gas and its effect on the structure

of the magnetic field, we find the locus of stable points for single

particles constrained to move along field lines. The magnetic field

(surface strength B ) is assumed to be dipolar from the neutron star

to the light cylinder. Thus we have the problem of "a bead on a wire";

the bead is subject to gravity, and the wire rotates with a constant

angular velocity. The stable points of the motion will tell us where

cool gas will begin to collect in the magnetosphere.

In a uniformly rotating reference frame, the Lagrangian for a

particle of mass m is given (Landau and Lifshitz 1960) by



L = - m v + niv • CD x "r + ̂  m(7o x "r) - U("r) , (5.2.1)

where U("r) is the potential energy of the particle in an inertial frame.

-• —» —•The motion is one-dimensional so the term mv • oo x r makes no contri-

bution to the Euler-Lagrange equations and the particle moves with effec-

tive potential energy

V = - | (rc X r)2 - GM^m/r . (5-2.2)

The potential energy U(?) is the gravitational potential energy due

to a spherically symmetric central body of mass M... To evaluate V,
"T?

we define coordinates in the rotating frame such that the magnetic dipole

axis is in the z-direction and the angular velocity vector is in the

x-z plane with polar angle ®. If (r, 9,(j)) are the usual spherical

polar coordinates,

o> r sin 9 sin (j)+ I sin9 cos(j) cos® - cos0 sin®) > - . (5-2.3)

In dimensionless form, all lengths are scaled to the force-balance

radius R,,R> all energies are given in terms of a typical energy E ,

and all forces in terms of a typical force F where

FQ = m OD Rpg . (5-2.6)



The dimensionless quantities are defined by

v = YE , E = eE ; (5.2.8)

F = f FQ . (5.2.9)

The resulting expression for the effective potential is

9 \

Y = - -5— sin 6 sin (|) + (sine cos(j) cos® - cose sin®) + 2a > .(5.2.10)

Furthermore, we may label a particle by the magnetic field line to

which it is tied. A dipole field line is given by

—1 2 —1
<b = constant , r sin 9 = r , (5.2.11)
' O

where r is the greatest extent of the field line. In dimensionless

form,

<|> = constant , p sin 6 = 0!, (5.2.12)

so that (f3><(>) identifies a field line and 9 locates a particle along

it. For a particle so labeled, Eq. (5.2.10) becomes

O 5 / \ 9 Q — & I
sin 6 sin (J>+ (sin6 cos(j) cos®-cos0 sin®) + 2(3 sin 6/ .

(5.2.13)

The rate of change of Y along a field line is given by

dY/ds = n • VY , (5.2.14)



where n is the unit vector parallel to the magnetic field;

P —1 /P
n = (1 + 3 cosce) IC- (2 cose, sine, 0) . (5.2.15)

From Eq. (5.2.10),

2) — T / P I r P P / \p~ i
<-2cos6 sin 6sin (|) + Isin6cos(j)cos®-cosesin®)

- sine sin6cos6sin (j) + I sinecos(j)cos® - cosesin®)

X I cos6cos(j>cos® + sinesin®) + 2cos6 Qt, (5.2.16)

Along a field line labeled by (p,(j>), this is

IL, R(dY/ds) = psin e(l+3cos e) |-2cos9 sin esin (JH-1 sin 0cos(()cos®- cosesin®)

r 2 / \- sine singcosesin (|) + I sin6cos(|)cos® - cosesin®)

X (cos6cos<j)cos® + sinesin®) + 23 cosesin (5-2.17)

Another quantity of interest is the energy of a particle tied to a

field line, as measured in an inertial frame (at rest with respect to the

origin of the rotating frame). Neglecting the kinetic energy due to small

velocities in the rotating frame,

E = | (Q x r)2 - GM^m/r . (5-2.18)

In dimensionless form, this is

e = -p CT sin 9sin(j> + I sin6cos<j)cos® - cosesin®) - 2of 1 . (5.2.19)

Along a field line labeled by (£,<(>),

e = — p. sin & sin 6sin <j> + I sin6cos((>cos® - cosesin®) - 2p sin 6

(5-2.20)



Finally, we need the force on a particle in the rotating frame.

From Eq. (5.2.2),

F* = -mto x (CD X r) - OM^nir/H . (5.2.21)

In dimensionless form, this has components

f = a sin 0sin (j) + Jsin6cos((>cos® - cosesin®) - a , (5.2.22a)

f = Q! sinGcosGsin <)) + I sin0cos(j)cos®-cosGsin® Jlcos9cos(|)cos®+sinQsin®) ,

(5-2.22b)

f j = cnsin0sin(|)cos<J) - sin<j)cos®jsin0cos<j)cos® - cos0sin®l . (5.2.22c)

For a given field line, we may simply substitute according to Eq. (5.2.12).

These results may be confirmed by differentiation of Eq. (5.2.10).

Considerable simplification of our work occurs because the two trans-

formations

<j>- 2it - (j) (5-2.23)

and

d> -» it - 6 )
(5.2.210

e -» it - e )

leave Y unchanged (see Eq. [5.2.13]). Thus we need explicitly consider

only the intervals 0 ̂  6 ̂  jt/2 and 0 ̂  <|> ̂  it/2. The following notation

will be used throughout:

x = Sin2e > (5.2.25)

T\ = cos2<|> , (5-2.26)

X = cos2® . (5-2.27)



Note that a single value of the coordinate x corresponds in general to

two values of the coordinate 0 in the complete range 0 ̂  0 ̂  jt.

The requirement for microscopic equilibrium at a given point is

dY/ds = 0 . (5.2.28)

The condition for microscopic stability at that point is that, in

addition,

d^/ds2 > 0 . (5.2.29)

However, it is not necessary to use condition (5.2.29) to decide which

equilibrium points are stable. Since Y -» -co as r -» 0, there must

be more than one solution of Eq. (5.2.28) if Eq. (5.2.29) is to hold.

Specifically, for a given (f3,<|>), a stable point Q (p,<|>) is a solution

of Eq. (5.2.28) which lies between two other solutions of this equation

which correspond to values of y greater than Y(9 ).
s

This rule has a simple physical interpretation. On a field line

which originates at low magnetic latitude, there is only one equilibrium

point and this is an unstable point because the inward gravitational force

dominates the centrifugal force. On magnetic field lines which originate

at large magnetic latitudes, there are three equilibrium points: the

outermost point is in a region where the outward centrifugal force domi-

nates, so it is stable; the other two points are where the components of

gravitational and centrifugal forces along the magnetic field cancel out,

and each of these is an unstable point. Hence if one knows the number of

equilibrium points on a given field line, one can immediately determine

whether each point is stable or unstable. Application of these rules will
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show that, for any alignment between the magnetic and rotation axes,

stable collection points exist on field lines which extend out approxi-

mately to IL, or beyond.

We now consider briefly the question of macroscopic stability, i.e.,

the stability of a mass sufficiently large that the concomitant dynamical

and gravitational stresses are comparable with the magnetic stresses. A

detailed treatment of this topic represents a complex problem of magneto-

hydrodynamics which must be deferred for further study. In discussing an

onset of instability, one of the key questions is to determine whether the

onset is explosive or non-explosive (Sturrock 1966). This involves know-

ledge of the non-linear processes involved, but the question may often

be decided without making a complete non-linear dynamical analysis.

What happens as mass begins to accumulate at microscopically stable

points? There are three regions we must consider:

(l) Material collects where the radial force is inward (and the

energy E is negative). This can only occur inside and close to the

force-balance radius. Were mass in these places decoupled from the magne-

tic field, it would orbit with angular velocity somewhat higher than that

of corotation. This implies that, as mass builds up, it will stretch

the magnetic field lines. The magnetic stress will enforce corotation

of masses smaller than some critical value, but larger masses will cause

the magnetic field to wind up progressively. Since this would lead to a

progressive increase in the transverse pressure, the configuration is

likely to become MHD unstable to an instability of the Rayleigh-Taylor

type (Schmidt 1966). A competing instability, in this situation, would

be the tearing-mode instability (Furth, Killeen and Rosenbluth 1963)



which would lead to field-line reconnect ion. The MHD instability is

likely to be explosive and may cause some material to be ejected and

some to be dumped to the surface of the star, but the resistive insta-

bility is probably non-explosive.

(2) Material collects where the radial force is outward but the

energy is negative. This can only occur outside and close to the force-

balance radius. This case is similar to Case (l) except that the magne-

tic field will tend to wind up in the opposite sense since material

would tend to orbit with angular velocities lower than that of coro-

tation.

(3) Material collects where the radial force is outward and the

energy is positive. This is the case for all collection points beyond

the force-balance radius, except for the small region of Case 2. As

the mass builds up, it stretches the field lines outward as it attempts

to enter an open orbit. The magnetic stress will enforce corotation

of masses smaller than a critical value, but larger masses will enter

open orbits, carrying the attached magnetic field lines with them. This

leads to an open magnetic field configuration. The transition appears

to have the character of an explosive instability.

The implication of the above considerations is as follows. If

the magnetosphere is initially free of non-relativistic gas and evapora-

tion occurs, gas will collect on field lines which extend to approxi-

mately IL, or beyond. When a sufficiently large mass has accumulated,

the magnetic field will be distorted. On field lines denoted by Case (3)

there will be a change of configuration (possibly explosive), leading to

the ejection of gas and the conversion of closed field lines into open

field lines. On field lines denoted by Case (2) the change in configura-

tion would not initially be a drastic one, although the accumulation of a

52



sufficiently large mass of gas might eventually lead to a disruption

of the magnetic field, possibly converting closed field lines to open

field lines. On the field lines denoted by Case (l) the initial change

in configuration will not be drastic, although a sufficiently large mass

may lead to a large distortion or disruption of the magnetic field con-

figuration. It seems quite possible that both the glitches and the

"noise" observed in the Crab pulsar (Boynton et al. 1972) are the result

of processes such as the above occurring in the pulsar magnetosphere.

We also note the possibility that trapped material in the force-

balance region may be coupled to magnetic-field lines which have become

disconnected from the main magnetic-field pattern of the neutron star,

due to differential rotation leading to field-line reconnection as men-

tioned above. If this occurs, and if the trapped material has an azi-

muthally nonuniform distribution, the magnetosphere will be subject to

a perturbation drifting azimuthally with respect to the neutron star.

Such a perturbation would produce an azimuthally drifting perturbation

of the current distribution at the polar caps. Since the radio emission

is due to these currents, the radiation would display a periodic modu-

lation similar to the observed "drifting subpulse" phenomenon.

In what follows, we are concerned primarily with the separatrix

between closed and open field lines. To this end, it is convenient to

introduce the following criteria, corresponding to the inner and outer

boundaries of Case 3:

Criterion 1. Radial force zero or outward.

Criterion 2. Energy zero or positive.

The preceding considerations indicate that Criterion 1 gives an inner

limit to the separatrix, and Criterion 2 gives an outer limit. In

analyzing the polar-cap configuration and the period-pulse-width distri-

bution, we shall give results for both criteria, but it will be seen
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that it makes little difference which one is adopted.

As a simple application of the preceding rules, we discuss briefly

the useful case of a field line at (j) = «/2 or <j> = 3jt/2 (T\ = 0) , and

show that there exist stable points for all ®. In this case Eqs .

(5.2.17), (5.2.20), and (5.2.22a) reduce to

RFB(dY/ds) = PX(^-3X)~1/2(1-X)1/2G(X) , G(X) = -3XX - 2(l-X) + 2p~3
X~3

(5-2.30)

e = | P2X2H(X) , H(x) = XX + (1-X) - 2P~3X~3 (5.2.31)

*r = PXK(X) , K(X) = XX + (1-X) ~ P"V3 • (5.2.32)

From the first equation it follows that X = ! is an equilibrium point

for all p and X- It is a stable point if there is a single root of

G(x) = 0 in the interval 0 < X < L As

G'(x) = -3X - 6p"VU , (5-2.33)

there are no extrema of G in the interval. Thus there is only one

root of G(x) = 0; this appears, initially at x = !> when G(l) <, 0.

Therefore the point (^ = 1, p, f) = 0) is a stable point if

= 0,X) = [2/(2+x)] . (5.2.3^)

Next we consider the energy and radial force at these collection

points. It is found that e ̂  0 if

Pe(T] = 0,X) = 2
1/3 « 1.260 (5-2.35)

and that f 2s 0 if



13 s: pf(«n =.o,x) = i • (5.2.36)

Thus stable points occur at X = 1 whenever (5.2.3̂ ) is satisfied,

the energy is zero or positive at these points when (5-2.35) holds, and

the radial force is zero or outward if (5.2.36) is met. Hence we have

demonstrated that stable collection is always possible for those field

lines at <j) = jt/2 and <j) = 3̂ /2, and that whichever criterion is

adopted for the opening of field lines, it occurs at a distance which

is independent of ®. If criterion (l) is accepted, then, apart from

the case ® = it/2, there is a region in which particles may collect and

remain without opening the magnetic field pattern. If criterion (2) is

adopted, such field lines exist for all ®. For either criterion there

is a much larger region in which material can collect stably and will

drag open the magnetic field. It will become clear in the following sec-

tions that there is a finite range of <|) around <() = n/2 and around

(|> = 3it/2 in which material can collect and be contained by the field.

Ill. The Aligned Case

For ® = 0, Eqs. (5.2.1?), (5.2.20), and (5.2.22a) reduce to

-3X+ 2£ V^) (5-3.1)

e = (l/2)p2X
2(x - 2p~Y3) , (5.3.2)

and

*r = Px(x-P~Y
3) , (5-3.3)

respectively. From Eq. (5.3.1), X = 1 is an equilibrium point for all

P (all d) are equivalent) . The other root of dy/ds = 0 on 0 < X < 1
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is

X = (2/3 P:

and since x < 1> this exists only if

p > p (0= o) = (2/3)1/3« 0.87̂  . (5-3.5)
»

From Eq. (5.3-2) the region of zero or positive energy for a given p is

found to be

X* (2/p3)lA (5.3.6)

and only those field lines which satisfy

p ;> pe(© = o) = 2
1/3

 M 1.260 (5.3.7)

have such a section. The radial force is zero or positive for a given

p if

X*ff3A. (5-3.8)

Only field lines with

P * pf(©= 0) = 1 (5.3.9)

can satisfy Eq. (5.3.8).

We have drawn this picture: All field lines outside of p = 0.8?̂

have microscopically stable points at )( = 1 (9 = jt/2) . The radial force

is outward for those stable particles outside of p = 1, and the energy

is positive for those outside of p = 1.260. Thus for either criterion

for the opening of field lines there is a region of macroscopic stability.

In Figure 5-1 we show the various regions of collection. Figure 5-2
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is a comparison, approximately to scale, of the magnetospheric structure

given by this model and that of Goldreich and Julian (1969).

It is useful to know the depth D(fi)E of the effective potential
\r- / O

wells around collection points. We find

D(p) = (i/2)p2 + p"1 - (V3)(3/2)1XVlA , P * P(® =

D(P) = o , p < B(e = o) .
(5.3.10)

D(1.26o) fa 0.195, so the potential well in the trapping region can be

almost 20 percent of E . Since the work W required to lift a particle

from the surface to the collection regions is approximately W = CM,,m/R

= (Rp, /R̂ )E , this depth is around 2 percent of W. However, one need

only go as far out as (3 « 5 to reach D(p)E « W, a condition which

makes collection of particles (and therefore opening of field lines) very

likely.

IV. The Orthogonal Case

We now consider the case ® = jt/2. There is substantial evidence,

including the swing of the polarization vector during a pulse of the Vela

and other pulsars (Radhakrishnan et al . 1969; Manchester 1971b) and the

existence of interpulses for six pulsars (PSRS 0531, 0923, 0904, 0950,

1055, 'and 1929; Backer et al . 1973), that the dipole axis is highly

inclined to the rotation axis for these pulsars. When ® = it/2, we

have

RFBdY/ds = J3X(1-X)
1/2 (̂ -3X)" Q(x) > (5 A. la)
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Q(X) = 3T]X - 2 + 2p V3

e =

s(x) = -TIX + i - e

Inspection of Eq. (5.k.la) shows that X = 1 is a zero of dY/ds for

all azimuthal angles (characterized by Tj) . Finding the other roots of

dy/ds =0 is equivalent to solving

Q(x) = 0 , (5-^A)

which, in turn, is equivalent to solving

x3Q(x) = o • (5-̂ .5)

Although Eq. (5«^-5) is quartic in x and thus (in principle) soluble

*

analytically, it is possible to obtain all the essential features of the

solution without doing so. We only need decide which portions of (Tl,p)-

space correspond to zero, one, and two roots of Eq. (5.^--^) i-n tne range

0 < \ < 1. Note that Q'(X) is zero in only one place, at

\/k -3A -iA l r - \ ^ \
XQ = 2 P 7] , (5.4.6)

and that Q"(X) is always positive, so Qtx,-.) is tne absolute minimum



of Q(x) • If Q(Xr>) is neSative there are two real roots of Eq. (5.̂ .̂ );

we must discover how many, if any, of these lie in the desired interval ,

This may be done and the result is Figure 5.3a> which shows the division

of (Tl, (3) -space we sought.

We have found the following: For any f| there is a (3 sufficiently

large that there exists a microscopically stable point x at that
... • i i • i — — M .. . , . g . .

azimuth. When f] < 1/2, the stable point is x = !; this requires a
^̂ ^̂ ™ ' S

1/-3

field line with £ > [2/(2-37])] . For J] > 2/3, the stable point

occurs at x < !» here we need (3 > 2 T|. If 1/2 < 7] < 2/3, there

Cj/O

is initially (p > 2 T|) a stable point at some v < 1; as p in-

creases the stable point moves toward x = 1> and reaches x = 1

when p > [2/(2-3Tl)]1 . [When a stable point occurs at y^ < I, there

1/2are physically two stable points, one at 6 = arc sin(x ), and the
S

1/2other at 0 = it - arc sin(x ).]
S

Next we investigate the energy and radial force. From Eqs. (5

and (5.̂ -.3a) it follows that the sign of g is determined by the sign

of R(x)> the sien of f bY the sign of S(x) . The procedures out-

lined above, applied to R and S, enable us to construct Figures 5-3b

and 5-3c> which show the signs of these quantities in various regions of

Comparison of Figure 5.3a with Figures 5.3b and 5-3c is sufficient

to determine the character of the stable points (v = l) for T] < 1/2.

Figure 5.30 shows that f > 0 for all f]. Figure 5-3b shows that if

(3 < [2/(l-7])] the energy is negative at the collection points. We

also find that, for 1/2 < T] < 2/3, the stable points which occur at

X = 1 always have e > 0 and f > 0.
S X*
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For Tl > 1/2 these results are not sufficient to determine the

signs of g and f for those stable points located at x < 1. In
r s

order to do so we require more detailed knowledge of the roots of Q(X)J

R(x)> and S(x). The asymptotic form of the larger and smaller roots may

be found by considering the limits p -» oo and x ~* ®> respectively.

In an obvious notation,

(5A.9b)

The smallest possible real zero of Q(X) is Xr>> subject to Q(x ) = 0;

this is

XU) = 2
2/3(l/p) = (1/2)(1/T1) . (5̂ .10)

Similarly, the smallest real zeros of R and S are

= (3A)(VTi) (5.̂ .11)

and

• (5A. 12)
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In addition, it may be verified that X = xl is a root of R(x) = 0>

and that it lies on the branch of smaller roots.

From these facts it follows that for all 11, the region f s 0

completely contains the region e ̂  0, and, furthermore, it contains

the entire locus of stable points. In addition, only for f| < 1/2 do

stable points occur where e < 0. These features are illustrated in

Figure 5-^> numerical solutions for the zeros of Q, R, and S have

been used to draw the curves.

In the orthogonal case there are microscopically stable points at

all azimuths. At none of these is the radial force inward. Stable

particles (at 0 = it/2) in the intervals x/k ^ (j> ^ 3it/4 and 5it/4 <.

Q T / Q

(j> ̂  Tit/̂ t- have negative energy if they are inside a = (3 = [2/(2~3cos (j))] ,

and will be macroscopically stable if Criterion 2 determines the opening

of field lines. Collection of substantial amounts of material at all

other microscopically stable points will lead to an open magnetic field

pattern beyond those points.

V. Polar Caps and Period-Pulse-Width Distribution

The polar caps are those areas at the magnetic poles which are

bounded by the intersections of the outermost closed field lines with

the surface of the neutron star. The symmetry of Y under the trans-

formations of Eqs. (5.2.27) implies that the outermost closed field

lines, Pc(«j>), obey

pc(4>) = Pc(2iH|>) (5-5-1)

and
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(5.5.2)

This means that the shape of a cap is unchanged under rotations of 180

about the projections of the x- and y-axes onto the planes z = R^ and

z = -V

If radiation is produced near the neutron star surface and is beamed

along open field lines, the half-angle of the emission cone is approximately

<l(40 = (3/2)6 (<|>) (5-5.3)

where

(5.5.10

Since we will find that the polar caps and emission cones are roughly

elliptical, we will speak of their semi-major (<[) = it/2, 3rt/2) and semi-

minor (<j) = 0, it) axes.

In Chapter U, it was assumed that the last closed field line at a

given azimuth was the one which grazed a cylinder of radius R centered

1/2on the rotation axis. This leads to semi-major axis i|fn = ( 3/2) (R̂ /R̂  )

and semi-minor axis ty = tyn G(®). The definition and properties of the

function G(®) are given in Appendix A. We introduce a reduced measure

of the angular size of polar caps and emission cones,

, (5-5.5)

so that the model of Chapter it- has >t(«/2) = 1 and ,̂(0) = G(0) (see

Appendix A) .

Choosing alternatively Criterion (l) or (2) for the opening of field

lines, we find from the example in Section II that the semi-major axis is
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or

= 1 (5-5-6a)

x̂ (it/2) = (1/2)1/6 m 0.891 , (5-5-6b)

respectively. We have no general expression for the semi-minor axis, so

we discuss the two special cases. The aligned case involves a circular

polar cap, with the size given by Eqs . (5.5.6). In the orthogonal case

we determine the shape of the polar cap as follows: If f| > 1/2, collec-

tion always occurs with positive g and f , so the first microscopically

stable point determines the opening of field lines:

Pc(<|>) = 2
5/3 cos2(j» , <j> s «A . (5.5-7)

For T] < 1/2 the collection occurs at \ = 1 with initially negative

energy and positive radial force. Thus

pOO = [2/(2-3cos
2(j))]1/3 , $ * jt A ; (5-5. 8a)

p(2) = 2l/3 sin-2/3̂  ^ (|> :» nA . (5-5.8b)

Therefore, in the orthogonal case, the polar cap has the shape

K(4>) = (l/2)
5/6(l/cos<j>) , (j) ^ TT A ; (5.5.9a)

= (V2)1/6(2-3 cos2<|))1/6 , (j) * ,tA ; (5.5-9b)

= (V2)1/6 sin(|) , + 2 rtA . (5.5.9c)

We illustrate in Figure 5-5 tne shapes' and relative sizes of the polar

caps in the aligned and orthogonal cases. It is interesting to note

that in the latter case the simplicity of the model has caused two sides
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of the cap to be straight lines. Numerical examination of intermediate

angles shows that the caps are close to elliptical. In Figure 5.6 we

compare the function G(®) to the ratio K(O)/H(*/2), including points

derived for intermediate angles. The differences between G(®) and our

results are sufficiently small (<^ 10 percent) to be neglected. Thus we

take over from Chapter 3 the theoretical distribution f(y) of pulsars

O/'3 p
in the variable y = (T VW) . f ( y ) peaks when W/T = 2l|h>/2rt so

ypeak = (^n2/9)(C^A*2)1/3(l/R*) , (5-5- lOa)

y(2) = 2l/3 (1) • (5.5-10b)Jpeak 'peak ' \s s i

for Criteria (1) and (2), respectively. We have evaluated these quanti-

ties for a variety of neutron star models (Cohen and Cameron 1971; Baym,

Pethic, and Sutherland 1971; Leung and Wang 1971; Clark et al. 1971);

the results are presented in Figure 5.7.

The data in Table 5.! have been taken from pulse profiles published

by Manchester (I971b) and Lyne, Smith, and Graham (1971). We obtained the

total width of the pulses by measuring the width at ten percent amplitude,

and have included only those pulsars for which the noise at this level was

small. In presenting the data, we employ "moving bins" (Turk 1972) to

smooth out statistical fluctuations. In Figure 5.8, each data point repre-

sents the number of pulsars in a bin centered on that point. The spacing

between points is smaller than the bin size, so that each pulsar is counted

more than once (seven times in 5.8a and five times in 5.8b). The error

bars are just the square root of the number in each bin. The data peak at

log (y) = 2.95 ± 0.10. From Figure 5.7 it is clear that all of the



neutron star models cover this region. The best fit occurs for Curves

1 through 4; the models of Cohen and Cameron (based on an earlier

"stiffer" equation of state) are less satisfactory. To account for a

distribution of neutron star masses we fold together theoretical curves

corresponding to a range of neutron-star masses. The smooth curves in

Figure 5.8 give the results for uniform distributions of log y of half-

width A log(y) = 0, 0.10, and 0.20 around log(y ) = 2-95- The
{36 3 K

range of masses to which these correspond may be read off Figure 5-7>

for the five distinct models of neutron-star structures.

VI. Interpulses

There are two tests of this model concerning those pulsars with

interpulses. First, following the procedure outlined in Chapter 3 and

the results of Appendix D, we may calculate the number of pulsars ex-

pected to show interpulses by summing P. = PO/PT over the 89 known

pulsars (Terzian 1973) • Putting R = (3R_,_j

f r"1/3 ; (5-6.1)

the resulting sum of P. depends on the neutron star model. Choosing

those of Baym, Pethic and Sutherland (1971), the number of pulsars N.

expected to show interpulses lies between 1.6 (M = 1.4l M ) and 12.4
* 0

(M., = 0.0925 M_) (taking p = 1) . This is illustrated as a function of
* O

the neutron star mass in Figure 5-9; antl is ^n reasonable agreement with

the existence of six pulsars with interpulses.

The second test is a consequence of the fact that a pulsar showing

two pulses must have ® » 90 , and thus the pulse width will satisfy

W/T ^ 2¥o/2jt. In other words, these pulsars must have y ^ y .. For
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pulsars 0531+21, 0823+26, 0950+08, and 1929+10, comparison of Figure 5.7

and Table 5.! shows that there are neutron star masses for which this

condition is met. We have no reliable pulse width for PSR 090*1+77 nor

PSR 1055-21, which have periods 1.579 s and 0.1971s, respectively. For

neutron star masses between 0.0925 M and l.Ul M , our model predicts

pulse widths less than (320 msec - 43 msec) and (8l msec - 11 msec),

respectively. [Terzian (1973) lists upper limits of 80 msec and 30 msec

for the fifty percent widths of PSR 090*4+77 and PSR 1055-21; these

translate into widths at ten percent of peak of about 1*4-0 msec and 5^ msec,

respectively, in agreement with our estimates.]

VII. Discussion

Although we have used the idealized model of dipole field lines and

single particle motion to study the collection of non-relativistic gas

in pulsar magnetospheres, it appears that the results are substantially

independent of these assumptions. Material is trapped stably when the

magnetic field line along which it moves cuts the surfaces of constant

potential energy in such a way that there exists a point at lower poten-

tial than neighboring points in either direction. As distance from the

neutron star increases beyond RpR, the equipotentials approach cylinders

aligned with the rotation axis. Any closed field line which extends to

this distance will have such points, regardless of its detailed shape.

It appears that, for almost any field configuration, the field will trap

gas starting somewhere near r = R~R, and the field will be opened

shortly beyond that radius. The magnetic torque on the neutron star

will thus be that calculated in Chapter U, with a braking index of

n = 7/3.
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The assumption of single-particle motion is good provided the term

(p/m) W in the equation of motion dominates the term V||P, where p

is the pressure. If d = x R is the characteristic size of a collec-

tion region and |w| = y F , this requires

u\B
2xy » kiym . (5-7.1)

For parameters of the Crab pulsar, Eq. (5.7.1) implies that the model

is acceptable if

T,, « 1010'9 (m/mp) xy . (5-7.2)

Reasonable values for x and y are 0.1, so that we need T « 10 K,

We believe that this is not a very restrictive requirement, and infer

that gas collected around stable points will not be forced out of those

regions by its own pressure.

We have also neglected the mirroring force

| v^2 B"1 V(1B . (5-7.3)

This is much smaller than |(p/m) w| if

kiym «o>2RFB
2 xy , (5-7̂ )

the same criterion satisfied by the parallel temperature in Eq. (5-7.1).

Containment of gas also requires that diffusion of plasma across

field lines is slow. From Spitzer (1962), the velocity of transverse

diffusion is approximately

v D = 10~2'7 inA B~2 T~1/2 V (p/m) . (5.7-5)
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Taking the Coulomb logarithm InA to be 5> the time scale for transverse

diffusion is about

T^-d/v^-lO^x^lQ^sec . (5.7-6)

Apparently, transverse diffusion is not a problem. However, since the

rate of mass loss from collection regions determines the post-glitch

relaxation time (see Chapter 4), more detailed study is needed of these

and related processes.

From these discussions it seems that if there is a substantial amount

of cool gas in pulsar magnetospheres, the mass and field configurations

will be similar to those we have described.
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TABLE CAPTION

Table (5.1). The 25 pulsars included in our sample. The ten percent

widths measured from the papers of Manchester (19715)

("RNM") and Lyne, Smith, and Graham (19?l) ("LS&G") are

listed under the radio frequencies (MHz) used for each

observation. Widths which are underlined were judged

the most reliable and those in parenthesis the least

reliable. Our assessment of the "BEST" width takes

this into consideration. The last two columns list

thevaluesof [W(sec)]/[T(sec)], and logy, y = (



Table 5.!

PULSAR T(sec) TEN PERCENT PULSE WIDTH (msec) W/T log y

0329+5^

0450-17

0525+21

0531+21

0628-28

0809+74

0818-13
0823+26

0833-^5
0834+06

0950+08

1133+16

1237+25

1508+55

1604-03

1642-03

1706-16

1818-04

1911-04

1919+21

1929+10

1933+16

2016+28

2021+51

2045-16

0

0

3
0

i
i
i
0

0

1
0

1
1
0

0

0

0

0

0

1
0

0

0

0

1

.7145

.5498

.7455

.0331

.2444

.2922

.2381
• 5307
.0892
.2738
• 2531
.1879
.3824

.7397

.4218

.3877

.6531

.5981

.8259

• 3373

.2265

• 3587

.5580

.5292

.9616

OKIivN

410

5^

(^•7)

86

32
20

4o
62

27

^5
22

22

14

45
11

13
22

29
93

1665 151

52

1

(104) no

12

3.5
(35) 33
20 35

33 48
54 (68)

(29)

(11)

(23)
16

(48)
11
8

22

22

82

240 4o8 610

61 55 53
26

225

145
95

3§
17 15 16

33
19 (31) 21

4j 38

62 57

26

12
8

(24)

14
4i

18

21

(93) 9§

"BEST"

55
26

225

1

145

90

36
16

3-5
33
20

4o
60
26

19
7

22

22

14

43
13
12

22

25

90

.077

.047

.060

.030

.117

.070

.029

.030

.039

.026

.079

.034

.043

.035

.045

.018

.034

.037

.017

.032

.057

.033

.039

.047

.046

2.

2.

2.

4.

i

2

3
3
3
3
2

2

2

3
2

3
3
3
3
2

2

3
2

2

2

32
,82
06

.03

.80

.24

.01

.22

• 51

.10

.60

• 90

.63

.00

.9*

.76

.07

.02

.60

.92

.91

.25

.98

.83

.48
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FIGURE CAPTIONS

Figure 5.1. Structure of the magnetosphere in the aligned case. Entire

shaded section—collection region with negative energy.

Heavy shading—collection region with inward radial force,

(a) Emission cone if Criterion 1 is adopted, (b) Emission

cone for Criterion 2. (c) Emission cone if field lines

are dipolar out to the light cylinder. (We have used Crab

pulsar parameters in this figure.)

Figure 5-2. Left, the magnetosphere model of Goldreich and Julian (1969).

Right, this model. The magnetic field configuration is sche-

matic, but the scale (Crab pulsar parameters) is approximately

correct, R^R^, :R^ « 100:10:1.

Figure 5.3- Division of (T|,(3)-space according to (a) the number of zeros

of Q(x) in tne interval 0 < x < 1! (b) tne sig11 of e

(clear area, negative everywhere; hatched area, positive

around x = 1> becoming negative somewhere in the interval

0 < x < 1; shaded area, negative around x = L> becoming

positive and then negative again somewhere in the interval

0 < x < l)5 (c) tne sign of f (same notation as Figure 3b).

Figure 5.k. The roots x of Q>R> and s> plotted versus (3, for

several values of f|. Entire shaded region, positive radial

force. Heavy shading, positive energy. The heavy curves

are the stable points of single-particle motion. The

features described in the text are illustrated here.



Figure 5.5. Polar caps, plotted as r = nC^) versus <j). Broken lines,

aligned case. Solid lines, orthogonal case. In both cases

the larger polar cap corresponds to Criterion 1, the smaller

one to Criterion 2.

Figure 5.6. Comparison of the function G(®) [smooth curve] with the

ratio of minor to major axes derived in this model [open

circles, Criterion 1; filled circles, Criterion 2],

Figure 5.7. The quantities Iog10(ypeak)
 and Iog10^ypeak^ f°r several

neutron star models: Curye 1, Leung and Wang (1971) [their

curve 1]. Curve 2, Leung and Wang [their curve 2]. Curve

_3, Baym, Pethic, and Sutherland (1971). Curve k, Clark et al,

(1971) [their table 5]. Curve J, Cohen and Cameron (1971).

Figure 5.8. Comparison of the observed distribution of pulsars in the

o/o p
variable y = (T /W) with the results of this model.

See the text for an explanation of the symbols.

Figure 5.9. The number of pulsars (out of the presently known 89 pulsars)

expected to show interpulses as a function of the neutron

star mass, for the neutron star models of Baym, Pethic, and

Sutherland (1971).
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Chapter 6

DISCUSSION—CONCLUSIONS AND PROSPECTUS

In the Goldreich-Julian (1969) steady-state model, charged particles

in the closed magnetosphere are tied to magnetic field lines which coro-

tate with the underlying neutron star. This follows from the equation of

motion under the assumption that gravity and inertia are negligible com-

pared with the electromagnetic forces. In our model on the other hand,

gravitational and centrifugal forces are assumed to dominate in the region

of closed field lines, but the plasma still is tied to corotating field

lines. Thus it is reasonable to inquire as to the consistency of our

calculation of microscopic stability.

The electric field which drives corotation is derived from a charge

density which may be found from Poisson's equation:

eln -n I ~ E/ihtr ; (6.1)i _j_ _ i 7 s '

r is a characteristic length in the magnetosphere. In a magnetic field

this produces an E x B drift

v " " ~~
EXB

cE/B~Ajtcer |n+-n_JB , (6.2)

so that the condition of corotation, v ~ cor, implies that the charge

density is

|n+-n | ~ tuBAitec . (6.3)

This is of course the same as that given by Goldreich and Julian [Eq.

(2.12)].

The gravitational force per unit volume is
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mp(n++njr
-2 (6.4)

the centrifugal force per unit volume is

(6.5)

and the electromagnetic force per unit volume is

f ~ In -n I evB/c .em I + -1 (6.6)

Thus gravity dominates electromagnetic fo-rces if

Vn- ̂  /, WeB\

and centrifugal force dominates electromagnetic forces if

(6.7)

n+n

n+-n_
eB

m CDC
P

(6.8)

[The criterion (6.8) is the same as that given by Ruderman (1972) in order

that the Alfve*n cylinder be substantially inside the light cylinder.] Sub-

stituting the charge density required for corotation from Eq. (6.3); the

mass density must satisfy

m (6.9)

Evaluated at the force-balance radius for the Crab pulsar, the right

^1'̂  g dumpedhand side of Eq . (6.9) is about 10 g cm . A mass of

from R^ is appropriate for a glitch in the Crab; if contained in a

2 — ̂
volume V = jt(R..,R/5) 2« RF this has a density about 1 g cm . Thus

it appears that the kind of mass densities involved in magnetospheric
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activity insure the consistency of our assumptions about microscopic

stability.

The criteria which we have used to decide between macroscopic sta-

bility and instability were based on the assumption that so much mass

will collect that the magnetic field cannot support it against gravity

or contain it against centrifugal force. We have seen that microscopic

stability can occur only for radii comparable with or greater than the

force-balance distance, so we will concern ourselves with the effects of

centrifugal force. The magnetic force which contains plasma is

fm = v(B
2/8jt) ~ B2/8itr . (6.10)

We may define a critical mass density p by equating f and f ,c c m

pc = (B
2/8Jtc

2)(RL/r)
2 ; (6.11)

densities which exceed this cannot be held in corotation except in the

force-balance region.

The maximum plasma moment of inertia which can be contained by the

magnetic field outside of the region of cancellation of gravitational and

centrifugal forces is

max I
(6.12)

^ /\ ft j; jj

B

•30 c; 2
Evaluated for Crab pulsar parameters, I ~ 10 g cm , so that

' max '

I /I ~ 10~ . This is three or four orders of magnitude too small to
max *

account for the glitches, but is suggestive of the noise seen in the

Crab timing data. We infer that non-relativistic gas at densities greatly



exceeding p collects near R , and that when densities approaching

p build up outside R they result in macroscopic instability. The

resulting changes in the magnetic field configuration may be related to

the restless behavior of the Crab pulsar.

Lehnert (1960), in a paper on the confinement of rotating plasmas

by a magnetic field, notes that "in a theory on the origin of the solar

system, Alfv^n (195̂ ) considers a cosmic cloud of ionized gas, rotating

around a central mass M in a magnetic dipole field which has a dipolec

moment coinciding with the axis of rotation. In the theory is introduced

a dividing surface. At the inner side of this surface, the parts of the

cloud are attracted and fall down to the central body. Outside of the

same surface, the centrifugal force brings matter out along the magnetic

field lines down to the equitorial plane where planets or satellites may

be formed. Alfve*n determines the dividing surface from the balance

between the gravitational and centrifugal forces." His expression for

the dividing surface, when rewritten in spherical polar coordinates, is

r3sin29 = 2 G M /3oo2 ; (6.13)
C

using Eqs. (5.2.4), (5.2.?), (5.2.11), and (5.2.25), this becomes

^ = 2/3 p3 . (6.14)

This is identical with our Eq. (5.3.4), which defines the boundary of the

microscopically stable region in the aligned case.

Lehnert further states "In connection with this problem should also

be pointed out that a weak magnetic field ... is expanded radially by

the centrifugal force. The present deductions merely serve as an illus-

tration to the situation where the magnetic field is strong enough to
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balance this force." This is analogous to our assertion that outside of

the force-balance region centrifugal force will convert closed field

lines into open field lines, and that the resulting magnetic field will

-2
fall off as B oc r .

The pulsar model at which we have arrived combines the magnetospheric

structure laid out in the preceding chapters with the radiation mecha-

nisms described by Sturrock (1970, 19713). The modifications of Sturrock's

work which arise in the change from R = R. to R^ = R^ have been worked

out in detail by Turk (1972). A discussion of the results has been given

by Roberts, Sturrock, and Turk (1973); and we will briefly mention some

of their conclusions.

Table 6.1 sums up some of the comparisons between a model where the

radiation arises at the light cylinder and the two polar cap models —

first, that for which R = R. , and second that for which R = R™.

Concerning the braking index, the first two give n = 3, which is wrong.

The revised model gives n = 7/3 = 2.33, which is consistent with the

data. The fact that some pulsars have an interpulse which is off-center

is hard to understand in terms of the light cylinder model (this is

because multipole moments higher than dipole will have fallen off faster

at the light cylinder, unless the contribution to the magnetic field of

currents flowing in the open magnetosphere is significant; Sturrock 1971a).

However, it follows naturally from either polar cap model. Further, the

revised polar cap model enables one to understand the number of pulsars

which show an interpulse.

Timing noise is not a natural consequence of either of the first two

models, but it is a readily understandable property of the third. Since
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radiation is produced near the surface and the magnetospheric configuration

is determined near the force-balance radius, it is easy to understand the

fact that the pulse-shape of the Crab pulsar did not change around the time

of the September 1969 glitch. On the other hand, we do not think it is

easy to understand a large glitch, such as have been observed in the Vela

timing data, as being a magnetospheric phenomenon. Concerning the period-

pulse-width relation, there is no clear indication of what this should be

for the first model; we know that the second model gives one which is

incorrect, but it appears that the third model gives a relation which is

compatible with observation. There is growing evidence, however, that

there may be two distinct classes of pulsars, and the W-T distribution

should be re-examined in this light.

None of these models offers an obvious explanation of the drifting

subpulse phenomenon. However, we have mentioned one possibility in

Chapter 5, and the presence of non-relativistic gas in the magnetosphere

suggests another-T-that Alfve*n-wave oscillations might be involved. These

ideas should be explored more fully.

The radiation properties of the three models are also summarized in

Table 6.1. Little is known about the electrodynamics of the light cylinder

model, so it is hard to make comparisons with the data. Looking at the

two polar cap models, we see that either explains the period-age distri-

bution, and that either can account for the RF properties. According to

Turk, Sturrock, and Petrosian (1973), the force-balance model can better

explain the optical properties. Either can explain the x-ray properties

and the particle flux into the Crab nebula.



TABLE 6.1

MAGNETOSPHERIC STRUCTURE
AND RADIATION MECHANISMS

LIGHT POLAR CAP POLAR CAP

CYLINDER RY = RL RY = \B

1. BRAKING INDEX X X V

2. INTERPULSE, OFF-CENTER X V V

3. TIMING NOISE, CRAB GLITCH X X V

4. GLITCH (BIG, VELA-TYPE) ? ? ?

5. PERIOD-PULSE-WIDTH DISTRIBUTION ? X \/

6 . DRIFTING SUB-PULSE STRUCTURE X X ?

7. PERIOD-AGE DISTRIBUTION ? V v'

8. RF PROPERTIES ? V V

9. OPTICAL PROPERTIES ? X V

10. X-RAY PROPERTIES ? V V

11. PARTICLE FLUX INTO CRAB NEBULA ? V V

Author's evaluation of properties of models: \/ indicates apparent agree-

ment with observational data; X indicates apparent disagreement; ?

indicates uncertainty.



Appendix A

POLAR CAPS AND EMISSION CONES

In a coordinate system where the magnetic axis is in the z-direction

and the rotation axis lies in the x-z plane at polar angle 0, dipole

field lines are the surfaces

—1 P —T
r sin 6 = r = constant , (A.l)

and a cylinder of radius R aligned with to is the surface

r siny = Ry , (A.2)

where y is the angle between r and CD,

cosy = cos0 cos® + sln9 sin® cos(j) . (A.3)

For a given (<j>;®), these two surfaces intersect at (r, 9) determined by

p
r sin 0 siny = R^ . (AA)

The first field line to intersect the cylinder (the one which is tangent

to it) does so at an angle Q such that r is a minimum. The condi-
' c o

tion dr /30 =0 is
o

sin6[2cos0 siny + sin9(cosy/siny) (sin9 cos® - cos9 sin® cos(j))] = 0 .

(A.5)

(The solution 9=0 corresponds to a maximum of r .)

Tracing these grazing field lines back to the star's surface r = R^,

they form two polar caps, at colatitudes 9 and ir - 9 , where

IL."1sin2e = r ~1sin29 = Rv~
1sin29 siny(9j , (A.6)** r c c Y c c
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and two emission cones consisting of the tangents to the field lines

where they cut the surface. The half-angle ty of a cone is given by

tan^ = (3/2)sin0r{[l - sin0r]/[l - (3/2)sin
29r]} , (A.?)

which is well approximated (to order [W/T]) by

f = (3/2) siner . (A.8)

The solution of Equation (A.5) for general ((|);®) is involved, and

we shall content ourselves with the major and minor axes of the emission

cone for arbitrary ®, and the complete solution for 0 = it/2.

y-z Plane ((|) = it/2), Major Axis;
1 • " - - - ' - ,3.

With cos(() =0, Eq. (A.5) is

2 2 2
cos9(2 sin ® + 3 sin 6 cos ®) = 0 , (A.9)

the only real solution of which is 9 = it/2, siriy = 1, so the half-
c

angle of the emission cone in the direction of increasing longitude

(referred to the rotation axis) is

t£= (3/2)(VRy)1/2 . (A.10)

x-z Plane ((() = 0), Minor Axis;

With cos<]> = 1, Eq. (A.3) implies

Y = e - © , (A .11)

so Eq. (A.5) reads
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2
2 sine cose sin( 0-®) + sin 0 cos( 0-®) = 0 . (A.12)

From this we find the relation

tan® = (3 tan0 )/(2 - tan26 ) . (A.13)c c

(The expression given in Paper I contains a typographical error.) Noting

that 0 5 rt/2, we invert Eq. (A.13) to find
C

6 = arctan{[-3-(9+8 tan2®) 1/2]/[2 tan®]} . (A.1*0

Thus the half-angle in the direction of increasing latitude (referred

to the rotation axis) is

(A.15)
« I

where G is defined by

I/?
G(®) = sine sin (0 -®) , (A.l6)

C C

with 0 determined by Eq. (A.l4).
C

Polar Caps in the Orthogonal Case;

When ®= jt/2, Eq. (A.5) has

sine cos0(2 - 3 sin20 cos (j)) = 0 . (A.1?)

2
One solution is sin 0 = 1 , the other

C

sinV = 2/(3 cos2*) , (A. 18)
C

for which we must have cos <|> £ 2/3- We may verify that Eq. (A.l8) indeed

corresponds to the minimum r for d) in this range. Defining
o T
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F(cos2(|>) = [ro(sin
2ec = 1)J - jrQ( sin

29c = 2/3 cos
2<(>)] , (A. 19)

find F(2/3) = 0, F'(x)=(l/2) (l-x)~3/2 -(l/2)33/2. Thus F'(X :> 2/3)

0, so that F(X ̂  2/3) ̂ 0, QED. The resulting polar cap has the shape

3~3/Vcos<j> , cos2<|) ;> 2/3 ,

(A. 20)

sin1/2()) , cos2(|) ^ 2/3 •

The simplified model of Chapter k has R = R. and we may com-

pare the resulting polar cap to those found in the more complete model

of Chapter 5. In Figure A.I we have shown the scaled polar cap size

K(<|)) predicted by Eq . (A. 20), along with those from Chapter 5, for the

orthogonal case. The qualitative similarity occurs because the equipo-

tentials of Chapter 5 are nearly cylindrical in shape, and the quanti-

tative differences because they are perturbed by the gravitational poten-

tial.

Case of General (f) and ®;

For completeness, we note that for arbitrary ((|>;®) we may transform

Eq . (A. 5) into a cubic equation in x = tanG:

O o

a x - > + b x + c x + d = 0 , ( A . 2 1 )

where
a = sin® cos ® cos(j) ,

b = 3 - sin2®(l + 3 cos <))) ,
(A. 22)

c = -5 a ,

d = 2 sin2® .
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FIGURE CAPTION

Figure A.I. Polar cap in the orthogonal case, plotted as r = K(

versus <j). Solid lines, the model of Chapter k, where

IL, = IL., . Broken lines, the model of Chapter 5. The

larger cap corresponds to Criterion 1, the smaller one

to Criterion 2.
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Appendix B

THE PERIOD-PULSE-WIDTH DISTRIBUTION

Here we derive the period-pulse-width distribution expected from

two emission cones located at opposite magnetic poles. Measuring angles

from the rotation axis, let the cones be located at colatitudes ® and

it - ®, and have longitude and latitude half-angles tyn and \|; , respec-

tively. Assuming the shape of the cones to be approximately elliptical,

and that iju and \|f are sufficiently small that plane geometry may

be used, the pulse width W is related to the rotation period T by

sin <p
(B.I)

and a similar expression with ® -• it - ® for the other pole. Here (()

is the colatitude of the line of sight of the observer. If neither

expression is found to be real, radiation is not detectable by the

observer. This geometry is illustrated in Figure B.I.

The probability that W is in the range W to W + dW, given by

twice the probability for one cone, is P (W,T)dW, where
W

fit , jt , ( T i|fn r ,1 ,,2-il/2)
PW(W,T) = 2 f \ sin® d® f \ sin(|, d* 6 W - ^ 1 - -^- .

o Jo ( Vb ,
[real integrand] '

We have assumed that both the locations ® of the emission cones and

the angle of the line of sight <{) are randomly distributed on (0,jt).

To transform the delta function we use the well-known rule

«[*(*)] = x n'
x=x

n n

(B.3)
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where

f(xn) = 0

Defining

G(®,<|>) = W -

(B.10

(B.5)

we have

T
,21-1/2 „ T

_ffl (.^

sin <J)

Here <|) are the solution of G = 0, i.e., of
n ' '

W = n-»? -i
2 J

2" 1/2

(B.6)

(B.T)

"sin

Since we assume t|r o and i|f are small, we may put sin<|) °« sin®, and

thus
/ \ae-f -J- « j « ̂  o

(B.8)

and (B.6) becomes

2 2

= ±
W 3t2sin2g

•3
W sinj®cos® . (B.9)

To order (W/T) the first term dominates, so both solutions to G = 0

are the same, and we may easily do the delta-function integration over



= T
sin

- sin2®

(B.10)

where

' W

;> i

< 1

(B.ll)

We have used the invariance of the integrand under ® -» jt - ®.

In our model

3 R 1/2 -1/2

2 R* ^

We may parametrize Ry(T) by R and T] by defining

(B.12)

so that

(B.13)

if we further define

**
k = (B.H)

2-71 -2
= T M W , (B.15)

w2*2
(B.16)
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then

VW,T) =
»a*./• * G<®)"® (B.IT)

.
o Vky - sin ®

It is convenient to transform to the probability that y is in the

range y to y+dy. Using the identity

|Pw(W,T)dW| = |Py(y,T)dy|

we find the central result

'̂ 2 '372Py(y,T) = T' y' L(ky) ,

where we have defined

L(x) = 2rt

Vx - sin

with

x , x < 1

(B.19)

}

(B.21)

Calculation of the function L(x) and its integrals is discussed

in detail in Appendix C.
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FIGURE CAPTION

Figure B.I. The geometry of the polar cap model, showing only one

magnetic pole.
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Appendix C

THE FUNCTION L(x)

The function L(x) is defined by

L(x) = f
J I p
o \Jyi-sin

where

m

It

sin Jx , x < 1

(C.2)

We first demonstrate that L is integrable near the singularity at

x = 1. For x ̂  1 we use z = sin® to rewrite L as

L(X) = at f
o

and for x ^ 1 we employ sin® = zfx to write

(c.3)

L(x) = f

• \/(l/x-z2)(l-z2)'

(x

The complete elliptic integral of the first kind is defined (Abramowitz

and Stegun 1970, 17.3.!) as

; (m) = J [(l-t2)(l-mt2)]-1/2 dt (C.5)

101



so

f [(l-t2)(m-t2)]-1/2dt = i K± . (C.6)
J vra ^ '

As z and G are less than one, from (C.3) and (C.4) we find

L(x) < ; 2 n x ~ K ( x * 1 ) , (C.T)

and

L(x) <; 2it x2 K(x) (x <; 1) . (C.8)

•\

The asymptotic form of K(m) is (Abramowitz and Stegun 17.3-26)

K(m) >| In^L , (C.9)
m -» 1"

so putting

x = i ± e (x ̂ i) (c.io)

we have

L(X) ^ 2jt(i+e)"1/2 in(i6/e) , (x = i+e > i) , (c.ii)

L(x)

It is evident that we need consider only one case, so we examine

f
l+£ -£

L(x)dx <; rt I -i/o(i+e) /£;in(i6/e)de . (0.13)
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For small £ this is dominated by -jtg. In 6, which shows that L(x)

is integrable across x = 1.

In order to tabulate the function L and its integrals we use the

forms (C.3) and (C.k). Subtracting off the singularities at z = 1,

,(x) = 2it | g>(z)dz + 2rt G(|)y^§j- >

( x s s i ) (C.U)

G(it/2)

and

L(x) = 2* x372 ( g< (z )dz + 2rt x372

, ,<Z "

(x ^ 1) (C.15)
\± _]_ -1 i—

z G[sin (z\)x)] G(sin \/x)

\/(l-z2)(l/x-z2)(

The remaining numerical integrals may be handled easily by standard

methods. The resulting function L(x) may be integrated numerically,

as we have shown that the contribution from the singularity at x = 1

may be made arbitrarily small. The precise integral required is [see

Eq. (3.16)]

Z2
; L , z 2 )^ i z"

3/2 L(z)dz .

zl

From Eqs. (C.3) and (C.I)-) it is easily demonstrated that

L(x) ^ «2 x"1/2

x » 1
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and

L(x) M jt2 x2 (C.18)
X « 1

so that \} defined by

X = fV-^LCzJdz ,

is finite (X = 7-772). The function A is recorded in Table C for steps

of 0.1 in log (z), and is illustrated in Figure C.I.
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TABLE CAPTION

Table C. The function ^(z ,z ), as defined by Eq. (C.l6), for steps

of 0.1 in log (z). The value of A for each interval is

the number in column 3 times 10 to the power entered in

column 4.
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TABLE C.I

log z±

-2.0
-1.9
-1.8
-i.T
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
i.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2-5
2.6
2.7

log z2

-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

A(z1,z2)

.131302

.185621

.262470
•371237
.525261
.743518
.105307
.149258
.211752
.300781
.427929
.610122
.872385
.125231
.180777
.263121
.387964
.585078
.925510
.182218
.177488
.945468
.64?i8i
.470388
.352098
.268172
.206565
.160350
.125165
.980978
.77H77
.607641
.479629
..379101
.299959
.237536
.188224
.149225
.118354
.938993
.745159
.591̂ .
.469527
. 372782
.295999
.235050
.186663
.148244

xioa

-3
-3
-3
-3
-3
-3
-2
-2
-2
-2
-2
-2
-2
-1
-1
-1
-1
-1
-1
0
0
-1
-1
-1
-1
-1
-1
-1
-1
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
-3
-3
-3
-3
-3
-3
-3
-3_0

SUMS OF BINS

.0003

.0006

.0012

.0026

.0051

.0104

.0212

.0444

.0973

.2748

.2720

.1117

.0620

.0367

.0223

.0138

.0086

.0054

.0034

.0021

.0013

.0008

.0005

.0002

.000951

.003814

.015506

.065637

. 372073

.383792

.098719

.036114

.013962

.005497

.002179

.000866

SUMS TO 0.9991
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FIGURE CAPTION

ot

Eq. (C.16).
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Appendix D

INTERPULSES

We first consider the fraction of pulsars which are observed. If

the (+) magnetic pole is at colatitude ® and the (-) pole at colatitude

it - ®, the observer detects radiation from the (+) pole if the line of

sight <)) satisfies

. ® - l|lb < <j> < ® + Yb , (D.I)

and he sees the (-) pole if

. (D.2)

These regions are shown in Figure D.I. Assuming random orientations of

® and (j)̂  the probabilities that he sees the (+) or (-) poles are

P. = f TT sin® d®

and

r*
P = |* i sin® d® I i sin<|> d<|) . (D.4)

Clearly P = P_, and we evaluate only P :

1 /" v r \
PJ. = 17 I sin®T-cos(®fij;. ) + cos(®-ty. ) ]d® ^ (D.5a)

T M- I D D

"o

p+. J- ?
sin ® sinilL d® . (D.5b)

D
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1/p
Now sini|,b = (3/2)(\/Ry) ' G(®), so

1 /9 r^/2
 p

P+ = (3/2)(%/Ry)^ j sin ® 0(0) d® (D.6)

and the total probability that we see at least one pulse is

i/? r
X = 2P+ = 3(%/Hy) I sin""® G(@) d® . (D.T)

By numerical integration

sin2®G(®) d® = 0.620958 , (D.8)

so

Pl = 1.8629 (\

[Of course, we could also obtain P from

r0

Py(y,T) dy (D.10)

which becomes ( see Appendix B) ,

P1(T) = 1/2 T k172 X • (D.ll)

Using the definitions of k and R , we find that

T-Tl/2 kl/2

so that Eq. (D.ll) becomes
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PI(T) =

The numerical value of \ = 7.772, so that 3xAit = 1.855. The differ-

ence between Eqs. (D.9) and (D.13) is about O.U$, perfectly satisfac-

tory agreement considering the approximations used in the derivation of

Eq. (B.19)].

We now consider the number of pulsars expected to show two pulses.

The region of ® - (|> space for which Eqs. (D.l) and (D.2) hold simul-

taneously is illustrated in Figure D.I. When weighted with

1/2 sin@ 1/2 sin<|), this area is the probability of a pulsar showing an

interpulse,

Clearly the two contributions are equal; evaluating the first gives

it/2

J sin<t>[2 sii4 B l n t b ( ) - 2 cos(j) cosi | /b()b

P2 ~ *b( 8 i n *b(^ " ^ b ( } =-0^33 (VV ' (D'15b)

[This agrees with the observation that the weighting factor is very

nearly 1/4 in the region of integration, and that the area of the square

is
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FIGURE CAPTION

Figure D.I. The regions of (®,<j))-space. Entire hatched area, observer

detects at least one pulse. Cross-hatched area, observer

detects both pulses.
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