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ABSTRACT

The work described in this paper is based on the premise that lift-

generated vortex sheets do not necessarily need to roll up. In order to

explore this possibility, two vortex arrays are first designed, which do

not roll up since it is specified that they rotate or translate as a unit

due to their self-induced velocity field. These hypothetical arrays are

then used to represent the vortex sheets shed by lifting wings. When the

span loadings and the inviscid vortex wakes associated with these arrays

are studied theoretically, the postulated motions are found to be unstable

to disturbances; that is, the vortex elements behind a wing that sheds

rotating arrays roll up into several vortices per side, while the wake

behind a wing that sheds a translating array takes on a random or chaotic

character. It is then indicated how these concepts could be applied to

current large aircraft possibly to reduce the wake-vortex hazard.

Introduction

The vortices that trail behind lifting surfaces such as wings and

helicopter rotor blades present undesirable and sometimes hazardous flow

distortions to the lifting surfaces of aircraft entering that airspace.

One solution is simply to avoid the regions occupied by these vortices.

Staff Scientist. Associate Fellow AIAA.
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Alternatively, since it may not always be possible to locate and avoid

vortices, it becomes necessary to change the wake of the vortex generat-

ing aircraft, or the roll performance of the encountering aircraft, or

both, so that acceptably safe flight can be sustained whether or not vor-

tices are encountered. The substantial increase in roll control required

by current small aircraft to fly safely into a vortex of a large aircraft

forces consideration of methods for making vortices less hazardous. Past

attempts to alleviate the vortex hazard include such methods as increased

vortex diffusion by introducing turbulence into the vortex with generators

(such as a wingtip spoiler) 1 by acceleration of an instability,2 or by

shaping the wing to generate a vortex that has a less intense core.3 A

decrease in the lifetime or intensity of the vortices would presumably

reduce the hazardous distance behind the generating aircraft. An accept-

able solution is achieved when the hazardous distance behind the generating

aircraft is commensurate with the distance based on other safety considera-

tions used during landing and takeoff. Naturally, any acceptable vortex

alleviation scheme must also satisfy a number of practical constraints

before the solution is usable. A fairly complete discussion and summary of

the considerable literature on the structure of lift-generated vortices,

the possibilities for their modification, and the effect that a vortex might

have on the motion of an encountering aircraft are given in a recent article

by El-Ramly.4 Papers that relate to the present study are those 3 ,5-1 0 that

investigate theoretically or experimentally the effect of special wing plan-

form shapes or span loading on the vortex structure.

Unlike past efforts, this work is based on the premise that vortex sheets

do not necessarily need to roll up. That is, the rollup of vortex sheets

illustrated in Fig. 1 which usually occurs is assumed to be suppressed here <ig. 1
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by proper design of the span loading on the wing so that a fully-developed

vortex structure does not occur. This concept was developed from the study

described in Ref. 11 wherein an attempt was made to derive criteria that

would indicate the centers of rollup for vortex sheets produced behind

current large aircraft. In the course of that attempt, it occurred to the

author that it might be possible to design vortex sheets that do not roll

up, or at least not into the tightly bound, well organized vortex pairs

typical of span loadings that are approximately elliptical. This paper

first presents the design and theoretical study of two vortex sheets that

should not roll up and then discusses the way in which these conceptual span

loadings might be used to alleviate the aircraft wake vortex hazard of large

aircraft.

Design of Vortex Sheets that do not Roll Up

The design of vortex sheets that should not roll up is accomplished by

specifying that the self-induced motion on every element of the sheet does

not change with time. In order to simplify the design problem, the vortex

sheet is approximated in the so-called Trefftz plane (see Fig. 1) by a flat,

two-dimensional vortex array. Under these circumstances, there are two

velocity distributions (or any combination of them) that enable a vortex

array to move as a unit without changing in shape as time progresses. These

two motions are illustrated in Fig. 2 as uniform motion in rotation and in <g. 2

translation. Consideration is first restricted to the initial motion of

the flat sheets and no specification is made as to the stability of the

motion of the vortex distribution. The two-dimensional point vortices are
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assumed to have their axes nearly alined with the x or streamwise direction

(see Fig. 1 for coordinate system) so that the velocity components at time

t = 0 can to taken as

Vi) = 0 (la)

N YJ Yi for rotation (lb)

t=0 j/i (y-y) w for translation (1c)

where v and w are the velocity components in the y and z directions, y.j is the

strength of the jth vortex, and N is the number of vortices in the array. For

convenience, the vortices are assumed to be spaced uniformly along the y axis

at t = 0. Since the location and velocity are known for every vortex in the

array, and the vortex strengths are unknown, a sequence of equations can be

written using Eqs. (1). The resulting matrix of equations can be inverted

numerically on an electronic computer to yield the strengths of the vortices.

The span-load distribution that corresponds to one of these arrays is found

by summing the vortices from one end or the other, as appropriate, to achieve

tThe use of vortices with artificial viscous cores (as suggested by Chorin

and Bernard 12 and by Kuwahara and Takami13 ) instead of the potential vortices

used here stabilizes and smooths out the vortex motion. It does not alter

the qualitative nature of the solutions, however, if the core radius is less

than the initial vortex spacing. Since the character of these calculations

is not greatly different, the viscous core results are not included.

The subroutine used to invert the matrix is an improved double-precision

linear equation solver developed by Richard T. Medan of the Ames Research

Center.
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realistic loadings. That is, the relationship

Y(y) = -dr(y)/dy (2)

yields

ri+ (Yi+6/2) = 1(y1-6/2 -( (3)

where F(y) is the circulation which is proportional to the span loading and

rF( 1-6/2) is the circulation at the end of the array at which the summa-

tion begins. The circulation F1 is taken as zero if it corresponds to a wing-

tip and to rP if it corresponds to the inboard end of the array. The spacing

of the vortices given by 6 = yi+1 - Yi will be related to the span b through

the number of vortices used to represent the vortex sheet shed by the entire

wing.

Motion of Vortex Arrays

The vortex arrays designed in the previous section will move initially

in either rotation or translation. If the boundary conditions are such that

the array elements are never disturbed and the calculations are free from

numerical error, the arrays would move as specified for an indefinite

period. Since, in practice, flow disturbances will always be present, this

section considers the motion of the elements in the arrays for various span

loadings on wings when the hypothetical flow conditions are not met and the

subsequent time-dependent motion is not uniform. That is, an estimate is

made of the sheet motion downstream of the wing trailing edge under condi-

tions that are not ideal. The purpose of these calculations is to find out

whether the vortex arrays are stable or unstable and whether the sheet rolls

up, breaks up, and how it moves when it is disturbed by certain assumed flow
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nonuniformities. These results will indicate whether rollup has been

eliminated, suppressed, or not appreciably altered when the span loadings

are built around the uniformly rotating and translating arrays derived in

the previous section.

Before presenting the results for the various cases, the method used

to calculate the motion for t > 0 the vortices in the arrays is discussed.

As illustrated in Fig. 1, at t = 0 the vortex sheets are assumed to be flat

(no dihedral) and to lie on the y axis. The semi-infinite length of the

vortices in the x direction (i.e., from the lifting line at x = 0 to x = -)

and the resulting reduction in the induced velocities near x = 0 is ignored.

Any influence of a fuselage, tail, etc. on the vortex motion is also assumed

to be negligible. The expressions used here for the general motion of the

vortices are then those for two-dimensional potential vortices.

Ay. N y.(z. - z.)
v. - - ' 1 (4a)
i At jpi 2 r[( i - yj) 2 + (z i - zj)2]

Az N y.(yi - y.)
w. - - + (4b)

t ji 2n[(y i - y) 2  (Zi _ )2

The locations of the N vortices at an advanced time were found by using

velocity averages over the time increment At. Since the final positions of

the vortices affect the calculated velocities, it was necessary to iterate

about five times for the new locations. In order to obtain an estimate of

any numerical errors that may be growing during a calculation, the Kirchhoff-

Routh path function 14 Wr was monitored, where

Wr N£nr (5)
i=1 j=i+1

and r.. is the distance between the ith and jth vortices. Since Wr should
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remain a constant for a system of potential vortices, the calculations were

terminated when the third significant figure (i.e., plotting accuracy) in Wr

began to be affected by accumulated errors. The first and second moments of

circulation for each side expressed as

y = i YiYi (6a)
1=1 1=1

and

N/2
J = [(Yi - 7 ) 2 + (z - ) 2 ] . i (6b)

i=1

were also monitored to see how they were altered by the sheet motion. Since

the total circulation in the wake is zero, the centroid for the whole array

is at infinity. Hence, the second moment J for each side might vary con-

siderably during a calculation and therefore it is unreliable as an estimate

for the accuracy of the numerical calculations. These techniques and the

dimensionless quantities, T = 4tC /b2 , Y = 2y/b, Z = 2z/b, V = vb/2r ,

W = wb/2r~, and GAM = r(y)/ , were used to generate the results which follow.

Vortex Wakes Consisting of Uniformly Rotating Arrays

Since the array that rotates uniformly consists of vortices all of the

same sign, it can represent the vortex wake shed by only one side of the wing.

A second array identical in all respects but opposite in sign must then be

used to represent the vortex wake shed by the other half of the wing. The

space allowed between the two arrays is arbitrary and that part of the span

has uniform loading at the center line value. Since each array can occupy

part or all of the semispan by allowing the gap to be small or large, the

wing planform, twist, or camber could be considered to be tailored over a

certain percentage of the span to produce a rotating array from each half of
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the wing. That is, a wing tailored 40% would shed a vortex sheet from the

outer 40% of each side of the wing. The strength of each sheet would be

such that it would rotate as a unit if the sheet from the other wingtip did

not interfere. Since the two sides do influence the motion of the arrays,

the motion of one array is first presented in Fig. 3 to illustrate the < . 3

hypothesized character of the vortex motion. Since no disturbances are

present, the vortex array rotates as expected. The results are shown in

Fig. 4 for a case wherein two rotating arrays, opposite of the sign, are Fig. 4

added to form a complete span loading for a wing tailored 90% of its span.

The induced velocities for the vortices or downwash, W = w(y)/U., and the

streamlines for the x = 0 plane are included to illustrate how they differ

from those for an elliptically loaded wing (compare with Fig. 12). It is

seen in Fig. 4c that the two vortex arrays interact enough to destroy the

uniform rotation postulated. If the initial position of a vortex is dis-

placed from the y axis, as shown in Fig. 5, the orderly part of the rotation Fg. 5

is destroyed sooner. In both of these cases, the sheet from a side appar-

ently does not roll up into a single, well-organized vortex; roll up there-

fore appears to have been suppressed but not eliminated by span loadings

built around vortex arrays designed to rotate as a unit. The final disposi-

tion of the vortices shown in Figs. 4c and 5 appears not to be sensitive to

disturbances.

As the gap between the two sheets is increased from 10% of the span,

the two arrays rotate more independently; however, the vorticity is then

concentrated over a smaller part of the span, resulting in more intense

vortex cores. It was thought that the breakup of the sheet might be delayed

further into the wake by specifying a triangular downwash along the wing at

t = 0. As a result, the initial motion was improved slightly but later
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motions were not as orderly as when the two sides were designed independently

of one another.

The induced drag for wings with various amounts of tailoring is pre-

sented in Fig. 6 where the value for an elliptically loaded wing < g. 6

(CD. = C/rr) is used as the reference. An induced drag penalty occurs
1

when these tailored loadings are used if the comparison is made on the basis

of span efficiency. However, Jones 15 has pointed out that the span load dis-

tribution is approximately triangular for maximum efficiency when the lift and

wing root bending moment (rather than span) are held constant. Jones then

suggests that lift efficiency based on span may not always be the proper cri-

teria because loadings other than elliptical may be more desirable if there

are other advantages to a particular loading, such as vortex hazard allevia-

tion and minimum root bending moment.

The tailored span loadings can be achieved by planform shape, by wing

twist or camber, or by the use of flaps. Figure 7 presents the planforms <ig 7

estimated to provide loadings tailored 40% and 90% when the wing is flat.

These shapes were derived by making the local chord of such a length that

the specified loading is obtained in the presence of the local upwash or

downwash and the spanwise transfer of lift is ignored (i.e., strip theory).

In equation form, the chord C(Y) = c(y)/c. is given by

C(Y) = GAM(Y)[At + W(0) (dCL/da)]/[AR + W(Y)(dCL/da)] (7)

where W(Y) = w(y)/U.. The tips of the tailored wings shown in Fig. 7 resemble

the ogee tip design of Ward;3 ,9 this design reduces the velocity in the vortex

cores shed by the tips of helicopter rotor blades in an effort to reduce the

noise.
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When the number of vortices in the array representing a sheet is allowed

to increase indefinitely, the vorticity distribution is given by

y(y) = - [(dP(y)/dy)]= ±(4 o/Tb)[1 - (2y/b) 2 ] 1 / 2  (8a)

and the circulation is
1/2 -1

r(y) = r(-b/2) + (ro/ ) (2y/b) [1 - (2y/b) 2 ] + sin (2y/b) + w/21 (8b)

where r is the total circulation in the sheet. These two functions are notedo

to be the limiting form of the elliptic volume distribution derived by Lamb16

(p. 232) to rotate as a unit, and studied by Kuwahara, and Takami 1 3 using dis-

crete vortices.

The foregoing representation for the rotating array, Eq. (8), can also

be represented by the usual Fourier series representation used in the analy-

sis of span load distributions (e.g., Glauert, 1 7 p. 38) wherein the substitu-

tion y = -(b/2)cos Qis made. The downwash w(y) and circulation r(y) are

usually given in series form as

w() = U sin n (9a)n=1 n sin 6
n= 1

r(o) = 2bU , A sin nO (9b)
n= 1

It is incorrect to assume that a purely linearly varying downwash is obtained

with Eq. (9a) if all terms are zero except A2. The bound circulation r(o)

then consists of only the sin 20 term, which is not enough; that is,

r(y) / 2ro y /1 - (2y/b)2 /rb. The correct series expansion in 0 is obtained

from Eq. (8b) as

r(0) = r(-b/2) + (ro/t) [0 - (sin 20/2)]

which becomes
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() = F(-b/2) + (/2) - s i n 2 6 - 2  C (sin 2ne/n)I (10)
n=1

The solution Eq. (8b) for the rotating array makes it possible to cal-

culate the structure of a fully-developed vortex by Betz' theory in closed

form. By Eq. (17) of Ref. 11, the radius which contains a given amount of

circulation is given by

2rl/b = 1 1 [r(Y) - r)(0)] dY/n[(Yl) - (0o)]

o

or, by Eq. (8b)

1/2 1 3 (Y) F(O (ii)

2r /b = Y - 2ro [(1 - Y2) - 1] 3T [F(Y 1) - (0)]

where Y = 4{y - [1 -(T t/2)](b/2)}/Ttb and Tt is the fraction of the wing that

is tailored. The circulation rv(r ) contained in the vortex at the radius

r is then

r v(rl) = 2(Y 1) (12)

because the vortex sheet rolls up about its center. The center of the vortex

is located at the spanwise location of the center of the tailored wing segment

because that is the centroid of vorticity for a side. The circumferential

velocity is given by

v0 = [rv(rl)/2nrl] (13)

The various results for such a rollup is presented in Fig. 8, where the Fig. 8

velocity components are shown only for the part of the flow field containing

vorticity. Outside of this region, the velocity falls off as l/r.

Vortex Wakes Consisting of Uniformly Translating Arrays

An array of equally spaced vortices on a straight line that is designed

to translate as a unit makes up the wake of a complete span loading, i.e.,
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both sides of the wing. A gap could be designed into the center of the array

to yield a uniformly loaded center section, but this case will not be dis-

cussed here. Hence the only variables to be considered are the number of

vortices and the type of disturbance assumed to perturb the motion of the

arrays. The motion of such a sheet of vortices and the shape of the vortex

Fig. 9lines for an array of 20 vortices are shown in Fig. 9. Presented in Fig. 10 Fig. 10

are the vortex paths when the initial position of a vortex is perturbed a

small amount. The orderly translation of the array is seen to break up

quickly into a random motion that destroys any orderliness of the wake.§

This randomness suggests that the vortex wake behind such a lifting surface

might dissipate rapidly so that it would become nonhazardous at a distance

not too far behind the generating aircraft. The random locations of the

vortices also suggest that the net rolling moment on an encountering aircraft

would be greatly reduced from those cases wherein the vortex system is organ-

ized into an orderly spiral rollup. This seemingly random motion appears to

arise from the fact that two vortices of opposite sign and of unequal magni-

tude form a pair. That combination then moves along a path whose radius of

curvature R is governed by the velocity induced by the two vortices on each

other,

R = d(y -r)/[2(y + yr)]

where d is the distance between the two vortices and y and yr are the

strengths of the left and right vortices, respectively. The orbits of the

various pairs of vortices are also governed by the rest of the vortices in

the wake, but the proximity of any two produces a gross motion that is depen-

dent largely just on the two vortices that have paired off. The magnitude

The use of an artificial viscous core in the vortex structure suppresses

the excursions but the random character persists.
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and type of disturbance influence how the vortices are matched to produce

what appears to be random motion. Since the uniform translating motion was

destroyed by a small perturbation, there is little doubt that disturbances

of sufficient magnitude exist behind the generating aircraft in actual flight

to cause the vortex array to go into the random motion predicted theoretically

if stepped loadings can be generated. An estimate of the induced drag for

these loadings was not made because of the discontinuous character of the

loadings.

In the previous subsection a closed form solution was presented for the

rotating array when the number of vortices N became infinite. A similar

result could not be found for the array that translates as a unit because the

amplitude of the steps in the vortex strengths decreases only slightly as N

increases (see Fig. 11). The transition to an infinite number of vortices <g. 11

apparently does not result in a smooth loading. However, a continuous loading

is achieved if two arrays equal in number and in strength are superimposed

on one another so that one array is offset from the other by one vortex spacing.

The loading is then elliptical with the characteristic downwash velocity being

uniform everywhere except at the two ends, where it is discontinuous. Figure

12 presents the calculations for such a sheet. As expected, rollup proceeds Fig. 12

rapidly and orderly from the wingtips inboard. If an initial disturbance is

given to such an array, the rollup proceeds almost unchanged, illustrating

why it is so hard to break up vortices produced by span loadings that are

nearly elliptical.

Vortex Wakes Using Combinations of Span Loadings

Although advantages may be achieved in reducing the wake vortex hazard

by use of the span loadings introduced in the previous sections, one may ask
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whether the concepts derived can be applied to current aircraft configura-

tions. For example, the exact values needed to generate a uniformly trans-

lating array will be difficult to produce in practice. However, it may be

possible to use leading- and trailing-edge flaps to generate a span loading

that approximates the specified one so that a random motion of the vortices

is still obtained. Also, a large number of elements may not be needed to

produce enough randomness in the wake to render it much less hazardous.

These possibilities are now studied by first combining the two foregoing

special arrays with each other to generate another class of loadings. After

an approximation to the stepped loading is studied, it is then applied to

the span loading of a current aircraft.

Combination of Rotating and Translating Arrays

If the span loading for an array that rotates uniformly is added to one

that translates as a unit, the question arises as to what proportion of each

should be used in the mixture to develop a particular result. Since the

objective is to discover possible practical loadings or vortex wakes that

produce nonhazardous wakes, the combination desired is the one that most

closely approximates current span loadings but yet has the desired properties

of a randomized wake vortex system. Because a stepped loading of large

magnitude and containing many elements is effective but difficult to produce

in practice, the best combination is the one that produces a random wake with

fluctuations in the span loading that are minimal in number and magnitude.

Therefore, a sequence of computer runs were made in which the proportion of

stepped loading (i.e., translating array) was gradually increased until a

somewhat random wake was achieved in the 90% tailored case. Figure 13 pre- Fig 13

sents the case for 40 vortices wherein more than enough of the stepped loading
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has been added to produce an apparently randomized wake in the tailored

loading (rotating array). The steps in the span loading shown are not as

large as the stepped loading by itself. If the number of vortices in the

array is reduced below 40, the magnitude of the steps must be increased.

Sawtooth Loading

The magnitude of the vortex strengths in the array that translates as

a unit have up to now been calculated precisely and used in this form. Since

such precision is difficult to achieve in experiments and since the loading

to a first approximation is simply an elliptic loading plus the loading of

an array of vortices equal in magnitude but alternating in sign, it may be

possible to get the randomizing influence with an array wherein the vortices

are all equal in magnitude but alternate in sign. The span loading and

the vortex motion that result from such an array are presented in Fig. 14. <Fig. 14

As expected, the wake becomes random and rollup does not occur. For conven-

ience, this array (i.e., with vortices equal in magnitude but alternating

in sign) is referred to as sawtooth loading, whereas that of the translating

array is called the stepped loading. Furthermore, randomization of the vor-

tex wake again occurs when a sawtooth loading is added in the same proportion

as the stepped loading to the 90% tailored loading. The proportion of stepped

or sawtooth loading required to randomize the wake vortex system of a given

span loading is not necessarily a well defined amount; rather, the randomness

seems to increase rapidly after the sawtoothing has increased above a certain

amount or fraction of the centerline circulation.
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Combination of Sawtooth with Aircraft Loading

The concepts generated in the previous sections can now be tried on a

span-load distribution typical of current large aircraft. The span load

and resulting motion of the vortices in the wake are illustrated in Fig. 15a Fi. 15a

and b for a landing configuration. Note that fluctuations already exist in Fig. 15b

the loading as a result of the arrangement used for the flaps and pylons

during landing. These built-in variations, however, need to be supplemented

with other spanwise variations to achieve sawtooth loading that is effective

in randomizing the wake. As the proportion of sawtooth loading is increased,

the wake system progresses from an orderly rollup into the somewhat random

system shown in Fig. 16. A greater proportion of sawtoothing and a greater <ig 16

number of segments would of course produce a more chaotic wake. The loading

that can be achieved with a given wing flap system will determine the amount

and the frequency of the sawtooth loading. It will then be necessary to try

various combinations of flap settings to see the kinds of loadings that are

possible and then to calculate the vortex wake to determine which configura-

tion produces the least hazardous wake.

Concluding Remarks

The two hypothetical vortex arrays introduced and studied in this paper

were found not to roll up as postulated, but the motion of individual elements

was found to be unstable to disturbances. The breakup of the uniform rota-

tion of the array first considered leads to a vortex wake that rolls up into

several vortices per side instead of the two well-organized, tightly bound

vortices found behind wings of approximately elliptic loading.
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The random motions of the vortex elements behind a wing that sheds a

disturbed, translating array of vortices suggest that such a wake would

diffuse and decay rapidly when viscosity is present and would produce a

small rolling moment on encountering aircraft. It was found that comparable

results could also be achieved with an array consisting of vortices that are

equal in magnitude but which alternate in sign. This observation indicates

that random motion can probably be achieved with a variety of stepped load-

ings. The addition of these rapidly varying loadings to existing span load-

ings might be a method for reducing the hazard to small aircraft entering the

wake of large aircraft. It remains to be shown with ground-based experiments,

however, that sufficient variations can be generated in the span loadings

with flaps, slats, etc. to produce in the wake the disorganization predicted

theoretically. These results then indicate that the wake behind an aircraft

can be made less hazardous by reducing the gradient in the loading at the

wingtip and by making several rapid changes in the span loading to produce

several vortices that move about somewhat randomly; in this way, the usual

two intense well-organized vortices are avoided.
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FIGURE TITLES

Fig. 1 Schematic diagram of relationship between span loading F(y), vortex

sheet, y(y), Trefftz plane, and final rolled-up vortex for one side.

Fig. 2 Two vortex arrays designed to move as a unit without rolling up.

a) Solid-body rotation; w = Qy.

b) Uniform downward velocity; w = constant.

Fig. 3 Motion of a single vortex array designed to rotate as a unit.

a) Spanwise loading and downwash velocity.

b) Sheet positions as time progresses.

Fig. 4 Flow characteristics for span loading built with two arrays designed

to rotate as a unit; 90% tailored.

a) Spanwise loading and downwash velocity at x = 0.

b) Streamlines in Trefftz plane at x = 0.

c) Oblique view of vortex paths; T = 3.0.
max

Fig. 5 Oblique view of vortex paths when the initial position of the fifth

vortex is displaced 0.02 units for the 90% tailored case shown in

Fig. 4; Tmax = 3.0.

Fig. 6 Induced drag of tailored loadings referred to elliptic loading.

Fig. 7 Estimated planforms of flat, untwisted wings tailored for span

loadings that shed rotating vortex sheets from outer portions of wing

(AR = b 2/area = 6).

a) Loading tailored 40%.

b) Loading tailored 90%.

Fig. 8 Structure of fully-developed vortex for sheet designed to rotate as a

unit according to Betz' theory (see Ref. 11).

a) Loading on right wing.
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b) Circulation as a function of radius in developed vortex.

c) Circumferential velocity in developed vortex.

Fig. 9 Characteristics of span loading built with array designed to trans-

late as a unit.

a) Span loading compared with elliptic loading and downwash velocity

of each vortex in the array.

b) Oblique view of each half of vortex sheet at various times;

T = 3.0.
max

c) Oblique view of shape of vortex lines; Tmax = 3.0.

Fig. 10 Vortex motion of translating array when initial position of fifth vortex

is displaced 0.02 b/2. Note how vortices form pairs that move

along circular paths deviating occasionally to exchange mates;

T =3.0.
max

a) Vortex paths in Trefftz plane.

b) Oblique view of vortex lines.

Fig. 11 Amplitude of steps in loading at centerline of translating array as

a function of the number of vortices in the array.

Fig. 12 Characteristics of span loading obtained by adding two translating

arrays after shifting them one vortex spacing spanwise. This load-

ing quickly approximates elliptic loading as the number of vortices

N as increased.

a) Span loading of the combined translating arrays shown as

stepped curve compared with elliptic loading and velocity of

vortices at x = 0. Note the two vortices at the ends of the

array with greatly different velocities.

b) Streamlines in Trefftz plane at x = 0.

c) Oblique view of vortex paths; T = 3.0.
max
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Fig. 13 Characteristics of span loading obtained by combining a translating

array with a rotating array. Translational velocity = (0.3b/4)x

rotational velocity.

a) Span loading and velocity of vortices at t = 0.

b) Oblique view of vortex paths; T = 3.0.max

Fig. 14 Characteristics of sawtooth loading formed by equal vortices that

alternate in sign.

a) Span loading compared with elliptic loading and downwash velocity

of vortices at t = 0.

b) Oblique view of vortices; T = 3.0.max

Fig. 15 Characteristics of loading typical of current large aircraft in

landing configuration.

a) Vortex array approximation to span loading.

b) Oblique view of vortices; T = 3.0.max

Fig. 16 Characteristic of wake of loading in Fig. 15 when sawtooth array of

Ay = 0.2 r has been added.
o

a) Vortex array approximation to span loading.

b) Oblique view of vortices; Tmax = 2.6.
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