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INTRODUCTION

The Laboratory of Aerospace Biology has made substantial progress

towards the goal of describing a mechanism of inert gas narcosis during

the period covered by this report. Contained in this report are two

articles detailing in vivo experiments currently under way and two

manuscripts prepared since the last status report which will be

submitted for publication.

One very interesting discovery reported herein is that a strain

of mice, genetically altered to increase susceptibility to botulin

poisoning, appears to increase metabolic rate while breathing argon

in contrast to the decrease which we have observed in several animal

species. This phenomenon may be of great significance in the search

for a mechanism of gas narcosis since botulin toxin is known to work

at the synapse. Therefore, it can be inferred that these mice have

a genetically altered synaptic response to both botulin toxin and

narcotic gases, suggesting/that gas narcosis may also involve the

synapse. We intend to pursue such a hypothesis using this strain of

mice, which were made available through a cooperative effort with the

Army Research Office, as a model.
I

A second and on-going study is designed to ascertain whether or

not the metabolic depression we have observed in animals breathing

heavier diluent gases is a function of the degree of narcosis. Using



human subjects breathing either air or a 30% mixture of nitrous oxide

while at rest or during exercise, we are measuring the occurance of

oxygen debt and recovery therefrom as a gauge of metabolic response to

narcosis during a controlled state of body activity. Our preliminary

findings are that nitrous oxide narcosis does not appear to cause

pronounced metabolic depression either at rest or during exercise.

A third keystone finding of the laboratory is detailed in a

manuscript by Dr. Christopher Schatte, which is included in the

appendix of this report. He found that altering the fatty acid

composition of phospholipids in the brain and muscle of mice increased

their resistance to the metabolically depressant effects of argon but

had no effect on pronounced nitrous oxide narcosis. Potentially,

these results suggest that metabolic narcosis is achieved in a

manner different from that of pronounced sensory narcosis.

The second manuscript contained in the appendix is a result of

work done in the Department of Physiology and Biophysics, but not

under the auspices of NASA funds, to which Dr. Schatte was a con-

sultant and author of the manuscript.

In addition to the projects described in this document, David

ClarJtson, a pre-doctoral student in the laboratory, is pursuing his

1
study pf mitochondrial function in the presence of various narcotic

gases which was outlined in the 31 October 1972 Status Report.



BOTULIN SUSCEPTIBILITY AND RESISTANCE TO NARCOSIS:

A PRELIMINARY REPORT

The phenomenon of profound sensory narcosis primarily entails

disruption of central nervous system (CNS) function and, perhaps,

peripheral nerve conduction (1). However, narcotic gases also effect

other cells directly since bacteria (2), fungi (3), and tissue slices (4)

are depressed metabolically in vitro, apart from any neurohumoral or

electrical influence. This laboratory has amply demonstrated that the

metabolic depression seen in vitro occurs also in vivo at atmospheric

pressure and in the absence of any visible CNS aberrations (5,6,7).

But we do not know whether or not the metabolic effects in vivo are

centrally mediated or a direct, non-specific influence of inert gases

on all cells in general.

Our search for a mechanism of gas narcosis is currently centered

on the function of various subcellular components of both neural and

somatic tissues. Examples of these endeavors include: a) the effects

of altered membrane fatty acids on the response to narcotic gases, the

results of which are contained in a manuscript in this status report;

b) the testing of liver mitochondria exposed to anesthetic gases as

described elsewhere in this report; c) the response of isolated synap-

tosomes to nitrogen and argon, reported in the 30 April 1972 status

report.



Because botulin toxin is known to act only on the CNS, probably

at the synapse, we were recently intrigued by a report of Dr. Carl
I

Lamanna of the U.S. Army Office of the Chief of Research and Develop-

ment showing that germ-free mice were significantly more susceptible

to botulin poisoning than normal mice (8). Since it has been postulated

that narcotic gases also act at the synapse, we decided to see whether

or not these mice would respond differently to a narcotic environment.

Methods:

Through the assistance of Dr. Lamanna, we obtained mice from a

genetic strain developed at Fort Dietrick and known to be botulin-

susceptible. The mice were shipped and housed in sanitary but non-

germ-free facilities prior to testing. As a measure of narcotic sus-

ceptibility, we measured the relative change in oxygen consumption

while breathing argon at ambient pressure (630 mm Hg) as compared to

air. The Fort Dietrick mice were tested simultaneously against a group

of Charles Rivers mice raised normally and of similar sex, age and

weight. The chamber system has been described in detail in the 31

October 1972 status report. Twenty-four animals from each group were

acclimatized to chamber conditions for 14 days in air, then exposed

for three days each in air, argon-oxygen (4:1) and air. Chamber

temperatures were maintained between 27 and 29° C, the thermal neutral

range of mice for both nitrogen and argon. Parameters measured were



oxygen and food consumption, weight change and the specific activity of

expired CO after a total injection of 1.2 ml of a 15 uCi/ml con-

centration of sodium acetate-1-^C on the final day of each exposure

period.

Results:

The results are shown in Table 1. The value k represents the slope

of a least squares regression analysis of expired C02 specific activity

as described in the 30 April 1969 status report. The greater the -k

value, the steeper is the slope of the curve. When In (C0-P) is plotted

vs time after injection of the sodium acetate-1- C where Co is the

initial amount of radioactivity in the injected acetate and P is the

amount expired as CĈ . The slope of the curve (-k) is directly

proportional to the rate of catabolism of the injected acetate to

CC>2 and approximates a direct relationship to metabolic rate (9).

The curve in this instance was a plot of yCi/mmole CC>2 expired/uCi

injected versus time (120 minutes). A second but related parameter

is the curve area which represents the integration of the area under

the curve. Both parameters are interpreted on a relative basis and

can show changes either in rate or metabolic pathway.

It can be seen that argon predictably depressed metabolism in the

control animals (Charles Rivers strain). The 5.7% decrease in VO-

was somewhat less than the 10-15% depression we normally find, but the

fact that V02 rose during recovery indicates that it was a valid change.



Table 1. Mean oxygen consumption (VĈ ) in ml per gram body weight

per day; weight change (wt.) in mg per gain body weight per day; food

consumption (food) in mg per gram body weight per day; and the values

for k and curve derived from the specific activity of expired CC^ as

described in the text. The Charles Rivers mice are controls and the

Fort Dietrick mice are the botulin-susceptible strain. Oxygen, food

and weight measurements were made on 24 animals in each group; 14CO-

specific activity data was taken from 12 mice in each group.

Strain

Charles Rivers

Ft. Dietrick

Gas

Air

Ar/02

Air

Air

Ar/02

Air

3.

3.

3.

3.

4.

3.

I9

58

38

49

93

33

84

Wt

8.

-2.

1.

-7.

4.

3.

.

7

1

6

6

7

0

Food

146

114

118

*

*

112

-k(x!03)

14

11

13

11

12

12

.1

.5

.6

.5

.9

.6

Area

88.

68.

81.

84.

102.

89.

6

6

8

5

1

3

* data unavailable



A similar pattern of reduction in argon and partial recovery in air

was observed for all the other parameters. The lack of total recovery

to pre-exposure values reflects the inadequate time period allowed to

re-adapt to nitrogen.

In contrast to the control animals, the botulin-susceptible mice

increased metabolism in argon relative to air. Oxygen consumption in-

creased 10.1% and dropped below pre-exposure levels during recovery.

These animals were losing weight prior to argon exposure, then gained

weight while breathing argon. When re-exposed to air, the rate of weight

gain decreased. Unfortunately, food consumption data on the Ft. Dietrick

mice for two of the measurement periods were lost due to technical

14problems. However, the CO specific activity parameters supported the

oxygen and weight data by showing an increased metabolic rate in argon

with partial return to pre-exposure values during recovery.

Using a smaller chamber system capable of more accurate oxygen

measurements, we obtained an 8.3% increase in V02 during exposure of

the Ft. Dietrick mice to the argon-oxygen mixture, thus confirming

that argon does increase metabolic rate.

Discussions

The exact mechanism of botulin poisoning has not been elucidated

but it is known that neurotransmission at the synapse is affected,

perhaps as the primary locus of activity (8). It appears that this

factor also alters the response to heavy diluent gases. The fact



that the response to exposure to an argon-oxygen mixture in the Ft.

Dietrick mice was exactly opposite to the response normally seen
i

argues that the receptor organ of the genetic change also plays a

crucial role in the mechanism of gas narcosis.

The results present two major implications relative to the search

for a mechanism of action of "inert" gas narcosis. First, the pos-

sibility that a genetic alteration can influence the organism's

response to rare gases, suggests that the mechanism could involve a

specific biochemical reaction rather than a non-specific physical

effect on membranes. This implies that the synapse may indeed be the

primary focus of gas narcosis. Second, it suggests that the influence

of a heavy rare gas such as argon on metabolic rate could be largely

a function of CNS activity rather than a general, non-specific effect

on all tissues. If metabolic depression in argon is CNS-mediated,

it would support the view that metabolic narcosis at atmospheric

pressure is simply a subtle manifestation of the profound sensory

narcosis seen at higher partial pressures.

Because the Fort Dietrick mice offer a potential solution to

several problems in this area, we will continue to use them as a

model system for comparative differences with normal mice. First,

we will perform a more extensive study similar to this one in order

to challenge/confirm the data reported here. Second, to see if their

apparent resistance to narcosis can be extended to profound sensory



narcotic states, the anesthetic endpoint in ̂ 0 as indicated by loss of

the righting reflex will be determined. If protection exists under

such conditions, the concept of a common mechanism for both metabolic

and sensory narcosis will be supported. Third, we will ascertain whether

or not metabolic depression in argon is centrally mediated. This can

be done using hypophysectomized and normal mice injected with a - or

8 - adrenergic blocking agents. If neurohumors or catecholamines play

a major role in narcotic depression of metabolism, the responses should

be altered accordingly by the lack of these hormones. An extension of this

work would involve altering body acetylcholine levels, the main synaptic

transmitter, by the use of antiacetylcholinesterase or reserpine, which

depletes acetylcholine sto.res.

Finally, it is possible that the genetic alteration of the Fort

Dietrick mice is a generalized tissue change. By comparing the metabol-

ism in vitro of brain and liver homogenates from these and normal animals

in the presence of heavy diluent (or narcotizing) gases, the relative

magnitude of a direct tissue effect by rare gases can be studied.

It is likely that no one factor is completely responsible for gas

narcosis, rather that each of those mentioned above plays a part to

one degiree or another. We think that we will be able to quantify the

relative importance of each and thereby identify the most pertinent

aspects from which to develop a method of artificial control of metabolism

using diluent gases of the rare gas family.

10
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OXYGEN UTILIZATION IN THE NARCOTIC STATE

We have reported that rare gases can alter metabolic rate in vivo

(5,6,7) under conditions in which the subjects appear to be in a

"normal" state. Although these gases may cause their effects via a

direct, non-specific effect on all body tissues, it is possible that

metabolic depression in argon, for instance, at a pressure of one

atmosphere is due to central nervous system (CNS) which, in turn,

slows activity and energy requirements. Thus, metabolic depression in

the absence of visible CNS depression may be due to a subtle manifes-

tation of the profound effects such as mental aberrations observable

during sensory narcosis at elevated partial pressures of these gases.

Schatte et al (6) have reported evidence suggesting that inert

gases such as helium and argon can alter the availability or utilization

of oxygen in the cell at atmospheric pressure. The preponderance of

in vivo work, however, suggests that oxygen utilization in the narcotic

state is not reduced other than as a function of body activity (1).

But a recent report by Choteau et al (10) strongly implied that oxygen

availability to the cell was a limiting factor during exposure to nitro-

gen or helium at high pressure. And, Bradley and Dickson (11) observed

a slight but significant decrease in oxygen consumption of men breath-

ing 15 or 30% nitrous oxide both at rest and during exercise. The

sedative-effect of nitrous oxide narcosis at rest would be expected to

12



reduce oxygen needs at rest when compared to air. But the reduced

uptake during exercise, during which the body must be in a similar

state of activity as in air, implies that a direct effect of narcotic

gases may be exerted on oxygen utilization independent of activity

considerations.

Because the data represented possible confirmation of Schatte's

findings and a potential source of information concerning the mechanism

of narcosis, we have begun to make similar tests with the intent of

using relative oxygen debt kinetics as an assay for changes in oxygen

flux while breathing a narcotic gas.

Methods:

The testing entails performance of exercise, incurrence of an

oxygen debt and post-exercise recovery while breathing a narcotic versus

a non-narcotic gas. If oxygen availability or utilization is impaired

during narcosis, it is presumed that a greater oxygen debt will be

required during exercise and a longer period of recovery necessary to

repay it. By measuring oxygen consumption and blood lactate, the

two classic indicators of oxygen debt, a relative measure of aerobic

function both at rest and in a controlled state of activity can be used

to compare the effects of narcosis on oxygen kinetics in vivo.

Six males and two females, between the ages of 21 and 29 are the

subjects. All are non-smokers and untrained, but in comparatively good

athletic fitness. Each are being tested twice within the same week

13



to insure uniformity of fitness and at the same time of day to preclude

possible diurnal effects. Air is used as the non-narcotic gas and a

mixture of 30% N20: 49% N2; 21% 0- as the narcotic one. This percentage

of nitrous oxide gives a mild narcosis which causes some visible mental

effects but allows full motor coordination to perform exercise. The

subjects receive the gases in random order to eliminate pattern effects.

A typical experimental protocol is as follows. The subject begins

at 1000 hours after having refrained from breakfast, weighed and an

oral temperature taken. The test gas is breathed in the supine

position for 25 minutes to insure adequate equilibration in the body

and to allow sufficient time for a true resting condition to be at-

tained. Throughout the experiment, noise protectors with music via

an earphone isolate the subject from extraneous noise and blinders

reduce photic stimuli. Air is breathed from the surroundings and the

mixture delivered from a Douglas bag. The subject breathes through a

modified Otis-McKerrou valve (Warren E. Collins, Co.) into an American

standard wet gas meter. Mixed expired gas is sampled on the exhaust side

of the gas meter, analyses made for oxygen (Servomex paramagnetic) and

C02 (Beckman LB-1 infrared), and recorded on strip chart recorders.

The analyzers are calibrated with standard mixtures containing all com-

ponents of the expired gas. Respiratory rate is taken from a pressure

switch in the mouthpiece and tallied electromechanically. Heart rate

is derived from a standard EKG recording. Data are recorded during

every five minutes of rest, then every minute for the final 5 minutes

14



of rest, 5 minutes of exercise, and the first 10 minutes of recovery,

after which at five minute intervals until return to pre-exercise

values.

Prior to the start of exercise, a 5 ml blood sample is withdrawn

from a superficial vein in the forearm and immediately deproteinized in

cold perchloric acid. Exercise is performed in the supine position on

a Godart constant load bicycle ergometer. Work load is 175 watts for

the males and 100 watts for the females at a rate of 60 rpm. After

5 minutes of exercise, another blood sample is drawn and recovery begun.

Additional blood samples are taken at 5, 10, and 15 minutes of recovery.

Blood lactate is determined enzymatically using the Sigma Lactic

Acid Test. Oxygen consumption, CC>2 production and minute ventilation are

calculated and converted to STPD conditions and corrected for body

weight. Additional parameters include heart rate, respiratory rate,

and respiratory quotient.

Results:

To date, four subjects have been tested. Figures 1 and 2 show

the mean values during rest, exercise, and recovery for oxygen con-

sumption and lactate metabolism. These two parameters are the key

determinants in this study of oxygen utilization. Their absolute values

and the levels at different time periods throughout recovery will be

used as an indication of oxygen utilization and general metabolic ef-

ficiency. The remaining respiratory and cardiovascular data have not

15
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Figure 1. Mean oxygen consumption (tfĈ ) of four subjects during rest,
exercise and recovery while breathing air or 30% nitrous
oxide. The values represent the oxygen consumption per
kilogram body weight for successive five minute measuring
periods.
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Table 2. Mean blood lactate levels immediately prior to exercise and
during recovery while breathing air or a 30% mixture of nitrous
oxide. Each mean represents four subjects.
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been analyzed yet but is expected to reflect a pattern similar to that

of oxygen consumption.

Except during exercise, ̂ 0 depresses mean oxygen consumption

relative to air although the differences are less than 5%. Despite

the general mean depression of V02, the four subjects tested to date

have consumed 6.16% more oxygen during exercise and recovery in ^0

than in air.

Mean lactate levels, considered to be an indicator of anerobic

energy conversion during exercise, indicate that lactate production is

comparatively high during rest and after exercise but declines more

rapidly during recovery than in air. An interpretation of such a change

cannot be made with the present data but it may be pertinent that the

subjects appear to be more narcotic after exercise than before. This

is probably due to greater blood flow and, hence, distribution of N20

during exercise. If this is the case, any effect of narcosis on the

enzymes involved in lactate metabolism might be more pronounced during

recovery and result in a change in- the relationship of recovery levels

to those during pre-exercise rest period when being compared to air.

The slight difference between mean oxygen and lactate values

in air and ̂ 0, a great deal of subject variability and the small

number of subjects tested to date preclude any statistical signifi-

cance between the results in air and 0.

18



Comment:

This project is designed to show whether or not the metabolic de-

pression we have documented in several species breathing heavy diluent

gases at ambient pressure is intensified by a more pronounced degree

of narcosis. In a previous report from this laboratroy (12), in which

the metabolic response of goats to 7 atmospheres of nitrogen was assessed,

the data failed to show any significant depression of metabolic rate

although changes in the relative importance of various pathways may

have occurred. Other reports measuring in vivo cerebral metabolism

indicate no decrease and even an increase in oxygen consumption in the

presence of 70% N20 (13,14). In one exercise study similar in design

to this, Weber et al (15) also showed an increased oxygen consumption

during exercise although the accuracy of the analytical measurements

are questionable. Bradley and Dickson (11) worked human subjects whilst

breathing 30% N 0 and found a slight, consistent and occasionally sig-

nificant decrease of VC^ in ^0.

Although the present results are preliminary, the data suggest

that N 0 may reduce VCU and lactate values slightly but not significant-

ly although it should be remembered that total oxygen consumption is

actually higher in ̂ 0. It would be premature to attempt an interpre-

tation of the results but it seems likely that the increased level

of narcosis is not accompanied by an increased degree of metabolic

alteration relative to the situation in argon at ambient pressure.

19



If the use of 30% N20 does not show a significant change in metab-

olism, a 60% mixture of ̂ 0 will be tested as the maximum degree of

narcosis compatible with the work performance. If narcosis does not

depress metabolism independent of body activity, we expect to see lit-

tle difference between the results in 0, 30, and 60% 0.

20
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A P P E N D I X A

The following paper entitled "Influence of Membrane Composition

on Susceptibility to Narcosis and Oxygen Toxicity" by C.L. Schatte,

J.E. Loader, T.K. Akers and J.P. Jordan will be submitted for publi-

cation in Aerospace Medicine. The work was funded by NASA Grant 06-

002-075 at Colorado State University.
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Grand Forks, North Dakota 58201

24



INFLUENCE OF MEMBRANE COMPOSITION ON SUSCEPTIBILITY

TO NARCOSIS AND OXYGEN TOXICITY

Abstract:

The relative susceptibilities to narcosis and oxygen poisoning

were tested as a function of dietary and membrane fatty acid (MFA)

composition. Mouse pups were fed chow, safflower oil or beef tallow

diets in order to raise or lower MFA unsaturation of brain and muscle.

The degree of unsaturation was substantially lowered in the tallow-

fed mice but unaffected in those fed safflower oil. The depression

of V02 in argon relative to nitrogen was less in mice fed high-fat

diets irrespective of composition but membrane levels of myristate

varied with response to argon. The partial pressure of NO required

for loss of righting reflex was slightly but significantly higher

in oil-fed animals but MFA composition was probably not the cause.

Tallow-fed mice were dramatically protected against and oil-fed

animals susceptible to respiratory distress, convulsion and death

during exposure to hyperoxia. Dietary and MFA influence on narcotic

indices was minimal while diet profoundly affected the response to OHP.

Possible effects of MFA composition on narcosis and oxygen poisoning

are discussed.
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Introduction:

The narcosis resulting from exposure to certain rare gases and

the toxicity of oxygen at high pressure (OHP) entail ionic disturbances

and abnormal CNS function as a primary symptom (3,18). In addition

to CNS effects, both OHP and narcotic gases influence the metabolism

of other tissues in vitro, suggesting a general effect on all cells.

In each case, the evidence suggests that cell and mitochondrial

membranes are major loci at which narcotic gases and oxygen influence

physiological processes (5,6).

Nearly all the theories proposed to explain inert gas narcosis

are based on an interaction of the gas with the non-polar or lipoidal

portion of membranes. Indeed, the best substantiated hypotheses for

narcosis deal with the lipid solubility of the various gases and their

ability to alter membrane function. Such alterations may include ex-

pansion of the membrane lipid bilayer (29), a reduction in membrane

surface tension (9), an increased permeability to cations (2), and

reduction of fatty acid chain motional freedom in relation to surround-

ing molecules (31).

In the case of oxygen poisoning, the reported susceptibility of

membrane fatty acids (MFA) to peroxidation (19), the inhibition of

26



membrane-associated metabolic pathways required for energy supply to

the cell C27) and the physical disintegration of membranes (22) are

documented facts implicating cellular membranes as a central compo-

nent in the toxicity of oxygen at high pressure.

Therefore, it is interesting to know whether or not the compo-

sition of membranes is a factor determining their role in the response

to toxic gases and if changes in composition might alter those re-

sponses. This study was undertaken to test the hypothesis that mem-

brane fatty acid composition, to the extent that it can be influenced

by diet, represents one component controlling the in vivo response

to narcotic gases and OHP.
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Methods and Materials:

Pregnant Sprague-Dawley mice (Horton Laboratories, Oakland, Cal.)

were obtained, taken to term, and the pups immediately placed on one

of three combinations of diet and temperature acclimatization:

A. fed Lab Chow (Ralston Purina) at 18 +_ 1°C

B. fed a safflower oil diet at 5-10°C

C. fed a beef tallow diet at 34-37°C

The compositions of the high fat diets are listed in (Table 1).

Caging and lighting conditions were the same for all groups.

The mothers and pups were placed on the diets immediately after

parturition to insure that the pups would be exposed to the high

fat diets during the maturation of the CNS. The temperatures were

used primarily in conjunction with another experiment but presented

the following considerations to this one. First, acclimatization

temperature is known to alter MFA composition in poikilotherms (20)

and at least that of depot fat in hibernators (11). Mice have been

reported to be poor temperature regulators during the first few

weeks of life and thus may be somewhat poikilothermic during that

time (.16). If ambient temperature did influence membrane compositon

in thi,s work, we anticipated that cold exposure of mice fed diets high

in unsaturated fatty acids would enhance the intended incorporation of

those acids into cellular membranes and vice versa. Second, the
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Table 1. Composition of treatment diets:

A. control, Purina Lab Chow

B. experimental, high in unsaturated fat

43% safflower oil

34% lactalbumin

9% alphacellulose

William Briggs salt mix*

vitamins

C. experimental, high in saturated fat

46% beef tallow

38% lactalbumin

1.5% safflower oil

William Briggs salt mix*

vitamins

"'supplemented with 4 mg/kg Cr++ and 2 mg/kg Se++
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liquid consistency of the safflower oil diet at room temperature

necessitated a lower ambient temperature to solidify and apparently

make it more palatable. Food consumption and growth on the safflower

oil diet was improved at 5°C over that at the 18°C temperature used

in a preliminary experiment.

The pups, that approximated 2:1 female to male in each group

when born, were raised under these conditions for about four months

during which they were tested as follows.

Depression of VO by Argon:

Previous work from this laboratory has shown that substitution

of argon for nitrogen at an ambient pressure of one atmosphere or less

reduces V02 10-15% relative to air (8,28). This criterion of relative

VC>2 depression by argon was used as one measure of susceptibility to

a mildly narcotic environment.

After three months' exposure to the diets, the mice from each

treatment group were exposed in groups of four to air and 80% argon:

20% oxygen at ambient pressure (635 mm Hg.). The chamber system

used has been previously described (8). The sole modification

was the installation of a thermoswitch under the floor which, via

a relay and solenoid valve in the coolant line, maintained chamber

temperature at 20 +_ 0.5°C.

All experiments were performed at the same time of day with

the exposure to air or the argon mixture being done on separate days.
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Exposure period was for four hours; oxygen consumption readings were

taken every five minutes for the final two hours and averaged.

The data for six groups of four mice each within the three

treatment groups were analyzed using a paired t-test comparison

between the VO- in air and argon and interpreted on the basis of a

single-tailed probability.

Loss of Righting Reflex in Nitrous Oxide:

The relative susceptibility to profound narcosis as indicated

by loss of righting relfex was determined by exposure to nitrous

oxide (̂0) at an elevated partial pressure. Testing was done under

the auspices of the Man-in-the-Sea program at the University of

North Dakota. The mice were exposed in pairs inside a glass jar

placed in a hyperbaric chamber (volume - 10 liters). The animals

had been brought to ambient temperature (22°C) for 48 hours prior

to testing. The chamber was flushed with 100% oxygen then compressed

at 30 psi per minute with ̂ 0. During compression, the chamber was

rocked so that the mice had to actively maintain balance inBide the

rolling jar. Loss of righting reflex was taken as the time in minutes

at which the animals could no longer regain a four-point stance.

Including decompression at 30 psi per minute, the entire sequence was

complete in 4-5 minutes. Ambient temperature in all cases rose from

about 26°C to about 31°C during compression. Occasional tremor and

convulsion were observed during decompression.

31



The endpoint in psi was recorded for each animal of all three

groups and analyzed using a one-way analysis of variance and a two-

tailed t-test comparison between the controls and the two experimental

groups.

Time to Respiratory Distress, Convulsion and Death in OHP:

The relative susceptibility to acute oxygen poisoning was tested

during a 300 minute exposure to 100% oxygen at 60 psi. The mice were .

four months old at this time and were brought to ambient temperature

(22°C) 48 hours prior to testing. Eight mice from each treatment

group were simultaneously exposed in a hyperbaric chamber (volume =

1000 liters) fitted with a 24-compartment wood and wirecloth cage

which allowed full view of each individual animal. Compression rate

was 15 psi per minute after which the chamber was flushed at a rate

sufficient to maintain a 0.2% difference between affluent and effluent

oxygen analyses (Servomex paramagnetic oxygen analyzer). Temperature

rose from 21-26°C during the exposure period. Sixteen animals from

each group were tested during two separate exposures.

The number and time in minutes of mice from each group which

incurred respiratory distress, convulsion and death was recorded.

Respiratory distress was regarded as when obvious labored breathing

occurred, presumably due to pulmonary edema and atelectasis. Time

to convulsion was recorded upon full clonic seizure entailing the

mouse's loss of an upright stance. Time to death was taken as the
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last visible respiratory movement.

The data for respiratory distress and convulsion time were

analyzed using a one-way analysis of variance and a two-tailed t-analy-

sis between the controls and the two experimental groups; only a t-test

was applied to the results for death time.

Tissue Lipid Analysis:

The eight mice in each group not used in the OHP experiments

were sacrificed and Folch extracts (12) prepared from the brains and

a segment of abdominal skeletal muscle.

A portion of the total lipid extract from each tissue was

analyzed using silicic acid thin-layer chromatography. Spots were

developed to a plate height of 4 cm. in chloroformrmethanol:water:

acetic acid:65:25:4:1 then to a height of 16 cm. with petroleum ether:

diethyl ether:water:85:20:3. The plates were dried, sprayed with

saturated potassium dichromate in 75% H-SC^, and charred at 180°C

for 45 minutes. Spots were quantitated using a Joyce-Loebl Chromoscan

Densitometer.

The remainder of the total lipid extract was applied to silicic

acid columns and the polar (phospholipid) component eluted with

methanol following elution with chloroform and acetone (26). The

methariol eluate was then hydrolyzed and the fatty acids converted

to their methyl esters (23). Fatty acid methyl esters were analyzed

on a Perkin Elmer gas chromatograph Model 880 equipped with flame
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ionization detector using the following conditions:

column - 6' x 2mm stainless steels with SP-222-PS
(Supelco, Inc., Bellafonte, Penn.)

oven - 200°C

detector - 240°C

injector - 215°C

nitrogen gas flow - 32 ml/minute

Samples were applied in CS^ and peaks identified by comparison

of relative retention times with NIH-D, GLC-60 and RM-3 standard

mixtures (Supelco, Inc.,) and calculation of "carbon number" (36).

The index of unsaturation (IU) was calculated according to

the formula:
a=12

IU = £ (weight percent of fatty acid) (no. double bonds of
k=22 fatty acid)

where a and k are the minimum and maximum chain lengths considered,

respectively.
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Results:

References to the three treatment combinations will be as follows:

A. control - fed Lab Chow at 18°C

B. experimental - fed diet of safflower oil at 5-10°C

C. experimental - fed diet of beef tallow at 34-37°C

Depression of V09 by Argon:

Mean oxygen consumption while breathing argon was significantly

reduced relative to air for all treatment combinations (Table 2). Based

on the relative percentage reduction of VOo in argon, the experimental

treatments appeared to increase resistance to argon, particularly in

the case of treatment C.

It is not clear what effect the temperature component of the

experimental treatments had on the response to argon. The cold-

acclimated mice showed an expected higher VO than the other two groups.

Our previous experience with rats and hamsters has shown that reduc-

tion of VO in argon is greater in animals with higher metabolic rates,

particularly when accelerated by low temperature. Since this was not

the case in the present study, it seems likely that the dietary compo-

nent of the treatments played the more dominant role in determining

the response to argon. Further, the lesser percentage reduction of

VC>2 in argon for both the experimental groups suggests that a high

fat diet, irrespective of degree of unsaturation, modifies the met-

abolic response of mice to a mildly narcotic agent.
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Loss of Righting Reflex in Nitrous Oxide:

The partial pressure of N~0 required to produce narcosis was

increased somewhat by treatment B but unaffected by treatment

C (Table 3). While numerically small, the significant 5.7% increase

in partial pressure of ̂ 0 required to anesthetize the B group suggests

that a diet high in unsaturated fatty acids offers some protection

against narcotic gases.

However, the lack of any influence by treatment C casts some

doubt on the involvement of the diet in protection. It may be

pertinent that the B-treated mice had a higher metabolic rate, as

measured by oxygen consumption, than either the controls or group C,

which had similar metabolic rates. Since hypothermia is known.to

reduce the amount of anesthetic required, it seems reasonable to

suppose that a hypermetabolic animal requires a higher dose of an anes-

thetic agent to attain a given level of narcosis. In view of the fact

that the B mice, with an increased metabolic rate, required more ^0

than the A and C groups, which had the same metabolic rate and loss of

righting reflex endpoint, we feel that the dietary treatment prob-

ably was not responsible for the observed effects.

Susceptibility to Acute Oxygen Poisoning:

The graphical depiction (Figure 1) and statistical analyses

(Table 4) of the results for time to respiratory distress, convulsion

and death during exposure to OHP indicate a clear enhancement of
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Table 3. Mean +_ s.d. pressure of nitrous oxide in pounds per

square inch gauge required to produce loss of righting

reflex. The t analysis was two-tailed. The P value

listed for treatment A refers to the level of signifi-

cance of the F test while those for treatments B and

C represent the significance of the t analysis between

these groups and the controls.

Treatment n PSIG

A 23 38.32 +_ 2.17 8.22 <.001

B 24 40.52^2.05 3.55 <.001

C 24 38.31 + 2.25 .021 NS
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Fig-ure 1. Mean ^s.d. time in minutes to respiratory distress,

convulsion and death during exposure to 100% oxygen at

60 psia. The number in parentheses represents the number

of animals out of 16 showing effects within 300 minutes.

There were no deaths in group C.
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susceptibility by treatment B and protection by treatment C to acute

oxygen toxicity. In every, case except respiratory distress, there

were more B and fewer C mice experiencing the three stages of oxygen

poisoning than controls. In the case of all three parameters, the

B-treated mice had lesser mean times to onset of these symptoms while

the C group had longer times to onset than did controls. Of particular

note was the absence of any deaths in the C mice during the exposure

period.

In addition to these three criteria, it was the opinion of the

observers that both the intensity and duration of convulsions after

the initial episode was greater in the B group and negligible in the

C mice when compared to controls. Thus, the B-treated animals seemed

to convulse violently and almost continually between the onset of

convulsions and death. Conversely, the C group showed a comparative-

ly mild seizure at the onset of convulsions followed by a subdued

appearance; convulsions after the initial episode were rarely ob-

served in this group.

Paradoxically, the C mice exhibited a curious phenomenon at the

beginning of exposure to OHP. Almost immediately upon initiation

of chamber flush with 100% oxygen at ambient pressure, a few of the

mice were seen to undergo a pre-convulsive behavior characterized

by tremors and arching of the back. Only C-treated mice were ob-

served to undergo these tremors. After a few seconds, this behavior
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disappeared and the mice either became apparently normal again or

were slightly more subdued compared to the others.

An interesting finding of these experiments were significant

(P<.05), negative coefficients of regression and correlation between

body and weight and convulsion time. Previous studies (7,15) have

shown no dependence of oxygen poisoning on body weight. Such a

finding here was due to a significantly lower (P<.005) mean weight

of the C mice, coupled with a longer mean convulsion time than con-

trols, of group B. The difference in weights was a result of a

substantial loss in the C animals during the few weeks prior to

testing, probably as a result of a less palatable diet. Since ap-

preciable parametric differences were noted between the controls and

group B, despite no appreciable difference in weight, it seems like-

ly that weight was not the determining factor of the response to

OHP. It is the authors' opinion that factors other than weight pro-

duced the results and that the significant interaction between weight

and convulsion time was peculiar to these particular circumstances

rather than a general phenomenon.

One possible combination of factors other than diet which could

have produced these results should be noted. If oxygen poisoning

is partially dependent on metabolic rate, as has been suggested (27),

then the B mice, with an elevated oxygen consumption, would be ex-

pected to show signs of poisoning sooner than controls, as was the
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case. Further, starvation is known to protect against OHP symp-

toms (13). The loss of weight in the C mice during the weeks prior

to OHP exposure implies that they had a reduced food intake; it is

possible that their resistance to oxygen toxicity may have been a

result of this reduced dietary intake.

Tissue Lipid Analyses:

Tables 5 and 6 show the percentage composition of the major

lipid classes and phospholipid fatty acids for brain and muscle in

mice from each of the treatment groups. The phospholipid fatty

acid composition was considered to reflect MFA composition since

phospholipids form the bulk of membrane lipid and do not exist in

large amounts elsewhere in the cell (1). Thin-layer chromatographic

analysis of the methanol eluate, containing primarily the polar lipid

fraction, indicated that phospholipids comprised most of this fraction

with slight contamination by cholesterol esters.

Based on the analysis of major lipid classes, the high-fat

diets had no major effect on brain lipid distribution but did

increase the relative amounts of triglycerides in muscle. This

influence appeared to be independent of diet fatty acid composition.

Dietary composition did have a major influence on phospholipid

fatty acids but the effects were not consistent. As in the case of

major lipid classes, muscle was altered to a greater extent than

was brain. Both high-fat diets increased the percentage of myristic
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Table 5. Percentage composition of major lipid classes in brain

and muscle from mice in each treatment group. The

analyses represent the pooled tissue from four animals.

Brain Muscle
Lipid Class A B C A B C_

Cholesterol Ester-
Triglyceride*

Fatty Acids

Cholesterol

Monoglycerides

Phospholipids

Origin

12

3

32

14

35

2

.21

.03

.21

.51

.25

.87

10

4

36

14

32

1

.63

.32

.40

.59

.07

.98

13

3

31

16

33

2

.79

.30

.07

.12

.01

.72

86.39 96.13 96.04

- - - - _ _ _ _ _

- - - - - _ _ _ _

12.16 3.87 3.96

1 4C _ _ _ _

Total 99.99 99.99 99.99 100.00 100.00 100.00

*, incomplete separation of these two classes

-, undetected or trace amounts
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Table 6. Percentage composition of fatty acid methyl esters obtained
from the phospholipids of brain and muscle for each of the
treatment groups. The analyses represent the pooled tissues
of four animals. The percentage unsaturation, the index
of unsaturation and the ratio of saturated to unsaturated fatty
acids were calculated only from positively identified acids
of up to chain length C-22.

Methyl Ester

12:0
14:0
15:0
16:0
16:1
17:0
18:0
18:1
18:2
18:3
20:1
unknown
20:4
22:0
unknown
unknown
unknown
9/1 . o
^M- • U

unknown

TOTAL
Total > C-22
percent unsatura-

tion
index of unsatu -

ration
saturated/ unsat-

urated

A

1.40
trace

21.31
1.18
2.36
14.23
13.27

.88
trace
2.06_ _ _

trace
7.30
6.86
2.58_ _ _

26.55

99.98
35.99

17.39

18.27

2.67

Brain

B

.85
23.316
2.54
20.19
1.90_ _ _

12.68
11.52
1.69

1.48
.42

trace
7.93
2.11_ _ _

3.17

10.15

99.99
15.43

16.59

18.70

4.07

C

51.96
.92

15.58
.30

1.06
9.74
8.45
1.02
.40

1.45_ _ _

trace
3.41
1.75
1.12
1.30

1.56

100.02
5.73

11.22

12.24

7.40

A

4.40_ _ _

17.97_ _ _
_ _ _

5.81
5.81
5.02_ _ _

5.81
trace
6.34
4.76
19.21
10.57_ _ _

4--y» Q x> rt
Li d-L-C

14.27

99.97
44.05

22.98

47.02

1.43

Muscle

B

1.50
24.66_ _ _

12.20
1.30
1.50
8.04
5.89

13.11
1.37
1.81_ _ _

1.25
1.00
7.42
5.77
1.86
i 99L , ££
10.10

100.00
26.37

24.73

44.33

1.97

C

.22
55.86
1.47
12.48
.55

1.34
6.51
7.49
1.87

trace
1.07

trace
.49

3.42
1.60_ _ _

.71
•zf.• OD

4.56

100.00
7.23

11.47

14.81

7.08
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acid (14:0) considerably with the greatest increase produced by the

beef tallow regimen. As expected, this highly saturated diet de-

creased the percentage of unsaturated fatty acids, the index of un-

saturation and increased the ratio of saturated to unsaturated fatty

acids in both brain and muscle.

Surprisingly, the indices showed no appreciable difference in

unsaturation of brain or muscle from the B mice relative to control.

With the exception of percent unsaturated fatty acids in muscle, the

B mice apparently had a somewhat greater degree of saturation of

both brain and muscle MFA. Particularly intriguing is the fact that

these animals did not show pronounced increases in C-18 unsaturated

acids despite the fact that safflower oil contains 75% linoleic (18:2)

acid (17). Rather, it appears that the dietary acids were largely

hydrogenated and oxidized to myristate.

Another trend of the high-fat diets was to reduce the relative

percentages of fatty acids with greater retention times than behen-

ate (22:0) or branched chain acids. Using the sum percentage of all

fatty acids beyond C-22, it can be seen that both high-fat diets

decreased the relative amounts of these higher weight acids compared

to control. Since, the relative percentages of these acids as a

group varied inversely with the percentage of myristate (14:0) for

all tissues, it is interesting to speculate that myristic acid may

have been preferentially incorporated into phospholipids at the

expense of the long chain, branched chain and polyunsaturated fatty

acids.
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Discussion:

It has been shown that narcosis and oxygen poisoning involve an

apparent increase in memebrane permeability to cations and that the

CNS symptoms produced by both phenomena can be obviated by pre-treat-

ment with the same cationic detergents or anti-inflammatory agents (4,5)

The fact that a single agent can attenuate the effects of both narcotic

gases and OHP implies that at least one aspect of their etiologies is

common to both. The present data suggest that this common aspect does

not involve membrane fatty acids since changes in MFA had relatively lit-

tle influence on narcotic indices in contrast to a dramatic effect on

susceptibility to oxygen poisoning.

Membrane Fatty Acids and Narcosis:

Based on the proposition that narcosis results from a transient

increase in membrane permeability, factors contributing to increased

membrane permeability might predispose cells to the influence of

narcotic gases. Studies with electron spin labels have shown that

anesthetic gases cause a reduction in vitro of the motional freedom

of fatty acids in phospholipid suspensions (31). Such gases in vivo

cause a loss of K+ and an increased uptake of Na+ by cells (4,24)

which can be interpreted as an increased permeability to these cations.

The liver mitochondria of rats fed a diet deficient in or supplemented

with essential fatty acids are reported to exhibit decreased fatty acid

chain motional freedom with increasing unsaturation (32). Additionally,
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the frequency of oscillation (swelling), largely dependent on the mem-

brane, is slowed. Permeability to cations was not appreciably altered,

although, an increase in the permeability of liposomes to cations has

been reported as a function of increasing degree of unsaturation and

shorter fatty acid chain length (10)• If narcosis does depend on an

increase in cation permeability and such an increase is facilitated by

a high index of unsaturation (IU), animals with highly unsaturated MFA

should be more susceptible to narcosis and vice versa.

Using metabolic rate as an index of mild narcosis at ambient pres-

sure, our data show that the C mice, with a low IU, were protected

somewhat against the depressant effects of argon. The 5% depression of

VO by argon in this group is of biological significance since our past

experience with several species has shown a minimum 10% depression of

VC>2 by argon as typified by the 11% decrease seen in the present controls

(A group). However, the fact that VO- was also depressed to a lesser

degree than control in the B-treated mice (7%) suggests that MFA un-

saturation may not be a primary causative factor of the apparent les-

sened susceptibility to metabolic narcosis.

We cannot be absolutely sure that the lesser depression of V02

by argon in mice fed high-fat diets was caused by a change in MFA

composition. But it is interesting, however, that the most pronounced

change in MFA composition in both experimental groups was a marked

increase in the percentage of myristic acid (14:0) relative to controls.

48



Further, the C mice, with the highest levels of myristate showed the

greatest tolerance to the depressant effects of argon, Accordingly,

the B mice had intermediate levels of this fatty acid and showed an

intermediate degree of V07 depression in argon. The control animals,

with low levels of myristate had the greatest decrease in metabolic

rate while breathing argon. While there is no evidence to suggest that

myristate levels and VC>2 were related, it may be significant that

short chain fatty acids, including myristate, have been reported to

facilitate the metabolic function in vitro of synthetic liposomes (10).

The profound narcosis induced by ̂ 0 was not consistently dependent

on diet composition, either. The small but significantly increased

amount of N20 required to narcotize the B mice, coupled with no

change in narcotic susceptibility of the C mice, suggested that changes

in MFA composition were not a critical factor. This is supported by

the fact that the C mice, which showed a substantial change in MFA

composition were equally susceptible to profound narcosis as were controls

Conversely, the B mice had an MFA composition similar to that of con-

trols but showed an increased tolerance to N20 narcosis. The authors

are thus inclined to discount the apparent protective effect of a highly

unsaturated diet on NO narcosis as recorded in this study. If such an

effect truly exists, it appears to be relatively small even though sta-

tistically significant.

Dietary composition appeared to have some effect on metabolic
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narcosis at ambient pressure but not on profound narcosis at elevated

pressures. The effects observed in argon may have been a result of

changes in MFA composition, primarily the increased levels of myristic

acid, but the relative degree of unsaturation does not appear to be

crucial to membrane function during narcosis.

We conclude that the changes in MFA composition which occurred in

this study do not profoundly alter the response to breathing a narcotic

gas. It is possible that certain fatty acids, the percentages of which

were not altered by their diets, may play an important role in the

mechanism of narcosis. Or, perhaps cholesterol levels and lipid-protein

interactions are more important in membrane function during narcosis.

But it appears that non-specific changes in MFA composition or degree

of unsaturation will not consistantly alter membrane function in the

presence of a narcotic gas.

Fatty Acid Composition and Oxygen Poisoning:

The results suggest a dramatic influence of dietary composition

on relative susceptibility to acute oxygen poisoning. Mice fed a

saturated diet had a lower incidence and severity of respiratory

distress, convulsion and death; those animals which showed these

symptoms had longer mean times to their onset. Conversely, the mice

fed a highly unsaturated diet showed a greater incidence than controls

of convulsion and death with shorter mean times to their onset. The

fact that the response to OHP was completely opposite in the two
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experimental groups relative to controls implies that the divergent

compositions of their diets probably was a major causative agent.

The data do not allow identification of the mechanism by which

dietary composition alters the response to OHP but three possibilities

are pertinent. Wood has presented strong evidence that a block in the

metabolism of the inhibitory neurotransmitter gamma-aminobutyric acid

(GABA) is the primary lesion in oxygen toxicity (35). It had also been

shown that reduced ATP availability is responsible, at least in part,

for the convulsions associated with OHP (27). Since GABA and ATP

metabolism are largely membrane-associated, changes in membrane composition

might differentially influence the response to OHP via a conformational

change in membrane structure. Related to this, the second possibility

centers on the fact that the most OHP-susceptible also had a higher

metabolic rate as evidenced by V0? in nitrogen and argon. Their

increased susceptibility to OHP would have been due to faster depletion

of GABA and ATP because of their high metabolic rate. But the fact

that the C mice, with a metabolic rate similar to control values,

showed a marked difference in OHP susceptibility relative to controls

suggests that some other factor was dominant in the response.

The most plausible explanation is based on the lipid peroxide

theory. Cellular peroxides have been shown in vitro to increase

as a function of MFA unsaturation (19) , oxidize sulfhydryl-containing

amino acids (25), and inhibit certain enzymes (33). However, in vivo
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evidence correlating brain peroxide levels with, severity of oxygen

poisoning is conflicting (34,37). While our results do not prove that

peroxide levels were different among the three treatment groups, it

is tempting to reason that the OHP-resistant C mice might have had lower

peroxide levels as a result of a lower degree of MFA unsaturation.

But the converse was apparently not true since the OHP-susceptible B

mice had a degree of MFA unsaturation similar to that of the controls

indicating that the response to OHP was not based on quantitative

amounts of unsaturated MFAs. It is possible that one or more individual

fatty acids are not quantitatively as important as those located in

other lipid fractions or existing freely in the cell.

The only other comparable work, by Hill and Begin-Heick (14),

indicated that mice fed high-fat diets, regardless of composition, were

more susceptible to OHP toxicity than controls but dietary treatment

was not begun until five weeks of age. Perhaps the discrepency be-

tween our results and theirs was due to the influence of diet in our

mice during the first five weeks of life.

The fact that a-tochopherol can protect against lipid peroxidation

in vitro and against the effects of OHP in vivo (30) suggests an im-

portant role of peroxides in the pathology of oxygen poisoning. Whether

these peroxides are dependent on quantitative amounts of unsaturated

fatty acids, certain key unsaturated acids located within the cell at

critical points, or can be mitigated by the presence of other acids

Ci.e., myristate?) cannot be determined from our data.
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An additional alternative is that MFA composition has no effect

at all on OHP susceptibility. As noted previously, the response to

OHP could have been caused by a potentiating effect of higher metabolic

rate in the B mice and protection by a presumed state of reduced food

intake by the C group. While the authors do not consider these factors

to have been completely responsible for the observed effects, they may

have enhanced the influence of diet and MFA composition on OHP suscepti-

bility. A more detailed investigation of the qualitative and quantita-

tive effects of MFA composition is in progress to delineate their role

and that of peroxides in the etiology of oxygen poisoning.
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A P P E N D I X B

The following paper entitled "The Susceptibility of Altitude-

Acclimatized Mice to Acute Oxygen Toxicity" by Peter Hall, Christopher

L. Schatte and John W. Fitch will be submitted for publication in the

Journal of Applied Physiology. This paper is included because C. Schatte

is an author and consultant although the work was supported by funds .

from the Department of Physiology and Biophysics at Colorado State

University.
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The Susceptibility of Altitude-Acclimatized Mice to Acute

Oxygen Toxicity

Abstract:

The influence of hypoxic acclimatization at altitudes of 0, 5000

and 15,000 feet on acute oxygen poisoning was determined for 300 adult

female mice. After acclimatization periods of 1, 2, 4 and 8 weeks,

the mice were exposed to oxygen at high pressures (OHP) of 4, 6, or 9

ATA and the times to convulsion and death recorded. Statistically

distinguishable differences between parameter means were found only

at an OHP level of 4 ATA. Pre-exposure to hypoxia reduced mean con-

vulsion and death times although this was consistently significant only

at 15,000 feet. Duration of acclimatization tended to increase convul-

sion time, had a mixed effect on death time, and tended to decrease

time between convulsion and death. Body weight did not significantly

influence any parameter. A common effect of hypoxia and hyperoxia on

gamma-aminobutyric acid metabolism was postulated as a possible explana-

tion of the results. It was concluded that altitude effects on oxygen

toxicity are practically significant at altitudes above 5,000 feet, at

OHP levels of 4 ATA of less, and at any duration of acclimatization stud-

ied.
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Introduction:

In addition to the traditional professions of caisson and under-

water work, there has been increasing exposure of humans to oxygen at

high pressure COHP) during the treatment of various diseases, radio-

therapy and sport diving. A substantial number of these people live

at an altitude above sea-level and therefore are acclimatized to a

reduced inspired oxygen tension.

If hypoxic acclimatization prior to a hyperoxic episode alters the

individual's susceptibility to the symptoms of oxygen toxicity, it is

necessary to properly adjust exposure times and OHP levels to maintain

safe operating conditions. Brauer et al (1) have reported that rats

acclimatized to an altitude of 17,400 feet (382 mm Hg) survived the

pulmonary damage attendant with an OHP level of 1.08 ATA more than

three times longer than sea-level controls. But, at seven ATA, the

altitude rats convulsed in half the time of controls.

A further possible interaction between hypoxia and OHP toxicity

is implied by the work of Wood and associates who have demonstrated

that the CNS neuroinhibitory transmitter, gamma-aminobutyric acid (GABA)
.»

is altered by both hypoxia and hyperoxia (3,4).

In both conditions, brain GABA is significantly reduced below

normal and the reduction is reversible, like the effects of hypoxia and

hyperoxia, upon return to air at sea-level. Animals convulsing during

OHP exposure had GABA reductions commensurate with convulsion severity;

prior administration of GABA or its metabolic precursors protected
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against both, convulsions and pulmonary damage

In view of the apparent interaction between hypoxia and OHP, the

present study was undertaken to verify Brauer et al's results at

seven ATA and further investigate any relationship between acclimati-

zation to altitude, duration of acclimatization (DA) and acute toxicity

of oxygen.
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Methods and Materials;

A group of 300 adult female mice (CFW strain, Carworth Farms)

with a mean +^ s.d. weight of 19.34 +_ 1.71 grams were raised at sea-

level, randomly divided into three groups and placed in three chambers

at altitudes of 0 feet (760 mm Hg), 5000 feet (635 mm Hg) and 15,000

feet (437 mm Hg) in air. All were housed under similar conditions of

caging, light cycle, and food (Purina Lab Chow). Once each day, the

chambers were brought to ambient pressure (635 mm Hg) briefly for

servicing. The ranges of chamber temperatures (26-29°C), relative

humidities (19-56%), and CO levels (.06-.19%) were regulated by ad-

justment of gas flow through the chambers.

At intervals of one, two, four and eight weeks, a randomly selected

group of 24 mice was removed from each chamber, weighed, and randomly

divided into three groups of eight animals. These groups were exposed

to OHP at four, six, or nine ATA (60,90,or 135 psia) in a hyperbaric

chamber (volume = 1000 liters) fitted with a 24 compartment wood and

wirecloth cage, which allowed an unobstructed view of all subjects.

All oxygen exposures had eight mice from each of the three altitude

groups, thereby insuring a valid comparison between groups for every

OHP test.

Compression rate was 0.66 ATA per minute and a flow was maintained

through the chamber such that oxygen analyses of the gas entering and

leaving the chamber differed by no more than 0.2% (Servomex paramagnetic

analyzer).
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The time to convulsion was recorded as the time in minutes between

reaching pressure and the onset of full clonic spasm. Time of death

was taken as the time in minutes between reaching pressure and the last

visible respiratory movement.

Each of the parameters was statistically evaluated using a one

way analysis of variance, a pooled correlation design, and a multiple

range test. Additionally, a factorial analysis of variance was used

to determine possible interactions between treatment factors. All

references to statistical significance in this paper represent chance

probabilities of 5% or less (P < .05).
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Results:

Since the Duncan's multiple range test used to analyze differences

between means is somewhat conservative, a least significant difference

evaluation was also made. Consistent with its more liberal tolerances,

the least significant difference method revealed a few more signifi-

cant differences than the multiple range test; but since these ad-

ditional analytical results reinforced the trend indicated with the

multiple range test, we have reported mean differences based on the

latter.

Weight:

Significant mean body weight differences as a function of alti-

tude occurred in one group of eight animals at 1, 2, and 4 weeks;

in each case, one group of sea .level mice weighed more than those at

either altitude. These differences reflected the significant inter-

action between body weight and altitude found for all treatment groups.

The relationship can be described as primarily linear but with a

sizeable quadratic component.

However, there was no clear relationship between body weight

and duration of acclimatization and, of major concern, no significant

correlation with convulsion, death, or convulsion to death times for

any treatment combination. This latter observation suggests that acute
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OHP toxicity is independent of body weight and that altitude-related

effects can be predicted accordingly.

Convulsion Time:

Only at an OHP level of four ATA were any significant differences

in convulsion time observed; at six and nine ATA, convulsion time was

statistically indistinguishable for all treatment combinations. After

two, four and eight weeks, mice living at 15,000 feet showed a signi-

ficantly reduced convulsion time relative to those at 5,000 feet and sea-

level. Except for a pronounced decrease after two weeks at 15,000 feet,

there was a gradual but non-significant improvement in convulsion time

with duration of acclimatization at all altitudes although the least

improvement occurred at 15,000 feet. As might be expected, there was

significant interaction between the OHP level and convulsion time, a

function which was largely linear with a small quadratic component.

The data indicate that convulsion time is dependent primarily on

OHP level and, at four ATA, varies significantly as a function of alti-

tude. While an increasing acclimatization period appears to prolong

convulsion time, there was no significant influence of acclimatization

time on convulsion time.

Death Time:

As with convulsion time, significant differences in mean death time

were observed only at an OHP of four ATA. Acclimatization to 15,000 feet
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significantly reduced death time at two, four, and eight weeks relative

to the other two altitudes. In contrast to CT, there was a significant

decrease in death time after two weeks as compared with one, four, and

eight weeks for altitudes of 0 and 5000 feet; no significant effect

of duration was seen at 15,000 feet.

Although not significant, there was a clear, primarily linear,

interaction between death time and OHP level. Since death time sig-

nificantly correlated with convulsion time at OHP levels of four and

six ATA, it is likely that death time can be predicted as a function of

convulsion time for a given combination of altitude, acclimatization

period and OHP level.

Time Between Convulsion and Death:

This parameter indicates relative susceptibility or resistance to

death following a convulsive episode. As with its determinant para-

meters, convulsion and death times, significant variation in convulsion

to death time occurred only at an OHP level of four ATA. There was,

however, a conflicting pattern of this parameter vs. altitude. At two

weeks, mice raised at 15,000 feet had significantly longer times than

those at lower elevations. But after four weeks, sea-level mice were

significantly more resistant to death after convulsion than those at 5000

or 15,000 feet.

At all three altitudes, an acclimatization period of two weeks

resulted in a significantly longer convulsion to death time than at
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one, four or eight weeks. Significant correlations between convulsion

to death times, convulsion times, and death times were found at OHP levels,

of 60 and 135 psia but only between convulsion to death and death times

at six ATA. There was a strong but non-significant, totally linear,

interaction between decreasing convulsion to death time and increasing

altitude for all treatment combinations. It thus appears that this

parameter is largely a function of convulsion time and death time but that

a predictable relationship between it and altitude might be made.
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Discussion:

The data suggest that acclimatization to low ox/gen tensions prior

to OHP exposure can enhance susceptibility of mice to convulsions and

death depending on the OHP level to which the animal is exposed (Figure 1)

Of the three levels tested in this study, the effects of altitude acclim-

atization were discernible only at four ATA (Figure 2). The statisti-

cally insignificant results at six and nine ATA were probably due to at

least two factors. First, the comparatively small time intervals to con-

vulsion and death made accurate observations under the test conditions

more difficult. Both observers expressed lesser confidence in their

results at six and nine ATA, particularly the latter than at four ATA.

Thus, lack of any significant differences at the two higher OHP levels

may have been due, at least in part, to lesser accuracy and precision.

More likely, though, is the second factor of a possible reduced

range of biological variation at higher levels of OHP. If one views

the symptoms of oxygen poisoning as a combination of a short-term

physical component and a longer-term biochemical one, it could be

postulated that the relative contribution of these two factors might

vary as a function of OHP level. If the level is relatively low

(<_ four ATA), convulsions may result from the development of biochemical

lesions causing a reduction of certain CNS metabolites and pulmonary

damage. Such biochemical lesions might be the principle focus of any

influence exerted by altitude acclimatization. Conversely, if the OHP

level is high enough (<_ six ATA) that the physical cause of convulsions,
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Figure 1
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Figure 2. Graph of mean convulsion (CT), death (DT) and convulsion to

death (CDT) times as a function of oxygen pressure (psia) for

mice acclimatized eight weeks at sea level, 5000, or 15,000

CT feet.
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perhaps an abnormal ionic distribution across the neuronal membrane,

were effected without appreciable biochemical involvement, altitude

acclimatization or other such treatment probably would have little ef-

fect. It is the authors1 opinion that this is a possible explanation

for the present results and that the effects of altitude acclimatization

are of practical significance at four ATA or less.

It is pertinent to note that Brauer et al (3.) did observe a

statistically significant reduction in the convulsion time of rats

acclimatized to 17,400 feet for eight weeks and exposed to an OHP level

of seven ATA. Their results' are not consistent with ours at a similar

OHP level but might be attributable to a greater influence of hypoxia

on rats than on mice. These investigators also reported that hypoxic

acclimatization did protect against the pulmonary lesions caused by

OHP at 1.08 ATA oxygen in nitrogen as compared to sea-level controls.

This is a reversal of the influence of hypoxia observed by them and us

at higher OHP levels but is consistent with the presumed locus of hypoxic

influence being primarily biochemical in nature.

Considering our results for duration of acclimatization, there

was a general tendency for convulsion time to increase, no clear pattern

for death time and a decrease in convulsion to death time with time

duration of acclimatization (Figure 3). A marked decrease in convulsion

time after two weeks at 15,000 feet coupled with little change in death

time produced a high convulsion to death time. At 5000 feet altitude,

all three parameters were notably higher after two weeks than at one or
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Figure 3. Graphs of mean convulsion (CT), death (DT) and convulsion to
death (CDT) times of mice acclimatized to sea level, 5000 or
15,000 feet for one, two, four or eight weeks. Values are
results from exposure to 60 psia oxygen.
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four weeks duration. The sea-level mice showed a similar peak at the

second and fourth weeks for death time and convulsion to death time while

convulsion time increased almost linearly throughout the acclimatization

period. The tendency towards a pronounced change in these parameters

after about two week's exposure to a given altitude may result from the

occurrence of a critical phase in hypoxic adaptation at that time.

However, since sea-level control values underwent similar fluctuations,

these peculiar results may have been artefacts. It is possible, too,

that acclimation to factors other than hypoxia, which are inherent to

a closed environment, may have produced the peculiar results after two

weeks. In any case, it is our opinion that the data do not offer a clear

relationship between duration of acclimatization, convulsion time, and

death time upon which accurate predictions for a given treatment com-

bination could be made.

Neither does the data reflect a mechanism by which acclimatization

to hypoxia might increase susceptibility to OHP-induced convulsions

and death. Nevertheless, the concept of impaired GABA metabolism is

consistent with the results. Hypoxia has been shown to lower brain

GABA levels (4) as does exposure to OHP both prior to and following

convulsions C2,3). Although the reduction of CNS GABA levels in vivo

has not been proven as the primary biochemical event in oxygen poisoning,

such a suggestion is supported by the fact that treatment with GABA

prior to OHP exposure prevents convulsions and pulmonary damage (2)•

It is reasonable, then, to hypothesize that a reduction of GABA by
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hypoxic acclimatization might increase susceptibility to oxygen toxici-

ty by eliminating some of the chemical protection against OHP; the

further reduction by OHP of GABA to the convulsion threshold level could

thus be accomplished more quickly.

The present data suggest that the hypoxic effect is not consistently

significant at an altitude of 5000 feet but becomes so on or before

reaching 15,000 feet. At higher elevations, the pre-disposition toward

OHP-induced convulsions and death is significantly apparent in both mice

and rats (1) when compared to sea-level. The duration of hypoxic ex-

posure does not seem to be as important as the degree in regard to sever-

ity of OHP symptoms; nevertheless, increasing duration of exposure did

appear to decrease the effects of altitude on convulsions but not death

in the present study.

These findings have practical implications for hyperoxic therapy

in disease, underwater diving and any circumstances in which a resident

at altitude becomes exposed to oxygen at elevated partial pressures.

The altitude factor may be even more important if other conditions which

predispose an individual to oxygen poisoning (exercise, hypercapnia,

high temperature, drugs) are present. In such a set of circumstances,

it might be necessary to reduce the maximum allowable OHP level and

exposure duration to it on the premise that the predisposing factors

are synergistic in their effect.

Finally, this study and the work of Brauer et al(l) show that

the influence of hypoxic acclimatization offers protection against
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lung damage at an OHP of about one atmosphere but predisposes an animal

to convulsions at four ATA and above. Further work is required to de-

lineate the nature of these two mechanisms and the optimum level of

OHP at which hypoxic acclimatization ceases to be protective and becomes

detrimental during OHP exposure.
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