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NOTATION

A cross sectional area of one pitch of the panel

A, area of the panel member

b pitch of stiffner spacing

bi width of the panel member

Dij Qbending stiffness coefficients

Ei Young's Modulus of the panel member

fi percentage of i‘hSO layers in the panel member

L length.of the panel

Ni applied load per unit width of the panel

NiaEuler Euler buqkling Joad per unit width of the panel

Pai epplied load to the penel member

Pli Jocal buckling load of the panel member

P total load acting on the panel per unit pitch

ti thickness of the panel member

y distance of center of effective gravity of AE
distribution from the reference axis

¥; distance of center of gravity of the panel
member from the reference axis

€ strain in the panel

%y yield strain of the material

P weight per unit srea

¢ performance function

°Ai applied stress to the panel member

02 local buckling stress
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Subscript

///‘; ith panel member
< L lower
\{_H higher
Superscript
® modified dimensions

o degree
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IRTRODUCTICH

Optimization of structural members has been a very intriguing
topic of investigation in the past two decades ggéferences 1-2)..
Development of.new structural raterials, such as composites, and a
great need for light weight structures has rade it even more important
to find optimum designs using ccmposite materials.

There are several different levels of ebstraction at which the
basic structural design problem can be approached. The most common one
is to consider the optimum design of structural elements such as columns
and plates and composite structures such as box beams and panels'for;
prescribed loads and prescribted oversll (Teading) diménsions. Thus for
individual elements, the cptimum design analyses result in the specifi-~
cation of the cross sectional dirensions for a given loading index. 1In
certain applicetions, it is meaningful to relax one of the leading
dimensions of a composite structure to firnd a design of absoclute minimum
weight. In this case Becker has obtained results for the optimum
structural chord for a box bean gREference 3) end an optimum diameter
for a cylinder in bending (;gference L) by essentially adjusting the
value of the loading index.

The concept of loading indices and efficiency factors have been
proved very usefui for the ccnventional isotroric materials. The

. "
developrent of these concepts is attributed to Zahorski (#eference 5).



They have been used very effectively by Farrar, Shanley, Gerard and
others (;éférences 6, T, 8). The loading index concept is applied in a
winimum weight cr efficiency analysis by expressing the quantity to be
minimized (weight) or maximized (stress) in terms of the prescribed
dimensions and loads. In doing so, the general approach used by many
i;vestigators s to reduce the nurber of unknown dimensicns to two or
three by making suitable guess so as to the ratio of various dimensions
in order to get a closed form solution.

In the present study a relatively new épproach of structural
optimization has been used to optimize the weight of & simply supported,
corrugated hat stiffened ccmposite panel under uniaxiasl compression.
This approach consists of the employment of nonlinear mathematical
prograrming techrigues to reach an optirmum solution. This approach is
in cortrast to the one for which a closed form is attempted, since for
the 1a§$r no simplifying essurptions are required in general with regard
to the cross-sectional dirensions. Eowever in the present work some
simplifying assumptions in the stress analysis eare made to effect faster
convergence to an optimum solution. With these simplifying essunipbtions
the numbgr of unknown design parameters is reduced td twelve for the
purpose of optimization. Since the number of unknown parameters in the
present problen is twelve as compared to two or three in the lozding
index approach, twelve sirmltareous equations are needed to gel values
of all the unknowvn ﬁaraneters. Hence, in the loading index approach,

either further simplifying assuriptions have to be made for the diren-

sions of the cross section or a more involved stress analysis descritirg



the behavior of failure is required. For example, in buckling problems
additional modes of failure have to be considered.

In the present analysis, a computer code (Reference 9) called
AESOP (Autorated Engineering and Scientific Optimization Progran) is
used for the optimization studies.

AESOP consists of several optimum search algorithms. Depending
upon the behavior of the performarce function (weight), oné or a
combination of search algorithms can be used to find the parameters
(design varisbles) which will minimize the performance function.

AESOP is used to optimize the design paraneters of the panel. Then, as
-] check‘on the effect of the sinplifying assumption, the criticeal load
for the optimized panel is oblained from BUCLASP-2 (Reference 10) and
compared with the specified penel loads. Good ccrreletion vas obtained.

Unfortunately, no optimization results are availesble for all
composite panels, for the purpose of comparison. The results for alumi-
pum panels are available (Reference 2). A conmparison of the present
resulis was made with the avaijable results and good correlation was

found.
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GENERAL APPROACH OF STRUCTURAL OPTIMIZATION

Portions of this chapter closely follow the material contained in

Reference (9).

Y

2.1 Concept of optimizetion

Jn generel, any optimization problem can be thought of as minimi-
zation or maximization of a performapce function. For example, in
structural problems, weight end stress are the performance functions.
Similarly in rocket design, the range of the rocket may be taken to bé 8
performance function. 1In all such optimization problems the ultimate
aim is to find the value of design parametefs which will optimize the

performance functicn.

2.2 Optimization approaches

There have been several different approaches used by many investi-
gators to reach to an optimum sélution. One of the most poﬁerful
techniques used until recent years for the optimization of conventional
structural members is the loading index spproach (Reference 2). In
this approach, the loading index is expressed in terms of weight or
stress and the dimensions of the structurel member. In general this

can be written as

loading index = efficiency factor x (weight index)® (1)



In this equation the efficiency factor is a function of geometric
properties of the structure under consideration. These may be tréated
as independent variables in minimization of the weight. The weight
index is designated as the nondimensionzl weight function. Minimization
of weight is achieved by maximization of the efficiency factqr. In
equation (1) n is an exponent, whose value depends on the structure
under consideration.

The basic assurption used in arriving at equation (1) for a given
structurgl elenent of buckling problem is that, for optimum design,
at ;east two lowest modes of instability are simultaneously critical under
the applied loading (ReferencesT, 11). It should be noted that in this
approach the number of unknown parameters is reduced to two or three
in order to get a closed form solution. The reascn for doing so is
obvious. For more unknown parameters, the problem becomes more complex
and it becomes impossible to get closed form solutions because more
modes of failure have tc be considered in order to get additional equa-
tions to determine the unknown parameters.

In the present problem the loading index approach can not be used
effectively because the number of unknown parameters is large. A more
recent approach of structural optimization is to use nonlinear mathe-
matical programming techniques. In this approach we are concerned with
the maximization or minimizetion of a pay-off or performance function ¢.

of the form

¢ = ¢(C‘i) y 1 =1, 2, mememeemeen s N (2)



subject to the array of constraints
CJ = Cj(ai) ? «j = l, 23 o mem———, D (3)

The a; are the independent design variables whose values are to be
determined so as to maximize or minimize the performance function ¢(ai),
subject to the constraints of equation (3). The 0; may be thought
upon as the components of a control vector, E, in the space BN of
dimension K. Since maximization of a function is equivalent to mini-
mization with a change of sign, it will be sufficient to discuss the
case in which performance function is éo be minimized.

Multivarieble optimization problens ihvolving inequality'regional
constraints relating the design variables may also be ‘encountered as
follows

L

H
a; <oy <o (%)

The inequality constraints define a region of the control spece within
which the solution must lie. For example, in structural buckling
problens, if the design variables are taken to be cross-secticnal
dimensions, then these dimensions neither can be less than or equal to
zero nor becoxe infinitely large. So the above limits bound the region
in vhich these variables must lie.

Inequality constraints on the functions of independent variables

similerly restrict the region in which the optimal solution is to be



obtained. In this case
L
Fpla,) < Flo,) < Fulo,) (5)

For example, in structural bucklirg problen, various modes of buckling
modes will cons%itute constraints, such that thé structure.is capable
of cerrying the design load. These constraints will be function of
independent design variables.

Tnequality constraints can be used to restrict the sesrch region
directly, or, elternatively, they mey be transformed into equality
constraints. Several transformations may be used for this pﬁrpose.

For exemple, let an equality counstraint, CK’ be defined by the

transformation
L 2 e
(Fg - Fe)™ 5 Fe < Fy
- L H
cK = 0 . FK < Fe _<__FK (6)
H 2 g :
(Fg = Fg)™ » Fp < Fy

constraint CK to zero will result in the constraint of equation
(5) being satisfied.
Problems involving equality constraints can be treated as un-

constrained problem by replecing the actual performance fuanction,

¢(ai), by a penalized performence function, ¥, where



; P
*=¢+ L U,C (1)

jmp 39
It cen be shown that, provided the positive weighting multipliers UJ
are sufficientiy large in magnitude, minimization of the performance
function subject to the constraints of equation (3) is equivalent to
minimization of the unconstrained penalized performance function defined
by equation (7). This approach permits search techniques for finding
unconstrained rminima to be applied in the solution of constrained minima
problem at the cost of some increased complexity in the behavior of the
performance function. The weighting multipliers UJ are determined
adaptively on the basis of response surface behavior.

Alternatives to this approach are available, notably Bryson's
approach to the steepest-descent search (Reference 12). This method
has been exploited in connection witﬁ the numerical solution of varia-
tional problems encountered in the optimization of aerospace vehicle
flight peths (Reference 13). However the use of such techniques implies
smoothness of the response surface. This smcothness can not be assumed
in the problem of structural optimization in general; hence, the less
restrictivé penality function approaéh of equation (7) is used. A
detailed discussion of solution techniques is presented in appendix A,

however, scme of the search algorithms will be discussed below.



2.2.1 Adaptive creep search

This search is a form of small scale sectioning; however instead
of locating the position of the one-~dimensional extremal on each section
parallel to a coordirate axis, the coordinate is merely perturbed by
smell amount, Aar, in the deécending direction.

The search commences with a small perturdbation in one of the
independent variables, ar; & pogitive perturbation is first made; if
this fails to produce a performence improverent, then a negative pertur-
bation is tried. If neither of the perturbations produces an improved
performance walue, the variable retains its origiral value, and Aar is
halved. If a favorable perturbation is found, the variable ar is set
to this value, zad Aar is doubled. The process is repeated for each
independent variable in turn, the order in vhich the variables are
perturbed being chosen randenly. At this point an adaptive search
cycle is coxplete, end the cycle is then repeated. A two-dimensional
illustration of this search is presented in figure (1). In the
particuler problem illustrated, the method converges rapidly reaching
the neighborhood of the extremal within six evaluations.

The search algorithm cen be written in the form

(s -1T)

A =20 T T (pP) (8)

T
where Sr is the purber of cycles in which the search has successfully
perturbed the rth independent varieble, and Tr is the number of

cyclec in which the perturbation of thek rth variable has proved
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unsuccessful. Here, the ééalar quantity (DP) merely defines an initiai
perturbation for each indépendent variable. Once started the search
proceeds inevitably to its conclusion, the perturbation in each inde-
pendent variable being adaptively determined according to equation (8)
on the basis of the performance function response contour behavior
encountered durirg the particular problem solution. This search can be
quite efficient when used in combination with the pattern search

accelereticn procedure.

2.2.2 Pattern search

In the present work, pattern search refers to a search vhich
exploits & gross direction revealed by one of the other searches. The

search algorithm is

Aai=(af-a:il)-(np),i=1,2,. s e e N (9)
where a? and a% are thecomponents of the control vector before

and after the use of a preceding sear;h technique. This is illus-
trated in figure (1) following an adaptive search. The combination of
an adapfive search and a pattern search in the problem illustrated
leads directly to the neighborhood of the extremal. Repeated adaptive
search_on the other hand, would be a very sl&wly converging process
due to the orientation of the contours with respect to the axes of the
independent varigbles. It may be noted that a simple rotétion of the
independent variable axes by hSO results in adaptive creep alone

beconing & rapidly converging process in this example. The present



discussion of optimization concept is rather superficial. Detailed

treatments may be found in (References 9, 22).

2.3 General structural optimization cyele

Figure (2) shows a typical optimization cycle. TFirst of all the
geometry (e.g. flat penel with corrugated hat‘stiffeners)vof the struc-—-
ture, the loads, and the material are specified. An attempt is then
made to find the values of design variables, which will minimize the
weight of the structure. Figure.(2) shows some of the design variables
for e composite panel subjected to compressive loads. These design
varigbles are |

1. Cross-secticnal dimersicrs: 1In the optimization problem one

has to find the dirensions of the cross-section which will minimize

-

the weight of the parnel.

2. Filerent crientation: This means, the orientation of filaments

with respect to a reference axis.

3. Percentzge of different criertetiions: This simply means the

percentage of differently orientéd leminates required in a Laminez .
For example, if only two kinds of laminate orientations are used,
say.OO and 90° one has to know that, how much of each is needed in
a structural merber to obtain the least weight design.

b, laminstinz ceouence: This means the seguence in which differently

oriented lamirates are arranged to make a structural member.
There could be mcre design variesbles depending upon the need of the

problenr under investigation. In order to find the value of these design
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variables one hés to iterate several times in such a way that ﬁhese
values represent the design of minimum weight. We note that a complete
stress analysis of the structure has to be made during each iteration
cycle. In order to cut down on the iteration time, it will be very
necessary to meke some simplifying assumption for the purpose of
stress analysis. fThis is done in the next chapter in which a detailed

formulation of the problem is given.



III

ARALYSIS

3.1 Fornulation of the problem

The problem under consideration here, is that of optimization of

& simply supperted all composite corrugated hat stiffened panel under

uniaxial compression. Figure (3) shows the panel under consideration.

The material used in the analysis is graphite/epoxy.

3.1.1 Basic assumptions

1. All the panel members are thin plates simply supported on all
four edges.

2. A1) the panel members are orthectropic and kave constant
thickness. )

3. Only three kinds of lemirate orientat&ons are used, namely 0°,
+45°, -45° relative to the exial direction.

k. Yield strain in compression for any panel merber is equal to
yield strain of 0° laminetes irréspective of the percentage of 0°
and +45° laminates.

5. Each panel member is assumed to have orly three layers.

6. Lamineste layup in each panel cerber is assumed to be iﬁso,
0%, Tus°,

7. Effect of Poisson's ratio is neglected in calculeting the

load carried by each panel merber.

13
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8. Panel is assumed to behave like a wide column for the purpose
of Euler buckling analysis,
9. Torsional and local cripping fzilures of the panel modes are

ignored.

3.1.2 Performance function

Under the assumption of wide colurn behavior only one pitch of
the stiffner spacing is required for the purpose of further analysis.
Figure (L) shovws e representative cross-section of the panel.

The performance function in cur aralysis is a2 function of weight.

It is chosen to be the weight per unit area per unit width of the panel.

(10)

©
"
o[

3.1.3 Design Variables:-~

Taking into consideration assuxption (3), (5), and (6), the number
of unknown design variables is reduced to twelve. They are (also see
Figure k) |

l. W¥Width of each panel merber, bi

2. Thickness of each parel mezber, t, (11)

3. Percentage of :ﬁSO larinates in each panel nmerber, fi

vhere i = 1,2,3,,4

3.1.4 Constraints:

The panel must meet certain feilure eriterien and practical
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requirements in order to be a valid design. They are as follows

1. local buckling load of each panel member should be greater

than or equal to the applied load.
> P (12)

2. Euler buckling load of the totel parel should be greater

than or equal to the applied loading,

K >N (13)
xEuler xa

3. Applied strain of the total panel should be less than or

equal to cutoff, or yield strein.

€L, (1k)

. Stiffner spacing shculd be greater than or eguazl to b3

(Figure h)
b>b (15)

5. Value of design variebles should be limited in a region of

practical interest.



L H

by £by by

L H

by <t <t ) (16)

A
oy ™

o

a2
A
)

S

For exanple, percentage of iﬁBo lanminates (fi) can nct be less than
zero and greater than hundred.
The velue of all the above mentioned paremeters are obtained through

the use of a simplified stress analysis, as discussed below.

3.2 Biress Anelysis

3.2.1 load in each venel member

Lets assume Ex is the loed intensity per unit width, oai is the
axiel siress in each ranel member, and P is the totel load per unit

stiffner spacing. Now we can write

P=1X . b aa7n

x
and
: (18)
P= % o, A 18
3=1 el i

Because of corpatibility considerations, the strain in each penel
rember has to be equal. Here we will neglect the effect of Poisson's

retio. Eence
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aai

€ =%

i=1,2,3,% (19)

Fron Eguetions (18) and (19) we get

Solving this equation for the strain € and using Equation (17), we

obtain

e=3 | (20)

Fipelly the lozd Pa in eech panel member is ther given by
i

Nx b Fi Ai

Po, "%, A AT (22)

I F,. A

j=1 1 i

3.2.2 Local buckling

Each panel member is assumed to be orthotropic and simply supported
on ell four edges. Hence from orthotropic plate theory (reference 13),

we can write

2
_an? e
Op = 2 (¥D)y Dpp + D)5 + Dgg) (222)
and :
g, 7 Pp =0, bt (22b)

wkere,
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02 -~ is the local buckling stréss

b - is the width of the plate

t - is the thickness of the plate

Dij - are the bending stiffness coefficients
Pl - is the local buckling load

Here for the sake of sipplicity subscript i has been omitted. However

this equation applies to each panel member.

3.2.3 Euler buckling

We will counsider one pitch of stifiher spacing for the purpose of
Euler bucklirg sralysis. Since each panel member can have different
percentage of + hSo leninates, each panel member is lieble to have
different value of Young's modulus. In order to find the Euler buckling
load, we will use the eguivaient area approach to find the effective
Young's modulus axd effective area of each panel mexber. Then we can

employ

2
_ w El 1

N"Euler T 12 (23)

In this expression El * I is the effective stiffness. Next we obtain I.
Let us essure
y; - distzrce of center of gravity of ith panel member from reference
axis (shown in Figure L)

Ei - Young's modulus for the ith panel member
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Ai -~ Area of the ith panel member

y - distance of the effective center of gravity of EA

distribution from reference axis
80 we cen write

b
Z E A Y.
- 3= *
y=7
I E A
g=3 1

By dividing both the denominator and the numerztor by E

1 We obtain
L Ei Ai

z y

- _im B R

y=73 E, A
z PR -
i=1 B

Let .

Ai Ei

AY = 3 (2k)

X
therefore

L

*
y =y (25)
I A*
i=1 *
From Figure (&) we see that
) | t_tha b+b3?- 1/2
B, = (b, - (251 + (253N (26)

and



20

11

e
4
(=4
(asd

A; =2 'b2t2E2/El
(21)
* =
A3 b3t3E3/El
Ag =2 bh(tl + t,‘) Eh,/E
Hence
- AR vyt 3 o+ Af(e, + th)/zv
R Ah) (28)

»

In order to find the moment of inertiz ebout the center of gravity
of the cross-cection, we should adjust the effective width and the effective
thickness of each tanel member in such a way that the respective distance
of the center of the gravity of each bapgl rerber should remain unaffected.
For example, with reference to the fiéﬁre (5) we note the width of the
horizonte) panel mexber has been modified, but not the thickness.
Bowever,nfor the inclined panel merbers, the thickness will be modified.

Hence we can define

=2
%
L]

#
A3/ ts

K/, (29)

o
L d
"

o+
t 3
i

= AE/DQ
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Therefore, the moment of inertia I, is given by

- 3 3 2
T=D83/00 P b6 * 2% Y300
4+ t¥{p, - (t, + t,) }2/12 + A¥(y - b )2
2'% 10 2\ = Poyo
+ AT - b.)° + A% 52 4 AT - (¢, + t.)/2}2 (30)
3 o 1 h 1%

3.3 Discussion of minimization procedure

At this point it is noted that the standard weight strength parameters
are Nx/L and the weight per unit area‘per unit length (W/bLe) (Reference
7). The length of the panel is not by itself a design parameter. 1In
the present analysis, we will assume that the loading 'Nx and length L,
of the panel are known design parameters. However it will be shown in the
optimization process that this approach will lead to the same weight
strength plot. Thet is, Nx/L is indeed the pertinent pzrameter, and not
N, and L separately.

In order to minimize the weight function of equation (10), it will be
necessary that all the constraints of equation (12) through (16), be
satisfied. After satisfying 211 the constraints and reaching a minimum
solution, the outcome of the analysis will be the extrerxiying values of
design variables of equation (11). For the purpose of reaching & minimum
solution, an optimization computer program AESOP is used (see appendix
A apd Reference 9).

It is very important to check the effects of the simplifying
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assumptions. For this purpose another existing computer program BUCLASP-
2 is used. (See appendix B and Reference 10). This program is capable
of performing the buckling analysis of a biaxially loaded composite panel.
A short description of the assumptions made in BUCLASP-2 analysis and the
mathematical model required for the purpose of analysis is presented in
Appendix-B. It ;hould be noted at this p?int that BUCLASP-2 is not used
as an optimization program, but it is used to predict the buckling loads

of an optimized panel.
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NUMERICAL RESULTS

In the present work following two cases of hat stiffened panels
under uniaxiel compression have been optimized using "AESOP".

1. All—alﬁﬁinum panel

2. All-composite (Graphite/Epoxy)} panel
The material properties used for the purpose of analysis are presented
in Teble (1).

Tebles (2) through (7) give the values of optimized design variables
for variocus loading conditions and length of minimum weight Graphite/Epoxy
panel. - The values of the design varisbles for various lcadings and length
of the ninimum weight aluminum panels are shown in Table (8).

Tebles (1) through (3) show the values of weight per unit area per
unit length (W/bLQ) and axial load per unit length per unit width (Nx/L)
for different lengths of the panel. It can be seen that for same value
of H#/L the corresponding value of W/bL2 is similar in 21l three ceases,
This proves that Nx and L do not have to be considered separately
but only - Nx/L should be considered while obtaining these plots.

Figure (6) shows a standard weight strength plot for a composite
end an all alumirum panel under uniaxial compression. In Figure (6),

Nx/L is the load per unit width per unit length, and W/bL2 represents

the weight of the pénel per unit area per unit length.

23
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Results of Reference (2) and the results obtained through the use of
BUCLASP-2 (Reference 10) are also presenteé'in Figure (6) for the purpose
of cozparison. For the éll_aluminum panel, a comperison was made with the
results obiained by Crawford and Burns (Reference 2). As may be seen from
figure (6), the present results show a slight weight advantage over the
results obtained in Referernce (2). This may be due to the fact that in the
present enzlysis no assumption was made with respect to the cross-
sectional dirersions of the panel. It is also noted that Reference (2)
uses the ccndition that for minirum weight, the local buckling stress in
eech pznel rember is sel equal to the Euler buckling stress of the whole
panel. In the present analysis no sﬁch condition for minimum weight design
was imposed. EHowever it is icteresting to note that the results obtained
after pinirizstion process skhowed that in fact for minimum weight, locel
buckling and Duler buckling stresses should be-equal in each
panel member.

For all coxrosite panels en attempt was mede to make & compariscn
with availeble optimization resulis. Unfortunately, the author was unable
to find such results. 8o instead, & comparison was made to study the
effects of simplifyirg assumption employed in the present stress analysis.
This was dcne by determining the buckling load for the optimum panel by
usirg the BUCL:SP-2 cormputer program, which is devoid of such assumptions.
A compaiison was thgn rade tetweer the buckling load obtained by BUCLASP-2
for the optirun panel and the specified load, thet was uced in the présent
anelysis to obtain the optirmu ypanel. Figure (6) shows good correlation

between the present results end thcse obtained through the use of BUCLASP-2.
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The advanteage of emplcying simplified stress analysis is, that it results
in very small computational time. For example, with the use of the
sirplified stress analysis, the runtime for 1500 iteration is about‘four
seconds on the CDC-6600 computer. It is interesting to note that even
for all composite panels, the results obtained through the use of BUCLASP-2
show that the local buckling load and Fuler buckling load of optimized
parels is very close to each other.

Examination of Figure (6) reveals that all composite panels weigh
epproximetely half es much as all slumirum panels. This result ?or all
composite panels is very useful for rodern aircraft technology. It is
hoped that the results of this study will lead to further investigation
in the use of composite meterials for various design problems.

Figure (7a) ard (Tb) show that there are two different désign possible
for the same loading condition Figure {7a) pertzins to a lightly loaded
panel (Hx/L = 50) whereas figure (7b) erplies to a heavily loaded panel
(Hx/L = 500). For each lozding case, both of the designs weigh almost the
same (see Tables 2 and 5), but both have different values of design
veriables, This phenomenon allows for rore flexibility during the design
process and less weight penalities will be felt if practical constraints
(e.g. manufacturing restrictions) are irposed on such panels. However
one should meske sure in such cases of rultiple optimur designs, that
these designs are not the result of the various essumptions made during
the stress analysis. Figure (8) shows the buckling rode shapes for the

two Lighly loaded panels (Figure Tb). These rode shapes were obtained
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from: BUCLASP-2. ‘The panel in figure (8a) is very deep as compared to its
width end fails in & torsional mode. Since the torsional mode of failure
was neglected in the stress analysis of the given panel, this.panel is not
a valid design, and can be ignored. The panel in Figure (8b) fails in a
local buckling mode, such that all the panel members behave almost simply
supported, which’is in accord with one of the simplifying assumption.

We note the panel on the bottom of Figure (7) have one hundred
percentage jﬁSo leminates in the skin and in the inclined panel members.
Also the thickness of the incliﬁed nembers end skin is very small compared
to the thickness of other panel members (See f;bles 2-T). This suggests
that rost of the load is carried by 0° é;iaments, vhich is desirable in
order to heve most cefficient panel. At thié point it should be noted
that under such condition neglection of thé‘effect of Poisson's ratio is
a good assumption. Recgll that this asswsptioh ves rizde in the calcu~
lation of the axial load carried by each panel merber. These panels
aliso verify e very useful concept of reinforcing hat stiffened metallie
panels. In reinforcing such panels stroﬁg load carrying rmaterial is added
in the direction of the loading. FYor example, the reinforcement is added
elong the flanges and the skin connections in cese of hat stiffened
panels.

Finally, it is noted that some of the assumptions rade in the analysis
of these panels did not effect the results to any significant armount.
These assuzptions afe discussed next.

1. The yield strain assumed to be that of ell 0° filaments is
ccasidered to be a gocd assumption because most of the load is carried oy

0° filaments.
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2. laminating layup in each panel member turned out to be of no
importance, because all the panel members‘have only one kind of laminate
orientation, i.e. iﬁso or 00, and never have both 0o and iﬁso filaments

rientation.
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CONCLUDING REARXS

In the present vork an atterpt has been made to discover some of the
nev concepts in the optirmm design of structural members, composed of
composite materials. Since there are no available results for the purpose
of ccmparison, it will be very desirable to carry out experimental verifi-
cation of the results obteined in the present analysis. It should be
noted that the results obtained in the present snalysis are optimums but
are not very practical. TFor example, it is not desiratle to have all 0°
filaments in ary of the panel members. ‘The impositicn of such practical
constraints will result in a heavier panel. If instead, however, the design
veriables are chosen in such a way that an optimun design includes the
practicel constraints, relatively lighter practical designs may be found.

For the case considered herein, the present analysis shows that
corposite panels are epproximetely twice as light as all aluminum panels.
It is hoped that this result will inspire further investigations into
the use of composites for optimum designs. In the present analysis some
of the assunmptions were very crude and need to be modified. For example,
the yield strzin for the vhole fanel wes assured to be equal to yield
strain of a1l 0° filaments. This essurmption in the present enalysis did
not effect the design to any significant amount, becesuse most of the load
is carried by o° fiiaments. However this will not be true in general: |
This suggests a more general yield criteria is required. Furthermore it
will be interestirng to investigate panels with different georetry, boundary
conditions ard loading conditiomns.
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AFPPENDIX A

Optimization Technique

This appendix is presented here for the sske of completeness. The
contents of this appendix are available in reference (9). In this appendix
techniques available in AESOP, for the solution of non-linear multivariable
optimization problems are discussed. A wide variety of séarch algorithrs
have been devised for the sclution of multivariable optimization problers.
Nany of these algorith;s are restricted to the solution of linear or
quedrgtic problems., Algorithms of this type must be supplemented by more
general seerch procedures if geﬁerality of solution is sought. This is
because engineering problems tend to lead to non-linear formulation with
the possibility of discontinuities in both the performance function response
surfece enrd its derivative. Most of the searches which prove effective in
these problems combine a direction generating elgorithm, such as steepest-
descent, with & one-dirensional search. Distance traversed through the
control space in the selected direction is measured by a step-size, or
perturbation paraxceter DP. The object.of the one-dimensiorgl search
is to determine the value of DP which minimizes the performance function
along thé chosen ray and to establish the correspending control vector.

In practice, the diversée nature of non-linear multi-variable opti-
mization problems leads to the conclusion that no one search algorithm
can be uniquilly described as being the "best" in all the situations
which ey be encounteréd. Rather, a combination of searches, some ofi
vhich ray be of quite elementery nature, prrovides the most reliable end

econoxicel convergence to the optirmal solution.
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One dirensionzl search: Multivariable search problens are reduced
to one-dimensicnal prodblems whenever a search algorithm is used to
establish a one-{o-cne correspondence between the control vector and a

single scalar perturbation parameter, DP. In such a situasticn

ai = ui(DP), i=1,2, ... ., N ' (A1)
so that equation (2) becormes
$ = ¢(a,) = ¢(P) (a2)

Sirilerly, tke right hand sides of egquation (3) end (7) beccme functions
of the scaler perturbzticn parareter. . |

The relationship, equetion (A1), specifies a rey through the control
space. As noted abeve, the objective of the one-dimensicral search along
this ray is to locete the value of DP which provides the z—inirum perfor-
nmence function value.

Kumerical sesrch for tvhe one-dimensional minima can te carried out
in a locel fashion, by the lewton-Raphson method, for exa—prle, or by a
global seazrch of the ray throughout the feasible regicn. The localized
polyncrial epproxiration is appropriate to the termirzl corvergence phase
in a probler soluticn vhen some knowledge of the extrersl's position has
been accumulated bf the preceding portion of the search ani the prcblen
involves a srocth function. The global search cen be used to advantage
in the orvening roves of & search. In the early phkase of a search the

object is to isolate the approximate neighborhood of the mirnirmun performarce
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function valuve aé raﬁidly as possible, usually with little or no fore~
knowledge of the performance function behavior. One measure of the
effectiveness of a search algorithm in such a situation is the nurber of
evaluations reguired to locate the minimum point to some prespecified
accuracy.” It can be shown that the most effective method of locating the
minirzur point of a general unimodal function is a Fibonaceci search
(reference 21). 1In this method, the accuracy to which the minimum is
to be located along the perturbation paracmeter axis must be selected
prior to the commencement of the searchk. ©Since the accuracy required is
highly deperdent of the behavior of the perforrance function, this gquan-
tity is difficult to prespecify. .
Prespecification of the accuracy to which the extremal's position is
to be lccated can be avoided for little loss in search efficiency by use
cf an elternative search based on the so-called golden section. (refererce
21). This is the method employed in the AESOP code one-dimensional search
procedure. Search by the golden section commences with the evaluation of |
the performance functicon at each end of the search interval and at
G = 2/(1 + V/5) of the search interval from both of these bounding points.
This is illustrated in figure (Al).
The boundary point furthest from the lowest resulting performance
functicn value is discarded. The three remaining points are retained,
and tLe search continues in a region which is diminished in size by G.
Tre internal point at which the performance function is known in the -
reduced interval will be at a distarnce G cf the reduced interval frcm the

rereining bounding peint of the crigiral irterval for (1-G) = G2. The
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search can, therefore, be continued in the reduced interval with a single
additional evaluation of the performance function. It follows after Q
evaluations of the performance function that the position of the extremal

point will be known within R of the original search region where
: R = ¢{@3) | (a3)

To reduce the interval of uncerteinty to .00001 of the original
search interval, about 27 evaluatiocns of the performance function are
required. For a reasonable number of evaluations of the performance
function, this type of search is almost as efficient eas a Fibgnacci
search.

It should be noted that search by the golden section proceeds under
the assumption of unimodality; hence it will often feil to detect the
presence of more than one minimum when the performance function is mulbti-
modal. If more than one minimum does exist, the one located depends on
perforrance bghavior within the original search interval.

Multiple Extremals on a One-Dimensicnzl Rav: The one-dimensional

section search described above is unable to distinguish one local
extremal from another; it will merely find one locel extremal. This
difficulty cen be largely eliminated by the addition of some logic to
the search, at least for moderately well behaved performance functions;
that is, for functions having e limited nurmber of extremals in the
control space region of inte?est. An effective method for detecting

multiple extremals is to combine the cne-dinernsional search with a
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random one-dimensional serach on the same ray through the control space.
This is illustrated in figures A2 and A3. In Figure A2 the response
contours of a performance function having two minima are illustrated
together with the initial points used in a global one-dimensional search
by the golden section method. The behavior of the function at these
points is shown.in figure A A3. The left hand minimm is not apparent
from these points. If & single random point is added in the interval
Lb,

minimum is

the probability of this point revealing the presence of the second

Pl = Ll/LO (AL)

for any point in the interval AB indicates the presence of a local
minimun somewhere in the interval AB, and any point in the interval BC
indicates the presence of a local raximum somewhere in the internal BC.
In this latter case, there must be a minimum of the function both to the
left end to the right of the rewly intro&uced point.

If random uniformly distributed points are added in the interval LO’

the probability of locating the presence of the second minirum becomes

_ R
P, = 1.0 - (.0 - Ll/LO) (a5)

The function (Ll/LO) is a measure of the performance function
behavior. For a given value of this behavior function the number of
random points vhich must be added to the one-dimensiocnal secarch to provide

== .
a given probability of locating a second minimum can be determined.
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The presence of rultiple ninima on a one~dirensionel cut through an
N-dimensionel spzce does not necessarily indicate that the performance
functicn possesses meore than one minimum in a multi-dimensional sense.

It may be thet the performance function is merely non-convex. This is
illustrated by figure AL. The perforrmance function behavior on the one-
dimensicnal seaféh in figures A2 and Al is identical. In figure A2 this
indicates the presence of two locel extremals; in figure Ak, a non-convex
perforrznce funciion.

When & one-dimensicnal seerch detects the presence of multiple
extremals in the locel sense above, a decision rust be made as to which
of the epparent extrermzls is to be pursued during the remainder of the
searchk. Here, without foreknowledge of the perférnance function behavior,
Jogic nmust suffice. Typicelily, the left or right hend extremal, the
extrermal which results in the best performance, or even a random choice
nmay be rmade.

It should be noted that logic of this type is rot currently
availeble in the AESOP code. The AESOP one-dimensional sesrch procedure
has tkree distinctive phases. First, each search algorithm defines an
initizl perturbation usirg either past perturbation stepsize informa-~
tion or a perturbaticn magnitude predicticn as in the gquadratic search
(Reference 9). Second, a perturbaticn stepsize doubling procedure is
employed until a pojnt exhibiting diminishirg performance is generated.
Third, having coarsely cefined the one-cdimensionel extremal position from
steps one ard/or two, & golden section search is employed to locate the

extrenal with reasonable precision.
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Multiple extremals —AgéheralAprocedure: The multiple extrenal search

technique included in AESOP is based on topologically invariant warping
of the performance response surface. The response surface is warped in

& manner which retains all the surface extremals but alters their relative
locaticns and regions of influence. The regions of influence of an
extreral is defined as the hull or collection of all points which lead to
the extremal if & gradient path is followed. Reducing the region of
influence of an extremal decreases the probability of locating a point in
the neighborhood of the extremal if points are chosen at random. Again,
in an organized nmultivariable search, the probadbility of locating an
extremsl having a small region of influence is less than that of locating
an extremal having a large region of influence, For exenple, suppose the
.extre:als of the one-dimensional function qf figure A5-are to be determined
in the range o, < a <. by the sectioning approach. The four initisl

L H

values employed in this technique are denoted by fl to fh‘

Following evaluation at these four points, fh is discarded, and the

function is evsaluated at fs. At this point the right-hand extreral, €5,

has been eliminated from the search which now inevitably proceeds to the

left hend extremal at el.

To find the second extremal, the function F is warped by writing

F(£) = F(a)
2N )
£ = (ay - a*)[aa_m_ﬂ—_a;*] + a*; ook (a6)
2N
£= (o - o )T+ ot ot (&T)

o¥ - o
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wvhere N is a positive integef; and a¥* is the iocation ¢f the left
hand extrenal.

A typicel rélatioﬁship.Befveen £ and « is»éhowﬁ in figure (A6)
for the case N = 1. ﬁifféfentiation'of equation AT with respect to‘ o

when N = 1 results in

1 _2[a - a*}] |
¢ log = o*] 2 * 27“*
- (A8)

. iy ‘* - T .

gt=Befoal uoycor
a¥ - a
L

Note that as o + a*, X+ 0 from both the left and right. At

= ' O e - R wn
o= o and at o = uK, £T =2, In the regions ap < g < o* and
o¥ < o <d,, £ varies paratolicelly with a. Figure A7 illustrates

H
these points. It cen be seen that a region Aal centered sbout a¥
transformsinto a srmaller regicn AE, loca£ed in the neighborhood of
E = o, 6n the cther reard, a region Aa2 situated in the neighborhcod
of the upper seerch lMmit, raps into a wider region -in the meighborhood
of & = oy In gene?al;,the slopes at a = o and o = 0, are given
by 283 the grester the N, grester the warping becomes.

The effeet~o$'introageihg.a,noderaxe warping transformation on the
function Qf figu;ﬁiiﬁikfig g@gg?*in,figu;e-Q{%J. ,Itudap hg sggn_frgm
figure»(Aj)efhai theirégion $£’infiuencévof.;éI.'iS'féducgd,;ﬁndfthe,'
region of influerce of e, 1is incressed. On the varped surface search

2
by secticning cormences witk the evalueticns of perfornance at fl to fh'

Following these initiel eveluaticns ?l is discarded (es opposed to the






APPENDIX - B

BUCLASP-2 Assumptiohs and Model

This appendix is devoted to a discussion of some of the capabilities
of BUCLASP-2 (A Computer Program for the Instability Analysis cf Biaxially
Loaded Composite Panels) as it pertains to the buckling analysis of the
composite panels considered in the present work. This computer progranm
(reference 10) is operational on the CDC-6600 computer. It is quite
reliable and gives very good results for the buckling problems of compo-
site panels. Some of the basic assumptions made in the analysis of
BUCLASP-2 are as follows:

1. The panel meﬁbers are orthotropic

2. The materiai is linearly elastic

3. Thin plate theory is employed

4, Effects of prebuckling deformations are ignored

5. Eccentricity effects are accbunted for

6. Exterior edges in planes normal to the prismatic direction

are assumed to be simply suppérted.

Support conditions at other boundaries are arbitrary. With the
above aséumptions en "exact" analysis of the whole panel is made.

This analysis reéults in the prediction of Euler buckling modes, local
buckling modes, or coupled Euler and, local modes.

The user of BUCLASP-2 has to define the rathematical model of the
parel under consicderztion. This mathematical model consists of three
substructures, namely the start substructure, end sutstruciure, and the

repeat substructure. Figure Bl shows the cross sections of the three

Lo
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substructures for the panel studied in this investigation.
The results after using AESOP define the cross-sectional dimensions
of the panel. These dimensions are used to find the buckling load using

BUCLASP-2.



----- Pattern search

Adaptive creep search

Figure 1.- Search processes.
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5\ One-dimensional search

Search point

(DP)

o X

Figure A2.- Response surface with two troughs,
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