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& Distance from Shuttle CM to pallet attach point
L Distance from Shuttle/pallet attach point to gimbal axis
M__, Mass of experiment package

Mass of pallet plus SEM

r Distance from pallet CM to Shuttle/pallet attach point
R Distance from pallet CM to gimbal axis
S Laplace operator
X Displacement of experiment CM

X Displacement of pallet CM

Zp Displacement of experiment CM

Zp Displacement of pallet CM
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DEFINITION OF SYMBOLS (CONCLUDED)
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9 Angle of SEM relative to inertial axes
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9 Angle of Shuttle relative to inertial axes
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Center of mass
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Logic Differentiator
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Experiment pointing system (Skylab)
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Operate mode (analog computer)
Reaction control system
Rolling friction
Standardized experiment mount

VI





TECHNICAL MEMORANDUM X-64779

SIMULATION OF AN EXPERIMENT POINTING SYSTEM

FOR THE SPACE SHUTTLE

INTRODUCTION

The Space Shuttle was originally conceived as a transport
vehicle to ferry men and equipment into orbit and return them to a
convenient landing site on the earth. It now appears likely that the
Shuttle must also fill the role of a temporary orbital station during the
interval between the Skylab mission and the establishment of a perma-
nent Space Station. This role becomes even more important as the
prospects for a permanent Space Station continue to recede. If there
are to be any man-tended, gravity-free research or observations from
space for many years after Skylab, they will almost certainly be
carried out on the Shuttle during a Sortie mission. The Shuttle is
expected to fulfill this role by carrying an inhabitable laboratory in
the payload bay and maintaining a relatively stable attitude in orbit
for at least several days. A variety of scientific experiments,
including observations of the earth and other celestial objects, could
be made from this laboratory.

A significant concern about the Sortie mission is the level of
stability that can reasonably be maintained for the Shuttle, and even
more important is what pointing accuracy can be expected for the
experiments. These general questions were examined and much of
the background for the current study is given in a previous report
(Reference 1). The referenced report described the Phase B Orbiter
stability characteristics and proposed some improvements for the
experiment pointing mode. A Standardized Experiment Mount (SEM) ;

which is Sortie Lab common ancillary equipment, was recommended
for experiments with highly accurate pointing requirements . The
SEM was visualized as a universal mount that could replace all
specialized mounts and accommodate a wide variety of experiments.
One or two SEMs could be mounted in the payload bay to point large
telescopes or a number of smaller experiments. The current pres-
sure to standardize and provide payload accommodation at minimum
cost makes the SEM an especially attractive option.



This report presents the results of an in-house simulation
study of the general pointing problems during a Sortie mission with
special emphasis on SEM performance. An alternative to the SEM is
examined which has high accuracy pointing capability and would
probably be an even more economical approach than the SEM.

THE SIMULATION MODEL

The Shuttle, pallet, and SEM were considered to be three
interacting bodies as shown in Figure 1. The equations were devel-
oped from this model and simplified to meet the requirements for
the analog program. The equation development and simplification
are described in Appendix A. Shuttle characteristics were taken
from a North American Rockwell design as described in Reference 2.
A summary of these characteristics and also those for the pallet and
SEM is given in Table 1.

This program contains a number of options for making
comparison studies. Shuttle control can be switched from thrusters
to control moment gyros (CMGs). There is also an option for a
flexible or rigid pallet structure. The following SEM bearing charac-
teristics can be added individually or in combination: (1) Stiction
(static friction), representative of preloaded ball bearings; (2) coulomb
friction which can result from bearing motion, cable deformation, or
hysteresis in the torquers; and (3) spring torques that result from flex
pivots or cables. There is an option for adding an integral of posi-
tion term to the SEM control loop. Any combination of gravity gradi-
ent, wall pushoff, random motion, and signal noise can be input as a
disturbing function. The characteristics of the wall pushoff were
taken from measurements made during a zero-gravity maneuver in a
C-141 aircraft as described in Reference 3. The CMC and SEM
control loops were modeled from Skylab CMG and experiment pointing
system (EPS) characteristics that are summarized in Table 2.

A math flow diagram for this problem is shown in Figure 2.
This diagram represents the equations of motion for the three bodies
plus the control loops for the Shuttle and SEM. It defines the basic
mathematical model which was programmed on an EAI 680 analog
computer. It has been extensively verified and checked against
analytical results. There are several features of this program which
are not commonly used but appear to give good results for this



application. Appendix B shows some of these techniques which should
be useful for developing similar programs.

SIMULATION RESULTS

A large amount of data has come from the simulation in the
form of chart recordings. Samples of these recordings are shown in
Appendix C. These data have application to a broad spectrum of
questions concerning Shuttle stability, Shuttle/payload interface and
experiment pointing accuracy. The general understanding and insight
provided by the simulation is perhaps even more important than the
data. Another valuable byproduct of this study is the highly refined
and versatile analog program. This program will be maintained to
answer specific questions that may arise in the future. It provides
a means for rapid assessment of alternate hardware proposals and
pointing techniques. A simulation, such as this one, provides the
only means for resolving these questions because of the complex
control problems and the nature of the disturbing functions.

The computer output is summarized here in the form of
processed data that can be interpreted without a detailed understanding
of the chart recordings. Figure 3 shows the relative contribution of
each factor to experiment pointing error. Figure 4 shows the angular
deviation and rate error that appears on the SEM as a result of
thruster operation. This relationship assumes the Shuttle and SEM
as defined in Table 2 with a completely rigid pallet. Figure 5 shows
the amount of attenuation that is provided by a flexible pallet between
the Shuttle and SEM. Figure 6 defines the SEM angular and rate
error to be expected for various magnitudes of gimbal friction. This
curve applies to either coulomb or static friction.

CONCLUSIONS

The stability of the SEM is limited primarily by the bearing
characteristics and the interconnections across the gimbals. The
disturbances such as thruster operation, man motion, gravity gradient
torques, and signal noise are secondary influences. The stiction
characteristics of conventional, large diameter bearings make them



unsuitable for an SEM stability requirement of 1 arc sec or less
(Figure 3). This fact rules out the possibility of high accuracy
pointing with wide angle capability in all three axes from a single
gimbal design. However, for experiments which can tolerate momen-
tary disturbances, the conventional gimbals could provide a practical
mount. Constant limit cycle of the Shuttle is a preferable operating
mode for a mount with conventional gimbal bearings. A dual or com-
pound arrangement that permits large angular freedom by a conven-
tional bearing plus a precision bearing which operates over a limited
range appears to be the only choice for constant, high accuracy
pointing. Even with the dual gimbal design, the center of mass (CM)
of the experiment package must be maintained relatively close to the
gimbal axes and coulomb friction of the precision bearing should be
minimized. The flex pivot and gas bearing offer almost ideal
characteristics and the gas bearing has a large angular range in one
axis. Current estimates show that it would make an insignificant
contribution to the contamination problem. The flex pivot can meet
the performance requirements as shown by this study. However, its
range is restricted to only a few degrees and it is very difficult to
provide a flex pivot design for all three axes.

Pallet stiffness, within reasonable limits, presents no
serious obstacle to SEM stability. In fact, a certain amount of
"softness" in the structure attenuates short duration forces such as
thruster firings. Intentional decoupling of the pallet from the Shuttle
airframe by means of springs or other support devices results in a
very promising pointing concept. High accuracy pointing can be
achieved without an SEM by CMC stabilization of the pallet. There
are no gimbal bearings and the entire pallet structure could serve as
the experiment mount. The CMGs control the pallet and thereby
indirectly control the Shuttle through the interconnecting springs. A
conceptual drawing of such a. configuration is shown in Figure 7. This
"suspended pallet" concept may not quite match the precision of a
torquer-controlled table because of CMG vibration or response
characteristics. However, its obvious advantages in simplicity and
low cost should warrant a more detailed investigation.

The current location of the Reaction Control System (RCS)
modules near the Shuttle center line results in a much smaller angular
impulse about the roll axis and better "balance" relative to the other
axes. This condition is a great improvement over previous configura-
tions and greatly reduces the case for low-level thrusters from the



standpoint of stability and pointing degradation. Of course contamina-
tion and propellant consumption, especially for continuous pointing
with small deadbands, is still a problem. However, the large thrusters
do not significantly degrade SEM operation and they can be operated in
a "differential thrusting" mode to assure an efficient transfer to CMG
control if necessary. Therefore, it appears that the large thruster
versus low-level thruster question must be resolved on the basis of
contamination, propellant consumption, and economy.

The stability levels which are described in this report for
Shuttle attached pointing systems are obviously not as good as those
obtained with free-flying spacecraft such as the Orbiting Astronomical .
Observatory (OAO). However, the advantages offered by the Sortie
mission, namely manned access, avionics connections by hardwire,
and direct attachment to the Shuttle are the very factors which limit
experiment stability. Therefore, the environment may never be as
clean, or the stability as precise as for f ree- f ly ing spacecraft . How-
ever, this study has shown that s tate-of-the-art pointing systems can
meet the requirements of all currently proposed Sortie experiments and
almost certainly for many others that will appear in the fu ture .



TABLE 10 SUMMARY OF SHUTTLE, PALLET,
AND SEM CHARACTERISTICS

ITEM

150K LBORBITER

(+25K LB PAYLOAD)

30-FT PALLET

EXPERIMENT MOUNT

EXPERIMENT PACKAGE

MASS

KG

(LB)

87,868 X 1.06
(193,717X106)

1,578
(3,480)

1.810
(4,000)

2,948
(6,500)

INERTIA

N-M-S2 (SLUG FT2)

'xx

1.097 X 106
(0.809X106)

-

-

-

IYY

8.120X106
(5.989X106)

14,643
(10,800)

-"

4,108
(3,030)

'zz

8.405 X 106
(6.199X106)

14,643
(10,800)

-

4,108
(3,030)

TABLE 2. SUMMARY OF CMC AND EPS CHARACTERISTICS

CMC CHARACTERISTICS

O MOMENTUM CAPACITY: 3120 N-M-S (2300 FT-LB-S)/UNIT

O MAXIMUM TORQUE OUTPUT: 186 N-M (135 FT-LB)/UNIT

O TRANSFER FUNCTION: 30/(S+30)

O SYSTEM BANDWIDTH: 0.022 HZ

EPS CHARACTERISTICS

O MAXIMUM TORQUE OUTPUT: 9.5 N-M (7 FT-LB)ATORQUER

O COULOMB FRICTION LEVEL: 0.4 N-M(0.3 FT-LB)

O SPRING TORQUE: 0.54 M-N/DEG (0.4 FT-LB/DEG)

O SYSTEM BANDWIDTH: 2.3 HZ
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THRUSTERSMAN MOTION
& GRAV. GRAD.
DISTURBANCES

G = C(Mpr+MEL)

I = APPARENT
INERTIA TERMS
(APPENDIX A)

Figure 2. Mathematical flow diagram.
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APPENDIX A

EQUATION DEVELOPMENT

In developing the equations of motion for this restricted,
three-body problem Lagrangian dynamics were applied to the bodies with
the following simplifying conditions: ( 1) All motion was limited to a
plane, and (Z) translation of the Shuttle was neglected. These assump-
tions and others that will appear later in the development have been
shown to be valid for this problem.

Consider the model as defined by Figure 1. The geometric
and dynamic relationships for the three bodies are as follows:

X = X - J, sin cp - r sin p ( 1)
P s

• • • • •

X = X - £ cp cos 9 - rp cos p (2)
P s

• * • • • • • • * •

X = X - £ ( c p cos cp - 92 sin cp) - r (p cos P - p2 sin p) (3)
P s

Z = Z - x, cos cp - r cos p (4)
P s

• • • •

Z = Z + £cp sin cp + rp sin cp (5)
P s

Z = Z + H (cp sin cp + cp2 cos 9) + r (p sin 9 + P2 cos p) (6)
P s

X = X - R sin p - d sin Q (7)E p
• • * •

X = X - Rp cos p - d6 cos 9 (8)E p

X = X - R (p cos p - p2 sin p) - d (Q cos 9 - Q2 sin 9) (9)
iL p

Z = Z - R cos p - d cos 9 (10)
E p

Z = Z + Rp sin p + d9 sin 9 (11)
t p

• • • * • • • • • •

Z = Z + R (p sin p + p2 cos p) + d (9 sin 9 + 92 cos 9) (12)
£> p

15



The kinetic energy equation is

T = |M sin (X 2 + Z 2) + |M (X 2 + Z 2) + iM_(X_2 + Z 2) (13)
s s p p p X L . X L , J L

The potential energy equation is

+ M_pL (X_ sin p + Z_ cos p) - K a + K j3
h, XL ±L. p XL.

dT ()= TE0 - ^d (XE COS ̂  - ZE Sin ^ - *E* Sin

_
XL.

V = |K a2 + |K_j32 , tf=p-ep,j3 = 0-p (14)
P E

Following is Lagrange's equation:

F
qi = 3T <-f- ' - "7s- • £ = T - V

qi qi

The following terms are derived for Lagrange's equation:

(X£ sin 0 + ZE cos 0) - K£/3 (16)

-£—= M rp (X sin P + Zp cos p)
6p p p

(17)

& c p [ M (X sin cp + Z cos cp) + M_ (X sin cp
6cp L p p p t: E

(18)
*

+ Z cos cp)] + K (p - cp)
E p

(19)
cos 0)

16



— -^ =1 p - M r (X cos p - X p sin P - Z sin P
d t 6 P p p p p P

* • * • • •

- Z p cos P) - iV^L (XE cos 9 - XEP sin p (20)

• • • •

- Z sin p - Z p cos p)
XL, XL.

_ . . . . .

— ~~ = I 9 - M £ (X cos 9 - X cp sin cp - Z sin cp
dt 69 s p p p p

• • • • • •

- Z cp Cos cp) - M^l (XE cos cp - X£9 sin 9 (21)

• • » •

- Z sin 9 - Z 9 cos 9)
Hi ±L

The rotational equations of motion are obtained from Lagrange's
equation:

F. = ZT^ - I_0 - M^d (X_ cos 9 - Z sin 6) + K_|3 (22)
ft Jl. SL, 3L, SL, E-. tLi

• • • • • •

F =ZT = I p - M r (X cos P - Z sin p)
P P P P p E

• • • • •

-M_L (X^ cos P - Z sin p) + K a + D a - K_/3 (23)
J i . l i . E p p J-.
• • • • » •

F =ZT = I cp . M £ (X cos 9 - Z sin 9)
9 s s p p p

• • • •

-MJL (X_ cos 9 - Z_ sin 9) - K a - D A (24)
}L, E E p p

These equations are simplified by making small angle approximations
and neglecting Shuttle translational terms. Equations (3), (6), (9), and
(12) are substituted into equations (22) , (23), and (24). The terms are
rearranged for convenient analog programming.

9 - (iV^Ld) P - K£/3 + ZT£ (25)

* • • •

(I + M r2 + IV^L2) p = - (M r£+ M^L*) 9 -

(26)
- K a - D a + K_|3 +p p E p

17



2 = - r _ - _
- - - - (2?)

M£+ M * 2 ) e p = - (M r£+ M_LH) p - (M_£d)0
-E P -E -E -

Equations (25, (26), and (27) form the basis for that part of the program
which describes the dynamics of the three hinged bodies. The

terms and the K jS term of equation (26) were found to have a negligible
J-j

effect on the analog output. The bracketed terms on the left sides of
these equations represent "apparent" inertia of each body that results
from the interconnections. The set of equations used for the block
diagram in Figure 2 were obtained by redefining terms:

• • • • • •

1*0 = -(Mgid)? - (MgLdJP - K E / 3 + ZTE (28)

* • • • * * *

I* p = -G9 - (M_Ld)0 - K a - D a = K_/3 + ZT (29)
P ^ P P ^ P

• • • • • • *

I* cp = _Gp - (IvLJUl) e + KQ' + D o ' + S T (30)
s ID s

18



APPENDIX B

IMPLEMENTATION OF SPECIALIZED ANALOG FUNCTIONS

Figure Bl shows a method of simulating static and rolling
friction between two bodies which are both rotating relative to inertial
space. The rolling friction imposes a fixed torque level that is always
in opposition to the direction of motion. Stiction is achieved by setting
the Q integrator to initial condition (1C) whenever relative rate goes
through zero and driving Q directly with the p signal. This results in
a "hard" stiction which is removed only when torque level reaches the
stiction limit.

Figure B2 is a simple relay implementation of the wall push-
off function. It produces a close approximation to the expected dis-
turbance with a minimum of machine components.

Figure B3 shows an implementation of thruster output which
includes minimum on-time logic. The integrator timers were used
instead of monostable timers to permit changes in time base from the
keyboard without resetting the monostable period. This scheme
produces near ideal pulses that may be filtered to approximate thrust
buildup.

19
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APPENDIX C

ANALOG COMPUTER OUTPUT

Analog computer output in the form of line recordings is
presented in this appendix. Significantly more information and insight
into the dynamic behavior of the Shuttle/pallet/SEM system are con-
tained in these data than in the summary given in the main body of the
report. Each column contains the output data for an individual computer
run, A single parameter is changed between runs to demonstrate
sensitivity to that variable. A description of the conditions and a
brief discussion of the results for each run are contained in the
following discussion.

Figure Cl shows that disturbing torques will be transmitted
to the experiment base if there is an experiment package center of
mass (CM) offset relative to the gimbal axes. This series of runs
assumes a completely rigid pallet and ideal gimbal bearing character-
istics. The SEM servoloop is similar to the Skylab experiment
pointing system (EPS). It has a bandwidth of about 2. 3 Hz. The SEM
gimbal axis is located 5 m (16.4 ft) from the Shuttle CM. The disturbing
torques originate from 4448 N (1000 Ib) thruster firings. All thruster
operation for this entire study was assumed to be individual firings
(no paired or simultaneous firings). All motion occurs about the small
moment of inertia axis (roll).

Figure C2 shows the effect of RCS thrust level on experiment
base stability. The equivalent on-time is 0.033 s. The thrusters act
on a lever arm of 2. 8 m (9. 2 ft). A value of 0. 03 m (0. 1 ft) was
selected as a typical experiment CM offset for this and all subsequent
cases.

Figure C3 shows experiment base response to variation in
thruster on time. A 2224 N (500 Ib) thruster was used for these runs.
A typical minimum on time of 0.033 s was selected for all subsequent
runs.

Figure C4 shows the effect of a flexible pallet between the
Shuttle and SEM. The rigid pallet case is repeated in the first run to
emphasize the attenuation and energy absorption characteristics of
the pallet. An internal damping coefficient of about 0. 05 is assumed
for the pallet structure. A nominal spring constant of 387.7 N-m/arc
min is chosen for all subsequent fixed pallet cases.
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Figure C5 illustrates the influence of non-ideal gimbal charac-
teristics in transmitting disturbances to the experiment base. The
nominal Shuttle/pallet operational characteristics are retained as a
disturbing function and spring tension is added across the pallet/SEM
gimbal. This is equivalent to a flex pivot or cables with pure spring
torques. The effect is to create a linear deflection of the experiment
base. The spring deflects as the Shuttle limit cycles within the ±0. 5
deg deadband and the SEM position servo develops an "error" properT
tional to the spring torque. The third case has both spring torque and
coulomb friction. This characteristic can result from rolling friction,
cable distortion, or magnetic hysteresis in torquers. The effect is
to create a steady state torque (and therefore a deflection) because of
relative rate about the gimbal point. The fourth case has 2.5 N-m
(1.8 ft-lb) of stiction added to the other bearing characteristics.
Stiction is an even more detrimental condition than is indicated in this
run because actual magnitudes may be four times greater than this for
large bearings. The final column is an expanded time base run which
shows the detailed response of a non-ideal SEM to a thruster firing.

In Figure C6} additional disturbance functions are introduced
into the simulation. The first run is a repeat of the non-ideal SEM
case. The effect of signal noise in the SEM control loop is shown in
the second run. Random disturbances to the Shuttle such as men
involved in routine tasks or operation of machinery is added to the
third run and a wall pushoff is superimposed on the other disturbances
following the second thruster firing.

Figure C7 illustrates how servoloop characteristics effect
experiment base stability. The first column is a repeat of the previous
run with all non-ideal gimbal characteristics and disturbance conditions
included. The second column represents twice the static gain (40 per-
cent increase in bandwidth) of the Skylab EPS. These gain changes are
made to demonstrate the effect on the servoloop and do not represent a
design optimization or recommendation for an SEM controller. The
third column represents twice the dynamic gain of the Skylab EPS. The
fourth column shows the influence of an integral control loop on SEM
response.

Figure C8 describes Shuttle and SEM response to gravity
gradient torques during one half of an orbit. The Shuttle holds an
inertial orientation with 4448 N (1000 Ib) thrusters operating to main-
tain a ±0.5 deg deadband. The run begins without integral control.
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Stiction is removed about half way through the run. Integral control
is reintroduced during the last quarter of the run. The expanded
time scale shows the detailed dynamic behavior of the SEM during a
thruster firing and a wall pushoff.

Figure C9 is essentially a repeat of the preceding case with
111 N (25 Ib) thrusters operating in a deadband of ±0. 1 deg. This case
produces unidirectional thruster firings during each quarter orbit in
response to gravity gradient torques. This is in contrast to the
previous case in which the large thrusters operated almost exclusively
in a limit cycle mode. Careful inspection of the Shuttle angular accele-
ration trace of the expanded time run will show that the wall pushoff
resulted in about 1.6 s of continuous thruster operation followed by
additional firings at recontact with the other wall. This indicates that
man motion can lead to inefficient operation of an RCS with a small
deadband.

Figure CIO is another half orbit run with control moment gyros
(CMGs) instead of thrusters. Three Skylab-type CMGs supply control
torque to the pallet in response to Shuttle-based sensors. The CMG/
Shuttle loop has a bandwidth of 0.022 Hz. This is about the same as
that of the Skylab cluster. An initial rate is introduced at the start of
the run to simulate a transfer from a thruster system. The Shuttle
maintains a much smaller attitude with CMGs but the experiment angle
and rate have not been improved by either the small thrusters or CMGs.
This is because the SEM is doing a satisfactory job of isolating the
experiment results from the nonlinear bearing characteristics of
stiction and coulomb friction. The frequency of SEM disturbances
are actually less in the case of a large thruster operating constantly
in a limit cycle mode than with a CMG system which has very small
but frequent changes in the direction of motion. This should not be
interpreted as a general rule since the results depend on SEM geometry,
magnitude of bearing characteristics, and the nature of the disturbing
torques.

Figure Cll shows two typical experiment-produced disturbances
that are expected for Skylab. The nature of the disturbing function is
defined in Reference 4. Although the magnitude of the disturbance is
small, it appears directly on the experiment package. The effect on
the SEM is evident from the experiment rate and angle.

Figure C12 shows the results from an experiment pointing con-
cept which is entirely different from the SEM. In all the following runs,
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the SEM is removed from the simulation and experiment stability is
referenced to the pallet, as if the experiments were hard mounted.
These runs demonstrate that pallet stability is only slightly improved
by adding CMC .units. The control gains remain constant; therefore,
system bandwidth is only slightly changed. The 3-CMG case has a
bandwidth of about 0.022 Hz. Pallet stiffness is the nominal 387.7 N-m/
arc min. There are no gravity gradient, noise, or random torque dis-
turbances. A wall pushoff provides the excitation. Sensor signals are
derived from the Shuttle and CMG torque is applied directly to the pallet.
The high frequency content of these traces results from the flexibility
between sensors and actuators (CMGs).

Figure 13 illustrates the effect of increasing bandwidth to
improve stability. The conditions for the previous run remain in effect.
This and all subsequent runs are made with three CMG units. Experi-
ment rate and angle are decreased somewhat but only by high control
torque requirements. The CMGs go into saturation when bandwidth is
increased to about 0. 2 Hz.

In Figure C14 the first two runs are made at 0. 2 Hz and the
dynamic gain is parameterized in an attempt to alleviate CMG satura-
tion. In the last four runs bandwidth is reduced to 0. 14 Hz and dynamic
gain is increased to improve experiment stability. All cases are con-
strained by a stability boundary that is established by the flexibility
between sensors and actuators.

Figure C15 presents a case where pallet-mounted sensors
are used instead of Shuttle sensors. The pallet is now the controlled
element and the Shuttle acts as a passive, spring-connected mass.
There is no longer a stability limit set by flexibility between Shuttle
and pallet. Bandwidth is increased to 4 Hz without encountering a
stability boundary. However, this does put the CMGs into saturation
because Shuttle oscillation produces large disturbing torques on the
pallet. The obvious approach is now to decouple or isolate the pallet
as much as possible from direct disturbances by the Shuttle.

In Figure C16, the pallet is attached to the Shuttle with springs
and stiffness is changed between runs. The first is made with spring
stiffness of 200 N-m/arc min which is less than half the stiffness of
the fixed pallet (487.7 N-m/arc min). As the coupling becomes very
small, there is a great improvement in pallet and therefore experiment
stability. The relative motion between Shuttle and pallet increases
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slightly but remains within a reasonable range. The Shuttle motion is
now at a very low frequency but sustains because of the very low damp-
ing coefficient in the Shuttle/pallet springs.

The first runs in Figure C17 show the level of damping required
to prevent long periods of oscillation on the Shuttle. This slightly
increases short duration disturbances of the experiments but is benefi-
cial for overall stability. Signal noise and a sample and hold circuit
are introduced into the signal lines during the last two runs to check
sensitivity to these operational conditions. It is anticipated that as
good or better stability can be achieved with this suspended pallet
concept at reduced bandwidth by using integral control. There was no
attempt to optimize performance or improve capability beyond the
indicated level.
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