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SUMMARY

The contents of this report céﬁ 5e divi&éd into fivé basic;par£s. The first
part ﬁresents the stafe of the4art in shell of revblution analyéis; and briefly
presents the theoretical advantages and disadvantages of the main numerical methods.
The seéond part (Chapters 1 - 3) describes the static analysié peftinent t0 the
STARS-2S program, and, in addition, presents the nécessary'eqpations for extension
into nonlinear analysis of unsymmetric loading. The third part (Chapter 4) deals
with the analysis of the classical buckling ioads 6f shells of'reﬁolution under
axisymetric loadings (STARS-2B program), and unsyﬁmetric loadings (not programmed).
The fourth part (Chapter 5) deals with Vibrations;‘ The vibration and critical speed
anal&ses involving axisymmetric prestress are programmediin the STARS-2V program
while the analyses involving unsymmetric prestress remain unﬁrogrammed. The final
part (Chapter 6) presents several analytical studies performed’with the STARS

programs, where certain formulation advantages, or discrepancies with other analyses

were ‘uncovered.

"It will be noted that the present eigenvalue formulation for the axisymmFtric
problem has several advantages over previous formulations. Possible similar .
advantages for the unsymmétric problem are discussed in Chapter‘h, however there are

\many unanswered questions in this more complex’afea.‘ Seve:al‘comparative studies

need to be carried out before a more accurate picture of even potential advantages

can be drawn. : : 2
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INTRODUCTION TO NUMERICAL ANALYSIS OF SHELLS

Recent innovations in digita.l comp,ﬁter technology have enabled
designers to analyze shell structures of complex configuratiqns without
unduly restrictive approximations. A nﬁmber of versatile computer
programs, based on various methods of analysis are presently available
for the analysis of shells of revolution, With the exception of closed form
‘solutions, the most commonly employed numerical methods of analysis
will be briefly discussed and compared in the sequel,

Einite Difference Method: This method was first employed by Radkowski,
et al, [1,2]%* in analyzing layered shells of revolution subjected to
axisymmetric loading. In these references, the two second-order
‘differential equations of the theory presented by Reissner [ 3] were solved
by using central differences with a constant mesh, The resulting
simultaneous algebraic equations were solved by Potter's method.[4].
Reference 1 is one of the few references wherein the finite differencé“:
method is employed in analyzing branched shells. Only"Y branches' are

considered. Sepetoski, et al. [5] employed a similar approach to study problems

which do not involve shell branching. However, the simultaneous equations
resulting from the application of finite differences were solved by a

non-matrix Gaussian elimination technique. Moreover, in this reference,

the effects of the grid sizes and of the error accumulation in the Gaussian
elimination technique on the convergence of the solution were studied.

Budiansky and Radkowski [ 6] extended the technique presented in Reference 1 :

to the analysis of shells of revolution (including shells with " Y branches ')

subjected to unsymmetric loading, using a shell theory presented by Sanders [ 7],

* Numbers in brackets refer to the bibliography at the end of the report.
1



The load was expanded in Fourier series and a variable finite difference

grid pattern was used. Greenbaum [ 8] presented a refinement for the analysis
of shellé closetii at the apex. Capelli, et al. [9] included the effect of

shear deformation and extended the technique of Referenée 6 tov shells

of variable thickness in the circumferen'ti,al‘ dirgyctiorll. The variable

thickness was expanded in a Fourier series, and the thickﬁess harmonic

amplitudes were coupled with the load harmonic amplitudes, necessitating

a modification of the procedﬁre of Reference ’6 to provide coupled harmonic solutions.
Techniques similar to Reference 6 were applied in References

10, 11, 12 to nonlinear problems. Hubka [10] presented an analysis of

orthotropic, axisymmetrically loaded, shells qf revolution, wherein non-

linear terms were included in the equilibrium equations. Problems in~

volving shells with two boundaries, subjected to distributed and concentrated line

loads, were considered using Reissner's theory. The two second-order

differential equations were solved using finite difference approximations

with a variable grid. Options for forward, central, and backward differences

were included. The resulting simultaneous equations were solved by a

Gaussian elimination method specialized to banded matrices [13]. Nonlinear

problems were solved by first solving the linear problem, and employing

the computed in-plane stress resultants as input for the solution of the

nonlinear equations. A similar method was utilized by Wilson and Spier

[ 14, 15] to solve axisymmetric nonlinear shell problems using the equations

of Reissner [16]. Moreover, they modified Potter's technique by adding

an iteration procedure for solving the simultaneous nonlinear equations.

In this iteration process the mafrices geqerated by the solution of the linear

equations were used as the first approximation in the solution of the non-

linear problem. The procedure was repeated using the output of the previous

iteration. This method converges very slowly for problems with significant nonlinear

2



effects and it is necessary to use small load increments for higher values

of the load. It was recognized by the authors that a ‘Newtonian-type iteration

technique [ 17, 18] would be more suitable inasmuch as its convergencé
could be proven., Bushnell [19] utilized the Newton-R aphson method to
solve nonlinear problems of orthotropic, eccentrically stiffened shells
of revolution. The effect of the stiffeners was treated by-'smearing" *the
properties of the closely spaced rings and s%ringers over their spacing.
Critical loads at buckling.foi‘ a shell subjected to .axisymmetric loads
(for cases in which the buckling mode is also axisymmetric) are established
with this technique. The buckling load in established as the last load for |
which the Newton iteration method converges.

The same technique, with a more approximate ite ration procedure‘
was first applied to shells of revolution subjected to unsymmetric loading
by Ball [20, 21]. Inasmuch as the loading is expanded in a Fourier series,
the nonlinear terms included in the Sanders shell theory [ 7], used in Reference
20, couple the Fourier harmonics. The equations are uncdupléaa”b;y first
solving the linear problem, and using the results to obtain and introduce
into the equatidﬁs a numerical value for every nonlinear term. The re Sultiﬁg
uncoupled equations are solved by the methods of Reference 6, each solution
providing the numerical values for the subsequent iteration. The buckling :
load is defined as the last load for which the solution éonverges.‘ Stability
cases where the buckled shape is out-of-phase with the applied load cannot

be considered. With this technique, it should be noted that the number of

* See Appendix A for a further discussion of this technique.

3



sets of uncoupled equations which must be solved is not constant, but
increases as convergence progresses, inasmuch as coupling terms
involving more harmonics are evaluated numerically as the analysis
progresses. Greenbaum and Conroy [22] found that for certain problems
the technique of Reference 20 did not converge, and hence utilized a
Newton iteration procedure. Moreover, it was determined that the
formulation of the problem in terms of sets of four second-order
differential equation results in numerical inaccuracies in the finite
difference solution. For this reason the formulation of the problem in
terms of sets of eight first-order equations was employed. Complexities
of this nature in the use of finite differences are discussed in Reference 23,
The technique presented in Reference 22 has certain inconsistencies. In
using the Newton iteration procedure, the cross-coupling terms of the
various harmonic amplitudes are dropped in order to work with uncoupled
sets of equatiqns. In addition, some terms from the Sanders' shell theory
are also dropped. Finally, the analysis of Reference 22 cannot be used
for post-buckling analysis or for establishing the critical load at buckling
where the buckling mode is out-of-phase with the load,

Eigenvalue problems of vibrations and stability of shells have also been
solved using the finite difference method. Cooper [24] has investigated the
stability and natural vibrations of shells of revolution with two end
boundaries, under axisymmetric prestress, using the methods of Reference
6. The nonlinear theory presented by Sanders [ 7] is used to establish
the equations of both the prestre'ss state, and the incrementally disturbed
state. In the vibration problem the perturbation displacements are assumed

proportional to et

» and the frequency determinant is evaluated for a
sequence of assumed values of the frequency, until the correct frequency

is obtained as the one for which the determinant vanishes. Central differences

4



with a constant mesh are employed to reduce the four second-order

differential equations to algebraic equations. The latter are solved by

Potters' method. This method is modified [ 25] in order to avoid spurious
changes of sign of the determinant. The numeric‘ai procedure for establishing
the buckling load is identical to that for establishing the frequency in the
vibration problem. In the stability analysis, the prebuckling stress-re sultants
and deformations are considered. In the vibration analysis, the rotational
inertia is omitted. Rossettos and Tene [ 26, 27] applied a very similar
technique to the analysis of layered and orthotropic shells. The sole difference
was that they utilized second-order finite difference approximations in order

to consider boundary conditions at the two ends with an accuracy consistent with
that used for the analysis of the remainder of the shell, Heard and Fulton [ 28]
also used an almost identical technique with a variable finite difference mesh.

In References 29-37, a program for solving shell stability problems is presented.
This program includes the effects of eccentric reinforcement on shells
(smearing technique is used). Both the prebuckled and stability equations

are treated by applying central differences to two fourth-order differential
equations, and solving the resulting set of algebraic equations by use of

the method presented in Reference 38. If the prebuckling state is establiéhed
on the basis of a linear analysis, the stability equations may be conveniently
approximated by the form ([A] + \ [B] ){x}= 0. Thus, the power method

[39] may be employed to establish the critical lead at buckling, avoiding

the uncertainties inherent in the determinant evaluation method. In solving stability
problems with the aforementioned program (BOSOR) the prebuckled state

may be established by the nonlinear analysis of Reference 19. In such

an eventuality, the determinant evaluation method is utilized.

>



Two-dimensional finite difference solution techniques have been used
in solving vibration and stability problems in References 40 and 41.
T bese‘twodimensional'techniques result in 've‘ry 1arge matrices, ancl
the refore should be empleyed only gin the’ a‘.bselnce of en’ alte rnatlve method

t

(e. g. to inwestigate a shell cutout problem),

*

Finite Element Method: In apply_ing‘the finite element method which
is ‘actually an application of the Rayleigb.-Ritz"'numerical techniQue, to
the analysis of shells of revolution, two distinct types of elements have
been employed:: the discrete triangle or qua'dfilat‘erali ‘and the re‘volved
conical or curved elements. F:)acb of the foregoing elements have special
advantages and speeific areas of application. Generally, in the
application of finite elements to shell analysis, ‘the following two basic

questions remain to be resolved:

1., What is the effect of the geometnc approx1mat10ns between the
elements and the actual shell surface, on the solutmn of the problem.
2. Is it necessary to expllc1t1y mclude r1g1d-body mot1on terms in the dis~

placement function employed in the solution.

t

~ The ,firs’t c-onical frustum element was introduced by Meyer and Harmon [ 42]
The deformation of this element included membrane agnd bending components,
and continuity of slopes and displacements was enforced on the inter-element
nodal circles. The deformation of the element was established on the basis
of an analytical solution for a cone loaded solely along the edge, and shell
problems inyolving edge loading only were solved using the force method.
Grafton and ‘Strome [43] de riyecl the matri‘ee s for a, ,cor;{ical? elemebt using
the displacement method. Simple polynpmiel forms were utilized to
represent the deformation state, Friedrich [ 44] used a thick conical
element whose deformation included shear deflections established by simple
‘beam theory. | Another conical element uei_ng an ’analytic'al edge -loaded

cone solution for the deformation. of the element was formulated by

6



Lu, et al. [45], using the displacement method. Percy, et al, [ 46], and
Wilson [47], were the first to apply conical elements to solve problems ’
of: shelis sﬁbje»cted,to unsymmetric loads.‘ The non-symmetry waé
analyzed by use of‘ Fourier series. In Reference 46 the effects olf
utilizing various order polynomials to repre seﬁt the displacement functions,
were ipves?:igated.

A tbn‘fxrough study of the conical fru(stum element was performed by
Percy, ef al., [46] and by Jones and Strome [48]. They encountered
considerable disadvantages in the use of this element for the analysis of
doublyjcurved shells, For predominantly membrane problems, due to the
change‘of angle between adjacent elements, the kinks at the nodes prodﬁce
calculated meridional bending moments where none exist, For problems
wherein thé rotations at the boundary are unconstrained, erroneous
displacements of the boundary are calculated, Moreover, it is essential
to use éxtremely short cone elements a considerable distance in from the
end boundaries. As indicated in Reference 48, optimization of shells by
careful variation of the thickness or geometry is not possible when conical
frustum elements are used. In static problems using conical elements s
soine of the errors cancel each other. However, this cannot be anticipated
in the case of 'dynamic analyses where rapid meridional membrane stress
variation may occur. To overcome the fore going difficulties, Jones and
Strome [49] introduced a doubly-curved revolved element where the coordinates,
slope, and hoop principal radius of curvative, were continuous
functions throughout, and, at the nodé.l circles, were identical to those of
the actaal shell, However, the meridional radit;.‘s of curvature was a
discontinuous function at the nodal circles. A similar element with special
refinernents for application at the apex of a shell was developed by Stricklin,

et. al. [50]. Khojasteh-Bakht [51] developed the matrices for a doubly~-curved
' T



revolved element mé.tching the tangents and curvatures of adjacent elements
at the nodal circles. A geometrically "still more.réfined revolved element was
produced by Brombolich and Gould [ 52]. . |

Stricklin, et. al; , used the elefnents of Reference 50 to solve
nonlinear problems of axisymmetrically loaded shells whose thickness
and material properties were both é,xisymmetric [ 53] and non-axisymmetric -,
[ 54]. The non.-axisymmetric, nonlinear problems resulted in a set of
simultaneous equations involving coupled harmonic amplitudes similar to
that solved in Reference 9 (on the basis ¢f finite difference’techniques):
It has been shown that it was not necessary to include explicit rigid body
- displacement terms [ 50, 54, 55, 56] in the deformation functions of these revolved

curved elements.,

Dynamic and stability problems were also solved by the use of

these revolved elements. Klein and Sylvester [57] and Bacon and

Bert [ 58] solved shell vibration problems by using conical frustum elements.
The latter authors included transverse shear deformation and‘ rotatory -
inerﬁa, and analyzed sandwich shells, Mode shapes and frequencies of
orthotropic shells of revolution were found vby Leimbach, et.al. [ 59], and
subsequently by Adelman, et.al. [60, 61] using elements better fitting the
geometry of the shell. The mode shapes Aof sandwich shells were‘ calculated
by Abel and Popov [62], and nonlinear vibration problems were considered
by Stricklin et.al. [63]. Navaratna, et.al. [ 64] applied bc’)thvfhe conical
frustum and the curved revolved elemeﬁts to the solution of linear buckling
problems, for shells of revolution subjected to axisymmetric loads. Each
possible Fourier harmonic mode of buckling must be checked to find.the
lowest eigenvalue.
It shoﬁld be noted that the principal advantage of utilizing revdlved .
finite eléménts instead of finite diffe fences is that arbitl;arily branched
shells of revolution may be analyzed in a routine ma.nner by using revélve&

finite elements.



Shells were also analyzed using discrete triangular or quadrilateral
elements. Flat triangular elements were developed for this purpose by
Melosh [65]. These elements accounted for membrane and bending
flexibility, and may be used to analyze shells with material properties ranging
from isotropic to aelotropic. Zienkiewicz, et. al. [66] applied triangular
plate elements to the analysis of thin arch dams. Notwithstanding the continuous
interest in these applications [67], flat elements may be more inadeqﬁa;te
than the conical frustra [48] in the representation of curved surfaces
“particularly in predominantly membrane stress areas. Solutions obtained
using a number of flat elements were tested for convergence [ 68, 69], and
it was concluded that solutions of bending problems of cuvaed structures
employing these elements do not always converge. infaddition, since the
use of flat elements for the solution of problems involving curved structures
requires very large matrices, flat eiements should be limited to problems
involving arbitrary shells or shell cutouts, for which large matrices are
obtainerd no matter what element is used.

The inadequacies of flat elements led to the development of curved
quacifiléte ral aﬁd triangular elerhen‘t.:s.f The more general cﬁrved
triangular elen;en;ts can readily describe arbitrary‘cutout boundaries.

The earliest constant curvature quadrilateral element was devéloped

by Gallagher [ 70] by applying the shell theory (non-shallow) presented by
Novozhilov [ 71]. Although the displacement function chosen does not include
rigid body terms nor does it lead to displacement continuity at the element
boundaries, the results obtained converge satisfactorily. Geometrically
more flexible quadril'ateral elements‘Awere developed using shallow shell
theory [ 72] a’nd finite differences by Szilard and West [ 73], and subsequently

by Tsui, et. al, [74], who also included the effects of shear deformation.

9



Bogner, et. al.. [ 75] developed a cylindricel element wherein the dis~
placement function 1nc1udes both rigid body motion and satisfies the
compatibility requlrements. Th1s element was later used to study non-
linear shell behavior [ 76]. More recently, a large vanety of curved
quadrilaterals have been developed: Conner and Brebbia [77 78] (the
Marquerre [ 79] shallow shell theory with nonlmear effects was employed
in Reference 78), Cantin and Clough [80]. (cylindrical element with a
thofough discussion of the requirements for inclusion of rigidbodfr?moi:ion
terms in the displacement function), Wempner, et. al. [81] (transverse
shear deformatioh is included), Ahmad, et. al, [ 82] (transvlerse shear
deformation is included), and Key and Beisinger [ 83] (tl;e displacement‘
function is represented by i{ermitian polynomials, and shear deformation
is included). : L o |

In Reference 73, vibration problems were first solved ueing curved
quadrilate rals; More recently, Olson and Lindberg [84] established mode |
shapes and frequencies of curved fan blades employing curved quadrilateral
elements. Greene, et. al. [85] also used a qﬁadrilateral"to study shell
vibration problems. The shell theory utilized is the non-shallow shell theory
of Novozhilov. The element of Reference 70 was used by Gallagher and
Yang [ 86] 1n problems of stability of shells.

Early work in the development of curved triangular elements was
performed by Utku [ 87, 88], Prince [89], and Svalbonas [90]. Utku
utilized the Mafguerre ‘shallow shell theory, and included shear deformation
effects. Prince employed the three sub-element technique [91] to develop
a constant curvature trianglar shell element, based on the non-shallow shell
theory o:% Novozhilov. The three sub-element method wes also utilized in
Reference 90 in coﬁjdnction with the non-shallow shell theory of

Novozhilov, to develop a family of orthotropic, arbitrarily curved, triengular

10



13

shell elemeets Curved tnangula,r elements were recently developed by-
Argyris and Scharf [92] (63 degree of freedom element in a ''natural”
coordinate system), Dhatt [93] (shallow shell theory with shear deformatmn),
Strlcklend and‘Loden. [9!4] (Novozh;lov ehallow ehell theory), \ and Bonnes,

et. al. [95] (three sub-domain method with Reissner t96] shallow shell
theory). ’ |

It should be noted, that the accuracy of solutions obtained by using discrete
doubly-curved finite elements has maiply b‘eenlveriﬁed only for simple classical
problems. Thus, before definite conclusions cen be drawnias to the

suitability of some of these elements for solviné problems involving shells with

complex cutouts, additional, broader, comparisons must be made.

Numerical Integration Method: This method was utilized in a general form

in References 97, 98, and 99. Cohen [97] analyzed orthotropic shells of
revolution, using the non-shallow shell theory of Novozhilov and the Runge~-
Kutta method of forward integration. The resulting system of equations is
solved by Gaussian elimination. Both the rneal and mechanical loads are
,eqn‘side red, heweve r, shell branching is not included. The unsymmefric
loadings are expanded in Fourier series, and each harmoﬁicl is analyzed
separately. Kalnins [ 98] solved similar isotropic shell problems using

the Reissner shell theory, the Adams integration method, and the Gaussian
elimination technique. Again the analysis is limited to problems involving
two end boundaries. Mason et. al. [ 99] analyzed isotropic shells with
completely arbitrary branching characteristics, subjected to axisymmetric
load, using the nonlihear4,Love -Reissner~Kempner [ 100] shell theory and
the Runge-Kutta method of forwerd integrativon.‘ The arbitrary branching
was accomplished with a finite element type (direct stiffness method) solution

of the matrix equations. The nonlinear solution was identical to that of

11



Reference 10, discussed previously. Rung, et.al. [101, 102] extended
this method to the analysis of shells of revolution subjected to unsymmetric
loading, using a linear shell theory. The direct stiffness matrix solution
technique was adapted by Svalbonas [ 103] to orthotropic, second-order shell
theory, including tbe effects of shear deformation and thickness stretch.
In this reference, the nonlinear andlysis of shells of revolution under
unsymmetric loading is discussed, using a similar technique tg that later
utilized by Ball [ 20] | (see finite difference discussion). The aforementioned
method was applied to the analysis of shells of revolution comprised of
orthotropic layers [ 104], and of sandwich construction with shear deformable
cores [105]. Another nonlinear analysis of shells of revolution, with two
end boundaries, under an axisymmetric load, was presented by Kalnins and
Lestingi [ 106]. In this reference, a form of Newton's method was employed
to solve the nonlinear problem. The numerical integration technique, in
connection with Guyan [152] reduction, was applied to the analysis of orthotropic
stiffened shells subjected to static loads in the STARS-II program developed for
NASA by Svalbonas, et al. [lO"{-llO]. This program may be employed in the solution
of problems of shells of revolution with arbitrary geometry as shown in Fig. 1.
Moreover, this program may be used in conjunction with discrete finite element
analysis [111].

Calculations of natural frequencies and modes of vibration of shells of
revolution using numerical integration was first accomplished by Kalnins
[112], who included the effect of rotatory inertia. The problems solved
entail isotropic shells with two end boundaries. The frequencies are
established by evaluating the frequéncy determinant. Orthotropic, ring-stiffemed
shells were analyzed by Cohen [113], who used numerical integration and a Stodola
type [114] iteration technique. This iteration technique commences by assuming a

value for the displacement components, setting the frequency to unity, and evaluating

12
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numerically the inertia terms. These values of the inertia terms are
‘substituted in the equations of motion resulting in a set of nonhomogeneous
vequaticns, the solution of which yields a first estimate of the mode shapes.
An estimate of the frequency is then obtained by évaluating the Rayleigh
quotient, This value of the frequency, together with the estimated values

of the mode shapes are used to obtain a new set of numerical values fqr the
inertia terms. The process then continues until the mode shapes obtained
from two successive iterations vary by an acceptable error. It can be
proven that this method, also known as the inverse power method [115],
converges to the smallest frequency.

The frequency determinant evaluation method as well as the Stodela
method have certain advantages and disadvantages [116]. In the Stodola
méthod, the lowest eigenvalue cannot be skipped, as is possible with the
determinant evaluation method; however, if higher values of frequency are
needed, the Stodola method requires modifications for ''sweeping-out" the
lower frequencies, and eigenvalue shifts to avoid slow convergence [ 114].

A generalization of the Stodola method was used by Cohen [117] to
analyze the stability of orthotropic, ring-stiffened shells of revolution with
two end boundaries, subjected to axisymmetric loading, employing the non-
shallow shell theory of Novozhilov. Numerical integration by the Runge-Kutta
method, and Gaussian elimination are used in the solution. The prebuckled
state is obtained on the basis of a nonlinear solution and thué, the critical
load and mode at buckling are established by solving a sequence of modified
eigenvalue problems. The lowest buckling load corresponding to each
Fou_rier.harmonic buckling mode is established. The critical load at buckling
is the smallest of these loads., A similar analysis including the capability |
of analyzing shells with "Y' branches, using the determinant evaluation

method, was presented by Kalnins [118]. In this reference an attempt

b



is made at establishing the critical load at buckling for shells of revolution
of certain geometries subjected to single-harmonic unsymmetric loading.

Comp arison of Methods: The three methods discussed herein are approximate

methods and, consequently, must be checked.for accuracy or convergence
of their results. The finite element and finite difference methods require
at least two analyses with different grids to establish whethépof the size
of the grid uéed yields satisfactory solutions. The results obtained from a
single solution by the numerical integration method, however, may be checked
automatically for each shell segment. Moreover, the representation of a
shell by finite elements involves geo’metric approximations which are not
required in the numerical integration method. A disadvantage of the
numerical inte gration method is that accuracy is lost when the shell is long.
This however, is overcome by segmenting the shell into shorter pieces.

A serious difficulty with the finite difference method is the instability
of the solution at fine mesh sizes, and the slow convergence of the results
obtained from single precision computer programs. For a stiffened cylinder,
an ei:ample of the instability of the solution is shown in Figure 2. Introduction
of double precision requires a reduction of the number of mesh points which
appreciably limits the scope of a program [31]. It should be noted that the solution
may not always converge asymptotically as the number of finite difference
stations increases [40]. In References 26, 27, and 119 it was indicated
that the error associated with finite difference approximations of a given
order is larger close to the boundary. Thus, the overall accuracy of the
results may be increased if finite difference approximations of higher order
are used at the end boundaries. Generally, in order to accurately establish
the stress distribution near the shell boundary or at regions of high
stress variation, or to properly locate shell discontinuities in curvature,

thickness, etc., a mesh of variable spacing is required. However, the regions
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of high stress variation cannot be predicted apriori and, consequently,
the mesh of the first trial may be extremely fine in some regions
of the shell and very coarse in others. In the use of variable mesh, the
variation of the order of the error in the formulas, must also be considered.
In the numerical inte gration method, however, the aforementionecl aifficulties
are ehmmated by automatlcally controllmg the 1ntegrat10n mterval so as to
obtain a solution of uniform accuracy Fmally, the errors in the Runge-
Kutta integ'ration’,‘formulas are of the order of- h»’r?»; -whereas, -in the finite A
differences employea 1n the,.atoxementioned references, the error is of
the order of hz. In Figure' 3a cotnparieon is presented of the results obtained
by finite differences and b& the numerical integration method .for epherical
caps subjected to uniform pressure. |

Finite element analysis of shells involves Both mathematical
approximations (those associated with a Rayleigh~-Ritz analysis) and geometric
approximations. The geometric approximations associated with revolved
finite elements are discussed in detail in Reference 48. - As previously
noted, an advantage of the finite element method ‘ifsthat it may be
employed to analyze arbitrarily branched shells in a routine manner.
Numerical integration methods can also be employed to analyze arbitrarily
branched shells [ 107], moreover, to obtain the same accuracy in the solution,
much coarser idealizations can be used with the numerical integration method than
with the finite element method. Finally, the components of stress and dis-
placement obtained by the numerical integration method are of the same
accuracy, whereas, the order of accuracy of the components of stress
obtained by the fmJ.te element method is less than the order of accuracy of
the components of d1sp1acements.
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CHAPTER 1

FORMULATION OF THE GENERAL NONLINEAR SHELL EQUATIONS

Strain-Displacement Relations: The nonlinear strain-displacement

equations for the Love-Reissner-Kempner shell theory are developed in

Reference 100. A synopsis of this development ensues.

Consider a deformable body in a state of stress due to surface trac-
tions and body forces. The deformation in the neighborhood of a material
point is defined by the unit elongations EC(.’ EB’ EY’ and the unit shears TGB’
1"BY , Fow referred to a system of orthogonal curvilinear coordinates @, B8, v. E,
(i=a, B, y) represent the change of length per unit length, due to the deforma-
tion of a line element which was in the ith direction prior to deformation.
I‘ij(i,j = @, B, y) represent the change in angle, due to the d:}flormation be:;;lveen
two line elements which prior to deformation were in the i™" and in the j
directions (i #j). The unit elongations and shears are related to the strain

components eij (i,j = a, B, y) by the following relations [121]

1 o
E,1+3E) = ¢4y
E (1+—1-E y=¢

B 27 T "BB
1 _
EY(1+EEY) = eYY

(1-1)
. eocB
sinl g =177 E)(ITE

g

e
. By
sinT’, =
By (1+EB)(1 +EY)

= e’YG,
o (TF+E)IFE)

inT
sinT,

The strain components, €,:, are sufficient and convenient measures of the
deformation in the neighborhood of a material point, defined in terms of the

displacement components by the following relations [121]

2

1.2 1 2 1
[ +(-2-ea5+wy) +(—2-an-036) 1

€0 = ®aa’ 2 %00

I T ) 2, Lo Ly
cgg = eggtgleggt (Fegyt )" + (Fegy-w )]
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1
evyf('z'ey +0) ) +(2Yﬁ )
‘ [V D S e (1 _2)

€oz[3= e'ﬁa’: aﬁ (2 aﬁ 'Y) +e[3ﬁ(2 ﬁ wY)+(2-e mﬂ)(2 ﬁv'l-m )
€ =€ =¢e,_ te (Le ~-w )+te (1e +w )+(1-e, ) )(1—e +w )
BY © YR BY BRZ BY @ w2 py @ Zpey'Z%a “p

| 1 1 !
va© Say e +eYY(2eY01 wﬁ) +eaa(zeva+w ﬁ)+(2e‘”5 ma)(z I3+wY)

The quantities eij and ©, (‘i,j = a, B,y) are defined by [121] |

= (1/Ha) u,fa+ (H B/HaHB)V + (Ha,v/HdHy)w

)v, +(H, /HH)w+(H, /HH)u

= (1/Hp) v g+ (H,  /HH B, o’ Hgla

°gp

= (1/HY) w, ¥ (HV, a/HyHa) u+ (HV, ﬁ/iHyHﬁ) v

= e =(H

©48 sa 5/H&""/Hﬁ),a+ (Ha/H Yu/H ),

g a” B

eﬁy = ew3 = (HV/Hﬁ)(w/ HY), (3+ (HB/ Hy)(v/ Hﬁ), v
o= Cav = (Ha/ HY)(u/ Ha),Y+ (Hy/ Ha)(w/ Hv), o
(1-3)

- (H V), .Y]

= (1/H6Hy)[(va), 8 A

2w ~ (l/HVHa)[.(Hau),Y - (Hyw), a]
Zmy:(i/HaHﬁ)[(HﬁV), o - (H ), ﬁ] 1

Wa, B, ), v(a»p.¥) and w(a, B, V) are the components of displacement along

the coordinates g, B, Y, respectively; w"i(a, B, y) are referred to as the
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components of rotation; Ha' H 'Hky‘,, are the Lame coefficients of the

B’

a, B, Y coordinate syst'e'm. We shall make the assumption that the unit
elongations, the unit VShevars and the rotations are small as compared to
unity., On this basis, it can be shown [121] that

Ei'= EIJ i=_]

(1-4)
I'.. =€,. | i#j

Taking into account that wzi may be of the order ’of magnitude of €55

Equations (1-2) reduce to

_ L,2,,2
Eara- eaa+2(‘wp+w‘v)

B8~ °BB
_ 1.2 2
YY_ e\/\(+2,(wa+wf5 )
(1-5)
= %ap “a”p
€BY = e‘3Y -wvwﬁ
€ = e - W

If the assumption is made that w, are of the same order of magnitude as

eij , the above relations reduce to

Eij = eij . Lj= a B Y ’ (1-6)

Consider a thin shell, The position of points-on the reference sur-
_ face of the shell will be determined by the curvilinear coordinates o and

B which are lines of principal curvature of the reference surface. The
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position of a general point P of the shell will be specified by the coordinates
a and B of the base of the perpendicular from point P to the reference
surface, and the distance { measured along‘this perpendicular., Referring
to Figure 4, for a shell of revolution, these cioordinates are designated by

8, ¢, andl ., The Lame coefficients for a general shell of revolution may

be written as

Har: r, (1-§/r2)

Hﬁ = 1‘1 (l’g/ri) : (1"7)
HY = Hg =1

Referring to Figure 4, the Lame coefficients for the reference surface, when
t/r << 1, are the radii of curvature (ro, rl) of this surface, and must

satisfy the Gauss-Codazzi compatibility relations [121] given by

ro,(pz r1 cos @ ‘ (1-8)
In obtaining the above equations the following geometrical relaticn has been
employed,

r =1, sin @ , (1-9)

In general, the displacement components in a shell may be expanded

in a power series expansion of the { coordinate

' | v i -32v 2 '
wi(a,p,§)=v(oz,(3,0)+ EZOL +2-;§7 og + ... (1-10)
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We shall assume that it is sufficient to rei:é,ih onlY«t’hé’ first twb‘té‘r‘i'h"s in

the above series. This is equivalént to the Kirchoff assumption that a

line normallto tvhék réferenée surfag‘ék7iemé;in;: st;-aigi:xf ?'sﬁbseqﬁ;e‘i;f fo de-
formation. Moreover, we shall make the second Kirchoff assumption that &
a line normal to‘ the reference surface remains normal to the deformed re- *
ference surface. This implies that € gL = € ¢ = 0at{= 0. Inaddition, we shall
assume that the second term in the expansion for w(a,f, L) is small as

compared to the first term and it can be disregarded. On this basis; Equa-

tions (1-10) reduce for a shell of revolution to
w9, @l) = u6, ¢ + Gw(p
v(0,08) = v(6,¢) - Lwgy B {(iéii)
w(0, .t ) = w(8, ¢)

1

Substituting Equations (1-11) into Equations (1-3), and using Equations

(1 -8) and (1 -9) it can be shown that

®go = [1-2/1-2]‘1;,1; (wttw ), o+ 2 (V"’“e)"g“f
o o 2
-1y1 W
e(pcp= [1-§/r1] ’;1 (V-Ewe),q) - ;:1* ,

-141 cos -1 11
cop=[1-L/7)) ;;o(v-gwe), 9——ro—‘9(u{rcw¢)¥ H1-L/ 7] ’;1(q+§w ) f

¢}‘P
ety = Spr = ez = O S (1-12)
w =-1-.(W, +v)
0 ry /A
w¢: -%o (’x?v, e:l-u sinqa)
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: -1} ' -1§1
g = L1/ 73] 7 [ (v-bag). o~ st -I1-E/ 1] T g (). o |

The above relations correspond to the Flugge-Byrne shell theory [122,123],

They may be further simplified by disregarding -f'-.- (i=1,2) as compared to

i
unity. Thus, Equations (1-12) reduce to the following relations of

Love-Reissner-Kempner accur acy

00 mo ¢
e =e -lk S a3y
- o, " @ ( )
e, = e, -2Lk
G egoo 0
 where:
egg = -i-o{ u, g v cos ¢ - wsing}
o 51
e ==1{v, -w
Wo rl* <0 }
1y, Lo
ee¢ == {v,e-ucos¢}+.r
o o} , 1

(1-14)
1
kg = -;:-o‘w 0~ Y cosgo}
1
k = =w
Ty 0,9

r
[¢)

= 53— {w -—w + w _cos
8¢ 21'0.{ 6,0" T, “p0" “p o}
and wg? w(p have been defined in Equations (1-12),
For thin-walled shells, generally the rotation component wy is
considerably smaller thanthe rotation components wgs w(p, and may be

disregarded. Thus, for thin shells, the non-linear strain Equations (1-5)

can be further simplified to give
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ce. 41y 2
€06~ %0017 2%

1 2
oo ecpcp+ Zwe

1 2 2
ecc=—2-(we +‘”cp ) (1-15)

€ecp = eecp- UJewcp
eBY= ecpC and eCVYz e:eC are assumed negligible compared to eecp’

Stress Resultant-Strain Relations: The stress resultants may be defined as

Ny = [ 0gac Mg = [ ogC ac
Ncp =J ccpd(; Mcp =J._ccpCd§ (1-16)
___J.Ee(aeﬂ)ecp cp) i IEe(cx,e+\:ecp cp) cac
TO 1 chevecp TB cpeVecp
{1-17)
J. E (c. +\)cpeae)T ac y =J. Ecp(“cpJ“ vcpec,e)'r cac
Tcp cpevecp T® 1- v{peve(p

where T is the temperature distribution in the { direction, and the integrals
are taken over the thickness of the shell (see Figures 5 and 6). In these
definitions, the coordinate ''(" is assumed negligible compared to 'r''. To
this order of approximation, the difference ibetween the inside and outside
dimensions of an element of the shell becomes negligible [124]. If these

assumptions were not made, then Necp’E Ncpe and Mecp # -M g+ since the radii

P
associated with the ® and 8 directions are generally, unequal (ry # r,).

Introducing the stress-strain relations for an orthotropic body in a

state of plane stress into Equatmns (1-16), (1-17), using Equations (1-13), and
26



Figure 5 Forces on Shell Element
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Figure 6 Moments On Shell Element
28



assuming that the reference surface is the centroidal surface of the shell,

we obtain:
N, = [€ae * Va6 1 -N
0w 0
0 11 960 L] P T

N¢= KZZ [EW + v(pe€eeo] - NT¢
(o]
N(p6= N6¢‘= K33 6,40:9
o]
(1-18)
Mg = -Dy; [kg * ¥gyk, 1 - Mg

M, = Dy, [k, + v 0 Kol - My,

M _,= -M,4

20 9(p= -2D

33 Kpe

where the extensional (Kl v KZZ)’ bending (D1 v DZZ)" and inQplane shear

(K33, D33) stiffnesses are ‘defined é,s

Egh E h
11 l-v(pevego 22 l-v(peve(p
Egh’ Eh’
D,, = D,, = 1-1
117 T2(T-v gvg,) 22 = T2(T-v ,6vg,) (1-19)
| - G b’
K33 = Gpot D33 —53

Additional relations for different wall cross-sections are presented in
Figure 7.

Equilibrium Equations: In Reference 100 the following nonlinear

stress equilibrium equations are obtained
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1 2 o %
. rlNe'e'l"i.-o_(Ncpero ),cp = Qerl sin®p = -rlro(fe"‘ fe)

_ _ %
(Ncpro)’cp+ rlNcpe,e - Ner1 cosyP- rchp— -rlro(fcp+fcp)

R _ %
(Qcpro)’cp'*' r109,6+ roNcp+ Ner1 sin®= —rlro(fc +£C) (1-20)
'rlMcpS,G - (Mcpro)’cp+ Mer}L cos®+ rlrchp= -rerme

-(Mcpero),cpf rlMe’e - Mq)er1 cos® + rlrer = arlrpmw

M M
N -N +_.._e_c£+__£e-=0
8™ b r, ry

where

1
fe = ;_Z'[Newcp— Ncpewe]

* 1 i
fcp "1 [anewcp Ncpwe]

% 1

£, = T ({rl[Ncpewe - Nef”cp]}fe + {r [N wg - Nmewm]},m) | (1-21)

u'
-;i+Fw

fo = Fa(l+€gg +€.. )+F
) 8 660 cpcpo ® 1 CCP_

v

'9
f =F (l+¢ + € )+ Fg—-F,.0
o (0} 660 cpcpo ero ¢ e

fo = Fo(l+ eeeo + ewo) - Pyt Fo¥g (1-22)

where Fi(i =6,¢, ) are the applied forces tangential and normal to the de-
formed shell surface, whereas fi(i= 8,9, () are the forces along the unde-
formed coordinate system (see Ref. 137). The first three of Equations (1-20)
are obtained by setting to zero the sum of the 8,® and { components of all

the forces acting on a shell element. The last three of Equations (1-20)

are obtained by setting to zero the sum of the moments about the ig, —itp’ and
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_i_C axis. Asaresultof the assumptionthat{ <<r, the sixth equilibrium equationcan-
notbe satisfied exceptfor the special case of a sphere. However, within the frame-
work of the present theory, this equation will notbe emibloyéd in the solution of shell

problems.

Boundary Conditions: As shown in Reference 100, for a unique
solution either displaceinents or corresponding stress resultants may be

specified on the boundary ¢ = constant.

u or T(pe
v or N
(4
* s (1-23)
w or J =73 -r. f
@ g
wg or M(p
The quantities T 9’ J':; , J‘P are referred to as the effective stress resultants
and are defined by:
Yoo
Tng = Nq09 - r_ sin ¢
J =@ + 2%° (1-24)
@ @ T,
b J_-N .o +N
= - w )
@ » 9oy o

Convenient Form of the Shell Equations: In this section, the stress-

resultant, strain relations and the stress-resultant equilibrium equations will be
combined to obtain differential equations suitable for the Runge-Kutta integration
procedure to be uséd in their solution [125;128] . DBe elifninating the strains
and curvatures in Equations (1-18), using Equations (1-13) through (1-15) and

the relation between the ela_stic congtants v9¢ EB =y qu , the following

@0

relations between the stress resultants and the displacements may be obtained,
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The final form of the differential equations necessary for the Runge -Kutts

‘integration procedure [128] may be divided into two groups. “The first

group of four differential equations is obtained by eliminatinng from the
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equilibrium equations, and by introducing the effective stress resultants

defined by Equations (1-24) and their derivatives with respect to ¢,

T
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o o
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The second group of four differential equations is obtained by combining

Equations (1-12e), (1-24a) and (1-25b, c, e).

u, > v, T M .
~2- g02e . 0 4 @0, _@0n0.,, , - (1-28)
1 o o 33 o 33 ¢
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In Equations (1-27) and (1-28) the stress resultants N the resultant

909'

moments MG’ M the rotation, w _, and the effective stress resultant,

®®’ ®

J¢ , may be eliminated by usihg. Equations (1-25a, d), (1-26), (1-24a, c) and

(1-12f), The equations for these variables may be rewritten as,

N
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‘Nrp“’e : | | | | | (1f29)

Eqﬁafio‘né,<(14-27;) t?hfough‘ (1-29) iépfesent a corﬁpiete for;nulaitior{x of
the nonlinear';;roblem fo;' a thin orthotropic shell, on the basis of the
Love-Reissner -Kempner theory. Analogous formulations may be obtained
by—empioying other shell'theories. The bagic differences b?twggn the
various formulations will be in the éoéfficie;lts of thé équations, and in the
number of differential equations. For example, in theories involving shear
deformation ten basic differential equations may be obtained [ 105].

For generﬁal doubly-cﬁrved ghells, the aboy’g e'qluga‘tion‘s may be
written with the angle ¢ as the independent variable, whereas, for cones
and cylinders they may be written more conveniently with the arc length
s (s = rld ¢) as the independent variable, : The st‘14"ess i‘.e".sultants and dis-
placements involved in these equations may be expanded in Fourier series
in the O direction, Thus, ’Equations (1-27) and (1-28) will constitute a
basic syétém of '8 fi;‘r'ét'-order ko:t:d’inaryi diffe'r‘e}'ﬂ':ial equé.fiérlé m the variable
¢ , and Equations (1-29) will constitute 6 algebraic equations. Notice,
that derivatives of the shell geometric parameters do not appéar in the coef-
ficients of these equations. Moreover, notice that the 8_.,‘u‘rgknoyvn}variables
. are the quantities which enter into the 'appz;ppriate.bougég,ryﬂgond:i‘tion:;s on
the edge ¢ = constant of a shell of revolution. . . . = .

Equa,tioné (1-27) through (1-29) will be solved by a forward pumerical
. integration procedure in conjunction with the direct stiffness matrix method

(see Chapter 3)., , The stress resultants Q  and Qe,, not involved in the

@

above formulation, may be obtained from Equations (1-24b) and (1-20e),
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which may be rewritten as
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'The simplicity of the baforegoing‘r formulation of the basic shell equations
resultsd in greater accuracy in the numerical solution. Notice that Equation
(1-30b)involves de_rivativés of ’sl'ie]i geometric pararﬁeters. However, the
computation of QO is a secondary operation in the solution of the problem.

" In solutions of nonlinear unsymmetric loading problems with finite differences,
this formulation has been found to yiéld more satisfactory results than one

involving a basic system of four second-order differential equations [22].
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As pieviously mentionéd, Equations (1-27) through (1-29) consti’;ﬁte
a complete formulation of the problem for a homogeneous orthotropic shell,
For eccéntrically reinforced shells, thisn formulat’i‘on must be réviséa. I‘f
We consider the reinforcement as llaeing smeared over its spacing length,
a revision would bg necessary in the Equations (1-18) to take into account
the geometricalrbrthotropy and reinforcement eccentricity. This fAevision
would affect only four of the Equations ( (1-28b,A d) and (1-29a, b) ) if an
appropriate shell reference surface is chosen, | -

The revised integrated Hooke's Laws ( Equations (1-18))are derived
for several cases of stiffening in Appendix A. Using these rev{sions, the
following equations analogous to Equations (1-28b, d) and (1-29a, b) are

obtained for shells with ririg -Stringer reinforcement:

Vig _ w12 <\ ' C22 L B
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where the Kij’ Cij gnd Dij stiffnesses are defined by Equations (A-8)

in Appendix A, Equations (1-31) have been derived on the basis of the
stresé resultant - strain relations (A-7) in Appendix A. The féllowing
more general form of Equafions (1-31), valid for multilayered shells with
general ring and stringer reinforcement, may be obt?,ined by employing the

stress resultant-strain relations .(A—9) in Appendix A,
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The above e;;uations may replace the corresponding ‘rel‘etiens in Equations
(1-28) and (1-29) which may then be combined with Eeuations (1-27) to form
the coxnniete set of .equations for the enalyeié of problems involving a broad
range of reinforced shells of revolution. In this formulation, the structure
«1s symmetrlc about the axis of revolutmn, and thus, ‘smearing for stringer
relnforcement is unavmdable unless the formulatmn is further complicated
by expanding the circumferential stlffness in a Fourier series, as shown in
Reference 9. Ring re1nforcement propertlés, however, need not nec-
essanly be smeared in such an analys1s (see Appendlx B)¢ Indeed, in
buckhng problems, smearmg of the ring or stringer reinforcing yields un-
satlsfactor'y results in cases where the half wavelength of the ax1a1 or the
circumferential buckle pattern is smaller than the spacing of the reinforce-
ment. The error resultmg from smea?rmg of the r1ng or stringer reinforcing
for the case wherein the reinforcemerit of cylmders is-spaced at exactly
one-half wavelength of the buckle pattern, is approximated in Reference [120].
In order to e11m1nate thxs dlfflcu,lty for ring remforcement discrete ring

equations are obtamed in Append1x B, and cast mto a form. su1ta.b1e for

L1



inclusion in the numerical procedure to be employed. These equations may then

be utilized in cases in which f.he smearing technique is not suitg.ble.

It should be noted that Equations (1-27) through (1-29) do not apply
at a closed apex of a shell, At the apex, the radius’bf revolution, T
vanishes, resuiting ina singularity in these equations, as discussed in
Reference 6 . This problem, however, may ’be circumvented as suggested
in References 8 and 20, The necessary differential equations and apex

boundary conditions are derived in Appendix C.
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CHAPTER 2
. FOURIER SERIES EXPANSIONS

Efficient techniques are not readily available for the numerical

solution of partial differential equations of the complexity of those formulated

in Chapter 1. chever,‘by expaqding“#he appligdrlogding and‘the shell functions

in Fourier series gxpapsions in #he gylindrical coordinate<, Q,fit is possible

to reducg_the set ofVpart%alf@ifferential‘Eqpationg (1-27, 28, 29) to sets of
ordinaryjd;fferential equations. The aptgal number of sets of qrdingry’
differeﬁtial equations will depend upon the type of load distribution considered,
and the degree of accuracy required. These sets of ordinary differential equations
may be solved by employing a standard numerical integration procedure such as.the

Runge-Kutta {125-128).

It is assumed that the applied surface loads can be satisfactorily

represented by the terms for n= 0, 1,,..N of their Fourier series expansion

i 1 . 1t kA
Fe = Z (Fe(n) sin 6 + FB (n) cos nb)

n=0
F =) (F ™ cosne +5 '
© & ® cos n © sin nb)
g () 1 (n)
Fy =nZ:JO (F cos nb + Fy sin n6) (2-1)
N‘ !( 11
mg = Zo (me n) cos nb+ mg (n) sin nb)
n= .

N ! [
mqo = nz_ O(mm(n) sin n® + m gp(n) cos nb)

N
T= Z (T (n) cos n6 + T ' (B) sin n@)

n= 0
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Moreover, it is assumed that the displacement components, the rotations,
and the stress resultants can also be represented satisfactorily with the

terms for n= 0, 1, ...N of their Fourier series expansion.

u = g (U'(n) sin no + U”(n) cos nb)
n=0
N
v o= (V'(n) cos nGA-l-V“(n) sin nf)
n=(

N
W o= Z (W'(n) cos no + Wi '(n) sin nb)
n=0
N
wg = nZ’.o(ﬂie(n) cos nd + Qé'(n), sin nd)

w(p: n%:o(fz:p(n) sin nb +Qi¢' (n)‘ cos nd)

(Ne' (n) cos nb + Né' (n) sin no)

N = g (N('p(n) cos nB +. N(,p' (n) sin nByr)

\ '(2_'2')

N =§ (N’(n) sin no + N'L'(n) coé né)’
o™ L (o Pe »
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M, = (Mte(n)cos no + M'e' (n) 8in no)

) N ’l 1 '
M =n;o (M(p(n) cos 00 + M_ () gin o)

) N 1 " "1 (n)
M 0= Z (Mqo'(en), sin O» + M(pe(n) cos no)

Q —Ii @™ ginne + gL' (B) 0
e-n-o o ) g . cos nd)

N

Q§0 = IZi.()(Q;p(n) cos no + Q;a' (n) sin no)
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Nopp =), (N (n) cos nf + N' '(p) sin no)

T6 = L To
Ny = (N,;:,((pn) cos nd + N,}fp’“) sin 1)

n=0

Mg = EO(M,}(GII) cos 10 + M. {®)  sin ne)

TO
(2-2)
N ' (n) 11(n) .
MT(p = (MT¢ cos nb + MT(p sin no)
n= 0
Tcpe = g ('I('p'e(n) sin no + T:p'e(n) cos nb)
n=0

N 1 1
Jqﬂ= ;’._._. . (J(p(n) cos nO + Jqo' (n) sin n9) |

Linear Stress Analysis: In problems involving linear stress analysis,
or stability or vibrations ofshells subjected to axisymmetric. préstress loads,
the substitution of the Fourier series expansions (2-1, 2) into the sets of
partial differential equations (1-27, 28, 29) results in uncoupled sets of
ordinary differential equations. These sets may be solved separately in
establishing the amplitudes of the Fourier series expansions, which may
then be employed in Equations (2-2) to yield the stress resultants and
displacements. For instance, in problems of linear stress ané.lysis of
homogeneous orthotropic shells, in which the applied surface loads can
be satisfactorily represented solely by the terms of the Fourier series
expansion (2-1) having primed amplitudes, Equations (1-27) through (1-29),

yield (N+1) sets, of the following relations -- one set for each value of n(n=0, 1. .N):
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Le]
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(2-3)
N is determined by the accuracy re_quirernents of the load representation
(2-1) and of the solution. A similar set of equations may be obtained

for surface loads described satiéfactorily by the terms of their Fourier
series expansion (2-1) having double primed amplitudes, by substituting
the second portion of Equations (2-2), into (1-27) through (1-29), or by

substituting -n for n in Equations (2~-3).

If a2 reinforced or a laminate;i éhell ié to be analyzed, the Fourier
series expansions (2-1, 2) must be substituted into Equations (1-31)or (1-32)
instead of into the corresponding Equations (1-28) through (1-29).

It should be noted, that in all the above mentioned cases, the axi~

symmetric torsional case (n=0) is uncoupled from the axisymmetric non=

torsional case.
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Nonlinear Stress Analysis: Nonlinear stress analysis problems for

shells may be classified in two major categories, characterized by
axisymmetric and by unsymmetric 1oadings. The problem of stress analys
of an orthotropic homogeneous shell of revolution subjected to axisymmetri
loading is described‘by the following equations obtained by substituting the
Fourier series expansions (2-1, 2) with n=0 into the set of partial differenti

equations (1-27) through (1-29).
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where

(0)
(0 = {0 (14 v{Oeos g - W(o)sinAQ_l_ (0500, Vo w®
%o <P §0 r1 f1
(0)

+2 éO)Q(O)HF(O) Q +F§(o) (0)
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v wl®

f(20) ) F(;}0) (14 V(O)\l;osqgo- W %sing | r’;p T Q(;)O)ﬂé)O)
+ 2000 ) -Fgo)néoi
(0) Oging Vg w0
fg(O) - Fg(o) (1+ v cosfo— W 'sing rip er +29<;;0)Q(p(n)
+5a{%0) - g9 n¢‘°) + 70 gf0) (2-5)

The nature of the nonlinear problem is evident from Equations (2-4) and
(2-5). For example in a linear analysis, if solutions were obtained for a
) load described by Fe(o) , and for a load described by Fg(o) , the sum of
these solutions wuld represent the solution under a load described by
(Fe(o) + Fg(o) ). In a nonlinear analysis, the sum of the two solutions will
not represent the solution for a load described by (Fe(o) + Fg(o)).

The presence of the ¢ derivatives in the right-hand side of Equations
(2-5) does not result in additional complications. These derivatives could
be eliminated by using Equations (2-4e, f).

If reinforcéd or laminated shells are to be analyzed, the Fourier
series expansion (2-1, 2), with n=0, must be substituted into Equations (1-31)
or (1-32) instead of into the corresponding Equations (1-28) through (1-29).

The formulation and solution of the nonlinear problem under unsymmetric
loading is more complex. In all prior formulations of this problem [ 20, 22,
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103, 104], the applied 1oading could be described by a Fourier half-
series. Thus, a line of symmetry was assumed in ti‘xe 1oéding distribution.
If this assumption is not made, the full series must be employed. In this
case, substitution of Equations (2-1) and (2-2) into Equations (1-27) through

(1-29) will yield linear terms of the following form

( i A' () cosnéo + Oi A'(rzls)m n9> . (2-6a)
n=0 .

n=1

and nonlinear terms of the following form

(00 (2)c0s19+ ; '(“s1n19>
=0 1

o0

L

e ! . ]
(Z B (Neosro+ ) B (Flsinre) =

r=0 r=1

0
Z ' (“B' (r)cosz Ocosrh +

«© 1
Z (I)B" (r)cosle sinr6
0 ? r=

0

© x 1 1 "
Z Z u)B (r)smlecos r9 + Z Z (l)B (r) sinf 6 sinr®
= = 1 1 r= 1

(2-6b)

where A and B denote the amplitudes of the Fourier series expansion. In
order to eliminate the coordinate 6 from the equations containing terms of

- the form given by (2. 6b), the double series product terms must be con-
verted to the form (2-6a). This may be accomplished by using trigonometric

angle difference formulae

: 1 1 | ® « 1 1 ’ .
‘i oi A(g)B ® ¢os § 6 cosrB =Z Z A (‘”B (r) [cos(£-1)6 + cos (2+r)e]
£=0 =0 ‘ 2=0 r=90 ' '

ERICIION ‘i RICKISH § 140 @, 4" @) g ()

n=1
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e

5 (A‘<k’B'<n+k>+A'<n+k>B'<k) Z ( '(k)B: (n-k), ' (n-K)p! (k)) cos 06
k=1 K=

(2-72)

Similarly, the last term of the right hand side of Equation (2. 6b) can be con-
verted to a cosine series, whereas, the other terms of Equation (2. 6b) can
be converted to a sine series. | |

The nonlinear problem involving a homogeneous, orthotropic shell
of revolution under unsymmetric loading can be described by substituting
the complete Fourier series expansion (2-1, 2) into Equations (1-27) to (1-29).

Then each of those could be reduced to the form

[ coefficient #1] cos n® + [cagfficient #2] sin nd = 0 (2-7b)
The requirement that the coefficients of the cos n® and sin n® terms vanish

simultaneously, yields two sets of equations, The first set is:

7' (®) ! (n) !(n)_.
§09 ¢ - 27 (n) cos @ n_li_ _n_I\./_[_Q___.Z.S:n__w_ M e(n) &;’_s_@ ;1.._ -.?.i;fl‘é
1 (p 0 ro ro (p o 1 (o}
'(n) _4An) sing _ sing (n) (n)
fe mqp r, r, (NGQ¢) - (N @6 2g)
N'(n) @) o) T'(rel) @) - f¥(@)
[0 %) = . N'(®) cos@, Nn) cosg @8 _ M’ n) {si + 1 + @
ry Q@ r, 0 r, n r, o Xy rg r.r, r
_{n)
4
% (n) {n) (n) '
7 t(n
Sgr,_(g - J’*(n) cosp _ N’E()n) sing _ Ncp + nZ Mg 2 M (n) cosg ’(n)+ an
1 4 o o Ty r r To
o
1
+—1;; n (N sze)(n’ - n (Nen(p)‘n’]- (2-8)
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o 33
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A similar second set of equations can bé obtained from the vanishing of the

Q'(r(;) =

coefficients of the sin n@ terms in the aforementioned equations of tﬁe -fbrm
(2-7b). This set of equations \inv.olves the (" ) harmonics. It can also be
obtained by setting'n to -n in the set of Equétions (2-;-8); Notice that the
harmonic amplitudes in each set are coupled. Morecver as can be seen from
Equations (2-9a, b) both sets of equétiéné are coupled'through the non-

linear terms. Thus Equations (2-8) cannot be solved separately for each
value of n, as in the linear case. The nonlinear terms of Equation (2~8) are:

L (0).. ! @ [ 1<) (ntk)_' k) ot (k)
(N @‘n’=é; Ny oy ®rd § (Ne( g P11y, K] gt )

n-1 y
. (k)" (m-k), MK ! (), 3 (0) M (m),1 & I (k) ()
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MK). -k "n-k 1" k)
5 Q(p( I, = >+Q¢(n )

"(ntk) (kN 1 =
- N ,
@ 0 ))+ 4"k::[

1 1 0 1 1 1 1
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.l ki— N gy 0 g (24D g " (0D 0 (k))
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where a = g forn =9 , and a = 1forn=1., The nonlinear terms for the
second set of equations (obtained by a setting -n for n and the double primes

for primes in Equations_ (2-8) ) are given by
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where a=0 for n=0, anda =1 for n 21. It is evident, that by assuming that a
line of symmetry exists in the loading (as done in earlier references), only

the symmetric or the antisymmetric half of the Fourier series expansion (2-1, 2)
can be used, and consequently only one of the two aforementioned sets of
equations is required. If we choose to use Equations (2-8) and (2-9a), for

example, the latter are simplified further since all the double primed terms
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become zero. As noted previously, revised equations can be formulated

for the reinforced or laminated cases.

As will be divs'c‘usse‘;d‘ in Cl&apter 3, Equations ‘(’2-3)' or (244). and (2-8)
will be employed to establish the stiffness matrices and thg load matrices
of the varioxMJ.s“ segments of the shell. The nume‘rical “sdlution’of .the equations
for the,iinear analysis (2-3) may be attained by a techniqué described in
Chapter 3.“ To apply this technique to the noﬂ—linear ééuatipns they must first
be 1ineé,rized by the use of a suitable method. For instance in Reference 20,
the harmonic amplitﬁdes of the éhell functions aré estéblishgd throughout the
shell by first solving the unsymmetric linear problem. The results may be
employed in Equations (2-9a, b) ‘to‘ establish a ﬁﬁmériéﬁl valué for the nonlinear
terms. In general, the linear analysis may yield a number of zero harmonic
amplitudes. For instance, the linear(‘analyskis will yield nonzero harmonic
amplitudes only for the values of n corresponding to a non-zero load in
Equations (2-1). Thus, if for examplé, the load is descrif)ed by’ the n=1, 2

(2)
8

harmonics, the linear analysis will yield only the Q(el) and 0p°) harmonics

of Wg. ‘H‘o‘wev’er, to establish the ‘values of the non-rlineé,r'terms in Equations
(2-9a, b) additional harmqnics of wy are required, as for instance Qéo) and
an); \%fhere n=2, 3‘. . P, P béi;lg the harmonic at tWhi>ch the il;lfinite series

is truncated. To obtain the values of the non-linear terms, all the harmonics
of the functions which are not established by the preceding cycle of the
vanaivlysis, are set to zero. The numerical values of the non-zero non-linear
terms are computed, and subsequently employed in Equations (2-4) or (2-8)

~ resulting in an uncc-)upled system of equations which may be solved to yield
another set of values for the harmonic amplitudes. It should be noted, that
some of the equations for the harmonic amplitudes (2—4) or (2-8) may not
contain actual load terms, but rather the numerically represented non-linear

65



termas, Subseciuently, the ivalues' of the harmonic amplitudes are used to
compute a new set of non-lmear terms, and the process contlnues until the
harmomc amphtudes are estabhshed to the desired accuracy. Moreover,
it should be noted that dependmg upon the number of non-zero nonlinear
cou pling terms estabhshed m each cycle of the analys1s, the number of
equations to be solved may vary per cycle. Although the aforementioned
technique is the most straightforward, 1t may”not converge, however, for

certain cases [22 131]

In another method [9 14 15 99] the harmomc amplitudes are also
established from the solut;on o:f the linear part of Equations (2-4) or (2-8).
Instead of utilizing the numemcal ualue of both terms in the non-linear products
of Equations (2-'9'3. b) Onlylon"e terrn is. substituted numerically., Substitution
of the lmeanzed Equatxons (2 9a, b) mto Equatmns (2-4) or (2-8), yields
sets of coupled lmear equations whxch may be solved by any method that
does not result in extremely large matnces as for example, by a numerical
1ntegrat1on method analogous to that pre sented in Reference 107. The fore-
gomg methods are adequate only for problerns in wh1ch the effect of non-linear
terms is small [14 131] although in Reference 20, it1s indicated that these
methods may be employed in the solutmn of problems involving relatively

large deflections.

ln the solution Of' nonél'tnear prohlems the load should be applied in
increments. When the solution converges for one load level, the load is
increased by another 1ncrement and the process continues until the components
of stress and d1sp1acement of the shell are estabhshed for any value of the load
desired. If the load is cont:nually mcreased, it will reach a value for which
the vsolutmn g:hverges; Th1s md;.cates that for thrs value of the load, the corre-
sponding deformation patte rn of the_ sﬂhell has reached a level of instability.
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I A R A A S S A PRI

For ideally "perfect" shells having 1dent1ca,1 prebuckling and buckling defor-
mation patterns, the classical bucklmgloa,dls the value of the ‘loaf,d prior

to that for which the solution diverges. However, ideally, !'perfect’’ shells,
whose buckling deformation pattern differs from théiz prebuckling deforma-
tion pattern may a?ain one or more sfga@es, qf; instability for sﬁma‘.‘lllerxti'ya:lges
of the loading, W‘hich’ will not be uo}pt‘al.i_n,evdg_ byx,t_lllg:Agn%];ysi:sf,gqa’cl}inedﬁa‘bpyl‘e?.
Other methods for establishing all the states of instability are presented

in Chapter 4.

L N N U R 54 RIS

; It should be indicated, thatl the afgre,r{ne#t%onqd solution of the non-
linear equations may not converge for values of ‘thg load less than the maxi-
mum value for which the prebutkling de_fpgm,ationvpatte‘l.‘»‘r}?of“ the shell is
stable [22, 41, 131]. Thus, the aforementioned solution may yield conserva-
tive values of the load for which the prebuckling defor;;r;aftiontpattern becomes

unstable.

A method of proven convergence for the solution of nonlinear equa-
tions is Newton's method [17,18], wherein each harmonic amplitade is ex-
pressed asithe sum of two parts, :an’assumed solution, -and a ‘correction to

the assumed solutions . N T T P oo

Y 7Y +AY (2-10)

Equati'bn'(z-l(‘)) may be substituted into either Equations (2—4, 5) ot Equations
(2-8, 9a). The')'res‘ultiz'lg equatmns will contain té rms of the tty-;Sé“ (.Ym)(AY-)

as well as (AY)Z.;_" In these e‘qué.twio‘n‘éitythe Yms ‘are nurnemcally know:n, from
a previous iteration. In a';bucklir'ig ana;lysi;’the hoiﬂine)axi; (AY)2 terms may

. ‘be negleéfed. For a poétjl)xiékling ‘aLﬁ'alyysi's,"r hd‘ﬁvef}er,' thé'é:e tériﬁs é’hoilld be
retained [129, 130]. Re s{:riéting ourselves 16 a nonlinear érﬁaiysis for the
prebuckling statéh, the linear dYtJCOrr'ectian'equa'fi'ons W111 be imc’buplled or
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coﬁpled depending upon whether axisymmetric (Equations (2-4) and (2-5)),

or unsymmetric (Equations 2-8) and (2-9)) loading is considered. The
procedure is as follows: [First, the problem is solved for a small value

of the load, where the linear theory is accurate. This may be accomplished
by using the aforementioned AY equations, but setting all the Ym terms to
zero. The solutions for AY, and Ym= 0, are substituted into Equation (2-10).

The values of Y

1 thus obtained are substituted for the Ym- (which in the

previousstepwere set to zero) in the aforementioned AY equations, pro-
ducing a set of linear, coupled (if the load is unsymmetric) equations. These
equations are now solved for new AYs, and these, with the current Y S

are substituted in Equations (2-10) to produce a new set of Ym+ 18+ This
procedure continues until the harmonic amplitudes are established to the
desired accuracy. The load on the shell is now increased by an increment
and the whole procedure is repeated. The solution obtained for the previous
value of the load, or a set of harmonic amplitude s obtained by extrapolation
can be used as a starting point. Non convergence of ﬂ}e solution indicates
that the last load increment has increased the value of the total load above
the’li'rn‘it point (the point of zero slope of the load-disflacement curve), The
solution may be repeated using a snilall(ell" load incremel;lt, and x}alues of the
total ioad as close to the limit point a.sv desir;ad may be obtained. The last
value of the 1oa.vd for which the solution converges is takgn as the maximum
vaiue of the load for which the pvrebucklying defofmation pattern of the shell

is stable.

Reference 22 essentially utilizés the foregoing technique with one
important simplification. The nonlinear terms which induce coupling of the
harmonics are disregarded. This is necessary inasmuch as the finite dif-
ference technique employed in Reference 22 results in large matrix equations. Con-

sequently, their solution becomes extremely time-consuming if the harmonics
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are coupled. .The penalty for this simplification.is a slower convergence,
and for more complex problems, possible divergence at loads less than the
maximum value of the load for which the prebuckling deformation pattern
of the shell is stable. In a numerical integration procedure cf the tyve
presented in Reference 107, the resulting matrices can be maintained at a

reasonable size, and consequently it is not essential to make simplif cations,

Thus, by employing any of the aforementioned methods, the non-
linear problem simplifies to that of successively solving linear equations,
which in the most complex case (unsymmetric loads) involves harmoenic
coupling. The procedure for the solution of these types of equations is

presented in Chapter 3.

i

‘ For a postbuckling anarlysi‘s, as noted ea;'lier, the nonlinear terrﬁs in
A'S% must be retained 1n order to cross bifurcation poihte [129,130]. In addi-
tion, a method of IgroVen convergence, such as the Newton ite ilation method
fnust be used in the sclutioxi. Some difficulties do e:‘;ist,.howe{rer, in utilizing
the eque.ﬁon‘s for post‘b’t.J,ckling inve;figations. ’I"hle most important difficulty
is exemplified by the case of a;‘shell under exisymmetric loeding only, wherein
a pcstﬁﬁckled configu;ration inay exis;: ﬁrhich 1s descfibed Ey harmonic ampli-
tu‘desc.the'r ‘than;' the ze:rofh. I;n this ceee, a small "dieturISance load"
involving several harmonic amplitudes must be added to allow the shell to
deform- into the propet ccnfiguré.tion in the postbuckling range. This dis-
turbance load must be small in magnitude, as compared to the primary
axisymmetric:load, but it must also be described by a sufficient number of
harmonics so that an adequate description of the postbuckled configuration

may bé obtained.’
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CHAPTER 3

SOLUTION FOR STATIC RESPONSE

Shell structures found in spacecraft, aircraft engihes, or submersibles,
are usually comprised of several, iﬁté rconnected, singly and doubly curved
shells. For a given shell geometry, the accuracy of the results obtained
on the basis of the numerical integratfion method is dependent upon the length
of the shell along the meridian. If the shell is long, the ,effect of the stress
resultants and displacements at the one edge will have a negligible effe‘ct
upon the stress resultants and displacen:ients on the other edge. Thj.s couid
result in a number of terms iﬁ the stiffness matrices which are inaccurate,
inasmuch as they constitute small differences of large number,s.‘ This
difficulty may be circumvented by subdividing the shell into segments by
introducing fictitious boundaries, Such/ an approach is amenable to the use
of local ;oordinate systems, and includes the unique self-checking féatures
discuss‘ed‘ in the Introduction. Equations for establishing the appropriate
lengths of segments for shells of various geometries are presented in
Reference 108, for linear and nonlinear analyses.

In this chapter, we shall first obtain all the matrices pertaining to
single shell segments. Then we shall proceed to couple these matrices
together and apply the boundary conditions, in order to obtain an overall B
matrix equation describing the equilibrum of the total structure. The
solution of this equation yields the stress resultants and disPIac'emexifts,

at the joints. These stress resultants and displacements are used in
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establishing the distribution of the stress resultants and displacements

throughout all the shell segments,

bt

Coordinate Tx;ansformation'Métrices.: A tyfpical she‘lly segment is présented

in F‘igureA 8. Va}rious possible geometriés of s’héll S‘egmenfs are given in

Figurés 9 tiai*ough 13 S’ince fhe’ various shell segments may‘be’describe‘d

b}zr“’diffevrent qoordinate svyst‘ei'ns and different georhetric variableé, ‘the

stress resultanfs and displacements referred to the coo;dinafes of a seg-

ment must be transforﬁed to the reference global coordinates.  The edge

forcés on the tYpical shell éeément iﬁ this global Z,R,0 system are shown

in Figure 14, The coniponénts of stress resultants and moments referred

to é; local coordiﬁate system are denoted by Greek éubscfipts (T__, J yM ),
' | | 0o’ Vg Yo' Mg

whereas the components of stress rsultants referred to the global coordinate

system are denoted by Latin subscripts (FT, F FR)' The global

Z’

moment is denoted by M. The appropriai:e coordinate transformation

matrices then are:

Fo -1 0 o0 0 Tye
F ; 0 sing. cosg. 0 N
: zZ Re!? .
F@®)} = [IFT] {16)} (G) = P Ye @e
FR 0 -cos@, s;ingoi 0 J.(p
M | 0o 0 o0 +1{{l™Mm
L - @

T1
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The radii of curvature are given as:
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In the ranges of ¢

0° < ¢ < 10°

170° < ¢ < 190°

350° < ¢ < 360°
spherical, toroidal or
elliptical segments can
be used with sufficient
accuracy.

one segment

T

may be more than_|

P 03

may be more than
one segment

?

Note:

ngh shape 10°< ¢ < 170°

Specify: Z versus ro starting with

Z =0 at Cl’ and going to C2.

Z Vs ro input table should overlap

total range of ¢ input for all segments.

Figure

Note:

11l

"A" shape 190° < ¢ <350°

Specify: Z versus T, starting with

Z =0 at Cl’ and going to 02.

Z vs ry input table should overlap

total range of ¢ input for all segments.

General Geometry
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Standard Cone

-4¢ J
I
>S5 out ; Plate
o ;—T Specify ¢ = 0

The radius of curvature is given as:

r = 8 cos
o ¢

Figure 13 Cone
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Figure 14 Forces on Typical Shell Segment
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(TG} = [IFT] {£6))

and

{ai)} ={IDT] {6(i)}

{ai)} =[IDTT {8(j)}

where [IFT], [JFT], [IDT], [JDT] denote the I Force Transformation,

+1

()=}

) (5)=|

0 0

-gin ¢, ~cos®,
@, ¢,

e . -sin @,
os‘P1 ¢1

0 0 -

0

(i)

the J Force zransfbrma.tion, the 1 _Qisplacement Transformation, and

(3-2)

(3-3)

(3-4)

the J Displacement Transformation matrices, respectively, The subscripts

i and j refer to the meridional coordinates of the beginning and end of the
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segment, respectively. These transformation relations are valid for the

functlons F(G ,gok) and A(G (pk) as well as, for the amplitudes of harmonics,
(n) |

3
[

(<pk) and 8%, k=1, 5).
" In the .sequel, the pertinent mat%ixquuétions will be written for one
har;crionic a;t'a time; ‘t’h\is will not resuit m any loss of generélitsr of the ,
solu%tion to bedls ;ussed. However, time Harménics are coupled for non-
linear éroﬁléins having an unsymmetric load. Thus, it would not be possi-
ble to write j:be matr;'tx equations for only one harmonic., Consequently, the
size of the iné,trices would be multipliied 1"3y N,_'._‘v the number of harmonics
to be re.té,ihed Whel;.l. fhév Fou‘rier‘ serie'é eXI;ansions are trunvc\ated. XHAe,nce,
for a nonli;xéar problem with unsyrrimetric; load, if N harﬁlonics are re-
tained in tlvle‘%Founer expansions,a typ1cal transformatlon matrix may be

denoted by [IFTN], and assumes the form

[IFT] _ 0 =-0-=--ecs 0
0 \\ |
. I N |
[IFTN] ' = ’ [IFT] 0
ANx4N | SN o o
. O 0 -=0[IFT] (3-5)

\j

where "INV qf the 4x4 [IFT] matrices are located on the diagonal. Notice,
that for nonlinear problems involving unsymmetric loads, the other matrices
such as the stiffness matrix, may not be block diagonal matrices. Such

special may:trices,wyiyl,_l, be de,velqpﬂ’edvseparately as the need arises.

Segment Stiffness Matrices:  The suitable differential equations for each

specific shell segment are solved for different sets of initial conditions by
the FRu‘nge-"Kutta forward in{:egi'ationi method, Any satisfactoiy Ruhgé-Kutta
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formula may be used [ i25] - [127] . The one employed in this investigation

is [128];
At
Y1 = Y,rn +‘ > Ym
. At : o :
et 2 (3-6)
Y3 = Ym + At Y2
Y =Y +ét——(;( +2§z+z§z+§r)
m+l m 6 m 1 2 3
These relations may be employed to establish the value Ym+1 of a

function at point (m+1) if the value Ym of the function and its derivative

1

YIn with respect to the integration variable, are known at point m, The

symbols used in the above relations are defined as:

At = the integration interval from m to (m#+1l),

Ym =the value of the function at point m obtained by
' numerical integration,

Y T the value of the function at point (m+’1) obtained by
m numerical integration,

Y., Y_ = the first and second estimate ;'espectively, of the
values of the function at the mid-point between
points m and (m+1).

Y 3= the first estimate of the value of the function at point
(m+1) . ’

(' ) = derivative of the function with respect to the integration
variable,
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The Runge-Kutta integration method is employed in establishing the
values of the functions at the jth edge of a segment from the assumed values
of the functions at the ith edge of the segment. A number of poihts are’
automatically chos en along the meridian of the shell segment,
i, it1, it2... m... j-2, j-1, j. The spacing of the ?oints is denoted
by At, and may vary from poiht to point. The derivativés of the functions
at the ith‘ boundary are established initially by Equations (1-24) through
(1-26).., The values of the functions and theirAde'rivafives at the ith bound-
ary are then employed in establishing the value of the functions at point
(i+1) . The process is repeated until the values of the functions at the jt
edge are established

The pi'ocess for esta.blishing the vélues of the functions at point m+1
from those at point m is as follows. The values of Ym (stress resultants
and displacements) are employed in Equations (1-24) through (1-26) to’ es-
tablish the derivatives {(m . The Avalues of Ym and ‘.Ym are employed

to compute Y These are the values of the predicted stress resultants

1 L ]
and displacements at the point midvsfay between m and m+l. Subse-
quently, they are employed in Equations (1-24) through (1-26) to establish

.
the derivatives Y1 . The values of Y2 are then computed from Equation

(3-6b) . The values of Yz represent a corrected estimate of values of

the stress resultants and displacements at the point midway between
m and m+l. These values are then used in Equations (1-24) through

®
{1-26) to establish the derivatives Y, :Subsequently, the values of Y

2

o
are computed from Equation (3-6c) and employed in computing the values of Y.

&
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The values Y 5 Tepres ent the first estimate of the values of the predicted
stress resultants and displacements at the point (m+1). A corrected esti-

- mate Y

1 of these functions is then computed using Equation (3-6d).

Subsequenﬂy, the values of Y3 and Ym +1 are compared, and if they

differ by less than a set tolerance, d the process is continued to es-

1 ?
tablish the values of the functions at a point (m+2), located at an interval

2At from point (m). If the values of Y, and Ym differ by more

3 +1

than the set tolerance, d1 , the current At is halved, and the process is

repeated until the values of the functions Y_ and Ym+1 differ by less

3
than the 1{:olerance‘ db1 . Using the same interval At, employed in the

previous step, the process is continued to establish the values of the

fu_nctions at point (m+2) . Thus, the interval At may vary from point to

point, This procedure is referred to as automatic step control, and provides fo“'
uniform accuracy in the solution of the differential equations,

As indicated previously, we will start by assuming the values of the.
eight shell functions (stress resultants and displacements) at the 'ith
boundary df each éegment, and we shall compute the corresponding values
of the eight shell functions at the jth boundary. To isolate the influence
of each of the eight functions we Wwill set one function to unity and the
others to zero. The process is outlined schematically in Fig, 15, In
columns 1 throug_h 4, one of the displacements at the ith edge is succes-
sively set to unity, ;z}hile the remaining displacements and the stress re-
sultants are set to zero., The corresponding values of the harmonics
=)

(j) of the stress resultants at the jth edge are represented by the

. . ny )
matrix Xl » whereas the values of the harmonics 6( ),'(j) of the displacements
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Figure 15 Calculations for Influence Coefficient and Load Coefficient Matrices
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are represented by the matrix yl' In columns 5 through 8, one of the
stress resultants at the ith edge is successively set to unity, while the
remaining stress resultants and all the displacements are set to zero.

i

The corresponding values of the harmonics f(n)(j) of the stress resultaé:lts

at the jth edge are represented by the matrix Xz, whereas the valués ‘of the
harmonics § = () .c'of the displécements are represented by the matrix ;92.
In columns 9 to 18, the stress resultants and displacementé. at the ith edge
are all set to zero. The values of the harmonics f(n)(j) of the stress re-
sultants at the jth edge due to the external distributed loads acting along
the segment of the shell are represented by the .x3 matrix, whereas the
values of the harmonics 5(n)(j)of the displacements are represented by the
matrix y3. Notice, that as many loading conditions as desired can be
considered, In Fig., 15, ten loading columns are shown, The matrices
‘xl , .xz s .x3 R ‘9 , ZI , ZJ3 are referred to as the influence coefficient
matrices. Each of the eight different edge conditions, and the ten load-
ing conditions produce a column in the appropriate influence coefficient
matrices.

Fig, 15 is applicable to a single harmonic of a linear problem or to
a nonlinear problem with an axisymmetric load [107]. The nonlinear
problem assocjated with unsymmetric loading is more compiex. Fig,
16 represents a schematic diagram for establishing the influence coef-
ficient matrices for nonlinear problems entailing, for example, the coupl-
ing of harmonics n and n'. The initial matrices for the values of the func-

tions at edge i (the initial conditions) and the influence coefficient matrices
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are now 16 x 16 matrices. In Fig. 16, the star matrices denote the éffects of

harmonic coupling. If there were no coupling, these matrices would be null m'a',.t'x':ic
The differential equations for the nonlinear problem may be linearized’

by the Newtonian method., (As discussed in Chapter 2, the equations in

AY are 1ineariged by dropping the nonlinear terms in AY , and by using

the previous values of Y in the product terms (Y) ( AY)); Thus, sp'per-

position is possible for both the linear and the nonlinear problem. Con-

sequently, the influence coefficients may be employed to yield the stress

resultants and the displacements at the jth edge in terms of the actual stress

resultants and displacements at the ith edge, Using Equa.tion’s (3-1), to

(3<4) , the stress resultants and displacements may be expressed directly

in global coordinates as

{F()} =[IFT] {£(j)} = [IFT] ["‘1 :x23x3] sl (3-7)
f@) ‘
5
{2y} =13DT] {8()} = [IDT] [Y: ¥ 93‘ 5(1) (3-8)
- f (i)
4

- where {£} is a scaling factor for the load. If the 1oading_éases employed
in establishing ,X3 and &3 are the actﬁal loadings considered, then the
loading vector {£} is a unit vector. Solving Equation (3-8) for vector
{f@)}, and emploﬁng Equations (3-3) and (3-1) to convert {6(i)} and {f(i)}

into global coordinates, we obtain

(FE)} = [IFT] [&2]‘1([JDT]T {2G)} - [?/1] [iDT]T{A(i)} - [‘93] {2} ) (3-9)
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Using Equations (3-1) and (3-3) to convert the vectors {6(i)} and {£(j)} in
. Equation (3-7) into global coordinates, and subst.ituting in the resulting

equation, the values of {F(i)} from Equations (3-9), we get

(F(j)} = [IFT] [\cl] [IDT{AD} + [TFT] [Xz] [Z/z]'l([JDT]T {&G)} - [%][IDT]T{A(i)}

—'.[313}.«{1} + [JFPT] [.X3] {2} (3-10) -

Equations (3-9) and (3-10) may be combined in the form

(F} = [x] (&) + (L}

where, referring to Equations (3-9) and (3-10), we may write the stiffness
and load matrices in a combined form:

B B
k(ii) ¢ k (ij) . L (i)
[k: LIEfe....leene

kG kG L G)

IFT, O 0 I4 . 0 14 -0 .0 I4 . 0 0 IDT™ 7 0 0
l.oo:u.to too:oolo:tt. b..o:--nl:lo ~.oco:‘oo.T:00.- '00-0.‘10..:-.
-\IFT ° » 4 . ® el . -

: A TEPRECAEY I B VA et Y R Fem e
| _ _ . . c:nn o.on: . .t.ll » ‘cuo.o.oc.ocoo
0 .0 .1 0. 0 I 0 0 I
. P P
- = - % P

Equation (3-11) may be verified by carrying out the matrix multiplication
and comparing the resulting matrix with Equations (3-9) and (3-10)., As

evident from Equation (3-11), in order to compute the stiffness matrix [k]
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and the load matrix [L], it is necessary to invert oniy the ZJZ matrix,
(ZJZ is a 4x4 matrix in uncoupled cases, 4N x 4N in the unsymmetrically
loaded nonlinear case.)

In other numerical integration ’methods; [97,98] the influence
coefficient matrices ‘Xi and ul are used directly instead of calculating
the stiffness matrices of the shell segment. Theré are, however, many
significant advantages in employing the direct stiffness technique,

The procedure, employed in this investigation forthe solution of
the boundary value problem, subseqo,ent to the formulation of the stiffness
matrices of the shell segments, is exactly that employed in the finite ele-
ment techniques. Thus, all the matrix manipulation methods developed
for finite element solutions may be utilized in the present method, as for
example, those for large scale matrix inversion, using packing techniques,
or taking advantage of banding, etc. Moreover, the direct stiffness method
can be applied without modification to arbitrarily branched shells, as well

as to shells with discontinuos ‘change's' in meridian slope. Finally, the

other techmques [97, 98] are more efficiently ut111zed with the use of
Gaussian elimination procedures, such as Potters'[ 4] procedure These
methods however, may be prone occasmnally to error accumulation in the
calculation sequence [ 132], whereas the Cholesk1 method and the transfer

" matrix method utilized herein, tend to involve negligible error accumulatior
Therefore, many finite differenoe schemes, utilizing some form of the

Gaussian elimination technique require double precision arithmetic.
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Properties of the Stiffness Matrix Ikl In the solution of shell problems,

for self-checking of the arithmetic, it is convenient to utilize the fully

~
symmetric matrix [k], defined by

~ “2rr (1) § —
[k]§ ODOOUODQO\:..OCOOQI [k] ‘ (3-12)
N
B Eano(j)\

and therefore; .

N\ \211':11' (1):
[L1=].... 50~y - . (3-13)
D)
so that
N PaS ”~~
[F] = [x] [4] + [L] | (3-14)
where
PN
~ F (i) 2wr (i) F(i)
F1=l..0.0=1]..%0......
FG) 1 Lewr G FG)

F is measured 1n units of force/unit length, é,nd ’1*:‘ is measured in units
of force.

In the case of the stiffness matrix [k], for either linear problems
or nonlinear problems with axisymmetric loading, the matrix required to
convert [k] into the symmetric matrix [k] may be obtained by inspection.
This is not the case, however, for a nonlinear problem with unsymmetric
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loading. There is no apriori reason in this case to-a;s,skui'rrejthét the étiff—
ness matrix of the coupled harmonics can be converted to symmetric form
inasmuch as this matrix relates a combingtipn of harmonigs of for?es and
displacements, Thus, thé e?{istence of a sy;mlr;étrié matrix must Ee proven,
Consider, for instance, the case wherein the zeroth harmonic 1s cqupled B

to any other harmonic, for example the A,Nth

i

harmonic.  For this case, the

force-displacement relations may be written symbolically as:

(0) (0,0) I (0, N) T { A©0) T
E =Kok el (3-15)
) L0 e

For the shells under consideration, in the absence of body forces, the

Betti -Rayleigh reciprocal relations [133] are (where the primed quantities
belong to one system of forces and displacements, and the unprimed to. -
another):

217 . 2w,
JFera @ ae = [Fera@an . (3-16)
0 : . 0 . ) ‘ H— B . . -

Inasuwch as we assume that the zero harmonic is coupled only with the

Nth harmonic, we may write

(0) (N)

A8) = A + A cos NO F(9) = F(O)-i; F(N)cos N6

oy A0, D Y 0), ) (-17)
A(Q) =A7+ A "cos N6 FO)=F "'+ F cos N©
Substituting Equations (3-17a) into EQua'ti.ons (3-16) we o‘btéiﬁ
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27 v

" (0) | ,

f‘(F( . FMeosne) (2@ 4 4™ eos Noyao =
0 o ,

2w : _
JE @Oy r ™o Ny (4 aMNeosno)ae
A

Integrating we obtain

2nF 050 ¢ g 00 _ 50 51(0) 4(0) +

o F’.(N)A(N) (3-17b)

The force-displacement relations for the two sets of harmonic amplitudes,
on the basis of Equation (3-15) are given by

PN _ (N, 0) 0) (N, N) () N (,0),0), L (N, N) /()

#(0) _ (0,0) ,(0), ,(0,N) () ') 0,0 S0 (0,N) J(N)

Substituting the above relations into Equation (3-17b) we get

0 \ A ’ 1 1
20 100 A0 000 L, (0, N) ()00, 4 (N, 0),0(0) S (N), (N N) (M) 1(N)
= 20 K(00) 400 (0) Ly (0,N) SN A0) 1 (N,0),(0) \N), 1 (N, N) /() (N)

This relation may be rewritten as

5 k(O,N)[A(N)A'(O) ) A’(N)A(O)] uP O)[A(N)A'(O)_ A'(N)A(O)]

This relé,tion is valid if

thus indicating that the stiffness matrix of 'Equafion (3-15) is unsymmetric.

However, it is relatively simple to form a matrix which can transform the
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stiffness matrix of the coupled harmonics into symmetric form. Note, that

(0,0) __ , (N,N)

each individual diagonal block (k ) of the stiffness matrix

for the coupled harmonics is not a symmetric matrix, but may be converted

readily into a symmetric matrix (Tt(o’ 0) or i(;N; N))by Equation (3-12) . Thus

in this specific case, the appropriate symmetric matrix corresponding toEquation

(3-15) is given by

2\: o AN
(k] = .,.,2.:.1..., o nk (3-19)
N (N,0) (N, N)
O 1\ kKT rRY?

The following notation is introduced in order to identify data in

subsequent discussions and calculations:

To@)  Tm) @) )
[FT=lx]7 [2]7 +[L] (3-20)
s s 8 . 8
where:
s as th e . .
8 indicates the s segment of the shell connecting joints i and j,
n indicates the Fourier harmonic,( For coupled harmonic problems,

the matrix superscript would be (n, n',n' )where n, n' n' are the
coupled harmonics, )

Structure Matrices and Stiffness Analysis: The direct stiffness method

[134] is employed in calculating the interaction of the segments comprising

the shell structure., To increase the capacity of the program, the shell segments
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Figure 17. Example of Region Topology
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will first be coupled ihto regions using a Guyan [152] reduction procedure. These
regions are defined as éingly-connected shells. with no internal concentrated line
loadings (Figure 17). The next step is to construct the region stiffness matrix
E;;] and the matrix of fixed-end forces [;;] . This requires splitting each
segments [ﬁj matrix into its four U4x4 matrices (for coupled problems LNxLN), and
insefting the portions into the region stiffness matrix in accordance with the
topological arrangement. The [E?] matrix is similarly split into two LxP matrices,
where P is the number of individual loadings considered separately. (For nonlinear
cases, the stiffness matrix changes with the load, consequently, only one loading‘
case can be considered at a time. Thus, the split load matrices are kxl for
axisymmetric loading, and Mixl for the unsymmetric coupled problem.) Thus, in
addition to the geometric description of each segment, its position in the assembly
mist be specified. To this end, all segments begin (i) and end (j) at a joint.

The sth segment is said to connect the ith and jth joints. (Not the jth and ith
Jjoints, since direction of increasing coordinate wiﬁhin the segment must be from i
to j). To allow for the possibility of discontinuous centerlines within a region,
kinematic links must be included. These links are rigid pieces which relate
displacements across a discontinuity. Thus a kinematic link matrix [SKL] must also
be formed. Due to the topology and line-load requirements for regions, the equation

of the coupled segments will be the following:

/\ ; PN b a4 -

Fir ! b Liry
a0 fe | (3-21)
)
Fir u bsr L i1
U I N [, + - - - - e T
(8xP) (8x8) : (8xP) (8xP)
|
L 0 . L K?l | K22’~_ L. a . L L i



N NN N

11t e | 1§ K'yp| | SKLyy |} SKL,
R s ] [ S

Ky | X o, |

. t ] .

21y Tez ] L 1 [Koy 1K 2o | | SKbyy | SKL,,|
._/\... — —_ _ /\__

L. T [ ,

iR1 - iR
N L - 3 ‘ 1 .

JRL SKL L' iR
L L ] ] L L'

and where iR, JjR refer to the region initial and final points, and the [A}, [K'] s

and [L'] are the defleétion, stiffness, and load matrices of internal segménts.
If there are no internal kinematic links, [SKL]Will be an identity matrix.

Partitioning Equation (3-21) will yield:
' A AN PN AN ' B
(o] =[S ] o] * (92 ] [f] * (o] (5-222)
N

o] - [K/r;] [ee] + [0 ] [2] + [2] | N | (3-2’2b)

Solving Equation (3-22b) for EA] and substituting into Equation (3-22a)yields:

[F2] = [%1[%] * [in]

8xP 8x8 8xP 8xP (3-23)
where )

[@] = [K/l\l] - ( [K/].\Q] [K/e\e]—l [Kfe\l] )

(2] = [l - (G101 (0])

FaS
The next step is to construct the total structure stiffness matrix {K T]and the

”~~
total structure load matrix [I_ T] . This requires the splitting of the stiffness
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matrix [?ﬁj]of each region into its four hxh component matrlces (for coupled
problems ﬁNth), and inserting the portlons into the total stlffness matrlx, in
accordance with the topological arrangement of the structure. ;The [FR]matrln.ls
similarly split into two LxP matrices, where P is the number of 1nd1v1dual loadlngs
considered separately. (For nonlinear cases, the stiffness metrix”éhanges with the
load, consequently, only one loading case can be considered at-a ‘time.. Thus the
split load matrices are Lxl for axisymmetric loading, and LNx1 for the unsymmetric
coupled problem), .Therefore, in addition to the geometric deseription of each
region, its position in the assembly must be specified. The in;tial point of all
regions will be denoted by (i) whereas the end ?oint will be denoted ny (3).
Inasmuchas there are four degrees of freedom at each joint, for a snell‘with M
joints the total stiffness matrix is LMxiM (MMNXMMN for coupled preblems). Hence
using equilibrium relations for all the joints, we can form thevfollOWing;
equation

P Y 7~
[Flp= LKl A+ [L]; (3-24)

The subscript T denotes a matrix which includes terms for all the joints, -
Equation (3-2lt) characterizes the structure without taking into account any -

external boundary conditions., For axisymmetric and antisymmetric (n=0, 1)
load cases, the matrix [’K\]T can be singular, A This may bhe physically-in-

terpreted, as follows. The stiffness matrix pe rmits calculation of the

stress resultants from the displacements;»thus, the inverse of the stiffj

ness matrix would relate displacements to the stress resultantss The
: BT . ] 5

displacements, however, are not unique inasmuch as one valid solution may

differ from another by rigid body motion. Hence,' it can not be anticipated
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that a relationship may be established relating all the valid displacement

fields to the unique set of stress resultants; indicating that the total stiff-
ness rﬁatrix is not invertible, that is, it is singular, However, the total
stiffness matrix of a complete \s’hell of revolution for harmonics other than
n=0, 1 need not be singular, For harmonics greater than unity, the stress
resultant harmonics are self-equilibrating, Moreover, since the displace-
ments are of the same harmonic order, rigid-body motiorn cannot exist.
Since the form of the [’IE]T matrix depends upon the topblogy
of the regions , thére is some vleeway as to the distribution of the zero
terms within this matrix. This may be accomplished by utilizing various
numbering techniques for ”the regions of the structure., Several tech-
niques may be employed to form the total structure stiffness matrix
rendering it amenable to facile operation. One technique is to form a
banded matrix. The numbering for topology of a typical commén bulkhead
tank, so as to produce a banded matrix, as shown in Figure 18, Operations
with a banded matrix are more efficient, consume less time and less com-
puter core storage. Another technique presented in Reference 135 does not
employ banding but is also critically dependent upon judicious topology number-
ing, For cases where neither of the aforementioned techniques are feasible,
the stiffness matrix may be compacted, This may be accomplished by
eliminating fhe large amount of zeroes in the matrix from the computer
storage. This technique in addition to minimizing computer core storage,
may result in operational simplification,
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Figure 18 Sample Structural Numbering for Diagonalization of Stiffness Matrix
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Reduced Stiffness: The stiffness matrix established previously must now
be altered in order to take into’account the existence of ring reinforcement,
possible attachment of the shell to ofher structures, as well as to inhibit
rigid body motion and satisfy specific support conditions.

In the case of ring-stiffened sheils, the ring reinforcing matrices
established in Appendix B, must be stackea in the stiffness matrix in ac=-
cordance with the topology of the ring stiffeners.

- I.f_ the ishell of revolution under coﬁsideration is attached to other
.structur,es, the stiffness matrix should be modified to take into account the
effect of these structurég; - fof example, if the shell rests on an elastic

: R ! :
support, such as a soil foundation or another structure, the stiffness matrix
-of that suppoyf can be written as
F 1=[K ]la -25
 [ SR I S § VA (3-25)

1L

wl:;eal':.'e‘ym ‘denétes the joint of the shell at the elastic support. The stiff-
’ness’ [K;n] s:hould j:hian be stacked into the total shell stiffness matrix
[/IE]T at‘the location 'corresponding to joint m., The aforementioned tech-
nique may also be employed in solving prqblems associated with non-
axisymmetric structures [111] being connected to the shell of revolution.
In the actual shell structure the displacements and rotations of '
the joints of the segments into which the shell must be subdivided, may
assume specified values, or may be constrained externally, The number
of displacements which are not specified will be referred to as the degrees

of freedom of the shell structure, The total number of displacement com-

ponents specified at the various joints in the structure, will be referred
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to as the number of boundary conditions. In order to alter (reduce) the total
the stiffness matrix to take into account the effect of the boundary conditions,
a boundary condition matrix [ BC] must be established, The formulation of
the matrix may be illustrated by referring to the shell of revolution shown

in Fig, 19.

For example, consider the shell of revolution shown‘in Figilre 19a.
The geometry of this shell suggests the subdivision of the ghéll into the 4
segments shown in Fig, 19b, Notice, that the s’egment be"tiweben joints
2-3 may be cbnsideféd as an equivalent ring\'stiffener, and its stiffnesé
matrix‘ may be computed, and stacked into the total ’sktiffness matrix of
the shell accérding to its topology, discussed previbusly. However, the
length of the segment 2-3 may be taken as small as desired, whereas the
lengths of the adjacent segments must increase appropriately to close the
gap. In the limit, when the length becomes very small, the stiffness matrix
of segment 2-3 will become a null 'matrix,

Such a segment will be referrgd to as a kinematic link. This link
will affect only the boundary conditions of the adjacent Segments‘. The use
of a kinematic link where permissible, in lieu of an equivalent ring stiffener
of chosen finite dimensions, will eliminate the need for cbrﬁputing the :;tiff-
ness matrix of this ring. In the example structur_é, the [BC] matrix in this
‘a.r.yeva. will reflect.-only the kinematic relations between joihts 2 and 3,

From Fig, 19b, it is evident that joint 1 is connected to a heavy
boss, Thus, we may assume that this joint may move solely in the Z and 0

(tangential) directions. As an alternative, it may be assumed the joint 1
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is connected to an elastic support. In this case, the stiffnéss characteristics

of the support may be approprigtely inserted in the total shell stiffness matrix,

Th|én, in the formulation of the boundary condition matrix, joint 1 should be i

cor}sidered totally unrestrained. -

Referring to Fig. 19b, it is appareﬁt that joint 4 -is eompletely 3
unrestraiqed. . This joint is merély a point wherein the shell geyom,etry changes.
Therefore, the [‘BC] matrix will not impose any constraint on this joint.

J éint 5 (Fig., 19b) is provided with an external membré,neﬂsuppor‘t.'
Inasmuch as the stress resultants and displacements at the j-oiﬁts of the
structure are speci_fied‘ in global coordinates, thé [BC] matrix wil_l,cpntain
a trigonometric coordinate transformation for joint 5.

Thus, the total displacement matrix may be expressed in terms of the

matrix containing only the actually unspeéified; (unknown) displacements,

[ 2] =1 BC] 2], © (3-26)

For the example structure of Figure 19, Equation (3-26) is given by:
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The following items should be noted relative to Equation (3-27): There is a blank
row in the [BC] matrix for each displacement component or rotation specified as zero
(fixed). There are no components for the dependent joint 3 in the matrix [A]F The
kinematic relationsTor this joint are given in the [BC] matrix. The meridional

component AcP (5) does not appear since it is fixed, buﬁ the perpendicular component

Ag (5) contributes to both Az (5) and Ag (5).

By using the definition of work, it may ¥e shown that the stress resultants at
the joints in the directions of the unconstrained displacement components may be
expressed in terms of the total stress resultants at the joints. This relationship

8 AN

T S

= -28
[F]F = [BC] [F] ‘ (3-28)
Substituting Ecuations (3-24) and (3-26)into Equation (3-28), we obtain

[F1,-18c1 (K] [BClla), +(Bc)® (L], (3-29)

Rewriting Equation (3-29) we have

F1e - g e+ (T3, o
where -

(K] = [BC]” (K], [BC] (3-31a)

[/-";[F = [8c]" [Z]T - (3-31)
Inverting Equation (3-30), we get

[ = [A) ({F], - (1],) (3-32)

where
INEEy - (3-3)

Thus, the total displacement solution for the joints of the structure may

be obtained by using Equations (3-32) and (3-26).
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Thus for the region ends, combining Equations (3-26) and (3-32)

et ) @ (Fl - B)) | (3-34)
and in the interior of each region, for each segment '

{8}, = [SKLQQ]_{f—’ [(K;]-l([l{;\l] (o) ?])} | (3-35)

Final Stress Distribution: As noted above, subsequent to obtaining the

end displacement at any segment, we convert to local coor'dinates,' using

Equation (3-3)
'. . T ) . .
[8(1)] = [IDT]™ [aW)] | o (3-31)
The stress resultants at every segment-edge are established in local

coordinates by combining Equations (3-1), (3-9), and (3-11)

A(i) -
[f£(i)] =[1IFT ]T [kii kij] [A(J)] + [2@] (336 )

The stress resultants in any elastic restraints may be established from
Equation (3-25).

Subsequent to obtaining the stress resultant and displacement
distribution at the edges of all the segments of the structure, the stress
resultant and the displacement distribution within each segment must be
established, This is necessary, inasmuch as in a shell strﬁf:ture having
a complex shell geometry, the maximum values of the stress resultants
and/or displa.ceménts may not occur at the edges of the segments, Finally,
it is essential to verify that the established solution satisfies the continuity
conditions at all the joints of the segments, thus insuring that the errors

induced during the integration process did not accumulate.
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The establishment of the stress resultant and displacement dis-
tribution throughout each segment of trhe’ shell,v and’ the checking of the es-
tablished s'ovlut.ions,v ‘rnay be écéé;ﬁplished $imu_1taneously by an integratién
throughout all the segments of the shell, as described previously in this -
chaptér. ;Thlis‘\'f‘inailbintegi‘atifm, however, dde§ not usie fhe uhit vec\ktoxy's, |
described earlier as the initial conditions at joint i, but rather the stress
resultant‘ and‘aispla’cementvector”s -oﬁtaiﬁed frvoritlr Equatid_ns (3-3') and (3f36,),
Fz\:on;1 this integration the stress resultants and displacements of the jt‘h ‘
end are obtained, as well as their distribution throughout the segments.
Thé aécui'aqy of the solutiéﬁ obtained by the’numericayl integration may be
established by comparing the stress resultants and displacemnts at the jth
end of every séémeﬁt with their coﬁﬁterparts at the ith:k énd (same structural
point), of the corresponding adjacent segments.

I1k:‘shou‘1d be notea that for :;onlihear problems the method of
analysis presented in this chapter must be repeated several times for every
lpadf incfemeﬁt, as outlined in Chapter 2; A’i’:'ter each trial éolutioh the nor-
linear terms in the Newton-Raphson procedure are reevaluated using values
obtained in the previous trial and a check for convergence at the current
load level is made. Then the load can be incremented again and the pro-
cedure repeated (see Chapter 2),

While the current formulation is strictly valid only for shelis of
révo}ﬁtion, Réference 136 has showﬁ how the concepts involved in this
formulation might be extended to obtain approximate analyses of non-

circular prismatic shells,
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CHAPTER 4

CLASSICAL BUCKLING LOADS FOR SHELLS OF REVOLUTION
SUBJECTED TO STATIC LOADING

Various methods were presented in the preceding chapters for solv-
ing linear and nonlinear static problems for shells of revolution éubjected to
symmetric and unsymmetric loadings. In this chapter, methods for estab-
lishing the classical buckling load of shells of revolution will be presented.
The classical buckling load is the load required to bring the idealized "per-
fect' shell to a bifurcation of its equilibrium (prebuckled) state. That is,
we shall not be directly concerned either with the postbuckling behavior [1591 or

the effect of initial imperfections on the buckling loads and modes [1601'.

A method was presented in Chapter 2, for establishing the maximum
value of the load wherein the prebuckling deformation of the shell corre-
sponding to the applied load becomes unstable. Increments of the load were
applied to the shell, and using Newton's method, the nonlinear response of
the shell corresponding to each load increment was established. The maxi-
mum value of the load for which the prebuckling deformation of the shell
becomes unstable was established as the point at which the solution ceased
to converge. In addition to the lengthy computer time involved, this technique
has other disadvantages. For example, in the case of axisymmetric loading,
only the n=0 axisymmetric buckling load may be established with this technique

without the use of "load perturbations". As will be discussed subsequently, in most
cases of unsymmetric loading, the actual buckling mode may be established with the
method discussed in Chapter 2. The principal difficulty in this case is the
extensive computer time required for the analysis,

It should be noted, however, that the above method may be more useful in
predicting shell imperfection sensitivity. In the cése of axisymmetric imperfect-
ions for a spherical cap, this was demonstrated in Reference 158, wherein only the
axisymmetric buckling mode was investigated. However, in combination with the
"load perturbation" technique, this procedure can logically be extened to study
unsymmetric modes. In order to study the effects of unsymmetric imperféctions, a
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coupled harmonic geometric and load formulation would be necessary. The beauty of
the procedure is that no specialized imperfection analysis, other than the
definit.;l.on of the stress-free geometry for the most significant imperféction, is
neceé;sax'y. The procedure is also independent of imperfection magnitude., Given a
general nonlinear equilibrium program, imperfection sensitivity may be investigated
by merely adding another geometry to the program library. |

Derivation of the Stability Equations: The stability equations for a,qshell of

revolution can be obtained by the energy methods outlined in Reference 100,

However, in this investigation, the procedure presented in 'Refevre,nce 137
will be employed. The typical variables in the general nonlinear Equations
(1-27,28, 29) presented in Chapter 1 for homogeneous orthotropic shells,

will be denoted by Y, and will be decomposed into two components

Y=Y,+Yg | J o (4-1)
Yp represents the value of the variable at the prebuckled equilibrium state.
YB represents the change due to the buckling. The variables Y and YP must
satisfy the general nonlinear Equations (1-27, 28, 29). Substituting Equation
(4-1) into Equations (1-27 , 28, 29) a set of nonlinear equations involving YP
and YB are obtained. The set of prebuckling equations may be obtained from
the above mentioned set by setting YB = 0. Subtracting the one set from the
other, and neglecting terms nonlinear in YB’ the following stability equations
are obtained (For convenience of presentation the subscript B is omitted in

all terms except for the '"load" term. ):

Tee

©,9 _ _ os® _ si 9 coso [ 1  sin® sine®
ry ZTcpe T —22 MG 8 Mcpe T [ - ]- r
o) o O o
{Nep o T No%p - Nepop¥s - Ncpe“’ep} -4
N T h
QP _ _n COos® cos® 98,6 sing 1 .70
r; Ncp r, + No=3 T, Mcpe 9[ ror1 :‘+ r - fch (k-2)
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Inasmuchas the variables Y and Yp satisfy the given boundary conditions
at the ends of the shell, the variables YB will satisfy homogeneous boundary
conditions.

If reinforced or laminated shells are to be analyzed, Equation (4-1)
must be substituted into Equations (1-31) or (1-32) instead of the corre-
sponding equations in sets (1-28, 29). Thus, for ring-stringer reinforce-
ment, the following equations must replace the corresponding equations
in the set (4-2).
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For laminated shells the following equations must replace the corresponding

equations in the set (4-2),
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Prior to presenting solutio'ns'*to thesé equati‘ons,‘ it must be decided how
the prebuckled sté.te w111 be est;iolishé.d. In mo‘s’ty earlier buckling analyses,
this state was established on the basis of the linear membrane theory. This
procédﬁre yieldé accurate resuits fc;r some shell geometries under certé.in
boundary and loading condi.tions', and simplifies the analysis greatly. Re-
éentlj,~ with the introduction of automated numerical ahalyses, the pre-
buckled state has been establis'hed'on thé basis of the linear bending theory,
and even nonlinear bending theory.- Howe{rer, there is not sufficient evidence
for a genéral conclusion as to Wh;ﬁ it is necessary to analyze the vpre—
buckled state by a non-linear analysis. In the last few years, a number
of siiéll problems have been solved where nonlinear buckling effects have
been found to be significant, such as in the case of eccentrically merid-
ionally stiffened spherical caps [29, 163-165]. Most of the genefal shell
stability computer prografns [28, 117, 138] have options for using nonlinear

bending analysis for the prebuckling state,

Stability Under Axisymmetric Loading: As in the nonlinear static

analysis, considered in Chapters 2 and 3, the stability analysis of shells

of revolution will be different if the loading is axisymmetric or uns@metric.
In the case of axisymmetric loading, the terms in Equations (4-2) having a

P subscript (prebuckling terms’), and the load terms in Equati,'cm‘s (4-3) are
zeroth harmonic amplitudes (invariént with 8). However, the terms which
donothave a P subs c1"ipt (buckling terms), mustbe expressed in terms of the
Fourier series (2-2). It should be noted, thatin the case of buckling under axisym-
metric loads, the primedand the doubie-primed harmonic émplimdes, generally

will be coupled. However, each paii' of harmonic amplitudes (the primed
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and the double primed) will not be coupled with other pairs and, there-

fore, each pair may be considered separately.
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As evident by the presence of the double primed terms in the above equations,
the primed and double primed terms are coupled. A similar set of equations
may be obtained involving primarily double primed harmonic amplitudes, with
only a few single primed cross-coupling terms. From Equations (4-6,7), itis
apparent that for certain load conditions (axisyminetric non-torsional loads),
the pairs of harmonic amplitudes b(primed and double primed) may be uncoupled.
Thus, for axisymmetric non-torsional loads, the Buckling modes can be de-

scribed by the half Fourier series expansions in Equations (2-2).

In establishing the buckling modes of shells subjected to torsional loads,

in addition to other loads, the set of Equations (4-6, 7) must be solved simul-
taneously with the set of equations for the double-primed amplitudes, pre-

viously discussed. Equations (4-6,7) are valid for orthotropic homogeneous
shells, If reinforced or laminated shells are to be analyzed, Equations (4-4)
or (4-5), respectively, must be employed instead of the corresponding equa-

tions in the sets (4-6, 7).

It is apparent from Equations (4-6, 7) that for shells subjected to axisym-

metric loading, buckled shapes may correspond to any harmonic (n=0,1,2+-+).
Thus, the buckling loads corresponding to different harmonic buckled shapes

must be established until the critical (minimum) load is determined.
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Stability Under Unsymmetric Loading: The appropriate equations for

the case of unsymmetric lbading are analogous to the equations of the non-
linear unsymmetric static probiem présented in Chapter 2. Thus, fhey

are more complex than Equa\tions (4-6,‘7), for the case of symmetric load-
‘ing. Fof uﬁs&rﬁmetrié' loading, Wh;an the loads and dispiacements are expanded
in Fgurier series (see Equations (2-1, 2)) the resulting equations involve
product terms (see Equatiéns (2-6a,b)). Th;J.s, by referring to Chapter

2, the general equations for the stability of homogeneous orthotropic shells

of revolution under imsyn1metric load may be written as
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where, as in Equations (2-8), the above equations have been obtained by utili-
zing only the half of the series (2-1) with primed amplitudes. A similar set of

equations may be obtained by using the half of the series (2-1) with the double
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primed amplitudes. In Equations (4- 8A), the nonlinear terms involve cou-
. pling of the primed and double primed amplitudes, as well as the harmonics.
The amplitudes of the harmonics in the nonlinear terms with a subscript P
represent the effect of the prebuckled state. The nonlinear terms in Equations
(4-8) may be obtained from Equations (2-9) with the appropriate addition

: ; (n) , (@), (m) .
of the P subscript. The buckling "load" terms (feB , fch_ , ng ) are
obtained from Equations (2-9) by omitting the first single term (Fe(n),
(n)y

(n)
Fo ' Fy

tions (4~4) or (4-5) should be usqerd,in place of their counterparts in Equa-

If reinforced or laminated shells are to be analyzed, Equa-

tions (4-8).

Stability Consi i : In Chapter 2, itwas noted thatthe resulting

equations could be significantly simplified if a line of symmetry existed in the
loading pattérn. This was accomplished inaémﬁchas, inthis case, the resulting
deformationand stress patternis symmetric with respectto this line of symmetry.
Iﬁ the case of buckling,‘ if a line of symmetry exists in the 1oading patfern,
and consequently in the prebuckling deformation and streés state, the load-
ing pattern and the prebuckling deformation and stress state may be repre-
sénted bﬁr only half of the Fourier series expansions, However, this does
not denote that the buckling deformation shape may be represented by the
same half-series expansions. | Thus, the full sei‘ies'expansions must b:e
used resulting in two different sets of equations corresponding to buckling
modes "in-phase' and '"out-of-phase' with the applied load. This wasiralso
the case for axisymmetric loading (no torsional loads). However, since

in that case, each harmonic buckling shape could be investigated separately,
the two sets of equations represent buckling shapes differing only by a rigid
body motion. Thus, only one set of equations was sufficient for the analysis.

If the shell was subjected to torsional loads, in addition to other axisymmetric
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loads, the resulting sets of equations will be cross-coupled and must

be solved simultaneously for each harmonic buckling rﬁode. In the case of
unsymmetric loading with a line of symmetry, the prebuckling harmonic
amplitudes (e.g. primed) are coupled with the buckling harmonic amplitudes
(primed or double-primed). Thus, the two sets of equations yield different

buckling loads corresponding to in-phase or out-of-phase buckling shapes.

In Figure 20/, the-axisymmetric load versus the feéﬂfihg deformation
is plotted, whereas the unsymmetric load versus the resulting deformation
is plotted in Figure 21. Under axisymmetric loading, the iteration technique
described in Chapter 2 would proceed along line OA'BlC'Dl which corre-
sponds to the axisymmetric nonlineaxl ;:-‘,té,tic ‘anai‘ysis. »{Point D' is established
as the buckling load referred to by Thomﬁé'on_[139‘]~as the ""snapping load'.
However, the actual (lowest) buckling load may c'orrf'eSpond to a non-axisym-
metric buckling cbnfiguration. (As shown in Fig. 20, :point Al, obtained on
the basis of the stability analysis’ to be p'reser’lged in this chapter, for the
n =n, buckling conﬁguration* may corre spohd to a buckling load lower
- than that corresponding to point D'. ) Thus, for any assumed buckling con-
figuration corresponding to an assumed value n, the solution *’Eo be presented
in this chapter will yield a buckling load (points A' or B' or C'), whereas,
the method presented in Chapter 2 will yield only point D' corresponding to
n=0. That is, the solution to be presented in this chapter permits a buck-
ling configuration described by harmonics dlfferent from n=0 (describing

the applied loads), whereas, the solution presented in Chapter 2 yields an

n=0 buckling configuration only, without resorting to "load perturbations”.

From experimental evidence, however the buckling configuration of shells of

Not1ce, that in the case of axisymmetric loading, as discussed previously,
the harmonics uncouple; consequently, the bucklmg configuration will corre-
spond only to one harmonic.
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revolution suﬁjected to symmetric loads is not always described by the same
harmonic as the applied loads. The two methods for buckling analysis to be
discussed in this chapter may be employed to establish buckling loads for any
buckling mode. That is, referring to Fig. 20, to establish points A', B', C', D'
if the prebuckling state is described by the nonlinear bending theory, or points

A, B, C, D if the prebuckling state is described by the linear bending theory.

Under unsymmetric loading, (see Fig. 21) point Al may be ,e‘Stablished
by the iteration technique describéd in Chapter 2. Note, that even if the
applied load was described only by a few Fourier harmonic amplitudes, the
iteration procedure would eventually involve all ‘the harmonic amplitudes
of the stress resultants and displacements. In the methods to be described
in this chapter, if a nonlinear prebuckling state is to be conside.red, all the
harmonics couple, and point A’ is established. If the prebuckled state is
analyzed by linear bending theory, several buckling configurations described
by differént families of harmonics constitute mathematicaliy acceptable solu-
tions. The loads corresponding to these configurations are denoted in Fig.
21 by points A, B, C, D, E, F. These families of harmonics will be described
subsequently. The buckled configﬁration corresponding to point A' is
described by all the harmonic terms, whereas, the buckling configurations
corresponding to points A, B, D ar;e described by groups of harmonics each
of which is contained in the terms describing the configuration corresponding
to point A'. Thus, the '1§ads corresponding to points A, B, D will be approxi-
mations of different order of accuracy to thé critical buckling load defined

1
by point A , rather than buckling loads corresponding to different buckling

125



configurations as in the case of a shell under axisymmetric loading.

The load corresponding to point A' may be obtained by incremental
Newtonian iteration, using a larger number of harmonic terms for each
successive load increment. Thus, the analysis is lengthy. Moreover, in
the analysis, the Fourier series describing the buckling configuration must
be truncated, consequently the load corresponding to point A' may be es-
tablished approximately. Points A, B, D, however, may be obtained by one
eigenvalue analysis (for eachpoint). Inthisanalysis, the Fourier series harmonic
families describing the buckling configurations must be truncated. If a
dominant harmonic group exists in the description of the actual buckling
shape, and the same number of Fourier terms is retained in the linear
and non-linear analyses, the buckling load obtained on the basis of the
linear analysis (point A) may actually be closer to the true buckling load than
the load estimated on the basis of the non-linear analysis. Furthermore,
the computer time required for obtaining the buckling load on the basis of
the linear analysis is much smaller than that required for obtaining the
buckling load on the basis of the non-linear analysis. It should be noted,
that the smallest in-phase buckling load estimate (point A) will be larger
than the actual in-phase buckling load. However, the smallest out-of-phase
buckling load estimate (point C) may be smaller than the smallest in-phase
buckling load estimate (point A) since they are estimates to different possi-
ble critical loads (in-phase and out-of-phase).

Solution by the Determinant Evaluation Method: The determinant

evaluation method represents the classical approach to the stability problem.
For any assumed value of the applied load, a static analysis is performed to
establish the prebuckling stress and deformation components at every point
chosen for Runge Kutta integration in every shell segment, This is ac~

complished by employing the me:hods described in Chapter 3 for either linear
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or nonlineax{theory. The results of this analysis are introduced as the
terms with subscript P in Equations (4-6) and (4-7) if the load is axisym-
metric, or Equations (4-8) if the loading is non-axisymmetric. These
equations are then integrated using -the the Runge-Kutta procedure in a_
fashion analogous to that of the 'static analysis of Chapter 3 and the pre-
stressed stiffness matrices of the segments are formed. Note, thata load .
matrix associated with the stability analysis does not exist, inasmuch as .
the loads have been eliminated from the pertinent equations by taking into
account that prior to buckling, the shell is in a state of equilibrium under
the influence of the buckling loads. - That is, the buckling state is a possible
second state of equilibrium under-the buckling loads. The prestressed |
stiffness matrices of each segment are 8 x 8 matrices for shells subjected
to axisymmetric loading, or 8M x 8M matrices for shells subjected to un-
symmetric loading, where M is the number of harmonic terms retained in

the analysis.

The prestressed stiffness matrices of the segments are stacked to
obtain the total matrix of the structure by a procedure identical to that
discussed in detail in Chaptér 3. This matrix is then reduced by employ-
ing £he boun‘da.kry conditions. Thus, we obtain an equation analogous to -

Equatio'n (3-30) in the form

[K.1[a] =0 |  (4-9)
Pr "w ‘ , o
or

det[K.] = 0 ) (4-10)
bal

If the assumed load was the correct buckling load corresponding to the
assumed harmonic buckling configuration, Equé,tion (4-9) would be identically
satisfied. Otherwise the determinant would not vanish.
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Inasmuchas the prestressed stiffness matrix may be large, the evalua-
tion of its determinant on a computer may involve overflow or underflow.
To avoid this problem, the matrix [E;]F is first converted into an upper
triangular matrix by a technique such as Gaussian elimination [118].
The value of the determinant of such a matrix is the product of its diagonal
terms. Since the determinant vanishes, these terms can be normalized
by dividing each term by its absolute value. Thus, the value of the determin-
ant is always 1. A sign change of the determinant between two consecutive
loads signifies that the value of the determinant vanishes between these two

loads. This technique avoids the establishment of spurious sign changes

25].

The assumed load is incremented until the determinant changes sign.
The load increments may be either constant or varying. The latter may

be established by extrapolation from the previous load increments.

When the prebuckled state is analyzed by the linear bending theory,
only one static solution for one load is required. The prebuckling stress
resultants and displacements corresponding to other values of the applied
load may be established by superposition. When the prebuckled state is
analyzed by the nonlinear theory, static solutions are necessary for each
assumed value of the load. These solutions are established by the Newtonian
method described in Chapter 2. Aside from the additional accuracy of a
nonlinear prebuckling solution [29], other flexibility of analysis may be
gained by including such an oi)tion. For example, while normal solution by a
nonlinear prebuckling analysis does not include consideration of the local
panel problem considered by Dickson and Brolliar [llbl] , ‘the similarity

between the iterative natures of both solutions make a combination possible.
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=3

Tﬁus, ’tl;le consideratior’l o'f' the local ps.riei vstability“‘ problem prior to' overall
shell -b‘uckling s c’an‘ be ’iricorporated‘ ‘int”o: the iters,tions »neﬂedetl ‘i"or s, ﬁonl:inear
prebuckliﬁg analysi_s. | | |
With the aforementioned procedure, 2ll the possible buckling oonfigtg:ra—

tion may be checked. In the case of axisymmetric loading, each harmonic
can be checked independently of the others.. Since all harmonics (n=0-)
cannot be investigated, the problem rerrlairls_to insure that the lowest
buckling load is associated with one of the harmonics checked. It should
be indicated that an automated checking procedure may re sult in erroneous
conclusions. Figure 22 presents the lowest buckling loads, obtained for
dlfferent bucklmg conflguratlons corre spondlng to the indicated harmomcs
for the class1ca1 problem of a c1rcu1ar cyllnder subJected to end compression
[142]. If an automa.tlc procedure is programmed to establish a relative mini-
mum W1th1n a given range of harrnon1cs the bucklmgr loads corresponding
to any of the harmonlcs n= 2, 7,9, 11 could be obtalned -as a solution, where-
as, the actual buckling load 'corre‘s’ponds ton = 2 In this' e;rarnple ‘the values
of the bucklmg loads obtained for n = 2, 7 9,11 do not dlffer apprec1ab1y,
however, for each harmonic the buckled conflguratmns d1ffer cons1derab1y.

Abasic difference in the stablhty analysm of-shells sub;ected to ax1sym-
metric and unsyrnmetrm loadlng pertalns to the type o:f buck11ng shapes that
must be considered. If the nonlinear Equatlons (2—9) were converted to a
form suitable for stability analysis, as prétiiodsly VdiscusSed 1n thizis"Chvatpter,
and if only one load harmonic‘(n’# 0) is considered, several buckling con-
figurations described by different families of harmonics are found as mathe-
matically acceptable solutions. The prestressed st‘iffnes‘s matrices corre-
sp'oiiding to these different buckling cohfigurations a.’s sume ti'le form of the
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Case I: Axisymmetric loading (& = 0) [all
harmonics are uncoupled in the
prestressed stiffness matrix]
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Case II: Antisymmetric loading (& = 0,1)
[211 harmonics are coupled in the
prestressed stiffness matrix]
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Case III: Unsymmetric loading (% = 0,2) [Prestressed stiffness matrix reduces to two
uncoupled families of harmonics]
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Case IV: Unsymmetric loading (% = 0,3) [Prestressed stiffness matrix reduces to two
uncoupled families of harmonics]
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Case V: Unsymmetric loading (2 = 0,4) [Prestressed stiffness matrix reduces to
three uncoupled families of harmonics] :

Figure 23a Forms of the Prestressed Stiffness Matrices Corresponding to
Single Unsymmetric Harmonic Loads
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trident matrices, shown in Fig. 23a,b. Figure 23 shows how these pre-

stressed stiffness matrices corresponding to different harmonic loadings

uncouple into families of harmonics, Each family of harmonics represents

a different estimate of the buckling load (see Fig. 21, points A,B,C,D--),

each associated with a different buckling configuration. If one of these con-

figurations is a close approximation to the actual buckling configuration,

then the buckling load corresponding to this configuration will be lower than

all the other estimates (points B, C, D-+¢ in Fig, 21) obtained on the basis

of the linear prebuckling analysis. Furthermore, this estimate may be lower

1,::han,the ;bucklin,g ioéd thained on the basis of a nonlinear prebuckling analysis

(point Al; Fig.v 211) }r,etainin‘g the same number of terms in the Fourier series.
In Reference 118 a stability analysis of a shézll of revolution sub-

jected tgj some types of unsymmetric 1oadihg is presente“d.! .However, in

this i'ef_erence,vseverél nonlinear terms usually included [20, 24, 28, 32, 117]

in ghel}. {buckling ana}jﬂsés have been omitted. Also, only the family of
harmonics which are multiples of the load is assumed to represent the
configuration corresponding to the lowest buckling load. This as sumption is
based on the conclusion (invoking St. Venant's principle [118, p. 77]) that the
effect of load harmonics with 4 > 2 dissappear at a small distance (within a
diameter of the latitude circle) away from the loaded edge. This conclusion,
however, is not always valid. Transverse loads, such as Jép*(z), have a
short decay length; however, the decay lengths of the in-plane loads such

as NQp(Z) or Tcpé(Z) may be many times larger than the diameter of the latitude
ci}\-cle, even for shells with ring reinforcement [111, 143]. In certain cases,
the assumptions of Reference 118 may lead to contradictory

conclusions. For instance, considér a shell which buckles in the n = 10

harmonic configuration when subjected to axisy-rnr‘netric load. Ifan t=3
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harmonic load is added to this shell, the assumptions of Reference 118

lead to two possible conclusions. If it is assumed that the additional load

(4= 3 harmonic) represents only an edge effect, then the buckling configura-
tion will be similar to that (n=10) established when the shell was subjected

to axisymrnetric loading, Thus, the best estimate for the buckling load may
corre sppnd (‘to a buckling configuration associated with the family of ha,r\n;on,ics
which contains n=10 (see Figure 23a,b, Case IV). On the ‘other‘ hand, ‘i:t' the
buckled configuration corresponding to the lowest load is obtained from the
family of harmonics which are multiples of the loads,l then the buckled con-
figuration corresponding to the lowest buckling load in the aforementioned

example should be obtained by n=0,3,6,9,12,15... .

The added complexity of ‘the unsymmetri’cjy stability énalysis, o_véi' the
axisymmetric, can be seen from the above discussion.’ .Even though only
one load harmonic (1) is applied, and the prebuckling analysis is o.nﬂ the
basis of linear bending theory, families of harmonics must be employed t.o
establish ’th’e estimateé for the buckled configurations. Thus, larger ma-;
trices are involved, and must be treated as discussed in Chapter 3 for
the nonlinear unsymmetric static analysis. If the nonlinear theory is em-
ployed in the prebuckling analysis, all harmonics must be used to describe

the buckled configuration.

The number of terms to be retained in the truncated Fourier series ex-
pansions of the shell functions requires further investigation in both cases

of stability analysis of shells subjected to unsymmetric loading, and cases of
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unsymmetric nonlinear stress analysis using the Newtonian iteration tech-
~'niques [20, 22]. It may be poss‘ible to obtain accurate estimates of the buck-
Ying configuration by retaining only the n = 0 harmonic and a few more judi-
&iously chosen harmonics from a family of harmonics, not ﬁecessarily in
® Y4 consecutive order. Ifthis were the case, itwould be evenmore préfe rable to employ
the eigenvalue approach rather than the Newtonian iteration procedure. In
this case, a few terms from the dominant harmonic farr;ily would yield more
satisfactory results than the same number of harrhonic terms in the New-
tonian iteration solt;‘ltion,q since more significant terms would be contained in
the eigenvalue solution. For instance, some shells such as relatively shal-
low ellipsoidal heads subjected to internal pressure, buckle in a relatively
high hé,i'monic pattern (n~ 50). If‘ the ellipsoid is subje‘cted to an unsymmetric
load, in addition to interﬁél pressure, the question arises as to whether the
buckle‘d configuration caﬁ be’ épproximated by some lower harmoniés and

some in the proximity of n=50, omitting the intermediate members of the

harmonic families, or all the harmonics up to n=50 must be retained for a

satisfactory approximation of the buckled configuration.

It should also be noted, that the high local wrinkling associated with high

harmonics, may require the inclusion of shear deformation in the theory

employed [113].
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In conclusion it may be stated tha‘t the de’cermlnant evaluatlon method
generally, has two basic d1sadvantages. Flrstly, very: extenswe‘computer
time is required for establishing the buckhng load of shells of complex
geometry. This is pr1mar1ly due to the fact that if the magmtude of the
buckling lo‘ad cannot be e‘stimated 'apriori’ many load increments may have
to be considered before the va,Lue of the load causing ‘the oeterminant of
the prestressed stiffness matrix to vamsh is estabhshed The second prob-
lem is even more complex, since it is poss1ble that the low buckhng loads
are close together [145] even for buckhng conflguratlons descr1bed by a
single harmonic. Thus, a load 1ncrement may skip two close roots without

causing the sign of the determinant to change. To circumvent the foregoing

disadvantages, other stability analysis techniques have been developed.

Eigenvalue Methods: When a problem involving the stability analysis

of any structure is analyzed by finite element methods, it may be reduced to

~a linear elgenva,lue problem of the form
([al+A[BD{a} =0 | | (4-11)

where [A] is the stiffness matrix of the elements and [B] is the incremental
stiffness matrix. Each of these matrices is formed separately by assuming
a displacement function for the element. In finite difference or numerical
integration techniques, however, a linear eigenvalue formulation is not
readily deduced., The first eigenvalue-type analysis employing numerical

integration techniques, was formulated by Cohen for natural vibrations of
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shells [113], and subsequently for stability analysis of shells subjected to
axisymmetric loads [117]. A similar method was later utilized in Reference
31 ‘for fihite differencés. The mefhod is iterative, based on the Stodola

| téél@iqu‘e [1141, and is :éésent:fally- the inverse power method [115].
'Baisyically, the homogeneoﬁs eQua,tiéns resulting from stability (vibrations)
ané;lysis are cbnvérfed into a series of nonhomogeneous equations by assum-
1ng a‘ buckled (vibration) syhape and, thus, creating ;1onhorx;ogeneous terms.
Thé sbiution of fhié problem provides a more satisfactory estimate for the
buckled configuration §vhich, in turn, is employe‘d to establish a ne\:xr set of
non-homogenedﬁs terms. The procedure is repeated until the lowest eigen-

value (buckling load or frequency) is obtained for the harmonic configuration

under consideration.,

This method requires less computer time than the determinant evaluation
method, and moreover, the possibility of skipping roots is eliminated. How=-
ever, it hé,s some disadvantages. In vibration problems, wherein it is
necessa,fy to compute higher frequencies, in order to establish the higher
roots, all the lower roots must be swept out [114], It has alsobeenfound, that
" the time required to establish two consecutive roots is a function of the ratio
of the value of the lower root to the higher root. That is, the time is larger
when this ratio approaches unity. Thus, in order to decrease the time re-
quired for establishing the second root, the origin should be shifted to the first
root [116]. In stability problefns, where only the lowest buckling load for a
particular cifcuinfere.ntial configuration is of interest, the aforementioned
drawbacks of the inverse power method of solution do not exist. However,
for a shell of complex geometry, convergence may be slow depending upon

the initial choice of the eigenvectors (u, v, w) [114, 140].
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In a recent investigation [138], the finite difference teéhniqu‘e is applied
to the shell energy inte gral; rather than the dirffrereinti‘al;eqiuatiovns of equilibri
um and separate stiffness and incremental stiffness matrices are formed.
However, the inverse power method is still eﬁrployed o solve the resulting

linear eigenvalue problem.

To overcome the foregoing difficulties, a differenf formulation of (-
stability problem has been presented in Reference 157, Thé basic pre-
stressed stiffness matrix, [I’{;]F of the structure, is an unknown transcen-
dental function of the prestress state variable’s. In vibré,tion analysis,
Przemieniecki[146] shows that the dynamic stiffness ma;trix is actually an
infinite power series on the frequency. This finding may be»extelﬁded to

stability analysis. Thus, we obtain
Py N 2pi ™ 3N .o R
) - Kl + MR ARyl V] 4o 4e12

where A is the buckling load. In Reference 146, itis shown that the ratio
of consecutive matrices [K1] /[Ki+ 1] is of the order of Young's Modulus
of the structure. In formulating the stability problem by finite element
methods (see Equation (4-11)), the matrix [A] is an approximation to lf{\]F,
whereas the matrix [B] is an approximation to [I?I.] , to the order of accuracy
F !
of the assumed deflection functions for the element. In the numerical inte-
gration technique @F and [Kp] can be formed exactly using the exact
differential equations. However, it is impractical to form the other matrices.
Inasmuchas the relative magnitudes of these matrices éré known, the follow-
ing solution technqiue has been proposed [157]. Using""Ec‘Luation (4-12), the
stability Equation (4-9) can be cast into the following form:
~ 2 A 3~ ‘ I
{fﬁ]F + x[KI] + A [KH] + A [Km] + -}[A]F =0 (4-13a)
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This equation may be rewritten in the following iterative form

- Mo e 2 e~
{@]F + l_]__.l—-()\.i-l[KI]F’-l_ Kl-l[KII]F T )} [A]F =0 (4-13b)
or
' - )\ —_—N o~
{Klp + 5 o 0] (K13 [Al5 = 0 (4-14)
1

where xi-l is the buckling load estimated in the (i~ 1)st trial;

~ The iteration Equation (4-14) is utilized as follows. As in the deter-
minanf:‘evaluation n}ethod, the pr_ebuckling analysis for the establishment
of the,plfebuckling terms in Equations (4-6) or (4-8) is performed for a
chosen value of the load on the basis of either linear or nonlinear bending
theory. As in the determinant evaluation technique, the reduced prestressed
stiffness matrix of the structure [Kp(ki_l)]F is formed, where in this no-
tation, )“i-l signifies the chosen value of the load. The structure stiffness
matrix, [K,\]F (without the prestress terms), is also formed, for the buck-
liﬁg configuration under éonsideration. The subtraction of these two ma-
tl;iées ’as‘in Equaﬁon (4—714) isolates that part of the prestressed stiffness
matrix which is dependent upon the buckling load. A linear eigenvalue
(Equation (4 14) problem is then formed, and solved for the new value of
the load, Age The iteration sequence converges when A=A g

approaches unity to a desired degree of accuracy. Although this must be

or A /Ay

accomplished for each root desired, satisfactory approximations to higher
foots are also avallable when X /A, 1 reaches unity for one root. This is

due to ‘che fact that the numerical integration technique does not lead to large
matrix equations and, thus, there is com]g)uter storage available for an eigen-
value solution algbi'ithm which provides all the roots of Equation (4-14). In

S

this case, the convenient in-core algorithm used is the Householder [115]
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method. Cohen [117] has shown that the numerical integration formulation
of the stability problém produces real roots. This indicates that the ma-
trices in the linear eigenvalue problem will both be symmetric, and one
will be positive definite. Thus, the applicability of the Householder tech-

nique is assured [115].

The specialization required for the consideration of unsymrrietric' ;
loading as opposed to axisymmetric loading, and nonlinear préBuckling'
analysis as opposed to linear prebuckling analysis, is é,pplicablé to this
method as well as to the determinant evaluation procedure discussed pre-
viously. In.this case, it should be noted that the stiffness matriX'[?g]F<
will not involve coupling of the harmonics, regardless if the load is symmetric
or not.  The [IE;] matrix, however, will be coupled as described pre-
viously. ©. : g

An iteration equation analogous to Equation (4-14) has been pi'ésénted
by Bushnell [138] for establishing the critical load at buckling of shells of
revolution, using a nonlinear prebuckling state ‘and finite differences. This
Equation of Reference 138 may be obtained by rewriting eéiuation (4- 13b)>

as,

LU Xi([KP(Xi,l)]Ff [K]F)} [Blg=0 (4-15)

F
In this case, for convergence )‘i - 0, It should be noted, that in the formu-
lation herein presented, iteration is necessary regardless of whether the
prebuckling ana,ly‘sis is linear or nonlinear. This is due to the fact that the
prestressed stiffness matrix is defined by Equation (4-12), whereas, in
Reference 138 for the case of a linear prebuckling analysis, Equations (4-15)

reduce to Equations (4-11),since the prestressed stiffness matrix is
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approximated as being linear in the eigenvalue. Eithér of Equations (4-14) |
or (4-15) can be employed to obtain a solution to the stability problem, after
few iteration cycles. Examples using Equations (4-14) Wi’ll be presented in ’

Chapter 6.

Many stability problems have a double-loading system. For example,
if a tank with an insulating wall is manufactured at room temperature ‘ancyl
then partly filled with a cryogen, the tank is subjected to a state’ of stress.
If this tank is then accelerated, it is subjected to mechanical loads which
may cause buckling. The effect of the thermayl prestress can easily bé
considered in the analysis, by including it in the rIZ]F and [@1-\1” ma-
trices of Equations (4-14). This will necessitate the solution of twoF;tatic
prestress problems, one with the thermal loads and the other with com-
bined thermal and }‘nechanical loading. Therefore, even for a linear pre-
buckling analysis, for shells subjected to unsymmetric load, the harmonics

~ ,
will couple in the matrix [K]F as adjusted for the thermal effect.
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CHAPTER 5

NATURAL VIBRATIONS

In this chapter, the free vibrations o‘f shells of revolutions from a
stress-free or a prestressed state are analyzed. The results of this
analysis may be applied to esfablish the dynamic response of shells of
revolution subjected to a harmonic exiting force or to any transient load-

ing if the modal approach is to be employed.

Dynamic Equilibrium: The nonlinear équations of motion of shells

of revolution may be obtained from the equilibrium Equations (1-20) by
including the effects of meridional, circumferential, normal, and rotatory
inertia. Thus, we obtain

2

1 e * . pn
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where the () signifies differentiation with respect to time; the load
%
fi(i= 8,9, ) and nonlinear terms fi (i=8,9,¢) are defined in Equations (1-21)

and {1-22) respectively, and

=’J‘ PC(J) ac (5-2)
h
p(C) being the mass density. It is recognized, that generally, if the effect

of rotatory inertia is significant, the effect of shear deformation is not
k2



negligible. However, in this analysis, as in References 113 and 118, the
effect of shear deformation will be neglected. In reinforced shells, the
combined rotatory inerﬁa of the skin and reinforcements may influence the
results even when the effect of shear deformation is negligible. For mono-
coque or sandwich shells, a; = 0 since in these shells, { is measured from
the centroid of their cross—sectiqns. For reinforced or laminated shellg,

the aJ. will all be different from zero.

Utilizing Equations (5-1) and following a procedure analogous to that
presented in Chapter 1, a set of equations analogous to Equations (1-27) but
including the inertia effects may be obtained. If a reinforced or a laminated
shell is to be analyzed, Equations (1-31) or (1-32) may be employed without
any modification. As in Chapter 4, in the case of stability of shells, the
typical shell function denoted by Y will be considered as the sum of its
values Yp, in the pre stre‘ssed equilibrium state and its change due to the

vibrations, Yvelwt. Thus, we have

Y=Y +Y

P v e (5-3)

where i = 4/~1 and w is the circular frequency of vibration.

We shall postulate that the rotations due to the vibrations are small
as compared to unity, and consequently, we shall disregard the terms in-
volving products of these rotations with the stress resultant amplitudes due
to the vibrations. Thus, following a procedure analogous to that described

in Chapter 4, we obtain:
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These equations can be integrated numerically to establish the frequencies
and mode shapes of free vibration of shells of revolution subjected to axisym-
metric or unsymmetric prestress. The numerical integration method has
been employed only in establishing the frequencies of non-prestressed shells
of revolution {112, 113]. A finite difference solution for axisymmetric states

of prestress has been presented in Reference 24.

In the analysis of a reinforced or laminated shell, Equations (4-4) or

(4-5) may be employed without any modification.

In the above equations, the term eiujt has been factored out. Thus,
the solution of these equations will yield the amplitudes of stress resultants
and displacements. It should be noted, that in Equations (5-4, 5) the terms
involving products of rotations due to the prestress and stress resultant
amplitudes due to vibration are retained. It is realized, however, that the
rotations due to the prestress are small as compared to unity, and conse-

quently their products with the stress resultant amplitudes due to vibration
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may be negligible as compared to the stress resultants.

Vibration Under Prestress: For axisymmetric prestress, the pre-

stress terms are of the zeroth harmonic, while the vibrations may involve
any single harmonic of the Fourier components. For non-axisymmetric pre-
stress, the prestress harmonics will couple with the vibration state harmonics
in a fashion analogous to that discussed in Chapter 4 for buckling of shells
subjected to non-axisymmetric loads. Inasmuchas the formulation of the
problem of stability and the problem of vibr#tion under prestfess is similar,
the analysis of the special cases of prestress presented in Chapter 4 is

valid for the analysis of vibrations under prestress. Hence, Equations (4-6)
may be employed for problems involving vibration under axisymmetric pre-
stress, whereas, Equations (4-8) may be employed for problems associated
with vibrations under non-axisymmetric prestress. These equations must
be modified, firstly, by adding to the terms fiB (i=8, o, () the effects of in-

ertia. Thus

fev('n) = feB(n) +w2(a,00(n) -a. 0 (n) + ____sirr;cp [alU(n) - a,f) (n)])

1% 2%
fcpv(n) - fch(n) + w2@ v + a0 (5-6)
fgv(“) - fCB(n) + w(a W) ;]‘;—.[nalU(n)— nachp(n)]) .

Secondly, by adding the following term to Equation (4-6d) for vibrations under
axisymmetric prestress and to Equation (4-8d) for vibrations under non-

axisymmetric prestress
+w2(a1V(n) + aZQe(n)) . (5-7)
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The variables with a subscript B are defined in Equations (4-7) for vibrations
under axisymmetric prestress and are obtained from Equations (2-9) for vi-

brations under unsymmetric prestress.

If 2 reinforced or a laminated shell is to be analyzed, Equations (4-4)

or (4-5) may still be utilized without any modification.

For free vibrations of non-prestressed shells all the terms with a

subscript P, as well as the prestress loads Fi (i=86,®, ) vanish.

Numerical Solutions: The same two methods used for solving stabilitjr

problems will be used in solving vibration problems. Thus in the sequel only

a brief discussion of the application of these two methods will be presented.

Determinant Evaluation Method: In problems of vibration about a

prestressed state, the necessary prestres? terms must first be determined.
This is done by means of the static analysis outlined in Chapter 3, using
either linear or nonlinear theory. A value of the frequency is then assumed,
and the vibration Equations (5-4,5) are utilized to form a stiffness matrix

as in Chapter 4. In the case of vibrations this '""dynamic stiffness matrix"
[146] is a function of frequency. The natural frequencies are established as
the frequencies which render the determinant of the dynamic stiffness matrix
for the structure equal to zero. The techniques of finding these frequencies

are the same as for finding the critical loads at buckling.

Linear Eigenvalue Methods: The two techniques discussed in Chapter
4 for stability are both applicable to the vibration problem. The equations,
corresponding to Equations (4-14), suitable for analyzing vibrations under pre-
stress can be formulated in the following manner. The prestress stiffness
-,
matrix, [Kp] , of the structure, is formed from the static solution for the

F . —
shell subjected to the given prestress. The dynamic stiffness matrix, [KD] ,
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of the structure, is formulated by assuming a value for the frequency and
using the dynamic Equations (5-4, 5). Thus, following the stability formu-
lation as discussed in Chapter 4, we may write

" 2

L) 1i z -~ - _
{[KP]F + oz ([KD(wi_l)]F - [KP]F)} [Alp =0 . (5-8)

These equations may be solved by the eigenvalue solution technique and the

iteration procedure discussed in Chapter 4. It has been shown [113] that

the numerical integration method for solving the vibration problems of

shells of revolution yields real, positive frequencies. This indicates that
'

in Equation (5-8) both ma trices will be symmetric and positive definite.

Thus, the applicability of the Householder technique is assured [115].

It should be noted that Equation (5-8) could be reformulated as follows,
{[K/(wz\)] + o (‘[K/(wz\)] - [K_1)3[a]p =0 (5-9)
D -1 T D Py F-°

In this case, convergence is indicated as wiz—-» 0 while in Equation (5-8) con-

2

-1 b

< s qs 2
vergence is indicated asg w; /w

The advantages of using the Householder technique and of using the
formulations (5-8, 9) over the determinant method were noted in Chepter 4.
Of specific importance in dynamics of shells is the ability to quickly estimate

many frequencies while having completed an iteration solution for only one.

For problems of free vibrations of unprestressed shells of revolution
the static stiffness matrix is used in place of the prestressed stiffness matrix

of the structure. All other operations remain the same.
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Critical Speeds of Rotating Shells: The matrix equations for shell

dynamics, referred to a coordinate system which rotates with the shell asbout

itg axis of revolution with constant velocity, Q, may be cast in the>form

@, (8% +20 Bl (i), + (0], - & Bog@ 1) b}y = {3} (5-20

where {A?F and Eé;] 7 have been defined previously as the incremental displace-
ment vector, and the fixed preload -stiffness matrix respectively, and where
[K;;)]E,is the variable load prestress stiffness matrix including the rotaving
inertia terms of the incremental state. The additional matrices, [1\’/;] 7 and
[3] 7 contain the nonrotating inertis and the Coriolis dynamic effects,
respectively. The dynamic stability of a rotating shell may be investigated by

substituting
0}y = fa)p o™ (5-10)

into Equation (5-10) to obtain

_we[f/f]F{A}F + 21w 0 [13\]F {a}p + ¢ [K,.\P] - [KP;?QQ)]F){A}F = {0} (5-12)

In the presently programmed version of the STARS vibrations program (STARS-2V),
Equation (5-12) is not solved in complete form but rather for special cases.
For the vibration case discussed previously in this chapter, Q = 0, and Equation

(5-12) will reduce to Equation (5-8). The code words FREV and VPRE will then

define the shell as being either stress-free or axisymmetrically prestressed.

For the case of critical speed analysis, w= 0, and Equation (5-12)

reduces %o

([l - [K‘P;\(Qg)]]? ) {a}y = {0} " (5-13)
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In this case the matrix EKRD] F contains the effects of the centrifugal
accelerations on both the prestressed and ircremental deformation states of
the shell. The code words CRSP and PCRS again are used to define the shell

as being initially stress-free or axisymmetrically prestressed (static load).

At the request of NASA (166) a third option is also available wherein
w= £Q. In this case the Coriolis effects are neglected and the‘Eépation

(5-12) reduces to

- [ﬁ]F {8} + (MGl - oF [KP;(QQ)]F) {a}p = {o} (5-14)

The neglect of the Coriolis terms is not a serious violation and is consistent
with the fact that torsional prestress in not allowed in the present programs.
In addition, the effect of the Coriolis terms has been found to decrease for
higher rotational speeds [}67] such as those of interest for the present
analysis. The above option may be utilized to approximate cases in the analysis
of rotating shells wherein some additional dynamic load of unknown description
is causing a "mass perturbation" upon the shell. This perturbation is described
proportionally through the multiplier upon the critical speed, f, and is applied
in whatever harmonic is being investigated for critical speeds. Again the code

words CRSR and PCSR differentiate only between the non-existence or existence

of static preload.
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CHAPTER 6

NUMERICAL EXAMPLES

. In this chapter, solutions using the programs herein documented will be
compared to‘sclutions utilizing other'numerical methods. Comparisons of
solutiqng‘fqpklinear static problems involving axisymmetric and unéymmetric
loading, as well as nonlinear, axisymmetric problems, are availabe in the

literature [99, 102 ] and will not be presented herein.

The first set of problems to be investigated are static stability prob-
lems which will be analyzed by employing the solution technique presented in
Chapter 4. This technique was first applied to problems involving cylinders.
It was established that the technique produced accurate and rapid results
using coarse structural idealizations [157] . Difficulty was not encountered
in predicting load reversals, or obtaining higher eigenvectors)or eigenvectors
which contained many waves within a segment. Thus, it is apparent that it is
the number of integration points in a numerical integration meﬁhod that is
significant, rather than the number of segments. However, compared to finite
element or finite difference methods, the segmentation utilized in the

numerical integration method permits the use of much smaller matrices in the

eigenvalue problem.

Numerical Examples - Problem 1: The first test problem involved the short

cylinder shown in Figure 24, subjected to an axial compressive end-load. The

 problem was chosen using the sizing parameters of Reference 142 to insure a

critical mode shape in which the cross section remains circular (n=0), and

there is only one half-wave along the length of the cylinder (m=1). The
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20 in, R
] }
t=1.0in,
E=1.0x 107 psi, 6.5 in.
V = 0.3
Y

Figure 24 Short End-Loaded Cylinder
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boundary conditions used were classical simple supports, i.e., radial
deformetion was unrestrained until the point of incipient buckling. Tables 1

through 3 show different aspects of the results.

The first table demonstrates the accuracy of the results and the speed of
convergence. As can be seen, only two iterations are necessary for the
prediction of the first root. The second table demonstrates the speed of
convergence to higher eigenvalues due to the additional information obtained in
the current method. For a first trial load value, approximations to higher
eigenvalues are available as well as to the lowest. As can be seen from the
table when the first eigenvalue is obtained, a good approximation is available
for the second eigenvalue and it can be obtained with only one additional
iteration. Although this capability may not be overly important in stability
analysis, it is very useful in free vibration analysis. The third table
demonstrates the various capabilities of the current method with a coarse grid.
As can be seen, no difficulty was encountered in obtaining eigenvalues corres-
ponding to eigenvectors with many waves within a segment. Only two iterations
were used to obtain each value in Table 3, and therefore the values should not
be considered as fully converged. The first entry in the table was used to test

the sensitivity of the method to negative eigenvalues.

The last entry in Table 3 shows that an eigenvector with 15 half-waves in
one segment was calculated correctly. The segment, of course, represents 8
degrees of freedom in the stiffness matrix. To calculate such an eigenvector
correctly would require up to 4 nodes per half-wave in a finite element
idealization. Thus the equivalent degree of freedom requirement would be of the
order of Lx15xh+h = 24k d.0.f. Even in numerical integration the number of
integration points must be kept to a reasonable limit for time considerations.
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Tdb1e l: Buckling of Short Axially ILosded Cylinder

Timoshenko (Ref. 1kg)  Current Method (n=0)
2 Segménts ) Segments
Trisl Tosd |  Result Trial Load~|  Result
1 x 10b 32.45 x 104 | 1 x 10% 30,14 x 10*
32.07 x 10% 32 x 10% 32.09 x 10% | 32 x 10% 32.09 x 10%
Table 2: Short Cylinder Buckling Load Convergence
Timoshenko Current Method (n=0) L Segments
(Ref.1k42) :
lst Root 2nd Root 3rd Root Cumulative
Trial Result Trial Result Trial Result Iterations
1x10% | 32.14x10% | 1x10* | 68.92x10% |  1x10% | 200.18x10% 1
32.07x10% | 32x10% | 32.09x10% | 32x10% | 88.68x10% | 32x10% | 199.20010" 2
88.12x10% 88x10“, 88.2x10% | 88x10% :L9h.12x3.0"t 3
193.43x104 194x10% | 193.6x10% I
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Table 3:

Short Cylinder, High Buckling Loads

Timoshenko (Ref. 142)

Current Method (n=0) 2 Segments

X, = 32.07 x 10"
\= 769.26 x 10%
\,= 1046.86 x 10%
Ag= 1367.21 x 10"
A= 1730.29 x 10"
X, o= 4806 x 10"
Mg = 6920 x 10"
Ajo= 8544 x 10
Ags= 13,350 x 10t
= 16,746 x 104

4

Azs
A= 19,22k x 10

Prediction

% Difference

32.09 x 104 *

771.0 x 10%
1050.1 x 10%
1370.L5 x 10
1750.8 x 10%
5010 x 1o%
7321 x 10
8680 x 10"
14,410 x 10k
17,212 x 104

19,080 x 10%

b

.06
.23
.31
.2k
1.2
L.2
5.8
1.6
7.9
2.8
.75

¥ GStarting trial value was set at 1 x 101" tension.
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From the few test problems for this purpose it was noted that about 10
integration points is a conservatively sufficient number to accurately

describeone half-wave in a prospective eigenvector.

Numerical Exemples - Problem 2: The second test problem involved a large,

ring-stringer eccentrically reinforced cylinder (see Figure 25). The loading
was a fixed internal stabilizing pressure of 31 psi., in combination with a
variable end load. Classical simple support boundary conditions were again
utilized to enable comparison with References 141 and 150. The idealization
used consisted of 20 segments for the whole structure, and 4 segments for the
panel. Comparisons with analytical results for the overall and panel buckling
modes are presented in Tebles 4, 5 and 6. The overall critical mode was found
to be n=0, m=13. Table 4 shows the analytical results for the n=0 calculations,
and it can be seen that for this problem also, the convergence characteristics
are excellent. By the fourth pass, the change fromanticipated to corrected
value of the critical load is only .OOOlT%. A comparison of the STARS-2B
answers from the converged (fourth) pass, for estimates of some of the higher
loads, shows an average difference of .57% (with a maximum of 2.0%) for the
first 11 roots, and an average difference of 2.72% (with a maximum of 10%) for
the first 18 roots, when compared to NASA TND 2960 (Ref. 150). Thus, when the
first root is converged, excellent estimates are avallable for a large number
of the higher roots. Similar results were obtained for the panel modes as
shown in Table 5.  In this case convergence is obtained in two passes, although
this is not verified until the third pass. The answers from References 141 and
150 and the current work, should be close, but do not have to agree exactly,
due to certain theoretical differences in the formulations. Reference 150

uses Ponrell shell theory, while the current effort utilizes a Love-Reissner-
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o Tr fa——et1.55 1.

0.087 In.—. < 2.i5 In.

-

20 In. 0.09 Tn.

.

External Rings

Rings and stringers
are "smeared out™

Ol Ine—e |w—

lfn.

External Stringers

a. Overall Shell

( 1

20 Tn. Ends are simply supported.
Stringers are "smeared out.

1n

— 4o In,

be Panel Shell

Notes:

Loading

1) Compressive end load: N

2) 1Internal stabilizing pressure: 31 psi
Boundary Conditions

1) Ends are simply supported
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Table k:

Overall Buckling of Reinforced Cylinder

14

Root NASA NASA Current Method (20 segments)

No. | m|TIND 2960 [CR 1280|Trial(1x10°) Trialp(6017.0) Trial(5841.0) Trial) (5848.0)
l=crit.| 13| 5848.15| 5842.9|  6017.77 © 5840.9 5848.3 5848.01
2 14| 5877.97} 5872.2|  6073.60 5871.1 5879.6 5879 .22
3 12| 5974.05} 5968.4 6126.76 5972.4 5978.8 5978.56
b 15] 6032.72| 6025.6]  6264.54 6033.L 6043.1 6042.75
5 16| 6290.95] 6281.6 6445.00 6308.4 6315.4 6315.67
6 11| 6301.05] 6293.9 6569 .61 6310.3 6319.6 6319.13
T 17| 6637.3 | 6624.8 6971.53 6683.3 6695 .9 6695.42
8 10| 6898.31] 6888.k4 70L40.98 6923.9 6928.9 6928.68
9 18| 7060.56} ‘TOokLk.1|  TLLB.06 T148.8 7162.6 7162.07
10 191 7552.39| 7530.9| 794%0.50 T691.5 TTOL.T TT0Lk.21
1 9| 7875.4k} T861.1 8023.79 7923.9 7928.1 7927.93
12 20| 8106.50} 8078.8} 957Th.56 8(39.5 8683.2 8681.50
13 21| 87118.03 9821.53 9180.8 921h.h 9213.05
1k 22] 9383.22 10196.41 9492.9 9496 . 4 9496, 2k
15 8| 941%.65| 9393.2| 11002.30 10005 .7 10039.9 10038.53
16 23/10099.1 12008.57 10949.3 10986.6 10985.08
17 24 |10863.3 12010.31 11950.2 11952.7 11952.57
18 2511674 .00 13167.73 12009.9 12051.4 12049.73

n=0 = number of circumferential waves

m = number of longitudinal helf-waves

Results are single precision IBM 360/75
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Teble 5:

Panel Buckling of Reinforced Cylinder

- NASA NASA Current Method (L segments) g
Root No. [m | TND 2960 | CR 1280 T;ia11(1x103) Trialz(5h80.0) Trials(54711.0)
l1=critical 5493.93 596 ';, 54807 5470.3 5470.3
2 6204 .83 | 6182.9 6325.5 6280.9 6281.0
3 10965.00 | 10881.3 1131h.4 11168.0 11168.&
L 18626.90 | 18372.1 | 22557.5 21631.9 21633.7

n=10 = number of circumferential waves
m = number of longitudinal half-waves.

Results are single precision IBM 360/75

Table 6: Buckling of Reinforced Cylinder, Reduction Scheme

Current Method (Guyan reduction 20 segments — L regions) .

Root No. m Trial),(5848.0) no reduction Trialh(58h8.0) reduction | 4 difference
1 13 5848 .01 5848.01 0.0
2 1k 5879 .22 5957 .65 1.3
3 12 5978.56 6280.32 5.0
4 15 6042.75 6546 .69 8.3
5 16 6315.67 7065 .60 11.9
6 1 6319.13 7302.11 -15.5
T 17 6695 .12 7925.6k 18.4
8 10 6928.68 8130.09 17.3
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Kempner accuracy shell theory. Reference 141 on the other hand, while utilizing
basic Love-Reissner theory, does not simplify some Flugge accuracy terms such as
(1 # ¢/R) when applying compatibility between rings or stringers, and the base
shell. In addition, out—of-plane bending and twisting terms of the stiffeners
are included therein.

It should be noted that this problem contains closely spaced eigenvalues
(see Table 4). In the search of haﬁgpnics n =1land n = 2 the eigenvalues were
even more closely spaced. The current method encountered no difficulties in

any of these casges.

The overall shell buckling problem was also run using the matrix
reduction scheme currently in the STARS -2B, -2V programs. The results are
shown in Table 6. As can be seen, reducing the 20 segments to 4 regions does
not affect the lowest root predictions, but does decrease the accuracy of the
estimates for the higher roots. Thus, a consistent Guyan scheme can be used to
analyze problems where idealizetions demand a large number of segments. It is
recognized that this scheme is basically for the reduction of static stiffness
matrices, and other reduction schemes (for modal-eigenvalue problems) should be
studied. However, the results of the current test problem serve to show the
applicability of even the simpler reduction scheme within the accuracy of the

STARS framework.

It is inferesting to qualitatively compare the above convergence-
characteristics with those of BOSOR3 for a similar, stiffened cylihder problem
(Ref. 138). in the STARS-2B stiffened cylinder problem, the analysis was
started With an overall buckling load estimate of 17.1% of the converged
critical load, and in four iterations the successive guesses were within .0001T%
of each other; In the STARS-2B panel problém, the corresponding numbers were
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18.28%, and in three iterations, results were within .0128% of each other. In
a similar stiffened cylinder problem solved with BOSOR3, using 91 finite differ-
ence stations, and starting with a buckling load estimate of 99.5% of the con-
verged critical load, there is no convergence in single precision on the Univac
1108 computer. Use of double precision produced convergence, and after five
iterations the successive guesses are within .00383% of each other. It must
also be noted in the comparison that the STARS-2B technique also provided
excellent estimates to a large number of higher roots, while BOSOR3 found only
the single lowest critical value. The difference in accuracy and speed of
convergence, as well as the results provided (single or many roots) by each of
the methods, is due to two factors. The major difference in the quality of the
results is the fact that the matrices generated by the current numerical
integration procedure are more accurate than those obtained by either finite
differences or the finite element method. The number of roots immediately
avallable is simply the result of using different numerical eigenvalue solution

schemes.

Numerical Examples - Problem 3: As shown in Figure 26, the third stability

problem studied in the present investigation is the PS-9 prolate spheroid,
tested experimentally at the David Taylor Model Basin [153] . For this shell,
a variety of theoretical results are available, and are tabulated in Fig. 26.
The solution of Mushtari and Galimov[iBh} is based on the assumption that many
lobes develop in both the circumferential and meridional directions. As
apparent from the experimental results (n = 3), this is evidently not thé case
for this shell. The error in the theoretical predictions of Reference 153 is
probably due to the assumption that the buckling deformation is confined to a

narrow equatorial band of the shell,
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= 3.25 x lO5 psi.

= ,189"

oad = uniform external

pressure
n=2  n= 3 n=A4

Present Investigation 210.6 | 157.1%, 138.39}, l39.89¢,%§§'%:i* 173.¢
DIMB Experimental Results (Ref. 153) - 137 ’ -
DTMB Theory (Ref. 153) > 197 197 197
Cohen [117] 208.8 (139.3) 138.7 . 17h.0
Kalnins [118] - 139.23 -
Mushtari & Galimov [154] 95.5 psi (no harmonic prediction)

only membrane prestress terms included

membrane prestress and live pressure field terms included
$ predeformation neglected

all consistent nonlinear terms retained

all consistent nonlinear terms retained (prestress matrices calculated with
double precision arithmetic)

Figure 26 Hydrostatically Leaded Prolate Spheroid
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In the present investigation, the effects upon the critical buckling load
of various nonlinear terms in the Equations (4-6, 7) were studied. The first
number in Fig. 26 (%) is the buckling load based on the assumption that
only the membrane prestress terms (NQP’ NcpP) are significant. The
second value (+) is the buckling load based on the inclusion of the pressure
rotation terms (feB, fch, fCB in Eq. (4-3)) but with the assumption that
e{P) - ¢{®) - 0. The third buckling load (#) was calculated by retaining all

o o
nonlinear terms involving pressure or prestress, and neglecting only initial

deformation. The final values of the buckling load, (¥¥) and (¥¥%), are based
on retaining all terms in Equations (L4-6, T7), where the (¥¥*¥) result also
includes the effect of double precision arithmetic in the calculation of the
stiffness matrices. It may be observed that the greatest effect is obtained
from the inclusion of the pressure rotation terms, and that the other effects
are negligible by comparison. This is not surprising in the present problem
since all the load is in the form of pressure, and predeformation (rotation)

is expected to be minimal.

The buckling loads predicted in this investigation and those of Cohen [117]
and Kalnins EllB] are based on numerical integration. They are in excellent
agreement with the experimental results. It is therefore apparent, inasmuchas
the classical buckling load is obtained by experiment, that this prolate
spheroid is not imperfection sensitive. It was expected that the predicted
buckling loads will not be identical due to different assumptions in the
theoretical formulations. Cohen uses Novozhilov [71] shell theory. Notice,
that the number in parentheses given in Fig. 26, is obtained by the use of a
nonlinear prebuckling state. In the present investigation and that of Kalnins
[118] the Love-Reissner [16] shell theory is employed. However, Kalnins

neglected some nonlinear terms, whereas in this investigation all consistent
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terms [100, 137] are retained.

Numerical Examples - Problem t: The last test problem involves the study of the

effects of axisymmetric prestress upon the vibration characteristis of the
spherical cap shown in Figure 27. The present analysis is compared to other
available results in Figure 28. As can be seen, the present STARS-2V results
agree well with the Ebner [169] calculations using the VAIORS [28] program,
except for the n = 0 harmonic where a substantial disagreement is found.
Although Ebner claims qualitative agreement with Reference 170 wherein results
are available for the free vibration of spherical caps with R/h = 100 and an

18° half opening angle, the following comparisons show otherwise:

Ebner STARS -2V Ref. 170 Harmonic
Wo = TG 12135 TEe T o0
qu0= 1.1730 1.15775 1.1907 1
u.yno= ~ L.3kes 1.3325 1.4398 2
ayno= 1.6522 1.6359 1.8166 3
umo= 2.,0629 2.03ke - L

As can be seen above, Ebner's zeroth harmonic frequency is greater than that of
Ref. 170, whereas the frequencies for all the other harmonics are smaller.
Similarly Ebner's ub is greater %han;Ué. Neither of the above two items are
consistent with the present analysis or Ref. 170. A further analysis with the

Cohen program [166] has confirmed the STARS-2V results tabulated above.

The discrepancy in the Ebner calculations may possibly be explained by
erroneous boundary conditions at the apex. Setting all displacements equal to
zero as well as the meridional rotation is satisfactory only for n =2 2, at the
apex. With this boundary condition utilized for n = 0, the STARS-2V program
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yields a value of (ay90)2 = 2.29136. Thus for this problem the apei boundary
~.condition has a substantial effect upon the frequency results. A similar error
was found in the Kalnins [118] buckling analysis of problem 3. However, the

- effect for the buckling load in that problem proved negligible (see previous

discussion and Fig. 26).
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h =1.094 IN.

R =100 IN.
o=20°

£ =10 psi
v=1/3
p=259x10"
A=86

4 g - sec?nd

Fig. 27 Shallow Spherical Cap
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Fig. 28 Variation of Natural Frequencies of Spherical Cap
with Nonlinear Prestress
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APPENDIX A

RESULTANT STRESS-STRAIN RELATIONS FOR STIFFENED SHELLS

One method of obtaining the necessary relationships between str;ess
resultants and strains for eccentrically reinforced shells is based upon an
"equivalent energy'' approach. The energy of the composite system in
terms of stress resultants and strains is equated to the energy of an equiv-

alent orthotropic shell.

The strain energy of a circumferential ring is given by [ 107]

2wr 2nr
o E G, J o
. 2 R 'R 2
Ur fo & —— € dA R —7— ) kep ¥ (a-n)
R

where ER and G R 2are the modulus of elasticity and the shear modulus of

the material from which the ring stiffeners are made,and J_. is the tor-

R
sional constant of the ring stiffeners. We will now distribute the strain

energy of each ring uniformly over one half the panel spacing on each side
of the ring. If the rings are spaced a distance SR apart, the total energy

per panel length in the ¢ direction may be written in the form

SR 21rr° E ) G .- 2';rro

1 R R "R 2
U, = —- €, dA,d0 + —— k dolde
R S'l; {)‘ ~£ &R 2 90 R 2 j(; 10
(A-2)
Assuming that the stiffeners are bonded to the shell and substituting Equation

(1-13) for the total strain, €gr We obtain

'S 2wr
R o E 2 o 2
1 R
ug = o fo fo £T(€eo' Lkg) dA d6+-—7—f op 4[4

R
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This may be rewritten as

S 2nr
R E_A 2 E 2 G, J 2
_1 't RR R R“R
UR-SE£ fo ( z— €0, “FrRORAR e _F0T 7T R "o +“7—ke¢>d9d‘”
(A-3)

where

Similarly, the distributed strain energy per panel length in the © direction

of n meridional stiffeners spaced a distance SS apart (n SS = 2 1rr°) is

given by
. fSR 2Tro(EgAy 2 Eg 2 Gglg ¢
U, = € —ECiAje k +-—I.k + k de d
$S554 b Z o s¥s s “0TZ ST TT2Z 9 ®
(A-4)
The strain energy of the unstiffened shell along a panel length is
. fZ-rrro SR ~
U=3 { o,le, Lk )+0 (e -Ck )
0 0 thickness 0 eo 0 ¢ % 4
of shell
+T -2tk dedpdl A-ba

This expression may be rewritten as

2wr SR ;
U=41 N -M_ k., +N -M k +N -2M .k _\doed
2{ { (6690 050" Tp€o T Mo “eT Tge Ypo_ T Mo ¢% ¢

(A-5b)
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Combining like terms of Equations (A-3), (A-4) and (A-5b) and

using the two-dimensional stress-strain relations, we can obtain

E.h. - ( E, A E.C_ A

o R "R R "R"R
N, = - € + v € + € - k N
e I"’gae”ekp \90 X0 <po> SR eo SR TO

E h - E. A E. C. A
_ (7 8 'S S S°S
N < | - S k.
@ l-vwve(p (ecpo+vcp9€90> * Sqg _‘stpo - 5 ¢ NT§0
N = G hy
e @o @,
3
_E.h E E_ C, A
= e R 'R R "R 'R -
Mg = TH,, 57 o) (Ko tvopkol = 5 ——Xe* —35 . — <o~ Mo
-E ¢h3 Eg Ig Eg Cg Ag
M, = T2V, 5 7o) ( Kyt Vg Kg) - Ss Kot B o, Mt
s Tg G Tg
T T IS e

where (see Figure A-1) and subscripts 6 and @ indicate coordinate directions, and

AR R AS = crosgs-sectional area of the rings and the meridional
stiffeners, respectively;
CR ’ CS = eccentricity of the rings and the meridional stiffeners,

respectively,measured from the reference surface of

the shell (inwards positive);

w
o

moment of inertia of the rings and the meridional stiffeners,

respectively, about the basic shell centroidal axis;
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JR ’ JS = torsional constant of the rings and the meriodional stiffeners,
respectively;
Sp » Sg = spacing of the rings and the meridional stiffeners,

respectively.

Equations (A-é) are the relations between the stress resultants and
the components of strain and curvature for the ring and stringer reinforced
shell. They may be employed in lieu of Equations (1-18) in cases where the
spacing of the ring and stringer reinforcement is such that the s;nearipg, .
technique yields valid results. Equations (A-6) can be rewritten in the

following abreivated form,

No=Ki1€o * Kra€p - C11¥e = Nypg
N¢=K226¢0+K12690—C22 o~ Nro
Nye = X33 Yy 0
Mg=Dyykg + Dk + Cpy€g — Mgy
M= Dyp ky + Dpp kg + Cpp € = Mpy
M(pe= - 2D3, k(pe (A-T)
where
.3
.. Eqh +ERAR o - Egh Egly
11 1--1/(pe Ve(p SR 11 fZ(l—v(peve(p) gR
v E . h
K, = 22 9 -y, E_h°
12 1_V§09 VGQD D - ego 0
) 127 T27 4 7, )
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Notice that inasmuchas the assumption was made in the Lové -Reissner-Kempner
first order theory that Mgoe = - MGqD , from the last of Equations (A-7)it is
implied that k(pe =k chv . From physical intuition, this relation may be
approximate if the effects of the ring and meridional stiffeners are not identical,
that is, the terms GRJR/SR , and GSJS/SS , in the torsional const‘aﬁt D33
are not equal,

Although Equations (A-6) and (A-7) were derived for a ring and
stringer -stiffened shell, they could be extended to other cases by a suitable re-
definition of the coefficients Kij’ Cij and Dij . For example, thSy may be ex-
tended to stiffened sandwich shells with equal or unequal face shééts, or to ring
reinforced shells with corrugated skin in the meridional direction. Equations
for the Kij’ /Cij and Dij coefficients for the aforementioned cases are de-
rived in References 32, 108,

A more general form of the Equations (A-7) for layered media may

also be obtained:

N, =K, € + K._€ C,, kn=C,_k_ - N
0=F11e 12 €g, 14 ko = C15kp = Npg
N, =Ky €y * Kip€q -~ Ciske = Cpsly = Ny
N¢e=K33"’<peo

M= Pr1kotDia kptCracp +Cr5¢9 = Myq
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M =D,k + Dk +C + Cyre, =M
@ 22 ¢ 12 6 1578 25 "¢, T
Mjg= =2Dy3k 4 (A-9)

These equations are derived in Reference 32, They are referred to a
surface about which N 00 is independent of k¢e, and M('o9 is not dependent

upon Y 06 These equations may be employed in cases involving shells with:
o

a) homogeneous, sandwich, or multilayered skin reinforced by waffles
at an arbitrary angle to the 6, ¢ coordinate system ,

b) semi-sandwich shells (skin + corrugations) .
The appropriate expressions for the Kij ’ Cij and Dij coefficients for each

case may be found in Reference 32 ,

For a general isogrid reinforcement Equations (A-9c, f) must be revised

as follows:

N,= K._vY - 20,k
%0 33 'ob 16 “wb
%o ¢ (A-10)

M -2D k +
08 33 g8 T Oy Yoo

The necessary stiffness terms for the B = 30° isogrid can then be defined as

« . Eg . EA b . =~ Egn3 _ BT
L o= 5 1 5
" 6 B v S

ecp)

|

‘ 3
K, = Joge® + Fgt (3[3 D, = Vegtel o EgL (3[3 )
1- v S - -

\)cpe Bep 12(1 che\)ecp) g

186



33

14

oo T

1=y AV

33

187

22

15

(A-11)



APPENDTX B

EQUATTONS FOR A DISCRETE RING

The most consistent method of analyzing shells reinforced with widely spaced
rings is to consider the shell segments and the rings as discrete structural
members subjected to the given external loads and to the required interface
conditions. The theory utilized is an expansion of that due to Cheney [1687] to
include vibrations. The ring centroids and shear centers are allowed to be off-
set, and the ring-shell connection can be eccentric. The necessary ring matrices
for the programs are defined as:

[M] Ring mass matrix (ring coordinates)

{LM} Ring centrifugal acceleration load matrix (global coordinates)
[kR] Ring prestressed stiffness matrix (ring coordinates)
{LR} Ring thermal load matrix (ring coordinates)

[TA] Transformation matrix to attached shell joint and shell global
coordinate system

The ring matrices are first converted to the shell joint and coordinate

system,

N

iF,) = Cemy, < [T, [eg] (7,1 (8} + Doy, ) [7, T [1g] (3-1)

and then stacked appropriately for segment and region joints. The thermal load
matrix is computed on the basis of a linear (radial) thermal distribution for the
ring.

The necessary matrices are presented in detail below:
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where the necessary notation is defined in Figure B-1
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Figure B-1 Discrete Ring Géometry
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APPENDIX C

SPECIAL APEX CONDITIONS

The system of Equations (:1'_2;7«) thtough (1-29), as derived in Chapfer
1, contains a singularitjrﬁ.a;:: ré = “O In o;dgr to eliminat_g tl}iié 'singularity,
and establish a suitable set of equat;ftor;s applicable at the apex we will make
the terms in parentheses in Equations- (1-1l4c, d, f) and (1-121" evaluated-at -
@ = 0 equal to zero , and thus applyiwl.‘.' Hospital' ¢ rule. This may be accom-

plished if the following conditions are satisfied at ¢ = 0

e = 0 o - c-1

The strain displacement relations at a smooth apex may then be written as:

2

_ 1 1 = a.a.la. ,

oo, =T, (Mopt it TINEG Kot g by o v,
| 2

1 Ndal . L
e(P(Po_?-l (v,(p--W)*‘?a.U"e S k(p” Ty “’9.<p
€ Vaegz - WA W k = "1 w )

¢eo— 1'1 0 () (pe 2?1 e'e(p

1
wg = _I'—l(w’(P+V)
o = - L (w, +u) | (c-2)
¢ T ¢

In obtaining the above relations, Equation (1-8) was used to eliminate ro ¢ .
The equilibrium equations at the apex become:

0

N e+2N

o, @6 =
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In a fashion similar to that of Reference 20, - the variables of

(C-3)

Equations (C-2, 3 ) may be expanded in a Fourier series in the 6 direction,

which involve only the part of the series (2-2)'wi-th the primed amplitudes.

Thus from Equations (C-1) and (C~-3) boundary conditions for the different

harmonics are obtained, while from Equéfions (1-27) through (1-29), using

L' Hospital’s rule and the established boundary conditions, the appropriate

differential equations are obtained [ 6 s 8] .

For the axisymmetric case (n=0) the following conditions are ob-

tained from Equations (C-1) through (C-3)

(0) (0)
V=0 Njg = O
(0) ~ (0)
U=20 M =0
@6
(0) (0) (0)
QG = 0 Me = M(P
(0) 0 (0) (0)
2, = Ng = N,
£ 0) . (0) (0) \
Jp= 0 Iy = Q= - {(Nqo Qe)
(0) (0) (0) (0)
Nrp = Nro Mrp = Mo
(0) |
T(pe = 0

(0)

(N(pe%)“’)] =0

(C-4)

Applying these relations and L!'Hospital's rule to the Equation system (1-27)

through (1-29) , we obtain at the apex:
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For the first antisymmetric harmonic (n=1) the following conditions

are obtained from Equations (C-1) through (C-3) [20] .

1
V()

(1)
MB = 0.
M(1)= 0
R4
Lo

4

(1)
N -

(C-6)



Applying these relations, and L'Hopital's rule to the Equations (1-27)

through (1-29) we obtain, at the apex:

(1) (1) (1)
Tod, o _ To U, .
rl Zrl rl
(1) (1) (1)
N o _ To v, Y
r1 21'1 r1
*(1) (1) (1)
T w,
L = 0 I = -..Y_
1'1 1‘1 1'1
(1) (1) (1)
M
Yoo . ; o0 _
T @ Ty
(1) (1)
NG =0 Mcpe =0
(1) | (1), (1) (c-m
M,.=0 J =T
0 o o

For the second harmonic (n=2), the following conditions are obtained from

Equations (C-1) through (C-3) [20] .

(2) ~ (2) (2)
U =0 Ny = N(p
(2) (2) (2)
VvV =0 N(pe = - N(P
(2) (2) (2)
W =0 M, = M¢ [
(2) (2) (2) .
ﬂe =0 M(pe = - M(P
(2)
9p =0 (C-8)
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Applying thesé relations, éndAL' Hopital"s fule, to th‘eA Eé‘lﬁaﬁons' (1-27)
thi'ough (1-29), we obtain, at the apex‘:‘ «
(2)

T
_98%9 _

33 1

(2) \-1 ’ ! .
A\ 2 2) (2)
_r.lﬂ =(K22 - ve(p Kll) 1\§¢[1-v9¢] + NTGD[‘I,-VG(,D]
W(Z)
__’.L =0

r

1

(2) 1
Qg 2 (2) N
—Sp_rl =\ D,, Voo Dy, M¢ '1+Ve<p +,MT¢ =14 60

(2)  (2) (2) @) ’
Ne = N MQOG = - M¢
M(Z) (2) (2) (2)

o= M(p | J(p- J(p
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Finally for the other harmonics (n > 3) the following conditions are obtained

from Equations (C-1) through (C-3)[20] .

(n)

N'(pe = 0

Applying these relations,

(n)
M =0
@
N (n) 0
@
(n) 0
N(—) =
(n)
Me =0
(n)
M(pe = 0

and L' Hopital's rule to the Equatibns (1-27)

through (1-29) we obtain, at the apex:

(n) (n)
T¢e’¢ ) ZnJ(p

1 (3+n2)r1
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- It should be noted that thé nonlinear terms in these equations may be
obtained from Equations (2.9a) and (2.9b). It must be emphasized that the
- above equations are valid only for a smooth apex (sin@ = 0, cos ¢ = 1) .
This method may be employed to obtain the appropriate equations. for more

complex apices. For a non-smooth apex (¢ = g00~=/= 0):

sing = sing_ =+ 0 |
cos @ = COS(pO# 1

Equations (C-5) through (C-11) are utilized in the following manner
in the numerical procedure discussed in Chapter 3. The apex boundary con-
. ditions from Equations (C-4, 6,8, 10) are set in displacement form into the
boundary condition matrix for the structure. The apex Equations (C-5,7,9,1}1)
- are used only in the first step of the Runge-Kutta numerical integration pro-
cedure, when it is applied to the edge r, = 0 of the segment adjacent to the
apgﬁ. In subsequent steps the sets of Equations (1-27) through (1-29) are
employed. This procedure, however, is rather cumbersome, and it will be
used only when the applied loading varies rapidly near the apex. In other
cases, the apex boundary conditions (C-4, 6, 8, 10) may be satisfied at a circle
of a very small but finite value of T, - The results obtained on the basis of

this approximation will be satisfactory at points away from the apex[6 , 8].
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APPENDIX D

CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

The International System of Units (SI) was adopted by the

Eleventh General Conference on Weights and Measures in 1960.

Conversion

factors for the units used in this report are given in the following

table:
U.S. Customary Conversion SI Unit

Physical quantity Unit factor (*) (*%)

Length in. 0.0254 meters (m)

Stress modulus ksi 6.895 x 106 newtons m.eter2
(N/m=)

Stress resultant 1bf/in. 175.1 newtons/meter
(N/m)

Temperature change °F 5/9 Kelvin (K)

i

¥ Multiply value given in U.S. Customary Unit by conversion factor to
obtain equivalent value in SI Units.

*% Prefixes to indicate multiple of units are as follows:

Prefix Multiple
giga (G) 107
mega (M) 106
kilo (k) 100
deci (@) 107t
centi (c) 1072
milli (m) 1073

#U.8. GOVERNMENT PRINTING OFFICE: 1973-739-152/17




NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546

OFF!CIAL BUSINESS

POSTAGE AND FEES PAID o)
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

PENALTY FOR PRIVATE USE $300 SPEC|AL FOURTH'CLASS RATE 4z U.S.MAIL
POSTMASTER : If Undeliverable (Section 158

Postal Manual) Do Not Return

“The aeronautical and space activities of the United States shall be

conducted 5o as to contribute

.. . t0 the expansion of human knowl-

edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACTr OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,

complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a

contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under 2 NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obfained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERO_NAUTICS AND SPACE ADMINISTRATION
' Washington, D.C. 20546



