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Abstract

The entire field of astronomy is now in very rapid flux, and at

the center of interest are problems relating to the very dense, rotat-

ing, neutron stars now observed as pulsars, the hypothesized collapsed

remains of stars known as black holes, and the not yet understood

quasars. An understanding of these very exotic objects will undoubt-

edly require the use of rapidly developing observational tools such

as infrared astronomy, ultraviolet astronomy, and x-ray astronomy, as

well as the classical tools of optical and radio astronomy. On the

theoretical side it will be necessary to understand the behavior of

very intense gravitational fields, such as are expected to occur in

these objects, and the behavior of matter and radiation in such

fields.

We have used the so-called degenerate metric form, or Kerr-Schild

metric form, to study several problems related to intense gravitational

fields. These are as follows:

I. The fundamental problem of relativistic gravitational theory

is to solve the Einstein equations to obtain metrics which generalize

the Lorentz metric of special relativity,

(special relativity)

We have worked with "algebraically special" space-times in order to

simplify the mathematical problem. The classification of space-times

is therefore treated first, and a new relation between the Petrov and

Debever-Penrose schemes is presented.
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II. Our approach to the mathematical problem is to consider

metrics of the specialized form

*r - Hr*, j£,t Jl ,(r* A v

where £ is a null 4-vector, H H = 0, and m is an arbitrary param-

eter corresponding to the mass of the source of the field. We have

studied time dependent metrics of this form and obtained very simpli-

fied equations and a number of solutions, including the Kerr metric

which describes a spinning black hole. Although the algebraic problem

is solved in nearly complete generality, several special new cases

arise which appear to describe gravitational waves, and are being

studied further.

III. The black hole solutions which arise in I. describe the

exterior field of the final asymptotic state of a spinning star at

the end of its evolution, if the mass exceeds a critical mass of

about 2 solar masses. If the mass of a star is less than the crit-

ical mass, it may instead become a pulsar — a rapidly rotating neu-

tron star of about the same density as an atomic nucleus, -1011* gm/cm3.

Such neutron stars are incredibly complicated in structure and

extremely interesting, especially those with a mass near the critical

mass. These stars have an exterior field that is given, to first

order in the stellar rotation rate, by the solutions discussed in I.

We have studied the interior field for an idealized model, which is

tractable analytically yet possesses some of the most interesting

properties of very complicated neutron star models. The model is

composed of an incompressible fluid undergoing a small amount of
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differential rotation. It is attractive in its simplicity and has

properties such as a constant spatial density which are very close

to much more cumbersome models.
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1.

1. Introduction.

In the decade following the publication of the field equations of

general relativity^ , attention focussed on methods of solution

that exploited one or other of two simplifying assumptions: sym-

metries in space-time, and linearization. This led to the

Schwarzschild solutions*-2 , the Weyl solutions^, the Einstein,

De Sitter, Friedmann and other cosmological solutions and model

fi*1universesv , and to first-order corrections to Newtonian gravi-

tational theory^ . Much of the emphasis was on the mechanical

implications of the theory, in the sense that generalizations were

sought of Newtonian mechanics, including the conservation laws for

momentum, angular momentum and energy.

In retrospect, an emphasis on analogies to classical mechanics

looks to be too narrow. This point was emphasized in the late

1950's by Trautman, Pirani and others * . Instead of looking

for a mechanical analogy, these authors argued that we should con-

centrate attention on analogies with other systems of field equa-

tions. In particular the electromagnetic field, which we know to
r o)

be intimately related to the gravitational field , should be

studied in a general Riemannian space-time.

This approach was introduced by Pirani, Trautman and Lichnerowicz , and



developed further by Debever^1 , Penror-e^11', Robinson^12' and Bel*"1 ,

who were led to study the eigenbivectors of the Riemann tensor as the

natural analogue of the eigenvectors of the energy-momentum tensor of the

electromagnetic field. Using the Einstein field equations, the Riemann

tensor was found to define four mill vectors at a general point of space-

time ' . These four null vectors, termed the Debever-Penrose princ-

ipal null vectors, can be related to a coordinate invariant algebraic

classification of space-times developed by Petrov . At any point of

space-time, the space is defined to be algebraically general if the four

Debever-Penrose null vectors are independent, and algebraically special

if two or more of the Debever-Penrose null vectors coincide. We can regard

the study of algebraically special spaces as being equivalent to a simplify-

ing assumption in the search for solutions of the field equations, just as

physical symmetries and linearization are also simplifying assumptions.

The first studies of algebraically special space-times emphasized applic-

ations to gravitational optics and to gravitational radiation theory ' ' ,

(18)However, the whole subject received a major new impetus in 1963, when Kerr

discovered a new solution of the field equations of great physical interest

and importance. The Kerr solution, which appears to represent the exterior

metric for the end-point of gravitational collapse of a massive rotating

body (a "rotating black hole" ) has an algebraically special space-time

structure and was found via an investigation of such space-times. Thus

the latter were regarded with much greater interest and a search for other

physically meaningful solutions of algebraically special type became logic-

al. In the late 1960's, interest in the problem was again increased by the

discovery of observational evidence that could be consistently interpreted



(20 21 )as arising from rota tine black holes ' . The evidence ntill admits

this interpretation, and additional supporting observations were made in

The main mathematical technique used so far to explore the structure of

algebraically special space-times is differential geometry, couched in the

tetrad formalism^ ' ' or in the spinor formalism ' . These have the

advantages of generality and power, and the disadvantage that they are still

outside the mathematical repertoire of many physicists and astronomers.

The plan in this work will be to study algebraically special space-times,

using wherever possible and reasonable the most elementary and widely

intelligible formulation. To accomplish this, we will find it necessary

to compare and relate several alternative approaches, and in some cases to

provide a completely new and elementary treatment- In Chapter 3 we disc-

uss the classification of space- times, and in Chapters 4 and 5 we develop

the relationship between two different methods of classification. After

a short general discussion in Chapter 6, in Chapters 7 through 13 we pres-

ent an elementary approach and solutions for a wide class bf algebraically

special apace- times. In Chapter 14» we briefly discuss rotating solutions

in the presence of matter.

Much of the material given here has been recently published or will

soon be published in the Journal of Mathematical Physics, the Physical

Review, and the Astrophysical Journal. Chapter 3, most of Chapter 4,

and Chapter 6 are restatements of well-known material. The remaining

work, except where references are quoted explicitly, are believed to

(2.7 28 29 30 3 1 1represent new developments by the authors and co-authors v ' ' ' ' .



2. Conventions nnd notation.

We work throughout in a space-time of signature (+,-,-,-), and with units

such that c = G = 1.

In general, lower case Roman indices run from 1 to 3» upper case Roman

indices run from 1 to 2 when associated with spinor quantities, and from

1 to 6 when associated with matrices; and Greek indices run from 0 to 3.

Unless otherwise explicitly indicated, the summation convention applies to

all indices.

We form the Ricci tensor by contraction on the first and third indices of

the Riemann tensor, R..., = R^*«v • Covariant derivatives are denoted byr "r
a double line, k.,||v , and ordinary derivatives by a single line, k -,|y .

Square brackets denote antisymmetrization, A r n = JT (A - Av.^ )

and round brackets denote symmetrization, A t A = .-£• ( AMV + £•** )•

We associate a factor of 1/N! with symmetrized or antisymmetrized sums over

N indices.

In general, the notation followed is that employed in Reference 8.



3. The Petrov Classification of Space-Times.

In 1954, Petrov published a method of classifying space-times in terms of

(14)algebraic properties at a single point . This classification, which we

will later show to be coordinate-independent, was made on a purely mathematic-

al basis but was later found to be closely related to the physical problem of

gravitational radiation* ' .

The classification is based on the properties of the Riemann tensor in the

vacuum case, and on the associated Weyl tensor in the non-vacuum case. For

simplicity, we carry out the analysis for the case of a zero matter tensor,

merely remarking that the non-vacuum case is handled in an exactly similar

manner using the Weyl tensor in place of the Riemann tensor.

Consider the Riemann tensor R-uy-^ » which is antisymmetric in MY> and

in />^X , and is symmetric in the pairs /****) /^ « We map the

indices LA -v p *\ onto the indices A, B by the homomorphism

n <j •*> • i n i - o _ •?« I
(3.1)

f/«v : 53 31 12, lo Zo 3o 1

L A - I * 3 h * < J

Considered in terms of A and 5, R?.r is a second order symmetric tensor
n »

with indices running from 1 to 6, and it can therefore be written as a 6x6

matrix of the form:

?___ __ ri iv (3.2)
fll -

^Ur Q
where M and Q are real 3x3 symmetric matrices and N is a real 3x3 traceless



6.

matrix (we assume the use of real coordinates). The form of (3.2) follows

directly from the symmetries of the Riemann tensor and T\/\<r is isomorphic

to the tensor K uvt>\ •

Raising the first index on NA« and employing a local Lorentz coordinate

frame leads to the form:

f\ 5 s=
(3.3)

For a zero matter tensor, the field equations X

additional relations

= -M

= 0 lead to the

(V (3.4)

- 0
In this case we therefore have the forra

(3.5)

-fV M•
where M and N are both symmetric real traceless 3x3 matrices. We now

(8)introduce the dual of the Riemann tensor, defined by :

(3.6)
î r* v| p A

(e)where £ • is the usual unit tensor densityv . We observe that mapping

onto A, B as before and applying the field- equations yields the

form for the dual tensor

S
N/

M

(3.7)
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This result is most readily derived by element-by-element evaluation in

the local Lorentz frame. We note here that the symmetries of the Riemann

tensor lead to K = 0 , whereas the symmetries of K«x«y« (which are the

same as those of ) follow from = 0 .

Thus, now defining the self -dual tensor T> ̂  A
K, « below, we have:

(3,8)

This can be conveniently written in the direct product form:

"? -I? ^ ? ® r (3.9)

(3.10)

(3.11)

where P = M + i N

" 1 -Cand where J =

- i- I
P is a complex 3x3 traceless symmetric matrix and has 10 algebraically

independent components.

*D A
The eigenvectors of |C 7 are the direct products of the eigenvectors of

P and J, and the eigenvalues.are the algebraic products of those of P and J.

For J, we have eigenvalues 0 and 2 , and the corresponding eigenvectors

(1, i) and (1, -i). Thus f\ « has at least three zero eigenvalues. For

the Petrov classification, it is necessary to consider only the eigenvalues

and eigenvectors of R S that are constructed using the non-zero eigenval-

ue of J. These eigenvalues of f~ S may or may not be zero. Further,

since the Petrov classification is in terms of invariant properties of the

eigenvalues and eigenvectors of X — » the analysis applies in general
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even though the particular form given by (3.8) holds only in the .special

(Lorontz) frame.

Tho Petrov classification is performed according to the following simple set

of :-tatoments about the eigenvalues and eigenvectors of the matrix P :-

(a) If P has three distinct eigenvectors and three distinct eigenvalues,

then space-time is Petrov Type I (this clearly applies only to the

particular point considered - the Petrov Type may vary from one part

of space-time to another).

(b) If P has three distinct eigenvectors and two eigenvalues equal, then

space-time is Petrov Type I-D.

(c) If P has just two distinct eigenvectors and two distinct eigen-

values, then space-time is Petrov Type II.

(d) If P has just two distinct eigenvectors and has two equal (and

hence zero, since P is traceless) eigenvalues, then space-time

is Petrov Type II-N.

(e) If P has only one eigenvector, then space-time is Petrov Type III.

These properties of P are most readily established by reducing P to Jordan

(32)
canonical form , and this suggests that we should also state the Petrov

classification in an equivalent way in terms of the elementary divisors of

P, as follows:-

(a) If P has linear elementary divisors and three distinct eigenvalues

then space-time is Petrov Type I.

(b) If P has linear elementary divisors and just two distinct eigenvalues



then space-time is Petrov Type I-D.

(c) If P has just one linear elementary divisor and has two distinct

eigenvalues then space-time is Petrov Type II.

(d) If P has just one elementary divisor and equal eigenvalues

then space-time is Petrov Type II-N.

(e) If P has no linear elementary divisors then space-time is Petrov

Type III.

Finally, the Petrov classification is sometimes stated in terms of the

(32)Segre characteristic of the matrix P, as follows :-

Type: I Segre characteristic: (1,1,1)

I-D ((1,1), 0

II (2,1)

II-N ((2,1))

HI (3)

As we mentioned earlier, the classification is independent of the coordin-

ate system. For, consider the coordinate transformation: x — *• x, so

With the index mappings (<=**, 8^ — > f\

(f,l) —* L ,
the coordinate transformation of (3.12) can be written as a matrix trans-

formation of R :-

-r-A =pn -p^
i L ' c K- n
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-T- 3* , =rnwhere | s *— J!_ and J =
y

We can write this as the matrix product

R = T R¥ (3.15)

But T T 1 = r ~ T ~ U ~ T < ; ~

Thus T = T and so T is a similarity transformation on R. However, the

Jordan canonical form, the eigenvalues and the number of linear elementary

divisors are all unchanged under a similarity transformation, thus the

Petrov classification of the space-time is invariant under coordinate trans-

formations.

The 3x3 complex matrix P is the fundamental matrix of the Petrov classification.

We show in the next chapter that P is related by a similarity transformation

to another 3x3 complex matrix arising from another (spinor) approach, and

thus either matrix can be used as the basis for the classification.

Although any coordinate independent representation of aspects ofspace-time is

of interest, to this point the Petrov classification has appeared as a purely

algebraic formalism, unrelated to the basic geometrical features of a space-

time. In the next chapter, we introduce an alternative formulation in terms

of spinors which leads to a direct and intimate connection with the space-

time geometry.
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4. The spinor approach and its relation to the Petrov classifications.

The Debever-Penrose principal null directions can also be used to classify

space-times and in Chapter 5 we will do this explicitly. In this chapter,

we wish to establish a spinor formalism and to relate certain fundamental

spinor quantities to the Petrov classification matrix P. The Debever-Penrose

principal null directions and their relationship to the Petrov classification

can also be established by other methods ' , but the spinor approach

appears to be the most revealing and the most elegant.

The notation we will use is that of References 11, 26 and 34, and we will also

quote and use a number of theorems concerning spinors without offering proofs,

which can all be found in the cited references.

Tensor and spinor quantities are transformed to each other via the general

relationships:
^ *

A *n A C ^ ^^
^^f~ f* Ji f "** "*O ^M^W* J\ *1 ci = 6<x T v 6~ci

(4.1)
-p "X __ g-> , -J-A.J t £ ci

where the quantities C-\ satisfy the equations:

(4.2)

The fo s relate spinor space to tensor space, and c. is a skew-

symmetric metric spinor for the two-dimensional complex spinor space, enabl-

ing spinor indices to be raised and lowered. Spinor indices take on the values

1 and 2. Equations (4.1) extend in the obvious way to any number of tensor

indices. In a tangent flat space with signature (+,-,-,-), a suitable set of
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tf '3 consists of multiples of the Pauli spin matrices, plus a mult-

iple of the 2x2 identity matrix.

To any .second rank tensor Pyy there corresponds a 4-index spinor P^ jcp

If >Vv is skew, Vfy^cj) can *>e show" to have the unique spinor decomp-

osition:

FABCJ> ^ ( 4V Zzi> + £W f ii ) (4.3)
where (JR. and Y* • are symmetric in their spinor indices. Further,

' n C I J>-*> __

if tV,v is real it may be shown that Y&i ' Y' ' • (
Note that ^'^

differs from the notation of Reference 11 by a factor of two).

If we apply (4.3) to the Riemann tensor R̂ /,̂  » which is skew in both

pairs of indices vUV and jo"\ , the corresponding 8-index spinor may be

shown to have the form:

(4.4)

The symmetry of RI^A in *ne pairs AJV and a\ leads to the symmetries

on X : '

In the vacuum case, applying the field equations leads to the additional

conditions:

Thus "X- is totally ŝ nnrietric in all its indices. This important property

(12)
was apparently first remarked by Robinson . However, it was Penrose who
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first exploited the full significance of this fact, in making it basic to

the classification of space-times, in a manner that we will shortly

display . AS Penrose remarks, it is curious and remarkable that the

complete symmetry of 9C follows only in a space with the signature

Using (4.6), equation (4.4) reduces to the form:

=• (4'7)

)

The dual tensor *R.€A.v/o'5k
 can similarly be shown to have the spinor

equivalent form:

"" i' ( ^-ABO CCF £<?u' •" £/»B£fca TC^j} j
Thus the self -dual tensor Rtx.vo'^ ^as *^e spinor equivalent form:

e (4-9)
Using (4.1) we then have explicitly:

f/iU

or, raising the >i and V indices,

• . .
A f* *J U f /• ̂  ^\ II f \

** fc ̂ ^ * ̂ • -r_ ^ ̂  V rf / -» \

Since R /* ^ is antisymmetric in ,wV and in y,^ we write (4.11) in
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the explicitly antisymmetrized form:

f̂lSc.D /-, A\ £-»A* ^ cj> L->»^ (4.12)

-̂.̂ V r-» CD

where in (4.12) we define A. ..0 and ) to be
—' "J5 f—t f ̂

Now we again introduce the tensor index mapping x«v-^ /f ,

as in equation (3.1 )• Bars distinguish matrix and spinor indices and we have

from (4.12)

M 2

/• N T?Now, from equation (3.8; we note that the upper left 3x3 submatrix of N.

is the matrix P. Thus if we restrict the range of the indices A and B

to 1,2 and 3» equation (4.14) gives:

.

where in (4.15) A and 1" take on the values 1,2 and 3, and A,B,C and D

take on the values 1 and 2.

Equation (4.15) is an equation relating a 3x3 array, P, to a 4x4 array, X- •

In general, the 4- index spinor will have four eigenspinors, whereas the

matrix P can have at most three eigenvectors. Thus it would seem at first

•sight that It is not directly relatable to the Petrov classifiaction given

earlier and based on the properties of P. However, since is symmetric in
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all its npinor indices, any antisymmetric 2-index spinor, "2 , is an

eifenspinor of X , with zero eigenvalue, since

C:D - O (4.16)

In addition, it can be shown that any antisymmetric 2-index spinor can be
An

written as a scalar multiple of the skew metric spinor, £ . Thus we

need only consider the symmetric eigenspinors /"M of A » that are

then at most three in number and satisfy:

Then since <V and % are both symmetric in their spinor indices, the

4x4 matrix system for the eigenspinors of A can easily be written as an

equivalent 3*3 system. For if we define the new variables Y and X . by
J- 1 J

the relations:

** XH = "X,,,,

Y -

then (4.17) takes the form

(4.19)

Thus the eigenvectors of the 3x3 matrix X are simply related to and in 1-1

correspondence with the symmetric eigenspinors of the 4-index spinor X .

Hote that X, like P, is a symmetric matrix. Equations (4.1?) and (4.19) may

be related by the index mapping:
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(4.20)
3 J

and we may then write (4.15) in the form:

(4.21)

where now all indices run from 1 to 3 and both P and X are traceless symm-

etric complex matrices. (Note: X is symmetric only if all indices are up

or all are down).

We now show that, equation (4.21) actually represents a similarity trans-

formation between P and X. Thus either P or X may be used in performing the

Petrov classification. Equally, because of the relation between X and ?C ,

the Petrov classification can be done in terms of the symmetric eigenspinors

and eigenvalues of *% •

The condition for (4.21) to be a similarity transformation is:

(4.22)r
£-1

This is most easily checked by again using the local Lorentz frame, in which

the (5" -matrices that enter the definition of ^ can be chosen as mult-

iples of the Pauli spin matrices. Note that, since T and B range only

over the values 1,2 and 3, the index 0 is not used in the set >uv>o ̂  .

Thus we need only the forms of 6~. (J~l and £"1 , for which we will useI y *> «5

the representations:

. . t . v

(4.23)
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Using the definitions (4.15) we have:

w A - SHA H 6 ̂
4 SH\

- o -x H »/» y

Consider one term of this product. Raising and lowering the spinor indices

using the metric spinor allows us to write:
•

^ AS BH

Trace €* t € F t (4.25)

In (4.25) we have used the relation $1* ss £"/" " , and we note that since

the trace is taken in spinor space, the tensor index positions can be either

up or down. To evaluate the trace, we use the fact that with the represent-

ations of the 6" - matrices used in (4.23), £-6'̂  £ ~ &^ • Thus we have:

£ ̂£ ?A £ ) =Trace = Trace

(45)
The Pauli spin matrices satisfy the well-known relation:

6̂  (4.27)

Using (4.27), we find

( ̂ JT1- S/S,/* + ?/̂ ) (4'28)

Performing the same calculation for each term of (4.24), and combining the

Trace



results, we find:

'"v~ H -s/O ~ ̂ s (4-29)
Note that since we require that & g = -1 when A = ( M , V ) and

B = ( V>AC ), (4.29) is the appropriate form to use for £ j . Equat-

ion (4.29) confirms that the relation (4.15) is indeed a similarity trans-

formation.
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5. The eiftenspinors of X- and the Debever-Penrose directions.

We have shown in the preceding two chapters that the Petrov classific-

ation can be described in terns of the properties of a complex traceless

symmetric matrix P, and that this classification is invariant under a

similarity transformation on P. Further, we have shown that P is related

by a similarity transformation to the matrix X, and that the eigenvalues

and eigenvectors of X are in 1-1 correspondence with the symmetric eigenspin-

ors and associated eigenvalues of the wholly symmetric 4-index spinor /C .

It now remains only to determine explicitly the symmetric eigenspinors and

eigenvalues of 7C and show how these relate to the Debever-Penrose directions,

in order to complete the relationship of the Petrov method of classification

to the geometric quantities of the Debever-Penrose principal null directions.

First, since "X- f.-RCD *s symme*ric ̂ n &H its indices, there exists a un-

ique (except for scale factors) decomposition of 7C into a symmetrized

product of 1-index spinors. This result is an immediate consequence of the

fundamental theorem of algebra, which tells us that a general quartic form

has a unique factorization into a product of linear factors . Thus we

can write:

(5.1)

Each single index spinor such as -R defines a vector in Riemannian space,
fL

from (4.1). This vector, say -/£/*" , is also readily shown to be null. Thus,

the spinor %» will in general define a set of up to four such null vectors.

These are the Debever-Penrose principal null vectors, and to relate them to

the Petrov classification we need to obtain the symmetric eigenspinors of %

in terms of the single index spinors given in the decomposition of (5.1).
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/£ —\

To find these eigenapinors, let us consider the product 7C^« _ -ft TW

Writing out in terms of symmetries over just two spinor indices, this

gives :

r - ^ *^S(CJ»)

2,

Noting that S^ *"t{Si-4iSi = ~Sfl-£A (5.3)

and similarly for the other spinor pairs, we will write 'ftfyS as -/2A

and contract on C and 1) in (5.2) to give us:

in, =

(5.4)

To simplify (5.4), we use the spinor identity:

* 0 (5.5)

This indicates that the sum over all cyclic permutations of the 1 -index

spinors k,m,r and s, symmetrized and anti-syrametrized as indicated, is

identically zero. It is readily proved by symmetry arguments, but does

not appear to be given in the standard reference works on spinor properties.
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In particular, taking C = 1 and D = 2 in (5.5) we have:

~ ° (5'6)

To make use of this result, we regroup the terms of (5.4) to the form:

and now apply (5.6) with the symbols ordered as k,r,s,m to the third term

of (5.7 and ordered as k,s,r,m to the fourth term. This gives:

- -kfK'tn.̂  (-f̂  SAW. -*-^,1rvSÂ )

(5'8)

Similarly, we find:

l

(5'9)

Taking linear combinations of (5.8) and (5.9) then at once gives us the

eigenspinors of "

4

with associated eigenvalues
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Since we could just as well have started with -^ -f or -& S in (5.2), we

have as the full set of eigenspinors :

(5.12)

with their corresponding eigenvalues:

V

V =

The form of (5.12) siiggests that there are six symmetric eigenspinors, but

if we apply (5.6) we find that ^ = "WJ*" » I/, " = *v" t and

- = 'V » Thus there are at most three independent symmetric eigen-

spinors, and we choose these to be *V = 1j > 'V- = 'V > and

^W, = I/ , with the corresponding eigenvalues *X , 'X^ and ̂ l" .

If now k,m,r and s are all distinct 1-index spinors, then in fact we have

four distinct Debever-Penrose principal null directions, three independent

symmetric eigenspinors of 'X > and correspondingly three linear elementary

divisors of P, so space-time is Petrov Type I. However, it is possible for

k,m,r and s to coincide in various ways and we need to examine the behavior

of the symmetric eigenspinors (5.12) and their eigenvalues (5.13) in such



cases. The possible situations that can arise are the following:

a) k,n,r nnd s are all distinct. We have four independent Debever-

Penrose directions; the symmetric eigenspinors of 9C and their

corresponding eigenvalues are all distinct; P has thus three

linear elementary divisors and three distinct eigenvalues, and

space- time is Fetrov IVpe I.

b) I f k = r ^ m X s » in this case, just two Debever-Penrose

directions coincide. We have k^r = 0, so the symmetric eigen-

spinors are:

I/, - -&(AX-a)-f/vS •*• -f(A Sj) -£A-m.

(5>14)ft = -<«-«) m,s

with eigenvalues 'A = 'X? 4 *\. •

Thus we have two distinct eigenvalues and two symmetric eigenspin-

ors, P has one linear elementary divisor and two distinct eigenval-

ues, and space- time is therefore Petrov Type II.

c) Ifk = r = m ^ s , in this case three Debever- Penrose

directions coincide. We find that Of = if = 'W , and \ =

At = ^3 = 0. Thus we have one symmetric eigenspinor, P has

no linear elementary divisors, and space-time is Petrov Type III.

d) I f k = m ^ r = s , then the Debever-Penrose directions coincide

in pairs. It is necessary to be rather careful in applying (5.12)

here, since the form of the eigenspinors becomes degenerate. It
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is thon in fact easier to re-derive the eigenspinors directly from

(5.S), and one finds the three symmetric eigenspinors:

(5-t5>

with associated eigenvalues ^ = "\ 4 \
* 3 "

Thus % has three distinct eigenspinors but only two distinct

eigenvalues. P therefore has linear elementary divisors and two

distinct eigenvalues, so space-time is Petrov Type I-D.

e) I f k = m = r = s , all four Debever-Penrose directions

coincide. In this case, we find the symmetric eigenspinors:

where j is any 1 -index spinor independent of k^. The eigenvalues

in this case are zero, so P will have one linear elementary divisor

and zero eigenvalues, which means that space-time is Petrov Type II-N.

For completeness, one final special case should be added. If % is identic-

ally zero, then space is flat and we have no preferred directions. Anything

if then an eigenspinor, and the classification censes to have significance.

Although historically Petrov developed a formulation in which Type I-D is

.'-. jpeciel case of Type I, since both have linear elementary divisors, in

trims of the Debever-Penrose directions Type I-D appears much more like a

!-t ecial case of Type II, in which a second pair of Debever-Penrose directions

are allowed to move into coincidence.
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This completes the general development in which we relate alternative ways

of classifying space-times. For the remainder of this work, we will conc-

entrate attention on algebraically special space-times, and utilize the

structure that this implies to look for solutions of the field equations.

One final point should be made here. For ease of development, we have

worked always with the vacuum case. When matter is present, the Weyl

tensor is used in place of the Hiemann tensor in the Petrov classification,

and a corresponding gravitational spinor, H' , is used for the spinor

formulation . Then the analysis goes through in a way that exactly

parallels the vacuum treatment. However, in terms of the utility of the

results, the use of algebraic degeneracy has proved fruitful in looking

for solutions mainly in the vacuum case. Although solutions of the

Einstein-Maxwell equations have been found for algebraically special

space-times , no solutions of great physical interest seem to have

been discovered for such situations. We will discuss the non-vacuum case

further in later chapters, and point out some of the added factors that

complicate the solution of the field equations in such cases.
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6. A sumjnary discussion of degenerate space-times.

In any space-time which is not Petrov type I, two or more Debever-Penrose

principal null directions must coincide. Since this is a statement about the

essential geometry of the space-time, it is natural to ask how this geometric

statement relates to other geometric properties - for example, must an algebra-

ically special space-time possess some physical symmetries (isometrics)? Counter-

examples show that physical isometries neither imply nor are implied by algebraic

specialization of a space-time: algebraically special spaces exist that have no

physical symmetries, and there are algebraically general spaces that possess

(35)one or more isometries .

The best insight into the meaning of algebraic specialization is gained by exam-

ining analogies with the electromagnetic field. However, the nonlinear nature

of the gravitational field equations makes many of the methods often used in

handling the Maxwell equations ( such as Fourier decomposition) inappropriate .

To summarize a substantial body of work in a few sentences, it turns out that the

most enlightening analogy is in terms of the eigenvectors (eigenbivectors, in the

case of the Riemann tensor) of the field tensor. In the case of the Maxwell field,

only two situations occur: the eigenvectors of the field tensor are independent,

or they coincide. The former case occurs in any region with radiative sources

present, the latter describes a pure radiation field asymptotically far from

bounded sourceŝ 4,36,3?)̂

The gravitational field tensor has a more elaborate possible structure for the

eigenbivectors. Five cases can occur, depending how the four Debever-Penrose

principal null vectors coincide. Thinking in terms of gravitational radiation

from bounded sources, five different possible cases (which are related directly
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to their Petrov types) multiply different powers of a mean inverse distance

(34 38)from the bounded sources. This "peeling-off" property ' is of interest

to us here only because it indicates that gravitational radiation in regions

containing sources cannot be Petrov Type II or Type III - i.e. space-time near

rndiatin/c sources must be algebraically freneral.

This result suggests that solutions obtained for algebraically special space-

times will either be non-radiating ( like the Kerr and Schwarzschild solutions)

or applicable only to pure gravitational radiation far from all sources. It is

interesting to note that the Kerr and Schwarzschild solutions are of Type I-D,

which does not occur in.the "peeling-off" theorems, and seems to be associated

with stationary solutions rather than with gravitational radiation. Very recently,

other stationary asymptotically flat solutions that have non-zero angular momentum

and are Petrov Type I have been developed, but their possible physical signif-

icance is not yet clear .

Despite the fact that algebraically special space-times cannot describe the most

general physical situation, the problem is still sufficiently general that as yet

no one has succeeded in constructing the most general form for the metric of an

algebraically special space-time. It is quite easy to define a necessary and

sufficient ctondition in terms of the Riemann tensor: the matrix P of Section 3,

Equation 10 , must have at least two equal eigenvalues. Thus if the character-

istic polynomial of the traceless matrix P is:

rf ft) = Oi3 - t'X + C (6.1)

then space-time is algebraically special if and only if T^ = 0 has two equal



roots, which requires that:

27 c2 = 4 b3 (6.2)

This elementary and apparently attractive relation between b and c becomes an

extremely complicated nonlinear partial differential equation in the metric

tensor when we substitute the forms of b and c. As a result, the direct approach

of (6.2) is quite useless. Instead, most efforts have been devoted to the analysis

of particular classes of metrics that can be shown to correspond to particular

algebraically special space-times, without seeking or claiming the most general

possible form.

In the subsequent chapters, we develop a very elementary approach to just such

a class of metrics, first studied using a tetrad formalism by Kerr and Schild .
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7. A class of metrics with algebraically special space-times.

We now focus our attention on a particular class of space-times, with metrics

of the form:

00. (n 1 \
<x u —&V \ I • i )

where in (7.1) ^ is the Lorentz metric, m is any real arbitrary constant,

andx(L, is a 4-vector that is null with respect to the Lorentz metric, so

J& Ji TI^ ~ 0

It can be shown directly that the metric (7.1) corresponds to an alg-

ebraically special space-time, but we prefer to establish this in the course

of our general development.

A few comments are in order on the form of the metrics we are considering.

First, if we make the choice

2. « • a
where ^ = o£ .4- 'vj -f-jj » then we obtain a line element that is the

Eddinington form of the Schwarzschild metric, obtained from the original

form of the Schwarzschild metric by a change in the time coordinate. In this

case, the arbitrary constant m appears as the mass of the body. Second, if we

are interested in asymptotically flat space- times, -w*. must tend to zero at

M
spatial infinity if "X' are Cartesian coordinates for Minkowski space- time.

Third, for small m and finite -£«* , (7.1) has the form of a perturbation on

Minkowski space, thus we expect that the usual linearized theory will emerge

for small m.

In the treatment given hereafter, we will treat the spatial coordinates in a
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symmetrical way. We will also make no assumption of stationary or axisymmetric

solutions, nor do we introduce the assumption of algebraic degeneracy explic-

itly in our analysis. This differs from the treatment of Debney, Kerr and

(43)Schild , who in a tetrad formalism use the algebraic degeneracy from the

outset, and from that of Misra , who assumes axial symmetry.

Using (7.1), a number of useful relations are readily established. We find

(7.3)
so that indices on /u may be raised or lowered with either the full metric

tensor or with the Lorentz metric tensor. Also, since •%.**. is null

:= o (7-4)

and from the product rule for covariant derivatives we also have

<7-5)

The Christoff el symbols are easily calculated and we find

C7-6)

The field equations are greatly simplified by the choice of metric, since

from (7.1) we find det(g) = -1, and thus we have

(7-7)
Using (7.7), we find that the field equations reduce to only two terms

- P ^ * < > (7-8)
' "
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The metric tensor is linear in the arbitrary constant m, thus FyW is a

fourth order polynomial in m. If we require that (7.0 shall lead to a sol

ution of the free space field equations for any value of m, then each power

of m in (7.0) must vanish separately, which gives rise to the four sets of

equations:

order m:

2
order m :

=r Q (7.10)

order m :

-x (7.11)
,6-]- 0

4
order m ;

- o (
Using (7.3) - (7.5)f we can at once verify that the order m equations are

3
satisfied identically. The order m equations, after expansion of the

Christoffel symbols, can be written in the form

~ o (7.13)
ft

where we have defined s\J* = j£, „£, i\g . The latter is null, and it is

0 **•also readily seen to be orthogonal to the null vector JL . This can happen

f±j ^̂ ^
only if 'VT and ^^ are proportional to each other at every point, thus

we can write

"or .
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where A is a scalar field.

Note that (7.14) tells us that the vector field A,^ is tangent to a family

(34)of geodesies , and xL is parallel-propagated along the geodesies. If,

as will happen later, we choose to perform a scalar change of variables

r^ such that (7.14) becomes

< /?/* a0* f\\y*. -re -ft \u. — u (7.15)

then we say that the vector field -ft is affinely parametrized. There

are many possible choices of the scalar H that will affinely parametrize

a given family of geodesic tangents.

Now considering the order m equations, we define a new scalar L by:

/ — — 0*** — — 0***L» - -£ ||-< - -& \<* (7.-|6)

and then we can rewrite (7.9) in the convenient form:

(7.17)

Y , •
i—i a. 0 n ̂where the D'Alembertian operator is defined as M = At2- ""V » so

«*•

the upper index derivative in (7.17) is to be raised using Oi P•

Defining G = (L + A ) (7.18)

we have as the final form for the order m equations:

J«*
(7.19)

These will be used extensively in subsequent chapters.

2
For the order m equations, expanding the Christoffel symbols and using



equation (7.14), equation (7.10) can be rewritten as

- A3 = 0 (7.20)

Using the definitions of L and A, we readily derive

and by using (7.19) to form X, "(̂ L̂ v) fa we als<> find

(7.22)

Substituting (7.21) and (7.22) in (7.20), we find that this gives an

2
identity, thus the order m equations contain no new information and

are implied by the order m equations. This is expected on general grounds,

since there are ten independent order m equations, and this should suffice

to determine the metric completely. In the same way, we can also show that

the relation (7.13) leading to the definition of /\/* also follows from the

order m equations, although the derivation from the order m equations is

shorter and simpler.

We now work exclusively on the order m equations. From (7.19)

(no sum on /A,)

"" Kv £vj lo< - 5. V C-6v JJV (no sum on y ) (7.23b)

using (7.23), we can now eliminate the second order terms from (7.19),

which leads to the six independent first order equations:
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(no sun on >« and V )

These first order equations, together with (7.2j5a), are completely equiv-

alent to (7.19). If we now take

J> =: KJL (7.25)

where H is any scalar field, we find the form:

/ x(no sum on «x and v J

This has exactly the same form as (7.24), but -/L*. has replaced *£*. ,

and G/H has replaced G. We also readily confirm that -^ is null and that

(7.4) and (7.5) are satisfied with -/L*. replacing stu. . If now in (7.26)

we make the particular choice H = st0 , so that -£0 = 1 , then we have:

(no sum on i and j) (7.27a;

(no sum on j)
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Roman indices in (7.2?) and subsequently run from 1 to 3.

Using (7.27b) to nimplify (7.27a), we find a form completely equivalent

to equations (7.27):

(7.28)

Finally, using (7.25) with H = -£0 in (7.14), we have the relations:

-<- -£ol\f(. = — ft £0 (7.29a)

lU = " o (7.29b(

Eliminating A between (7.29a) and (7.29b) at once gives:

= 0 (7.30)

Thus -ĉ . is an affinely parametrized null vector. We note that the choice

H = x£ , where -£. is any component of x£M , also leads to an affines s /^

parametrization. However, the choice of the time component is the most

natural, since it permits a subsequent analysis that is symmetric in its

treatment of the spatial coordinates.
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8. The reduction of the first order field equations.

Equations (7.23̂ ) and (7.28) comprise four second order and six first

order differential equations, which together are equivalent to the

entire set (7.19) of second order field equations. To solve the field

equations, we first address the reduction of (7.28) to a simpler form.

Noting that we can lower indices on both *v and -§T using **\M , we can

write -fcj = — k- . We further define p = C/2.£0 » so that

equations (7.28) become :-

where we are now summing over all repeated indices.

Noting that (7.30) can be written as:

we write (8.1 ) as:

1 (8.3)

If we now define a 3x3 matrix M and a 3-vector -/£ by:

Ij (8.4a)

fit); = & «

then (8.3) can be written as the matrix equation:
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(B.5)

v«

We now perform a rotation of the coordinate axes, so that -ft, goes to the

form 1
0
0

In these coordinates, using the relation

- 0 (8.6)

we find that M must have the form:

n|T J--1 ---.y.
0

Vo !
w (8.7)

where m' is a 2x2 submatrix. Hence:

(8.8)

Using (8.7) and (8.8) to form M'M*T, (M1 4- K'T ) and M'lc' (M'1cl)T,

and substituting in (8.5), we find that x and y cancel from the equation,

and we are left with the remarkably simple result:

(8.9)

Equation (8.9) implies that m' can be written in terms of a real 2x2

unitary matrix U, as:

U = I - (8.10)



For our main development, we will assume that U is proper, with positive

determinant, and so can be written in terms of a single real parameter

U in the form

CoS0

C04 8

The cases of improper U, vanishing p and vanishing 0 are discussed in

Chapter 13.

Using (8.11), M1 can then be written as:

0

u

\ v

0

i-c*e
s^vB

0 \

-s^e
i - /x»e ,

(8.12)

where we define pu = x and pv = y.

To get back to the original coordinate system, we must form

(8.13)

where R is a real 3x3 orthogonal matrix. Using the orthonorraality of the

rows and columns of R, and noting in particular that

«
(8.14)

we find the form for M:



Now defining

we note thnt r.ince R and R,̂ . are rows of H and therefore orthogonal

to R , T. is orthogonal to R . . Further, uning M̂ .:-̂  = 0, we

also have

T -4; - 0 (8.17)

so T is orthogonal to k.

Using (8.17) in (8.15) and multiplying by lOc., we find that kjl̂  = 1

Since both Tc and R are unit vectors, we must have k = -f "R* , and we

can choose the plus sign since the overall sign of R is arbitrary.

Then using (8.4a) we can write (8.15) as:

where in (8.18) we have defined o^ and B by:

:
 (8-19a)

(8'19b)

Multiplying by k. and using (8.2) we have at once
J

lfo (8.20)

so (8.18) can be written as

-4 .
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or, using (8.2), in the alternative form:

4 (8-22)

The forms (8.21) and (0.22) will be used extensively. They replace the

six nonlinear first order equations of (7.28) by an explicit expression

for the derivatives k. .. Before studying these equations further, which
-^ I J

is our task in the next chapter, we first note an important feature of

(8.22). The matrix ( ?£• — "̂ //̂ " ) is singular, thus although

(8.22) is a general set of relations between the k. . . and the vector
I J

k., we cannot use (8.22) to solve for k . . in terms of k. . The only

exception to this statement occurs if k. .. k. = 0 , when (8.22) becomes
0

soluble for k. , .. However, from (8.2) we see that this occurs only when
i| J

k..o = 0, which is the stationary case.

For the general non-stationary case, the additional information needed to

solve (8.22) for k. . . will come from the equations (7.23a) which we have
i| J

not yet considered.
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9. Properties of the first order equations and the optical scalars.

The equations (8.21) lead to a remarkable number of interesting relations

involving c*<! and 8 , but we will confine our attention to the main

results needed for subsequent analysis.

Using k. k = 0, (8.21 ) at once gives

(9.1)

Also we find, directly from (8.21), the following:-

(9.2)

(9.5)

In the study of geometrical optics in a gravitational field, the quantities

known as the optical scalars play a fundamental role . Two of

these scalars, the expansion 0 and the twist (jj , are defined in terms

of an affinely parametrized ray vector field -/£/ by ':-

(9.6)

Using (9.l)f we readily show that:

<9'8)
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and also that:

Now using (9.3) and (9.4), we have:

(9.10)

Comparison of (9.6) and (9.8), and of (9.7) and (9.9:) indicates that except

for a choice of sign «xf and P are exactly the optical scalars 9 and

6J . It is interesting to see that the optical scalars enter the solution

in a natural and fundamental way, without being introduced at the outset.

The third optical scalar is the shear, 6" . For metrics of the form (7.1 ),

the Goldberg-Sachs theorem tells us at once that the shear must be zero, if

the space-time represented by (7.1) is algebraically special. Conversely,

a direct calculation of €T for the metric of the form (7.1) yields 6" = 0,

which confirms directly that these metrics correspond to algebraically special

space-times.

(The shear is defined in terms of an affinely parametrized ray congruence

, u. . , (34)k/ to be:

1)* A/a1 (wo).

Using (8.2), (9.1) and (9.4) to calculate c*£i leads to an important rel-

ation for <X :-

A <t / « - \

(9.12)
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Similarly, using (8.2) and (9.2) and calculating ĵ  and

leads to an analogoxis relation for p :-

= £cSp (9.13)

Introducing the variable

y ^ e>^ -+ i 8 (9.14)

(9.12) and (9.13) combine to the single equation:

ON 4 -N - (9.15)

The complex variable plays a fundamental role in the following disc-

ussion, and (9.15) will be used frequently.

One of major objectives in the subssquent development will be to derive

differential relations involving k. and 0 . However, there is an alter-

native method of seeking a solution, which directly explores the integrab-

ility conditions of (8.21). We will not discuss this method in detail,

since it forces us to abandon a symmetric treatment for the spatial

coordinate variables, but in Appendix 1 we give a brief discussion of the

approach for the stationary case when k.._ = 0 .

To develop differential relations, the 3-gradients of ox^ and 8 also

prove useful. To obtain, these, we use (8.21) to form k, . .. . , and we
2-1 0 1 J

also form £^KS (£ ±:L -fa'A- ], using (9.5), to give us a second equation

involving k.. . . . . Eliminating k. , .• . between these equations, using
^•l J I J i- 1 J 1 0

(9.1) and applying (8.21) to evaluate k.-o k... we find the form:
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Forming 2 t.l-KT&v̂  from (9.16) and using (9.15) then leads to:

Equations (9.16) and (9.17) cannot at once be combined to a simple equation

involving only ^ , and we will later show that we must introduce a slight

ly different V to achieve such an equation for the gradient. For the

moment, we simply note that it is only the terms of (9.16) and (9.17)

involving k.jo that fail to combine to a simple form in Y , and thus

an analysis of the stationary case should be possible without redefinition

of this complex scalar. This is precisely the path that we followed in

treating the stationary case in Reference 27.
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10. Reduction of the second order field equations.

We now turn our attention to the manipulation of the second order field

equations (V.23&). We look to these equations to provide the information

we need to resolve the indeterminacy of (8.21) and (8.22), thus we expect

that some relation between the time and space derivatives of k. should

be provided from the second order equations. Using xL, = J@0 -$ ,

equations (?.23a) become:

(10.
(no sum on i)

If we add the three equations of (lO.lb) and subtract ( 10.1 a) we have after

using (9.1 )'•

w (10.2)

Consistent with our comment following equation (8.1 1), we may now assume

that c< ^ o . Comparing (10.2) and (9.13), it is natural to take

(10.3)

which at once leads to the relation:

= o do.4)
If we now take (7o27b:) and sum over j, we have:
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Using (9.3) now at once gives

G- - "jil (̂  + f> J (10.6)

Now using (10.4) and (10.6) together with (9.12) and (9.13) gives:

' ° (10.7)
^ / \P-

This suggests that we should write, defining W :

Vv CS^ ^ •^L*n (in H^»Y ~** WO \1U.OJ

and then

= 0

where W is a real scalar variable.

Making use of (10.6) and (10.8), the field equations (7.19) take on the

form:

p - .
Taking u = 0 then leads to the four equations

Using (7.28), it is then straightforward to show that (10.1) and (10.11)

can each be obtained from the other and we will therefore work with (10.11)

since they have the advantage of being linear in k. . Subtracting (l 0.11 a)



47.

times k. from (l0.11b) then gives us the equations:

+

(10.12)

We now evaluate each term of the left hand side. Using (8.21), (9.12),

(9.5) and (9.17) we find:

Similarly, using (10.9) leads at once to:

and finally by differentiating (8.21), and then using (9.12), (9.5) and

(9.16), we find:

Using (10.13), (10.14) and (10.15) in (10.12) at once gives

4; - U/(i
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or, putting W P~5 ,

;* T.J

These are three first order linear equations in P. We will use solutions

of these equations to provide the additional information needed in (8.22)

to determine k. . . in terms of k. .

In particular, we note that if P is a function of u alone, and has no

explicit dependence on the coordinates, then (10.9) is automatically

satisfied since

= 0
'

With the assumption that P = P(— /K̂ ), we can simplify (10.1?) using

(8.21) to the form:

Consider now the possible forms for P. It is to be a real scalar function,

depending only on -̂ M, • We cannot construct a scalar by contracting -v-u*

on itself, since -"TC- is null, and if we contract ÎM. with any other

4-vector, the latter must be independent of position. This strongly sugg-

ests that P must be a function in which -R,** is contracted with a set of

constant 4-vectors, thus:

T =
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where Q. 1 is a vector with constant components. Substitution of any such

form as (10.20) into (10.19) will lead to a relation between k.. and k..- .

We now seek the simplest such relation, by supposing that P can be written

as a Laurent expansion in terms of a single scalar /CL/-fta, , thus:

oo
/ vn»

(10.21)

Each term in the expansion, used in (10.19), leads to the form:

i (10.22)

Thus any value of n gives a relation between k.. and k..̂  , but we see

from (10.22) that if and only if n = +1, we obtain a relation that does

not involve k itself. Taking n = +1 gives the very simple result:r

(10.23)

fi JL ~ (10.24)
/«l( ^w/X) = 0

or

We then have for P and W :

Since P is real, it follows that /Cu also has real components.

We will shortly return to consider (8.21 ) for the particular form of P

given by (10.26), but before doing so we make one important observation.

In order for a space to admit a Killing vector /n/*" with constant comp-

onents, we must have :-
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(10.27)

For the metric we are using, from (10.8) we see that (10.2?) will be

satisfied if:

= 0 (I0.28a)

W|. V = O <'0.29a)

Using (9.1), (9.2) and (10.2?) we readily derive the following:

|.

= O (l°-29b)

Thus (l0.28a) is at once seen to be satisfied, and using this and (10.23)

in (I0.28b) we see that (l0.28b) is satisfied.

This implies that /Q/*" is a Killing vector of both ?„ v an<^ °f ̂ ne back-

ground metric ̂ ^V • a fa°t that we will use later to simplify the final

equations for j .
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1 1 . Defining differential relRtions for thp. function Q .

We are now in a position to establish the basic differential equations

that the complex scalar o must satisfy. Using (10.23) in (8.21)

gives ua:

(11.1)
o ,

Assuming for the moment that /Ct ^ 0 , an assumption that we will

examine later, equations (l1.l) become:

j--*.̂ .) + -a"̂  e^-fet (11.2)-

The solution of (11.2) for k.. is simple, since the inverse of the matrix

(£$*.• + *££{ ) is just ( g^. - fffj,. /p )/ #£ , readily verified
«/ <l <l J ' '

by direct multiplication.

Thus (11.2) is equivalent to:

-i- £

As we remarked following (9.17), the scalars ^s^ and B have the

disadvantage that their gradients do not conveniently combine to a form

in the complex scalar Q . We therefore find it convenient to introduce

at this point new scalars ^ and fi , which we will show have suitable
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gradients that combine to a form in Q = oS •+• I p . We define the

new variables by:

•̂We will also define a lower index form of /Ct by the relation

We should note here that indices on /ft/ cannot be raised and lowered

in general using 'Tj.̂ * However, we will later find that all the results

we derive have exactly the form they would have were we to use ]̂MV

instead of 5/tv *° raise and lower the indices on /Q/* . As a pract-

ical point, all raising and lowering operations with the metric of the

form (7.1) seem to be accomplished just as well with °Qu as with .,̂

which again emphasizes the very special form of this metric.

Using (11.3), (11.4) and (11.5) then gives us:

H-

In reaching equations (11.6), we assumed that /Ct *f 0 • However, if

XX =r 0 , direct calculation from (10.2?) and (11.2) gives us exactly

the same form as (11.6), as is shown in Appendix 2. Thus we can proceed

to use (11.6) in all cases.
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Equation (11.6) serves ar, a replacement for equation (8.21), and will allow

us to obtain governing equations for 0 . We will make heavy use of it in

what follows.

Using (9.1 )f we now consider:

After a rather lengthy calculation, given in Appendix J>, we derive the

result:

(11.8)

where we have defined ~a = a. .

Forming VS x ~%* » we at once find:

Using (9.12) and (9.13), the last two equations can be written:

V? =

(,,.,0)

The above very useful result is the anticipated replacement for (9.16)



and (9.17), and takes on a somewhat simpler form in terms of the new

variable

(11.11)

thus:

Now using the relations

=• a3|oxx° (11.13)

Vu). ^C = ult> + T (11

which are derived easily from (9.15) and (10.29), we find:

^
The second defining relation satisfied by Q and (jj is found by

taking the divergence of (11.10). Again, after a rather lengthy calculation

given in Appendix 4 we find the simple result

D2y = Vv = o (".is)
or in terms of (x)

u> D2w = — Ai^/4/^^]^,} (11.17)

Equations (11.15) and (11.17) are the two fundamental equations satisfied by

our complex scalar generating function. Before considering the equations
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further, we will confirm that U and t&J in fact determine the metric

completely. From the form of the metric, and from equations (10.8) and

(10.26), it is clear that /CL and -re' determine the metric completely,

thus it is sufficient to show that u> and /Cu completely determine -f</

Writing (11.11) in the form:

},04̂ °ĵ  + t(V£+£)X-£ (11.18)

and now writing

S - U,04

we readily verify that

/ /^ * ^\ "> —k »«- \ «r> "75*
-+ JS'fc (11.20)

where B is a function of k and u) . To find B, we use

0 =

Prom (11.18) we find that

-T£ -^ S -f- S (11.22)

thus we have at once that:
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and thus finally

Since B, S and Q depend only on U) and &J , we have confirmed that (11.24)

determines -TC/ uniquely in terms of U> and /Ct/ .



57.

12. Use of the Killing vectors and discussion of solutions.

The equations for the complex generating function Q can be simplified

by use of the Killing vector &J . There are only three cases to consider:

i*.

a) If C£ is timelike, then a Lorentz transformation must exist that takes

it to the form (1,0,0,0). In this case, equations (10.26), (11.15)

and (11.17) reduce to the forms:

W = 1 (12.1)

= 1 (12.2)

— V7*-k) V u =

Since there is now no dependence on the time, we would expect to

obtain this case directly from (8.21) with k... set equal to zero.

As we remarked earlier, in this case the first order equations are then

explicitly soluble without using the second order field equations of

(?7)(7.23a). This approach has been carried through in detail and

does in fact yield the exact equations (12.2) and (12.3). Note that,

since P = 1 , the redefinition of the variable o in this case

is the identity transformation, and hence 0 is the same as o •

The most important known solutions of the stationary vacuum case are

now obtained very easily. First, let us note that the general solution

of (12.2) can be written using the theory of envelopes in the form:

u =
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where we define:

AL = v^i + --'3Ai;-" (12.5)

where b(A.) is any function of the A. , and where A.. A. = 1 .

The simplest possible choice we can make for b(A.) is to set it equal to

zero. Then we have

A. = Xj. / r (12.6)

2 — -1where r = x..x. . This gives us u> = r , so cxC = r and thus

/^
/Cp = V o< = r~1 (12.7)

We now calculate k. immediately from (11.18), using a = 1 . (Normally we

would use (11.23) and (11.24). However, when u3 is real, we can see at

once from (11.18) that we must have

(12.8)
— w

and thus in this case

—^ _x

\7u> = -f/-T (12.9) )

From (12.7) and (12..9) we then have

and comparing this with (7.2) we see at once that we have produced the

Schwarzschild solution with the Eddington form for the metric tensor.
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By direct substitution, we also readily verify that the choice we have made

for U in this case also satisfies the second equation (12.3).

A second simple choice for b(A.) is to make it depend on just one component

of A, thus:

where K is any constant. Using (12.5) then gives us

A, = */

Thus using (12.4) we find

W - U - (*l+ V+t"^* (,2.,,)

and again we readily verify that this choice satisfies (12.3) also.

If K is a real quantity, then the solution corresponds to the Schwarzschild case,

in which we have merely displaced the origin of coordinates along the z-axis.

However, if K is imaginary, then use of (11.23) and (11.24) gives us a new

result. Writing K = ia , we find:



60.

(18)where p is the real part of kj and is a solution of the equation :

- xoV = 0 (12.15)

Similarly, we find

and using (12.14) and (12.16) in (7.1), we find the form for the line

element to be :

1 ' ~ * IL

This is exactly the form for the line element that was given in Kerr's

(18)original paper . A great deal of work has subsequently been done on

both the geometry and the implied physics of this solution, and it would

be inappropriate to reproduce much, of that here. We merely remark that the

form (12.17) is not the most revealing form for the line element, and for

future reference we will quote an alternate form derived by Boyer and

(48)
Lindquist , in which the axial symmetry of. the solution is quite

explicit:
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This form in obtained from the Kerr form by transformations of the time

and the azimuthal angle variables ' ' and we will find it very

useful when we consider interior solutions in Chapter 14 .

As is readily seen from (12.5), most choices that can be mnde for b(A.)

lead to nonlinear equations from which A. must be determined, and to date

no other solutions of physical interest have been found for the case with

timelike Killing vector.

b) If f3J is spacelike. then a Lorentz transformation exists that takes

it to the form (0,0,0,1). In this case, equations (10.26), (11.15) and

(11.17) reduce to the forms:

w -
* * , .(12-20)

1 _
J ~

This case has no dependence on z and thus represents a 2-dimensional

problem spatially. Solutions of this form are not candidates for the

representation of gravitating bodies, though they are appropriate to

certain cases of gravitational radiation, and cylindrical radiation has

been extensively studied .

c) If ftf is liRhtlike. then a Lorentz transformation exists that takes

aT to the form (1,0,0,1). We then have, from (10.26), (11.15) and

(11.17). the equations:
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VV = + ̂  (12.22)

(12.23)* =

__ Q (12.24)

where — __ T, ( v „. I* ~ 9\ (12.25)

From (12.23) and (12.24), tj must be a function of (x + iy) or (x - iy) .

Using this in (11.23) and (11.24) permits an explicit calculation of k. ,

and leads to:

k., = k = 0 ; k = -1 (12.26)

However, this means that W as defined by (12.22) becomes indeterminate.

Thus we are led to conclude that there are no solutions of this form with

a lightlike Killing vector.

This is a surprising result, since previous papers by Kerr and Schild

and by Debney, Kerr and Schild give classes of solutions for metrics of

the form (7.1 ), and these solutions include cases with lightlike Killing

vectors. At first sight, the results given in these references are quite

unrelated to the governing equations given here. However, one can show

(see Appendix 5) that the basic generating function P used by Debney,

Kerr and Schild in fact satisfies equations (11.15) and. ( 11. 17), although

their Killing vector is written in a rather different form. To within a

constant multiplying factor, one can then exactly identify the variable

C3 with F , and thus the choice of the form (10.26) for W leads to all
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the vacuum solutions derived in References 41 and 43.

A closer inspection of the solutions with lightlike Killing vector set

forth in ther.e references actually reveals that no non-trivial solutions
/trp\

exist when ^< / 0. A recent paper by Debney establishes the gener-

al result that any spacetime with a lightlike Killing vector must have

c*£ = 0, thus there are, as we found, no solutions of (12.22)-(12.25).

However, the formulation given here leads to a Killing vector only for

the particular choice of W given by (10.26). It is not clear that there

are no other possible choices that lead to vacuum solutions with a metric

of the form (7.1) and non-zero complex expansion. For example, consider

the form:

This depends explicitly on the coordinates rather than on -* alone, but

it is readily shown to satisfy (10.9) and (10.16). It leads to equations

similar to (11.1), but with the 4-vector "xT replacing <K , thus:

These equations require further study.
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1J. The improper cane and the case of vanishing expansion.

We now return to consider the cases where we have improper U, vanishing

p or vanishing B , cases which we explicitly excluded in our development

following equation (8.11). The cases of zero complex expansion have been

considered from the point of view of gravitational radiation theory in a

paper by Kundt^55'.

Case I - 0 = 0 .

Referring to (8.12), we see that M will have the form:

^ ^ /-\ \

0

0

(13.1)

Rotating back to the original coordinate system, exactly as in Chapter 8,

and noting the first row of the matrix R must be the vector k, since R
v-Jk / \

transforms k to the form (1,0,0) , we have at once the result analogous

to (8.21) :

10 N (13.2)

Since <*C = R = 0 , we then have at once that

= 0

Further, since the twist is zero, we know that the ray congruence .*

must be hypersurface orthogonal, and thus that we can write J^, in the

form:

-4* -



where (D is a scalar field and 1 is a scalar field (see Reference 34, pages

334 et seq. ).

Using (13.3) and their definitions (7.14) and (7.16), we readily find:

L = A -xt0|y-£
V (13.5)

and thus, from (7.18), if we define S = G-£0 » we have:

S •= ~-£o|y-£
V (13.6)

By the use of (13.2), and changing the order of derivative operators, we

find the important result:

so that k. satisfies the wave equation in the background space.

Further, from (10.2), which is directly applicable, we have:

* o
and the second order field equations for V = 0 can therefore be written:

• AS,. (15.9)

Expanding the left hand side of (13.10), and subtracting k. times (13.9)

from it, we find with the use of (13.7) the important result:

which we can write = $|C (13.12)
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Thus, forming S.... and using (l3«3)t we have:

Siiii " O|o|o (13.13)

so that S also satisfies the wave equation in the background space.

Now, since sfi.0 = \, from (13.4) we must have:

and so

~4i = hi U,
T[0

Since k is a unit vector, (13.15) at once gives:

0 (13.16)

Using (13.15) in (13.12) gives us

|u (13.17)

and vie will therefore satisfy (13.17) at once if we choose:

5 =*

Finally, to determine Jio , we note that (13.9) now takes the form

jo (13.19)

The solutions of this case are therefore characterized by:

a) the scalar function CR satisfies the wave equation (13.13) and (j) the

eikonal-type equation ( 1 3 . 1 6 )

b) -€„ satisfies the wave equation (13.19) with a source function Ylolo
i *. tt

c) since (D determines k by (13-15) and <t0 ^
v (13.19), the whole metric

is defined by the scalar function (J?
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d) since the solutions are hypers\irface orthogonal, solutions with

rotation, such as the Kerr solution, cannot occur. However,

solutions with wave properties are not excluded and are in fact

strongly suggested by the form of the governing equations. As

one would expect in view of the nonlinear nature of the field equations,

solutions have a nonlinear constraint given by (13.16).

Case II - p = 0 .

This case is similar to Case I so far as the treatment of the first order

field equations is concerned, and equations (13.2)-(13.7) still hold,

except that we now have the added constraint:

S = L = A = 0 (13.20)

As before, (13.4) leads to (13.15), and (13.16) again follows from it.

However, since we now have (13.20) satisfied, we have the constraint

-̂ fo |v -ft* - 0 (13.21)

and (13.19) reduces to the homogeneous form:

~ O (13.22)
/*<

Thus the relevant features of the governing -equations in this case may be

summarized as:

a) the scalar function Ci> satisfies the eikonal equation (13.15)

b) the vector k. satisfies the free space wave equation in the back-

ground space

c) the scalar ^£0 satisfies the free space wave equation in the back-
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ground space

d) the vector k. is defined by (13.15)

e) the vector k. and the scalar (p are constrined by the relation (13.21),

Case III - U is improper.

We now explore the case where U is chosen to have negative determinant,

which means that (8.11) can be written in the form:

U =
(13.23)

Thus, using (8.10), M can be written as:

0 0

u 1
= i> (13.24)

We find it convenient to split M1 into two parts, a symmetric part from

the lower 2x2 matrix, and a part depending only on u and v, thus:

u w w i

(13.25)

0

o

\
In rotating back to the original coordinate system, as in (8.13)» we note

that the second term of (13.25) is exactly as in the case of proper U, and

thus we use that analysis to show that we must have the second term as

k.i_ k. . For the first term of (l3.25)i we note that it is symmetric, and

thus after rotation remains symmetric. Further, it is of rank 1 and thus

remains of rank 1 after rotation. Finally, the trace of the matrix is not
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changed by the rotation, so the matrix after rotation has trace 2p.

Noting that there exists a unique dyad decomposition of any symmetric

matrix into the form:

where A-h, are the eigenvalues of M and e. are the eigenvectors, we

have in this case only one non-zero eigenvalue and thus can write the

matrix M in the original coordinate system in the form:

-I- -fc|o- (15.27)

Use of the form (13.27) now enables us to describe the most important

features of the solutions of the improper case without fully solving

the field equations,, For, consider the twist p as defined by (9.2).

Prom (13.27), we readily calculate that the twist is zero, and thus all

solutions of the improper case admit a hypersurface orthogonal ray

congruence. As noted in treating the case where U = 0, this means

that we can write k. in the form (13.15) where 0 is a scalar field.

Solutions of this type, with non-zero expansion but zero twist, have

(54)been studied by Robinson and Trautman .

In the particular case where the solutions are independent of the time,

(13.27) leads at once to:

(13.28)

and thus k. is the gradient of a scalar field,
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From (13.?7) we have

"^ (13.29)

and then from (7.14) and (7.16) we have

ft - "toll -4^ (,

(13.31)

But since (L + A) = 2p-£0 , from (13.30) and (13.31) we have

L *

f\ ^ 0 (13.33)

-£,U -A; - 0

so that k. is perpendicular to the gradient of -̂ >Q .

From (13.27), we note the eigenvalue relation:

u (13.35)

Now consider the second order field equations (13.9) and (13«10). In

the stationary case these become:

Expanding . the left hand side of (13.37) and using (13.36), we have

\i (13.38)
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However, using the fact that k. is the gradient of W , we note that

~$!ljlj = ~%-'\'\i ' so that (1?'3fi) reduces to:

t (13.39)

Comparing (13.35) and (l3.39)f we see that we must have

since M has only one non-zero eigenvalue in this case. However, this

demands that either p = 0, or that ,̂o\l - 0 .

If p = 0, (13.27) requires that k be a constant vector, and thus y is

a two-dimensional harmonic function, constant in the direction of k.

If -&{; = 0, then •%.<> is constant. Absorbing it into the constant term

m of the metric (7.1 ), we see that the metric in this case must be of

the form:

where, since k. is a unit vector, we must have Y constrained by the

eikonal equation:

= 1 (13.42)

We note that every case analyzed in this chapter has zero twist, thus

only cases with proper U and non-zero complex expansion can lead to solutions

having the rotational properties of the Kerr solutions.
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14. Rotating solutions in the non-vacuum case.

All the analysis and discussion to this point has dealt with the

case where we are in vacuum and the governing field equations have

zero matter tensor. However, it is natural to seek solutions that can

apply within extended bodies of matter, analogous to the interior

(2)Schwarzschild solution in an incompressible spherical body . The

difficulties of solution then become formidable, mainly because much of

the elegant structure of the field equations disappears when matter

is present. Several approaches have been adopted in the search for

"interior Kerr" solutions, that bear the same relation to the known

exterior Kerr solution as does the interior Schwarzschild to the

exterior Schwarzschild case. We will briefly discuss the method used

in such searches, and then concentrate our attention on slow rotation,

where as we shall see analytic solutions are attainable. In practice,

"slow rotation" means having surface velocities small compared with the

speed of light and this does not constitute a serious practical restric-

ion for known stellar models.

To generate interior Kerr solutions, Jackson ' employs a method

first given by Newman and Janis as a trick for generating the exterior

(57)Kerr solution from the exterior Schwarzschild solution . The essence

of the method is the replacement of certain real coordinates by complex

coordinates in a somewhat ad hoc manner. As Newman and Janis point out,

it is not clear that such a procedure will even result in a solution of

the field equations. Jackson uses a very similar method to produce

solutions which are "complexified" forms of the interior Schwarzschild and
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the Newman, Unti and Tamburino solutions . It is verified that the

procedure leads to solutions that have several of the expected properties

of interior Kerr solutions, but unfortunately the results must be regarded

as non-physical, since the resulting natter tensor is not positive defin-

ite, with respect to tinelike 4-vectors. Thus there must exist observ-

ers for whom the energy density appears negative, a most unsatisfactory

situation. We have been unable to modify the prescription suggested by

Newnan and Janis and employed by Jackson so as to define a solution with

the energy always positive, thus this line of attack does not appear to

us to hold much promise for the generation of new interior solutions.

Instead, we now limit our attention to cases where the rotation rate is

(59)small. As Kerr suggested, and Boyer and Price subsequently verified,

the product ma in the Kerr solution corresponds to the angular momentum of

a rotating body. Thus, let us consider the Kerr solution in the limit of

small a, where we can neglect all powers of a higher than the first.

Expanding the Boyer and Lindquist form of (12.18) in this way, we derive:

(14.1)

This has a very suggestive form. It is simply the usual Schwarzschild

exterior solution, with one additional cross-term added to it. We thus

are led to investigate a metric consisting of an interior Schwarzschild

form, modified by a cross-term of a form corresponding to that of (14.1).

Using the notation of Reference 8, Chapter 9, we write such a metric as:

c/s2- = ^

(14.2)
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where we assume that "X , V and -/I are functions of r alone. The

choice of this form, and the reasons lying behind it, deserve some disc-

ussion. First, we expect that to first order in -A- , spherically

symmetric configurations will remain spherical, since we certainly do

not expect that the direction of rotation, involving the sign of -fL ,

should be relevant to the shape of the body. Second, we know that for

the spherically symmetric case, the most general time independent metric

(s)can be written in the form of (14.2), without the term in JTL . The

functions 7\ and V are functions of r alone.

Thus the metric chosen for the investigation of interior solutions has the

main properties:

1) When -D- = 0, the form is that of an interior Schwarzschild

metric. Thus we can regard the added term of (14.2) as a

perturbation to such a metric.

2) The added term chosen to represent rotation has the same form

as the term which represents the exterior Kerr solution to first

order in a, added to the exterior Schwarzschild metric.

3) The functions occurring in the metric, which will be determined

in terms of the matter distribution, are functions of r alone,

consistent with the assumption that the matter distribution rem-

ains spherical for a treatment linear in -Tl .

Since the functions "X and V depend only on r, we see that they will

be determined exactly as in the usual spherically symmetric Schwarzschild

case, and cannot depend on J~L t but only on the matter distribution that

we assume. We then expect to have an equation that JT. must satisfy, in

order to be consistent with the matter distribution and with the functions
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Suppose now that the matter is assumed to be a perfect fluid, so that the

(&}energy-momentum tensor has the form:

where W^ is the 4-velocity, with index lowered using the metric of (14.2).

Then the 4-velocity u"* is given by:

1, «>j 0, cj (14.4)

where we define UJ = T/ji.* and assume that this is snail, and comparable

in size with -/i_ . The field equations that we require for this case are

then (again see Reference 8, Chapter 9) :

The evaluation of the Riemann tensor in contracted form from (14.2) is a

laborious but straightforward procedure, made somewhat easier by the fact

that we can neglect quadratic or higher terms in -Cl . We find that the

diagonal terms of the contracted Riemann tensor are exactly those of the

usual interior Schwarzschild solution, so that we can at once assume and use

several of the standard formulae that apply to that problem. In particular,

we have from the diagonal terms of the field equations, the following:

I - K 04.6)

(14.7)

(u'8)
'*!> *
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The off-diagonal terms of the field equations (14.3) are identically

satisfied to first order in -/L , except for the terra R , which

serves, with the assistance of (14.6) - (14.8), to provide a single

scalar differential equation for -TL in terms of the pressure and den

sity. Since all the variables are functions of r alone, this serves to

confirm that the conjecture made earlier, that (14.2) represents a suit

able form for an interior metric to first order in the rotation rate.

The governing differential equation for J~L is :

If we now define m(r) to be the mass of the body enclosed within the

radius r from its center, then (14.9) can be written in a form that

depends only on the pressure p, density p , and mass m, the variables

"X and v having been eliminated using the relations (14.6) - (14.8),

thus :

The procedure is then in general the following: from the assumed equation

of state for the fluid, the equations of Tolman, Oppenheimer and Volkoff

or some other equivalent set of relativistic equations are used to solve

for the configuration of the body, and hence the mass distribution m(r).

Next, the equation (14.10) is solved for the variable -fl , for an assumed

matter rotation U) . Finally, the boundary conditions are applied at the

edge of the rotating body, to couple to an exterior solution and hence to
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conditions at spatial infinity. It is important to remember that the

calculation of the mass contribution from the equation of state is done

assuming spherical symmetry, no that a great deal of previous analysis of

such problems is available, and provides inputs to the problem with rotation.

When CO = constant, the entire problem can be solved in closed form for

(29 31 )the case where the equation of state is that of any perfect gas '

For the remainder of this section, we will discuss a different case, which

corresponds to the best-known form of the interior Schwarzschild solution

where the fluid is assumed to be incompressible . Several other cases,

corresponding to matter shells, have been studied by Cohen and Brill '

who also point out that the function -H. is a measure of the "dragging" of

the metric, i.e., a measure of the rotation of the inertial frame induced

by the rotation of the body.

fQ\

For the incompressible case, we have the relations :

i- - (,4.,,,

where we define

(14.14)

Also, solving (14.10) for UJ in terms of /I , we have: •

T- - '
(|Hrp)
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which by virtue of (14.11) and (14.12) can be written:

At the boundary of the body, where r = r_ , the metric must join in

a continuous way to the exterior Kerr metric, expanded to first order in

a , thus we must have from the use of (14.1) and (14.2) the relation:

l-f (14.17)

(59)We define the total angular momentum of the body by:

(14.18)

Finally, let us consider the boundary conditions that must be applied at

r = r . In order that the rotation -/I should remain finite at the

boundary, we require that J\. and -TL should be continuous there. We

also require, for solutions of physical interest, that U and _/"L

should be finite at r = 0 , and that tt>(r) should be monotonic in the

range (0,r) . (We do not want a star to exhibit a different sense of

rotation at different depths within it).

These boundary conditions, taken in conjunction with (14.16), place some

restrictions of the form of YI . Thus, if Ji. - constant, we see at once

from the requirement that -/I be continuous at r = r that J and hence

J\. must be zero everywhere. Also, if -/2. contains a linear term in r,

we find from (14.16) that u> becomes infinite at the origin. Finally,

if we suppose that -/X can be expanded as a power series in r, and that

there is no quadratic term, use of (14.16) tells us that we must have
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i which is the case of perfect dragging, in which the inertial

frame at the origin is rotating at the same speed as the star center.

This provides an unreasonable limitation on the solutions, thus we will

require that -fL should contain a tern quadratic in r.

t'or practical application of this method, we would like U to be not only

monotonic in (0,r ), hut slowly varying also. Thus, for a given stellar

density and radius, we wish to choose a functional form for -TL , thus:

00

-/L - £o + (14.19)

in which the constants c are chosen so as to give an acceptable slowly

varying monotonic function OJ(r).
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To illustrate this let us choose a fourth order function, which we

write for convenience as:

If we match fl and fi1 at the stellar boundary we obtain

f / r \ 2 / rVl
L ' b F~ " Mr^J (14-20)

\ o/ \ o/ J

b = _!_, J = n(o)ro (14.21)
5+7T ° V

that is, the two conditions determine b and J in terms of the

arbitrary parameter T; fi(o) plays the role of a. scaling factor. The

expression for ui(r) becomes

9 f T \2 _6r /r\I — I - - I — I
\ro/ 5+7T \ro/2(5+7r)

(14.22)

r
o 5 . 14z /r\2

(l + JL 5+7r

The ratio rQ/2m is a convenient parameter describing the density of

the star; for a typical neutron star it is about 5. In figure 14.1

we have plotted u(r)/ft(o) for the cases T = 0 (no 4th order term)

and T = .1. For T = O.u decreases by about 20% between r = 0 and

r = r , while for T = .1 the decrease is only about 4%, with

w(r) - const. =4.7 fi(o).

The power series has been investigated also for I = 0,2,4, and 6,

and as expected the variation in <D is extremely small.63
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Appendix 1 . An alternative approach to the solution of the first

order field equations.

In Chapter 9, we mentioned an alternative method of seeking solutions of

the first order field equations. We develop here such a method, and confine

ourselves to the stationary case, where as we remarked in Chapter 9 the first

order field equations serve to determine solutions completely, and where the

analysis that follows is particularly simple and elegant.

From (8.21), in the stationary case where k.... = 0 , we have

Using this form, and calculating the quantity £• ;, K £ "/c-&|j *&l> » we

find :

This can be written concisely in terms of the complex scalar X » thus:

Multiplying by -X , we then have:

Now let us define the function V. by:

where <3p. is a function of k. alone. Further, let us use the equations

F; - 0 . (A1.6)
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to detemine -R.; as a function of the coordinates DC; .

If we require f"-_ ~ O , then f̂\' — 0 , and thus

= 0

Multiplying by 0 (which we assume to be non-zero, consistent with the

treatment of Chapter 8), we then have:

tl

and so from (A1 .4) we must have:

In order that these differential relations in the /«(-(£• should be satisfied,
J

we must have that:

= 0

which thus provides us with a relation from which we can determine 0 .

However, noting that we must also have

-fy 16} =0 (AU11)

_i
since k is a unit vector, we see that we cannot specify three

functions u). . Rather, we can choose two functions, say O> and u> ,

and then the equations that we must solve for ft become:
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- 0 (A1.12)

Then k determined from (A1.6) and fl (and thus£-0)determined from (A1.12)

completely specify the metric, as can be seen from (12.1) - (12.3). If we

choose complicated forms for (JX in (A1.5), the solution for k will be

very cumbersome. However, for simple a>. this method provides a simple

alternative to the methods developed in the main body of the discussion.

For example, let us take the simplest case, u). = 0 . Then from (A1.5)

and (A1.6) we have at once that

(A1.13)

Also noting that we then have:

;̂

we find for the determinantal condition:

(A1.15)

= 0

Using (A1.13), we see at once that both the real and imaginary parts are

satisfied if we have 0 ^ /f- » since in this case all imaginary terms

cancel and the determinant of the remaining real coefficients is zero.



03.

Comparing the results

5

with Chapter 12, we see that we have obtained the Schwarzschild solution.
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Appendix ?. A direct calculation for the case where the Killing

vector has a vanishing time component.

We remarked in Chapter 11 that an important relation, given by

equation (11.6), war, valid even when a = 0, although the result

v;as derived explicitly assuming that a ^ 0 . We demonstrate this

.Assertion here.

-.'hen a = 0, from (10.23) we have

= ° (A2.1)

Also, from (8.22) we have

(A2.2)

V/e will now use the information provided by (A2.1) to calculate k.• .

from (A2.2). The direct approach would be to use (A2.1) and two of the

three equations of (A2.2), to give us three linear equations to be solved

for k e This becomes very messy and has to be performed for each value
i| J

of i as a separate calculation. However, a much more elegant method is

available, as follows:

Since (A2.1) holds, we also have:

svf̂ -î  ~ 0 (A2-3)

Adding this to (A2.2) gives us:
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Now, as is readily verified by multiplication, the inverse of the matrix

- -At fy -f A*V ) "

4 (i +*V)̂  /f* - (xtlfy + -oNlj )/7 ) (A2.5)

where we define P = <oN£; .

Miiltiplying (A2.4) by the inverse (A2.5)» we have:

Now noting that a/. = - a , from (11.5)» and that P here is the same as

that of (10.25) when a° = 0 , we see that (A2.6) is exactly (11.6) with

a° = 0.
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Appendix '*>. Derivation of the gradient of the complex scalar 0 .

In Chapter 11 we wrote the formula for the gradient of ^^ without

providing any derivation. This is given here. First, from (9.1) we

hnve:

•vJ ~*—~*

In taking the gradient of this, we will use the fact that a and k are

independent 3-vectors, and write the general form:

H - C v (A5.2)

Multiplying by k. , and using (9.12), which from (10.9) we note can be

written as:

we see that A can easily be found if we know B and C. Thus, in writing

all expressions for the gradient of 5? , we will drop all terms in k . ,
J

and recover these later by use of (A3. 2). Introducing the notation " =£b

to mean "equal to modulo k. ", we then have using (11.6):
J

and thus:

-^-t -ft+U £;.* £4 H- £t<.£ ^.; (AJ.5)
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We now use (11.6) again to evaluate the terms involving k . . , k.... ,
* i j •*•(-*•

k . , and k... , in each case dropping terms in k . . This gives us:
M 1 J ( 1 J

(A3.6)

- U3.7)

(A3.8).t
<J | y

Using the above forms in (A3. 5) then leads to:

4- fie £̂ -£e 4

Kow multiplying by k. and using (A3. 3) gives us the coefficient A, as:
0

A =•

Thus finally from (A3. 2), (A3.10) and (A3.11) we have:

This can be written in the vector form:

which is exactly equation (11.8).



88.

Appendix 4. Demonstration that the complex scalar Q satisfies

the wave equation.

In Chapter 1 1 we stated without proof that the complex function 0

satisfies the wave equation. To establish this result, we first write

(11.10) in component form:

Oil — X 2 (^» - -&"<3* •*- i £lt,-ftj%z } 4 0 !„-$;,

(A4.1)

Differentiating this, we have:

^~ 9 /

o —

(A4.2)

To simplify this expression, we consider the reduction of each term.

First, putting / = Ptf in (9.15) gives us:

(A4.3)

which we write:

(A4.4)

Also, using (11.15) and putting j = /£> , we find:
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Using (A4.1) to substitute for one of the 0|t in the left hand side of

(A4.5), and applying (A4.4), we find:

2. ou Y ( /Q: - -&i,cC + i-

(A4.6)

Next, using (A4.1) and differentiating to form 0|;/0 • we

(A4.7)

Forming £i\4.-jL'i- using (8.21) gives:
V J I ̂

^̂  ĵ/o -l̂ v - ?c4-4. -£ji;

f-tt (M'8)

and using this in (A4.7) then leads to:

(A4.9)

We can also use (11.6) to form £̂ -o -/£..,• > an^ this leads to:,•

f
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Finally, using ( l l . f i ) again to form £j <• ~"j ft » multiplying by fl|t >

and using (A/1.4) to reduce the result gives us:

4- ^tf -f A t, -& (A4.n)

,,'f. now substitute the forms (A4.6), (A4.9), (A4.10) and (A4.1l) into (A4.2),

v;hic!i gives the result:

To complete the reduction, we observe that (10.29) leads to:

xt tJ | o = /ct : o 1 1
(A4.13)

and forming /q; Xu with the aid of (A4.1 ) then gives:

4& A; (A4.u)
T".-is (4.11) can be written as:

*u L - / * < * - "U^? | o (A4.15)

which means in turn that we can write the difference of equations (A4.10)

and (A4.15) as:
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+ i ^ T U (A4.16)

Now substituting this result in (A4.12), we have the final result,

after combining terms:

°ltu = ?u,. ; ?,̂ leC = 0 (A4.17)

Thus 0 satisfies the wave equation.
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Appendix 3. Thft relation of the present treatment to alternative

formulations .

Debney, Kerr and Schild have also considered metrics of the type

(7.1) using a tetrad approach. Their results can be summarized as

follows :

The line element of the metric is written as:

(A5.1)

where the variables u,v, "̂  and "Zj are defined by:

The function P is defined by:

F =

where Y is determined by solving the equation F = 0. CP is any

analytic function of Y, and P is defined by:

+ C (A5.4)

Noting that the first two terms of (A5.1) are merely a flat space metric,

comparison with the form (7.1 ), and use of jLu. =-£»$A^ shows that

for consistency of the two approaches we must require:

£y = U (A5.5)

We confirm this conjecture, by establishing that V satisfies the two

equations (11.15) and (11.17).



First, since Y is a function of the coordinates, we note that we must have

0 = dF = fT

(A5.6)

which we write as

(A5-7)

where we define

T =

Directly from (A5.8) we have, where D denotes differentiation at constant

Y, the relation:

_ (A5.9)

and thus using (A5.7)

Finally, changing from the variables ",^ »U *J^ *0 'tf^ty*21* we find the

result:

where (<l^ ~ t c) is a real constant, since p and c are real.

In an exactly similar way, we can calculate the second derivative of F .

using the variables Vj7jU(
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We find:

which in terras of the variables t,x,y,z gives:

Thus we have confirmed that Py satisfies the same governing equations

as U> , with the constants arising from the Killing vector written in

rather different form. This completes the demonstration that wo can

take UJ = FL » relating the two approaches to solving the field

equations .
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Fig. 1. Rotation rate as a function of radius.


