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RADIOLYTIC PREPARATION OF ANHYDROUS TIMID CHLORIDE

by Warren H. Philipp and Stanley J. Marsik

Lewis Research Center

SUMMARY

Anhydrous tin(II) chloride (SnCl2) is prepared by radiolysis with high energy elec-
trons of a tin(IV) chloride (SnClJ solution in heptane. The SnCl^ is reduced to insoluble
SnCU. The energy yield, GfSnCln), molecules of SnCln produced per 100 electron volts,
increases with SnCl* concentration from 1. 6 at 0.15 molar SnCl. to 3.1 at 3. 0 molar
SnCl4. Other parameters such as temperature (0° and 20° C), total dose (0.10 to 0.20
coulomb) and beam current (5 to 20 /uA) have little influence on G(SnCl2). The method
may be used to prepare other metal halides if the higher valence, more covalent metal
halide is soluble in aliphatic hydrocarbons and the lower more ionic metal halide is
insoluble.

The reaction mechanism is discussed; the radiolysis of both heptane and SnCl* is
involved. At high SnCl.. concentration G(SnCl0) appears to be limited by the yield of
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SnCl, radicals.

INTRODUCTION

For several years our interest has been directed toward the use of radiation (e. g.,
high energy electrons from a linear accelerator) in preparative chemistry. Because of
the broad scope of this field we have recently published a review concerning possible
applications of radiation to preparative chemistry (ref. 1). One particularly useful and
interesting application of radiation chemistry discussed in this review is the synthesis of
anhydrous lower valence metal halides; it involves the radiolysis of a solution of the
higher valence metal halide in an appropriate organic liquid. One such preparation (refs.
1 and 2) that resulted in a good yield of high purity product was the deposition of iron (II)
chloride by irradiation with high-energy electrons of an iron(III) chloride solution in tetra-
hydrofuran. Another example is the preparation of copper (I) bromide by radiolytic re-
duction of a solution of copper(II) bromide in 1-butanol (ref. 2). Because of the impor-
tance of anhydrous metal halides in a number of industrial applications, such as the use



of divalent tin halides in electric arc lamps (ref. 3) and because of the interest in the
lower valence halides of titanium as catalysts for the polymerization of unsaturated mon-
omers (ref. 4), we have explored in some detail a radiolytic method that may be applied
to the synthesis of these halides.

Presented in this report is a systematic study of the preparation of anhydrous tin(IT)
chloride; it involves the radiolytic reduction of tin(IV) chloride in heptane solution. Be-
cause of the lesser covalent character of the lower oxidation state tin halide, tin(II) chlo-
ride is insoluble in the hydrocarbon and is easily removed as a precipitate. Characteris-
tic of the pure heptane-tin (IV) chloride system is that it contains no combined oxygen.
Also, these solutions are self-dehydrating, in that small amounts of water which may be
present are removed by hydrolysis of the tin(IV) chloride with the formation of an in-
soluble hydrolysis product. This undesired product may be conveniently removed by
centrifugation and decantation before the radiolysis is begun. These inherent properties
of the system lend themselves to the synthesis of oxygen free anhydrous tin(II) chloride.

The effect of temperature, total dose, dose rate, and tin(IV) chloride concentration
on tin(II) chloride is presented. Of these parameters only the tin(IV) chloride concentra-
tion is found to have a significant effect on product yield. This dependence forms the
basis for the discussion of the mechanism proposed for the process. In addition, the tin
(II) chloride purity and comments as to causes of product contamination are given. The
final section deals with the application of the method to the synthesis of metal halides
other than tin(n) chloride.

EXPERIMENTAL

A good grade of commercial heptane (boiling point, 96° to 97° C) stored over
Drierite was used to prepare the SnCl4 solutions (0.15 to 3. 0 M). These solutions were
made by adding a known amount of anhydrous, fuming (certified) SnCl, to heptane in an
Erlenmeyer flask containing a magnetic stirrer. The flask was immediately stoppered,
and the mixture was stirred for several minutes to effect solution. The solution was
then centrifuged to remove small amounts of insoluble material such as may be formed
due to the hydrolysis of the SnCl4. The clear liquid, total volume 500 milliliters, was
decanted into the reaction vessel (fig. 1).

For irradiation 2-million-electron-volt electrons from a Dynamitron accelerator
were used (ref. 5). For most experiments a beam current of 20 microamperes and a
total dose of 0.15 coulomb were used. The reaction vessel and general procedure are
described in more detail in earlier reports (e. g., ref. 6). To summarize, the solution
was agitated during irradiation by passing an unreactive gas such as argon through a
glass frit at the base of the reaction vessel. The contents of the vessel were maintained
at 20° or 0° C during irradiation by immersing the vessel in a thermostatically con-



trolled alcohol-water bath.
After irradiation the precipitated SnCU (about 10 to 20 g) was removed by centri-

fuging and decanting the heptane containing unreacted SnCl, in solution. The SnCl0 was
" £t

washed twice with hot toluene and filtered on a sintered glass filter. Because of the
sensitivity of the freshly prepared SnCl2 to atmospheric oxidation and its hydroscopic
nature, the SnCl0 in the filter was not allowed to dry; instead the SnCl9, still wet with

" Otoluene, was transferred to a drying tube and dried in vacuum at 100 C for about
10 hours. The dried SnCl- was then transferred as quickly as possible to a stoppered
weighing bottle, weighed, and analyzed immediately. The product was analyzed by both
X-ray diffraction and iodometry.

RESULTS AND DISCUSSION

Purity of SnCK

X-Ray diffraction of the SnCU samples indicated the presence of only anhydrous
SnCL,. The iodometric equivalent of the SnCl2 ranged from 97. 1 to 99. 4 percent (table I);
the major impurity content probably arose from the unreacted SnCL in solution re-
maining adsorbed on the SnCU precipitate. When the final concentration of the SnCl,
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was low (0. 5 mole /liter) the iodometric equivalent of the product corresponded to a
purity of at least 99 percent SnCU. Contamination of the SnCU increased as more con-
centrated SnCl^ solutions were used at the same total dose. At the maximum initial

concentration of 3.0 moles per liter (shown in table I), the iodometric equivalent
corresponded to only 97. 1 percent SnCU. Moreover, the observed darkening of the hot
toluene used to wash the product is indicative of a Friedel- Crafts reaction product. This
product probably originated from the reaction of hot toluene with unused SnCl, adsorbed
on the freshly precipitated SnCln. In these cases a pink discoloration persisted in the
final product after the vacuum drying operation. It is believed that this colored impurity
is a major contaminant of the final SnCl,, product. It is suggested that, to eliminate this
contamination, the removal of SnCl4 on the SnCU precipitate be accomplished by reflux-
ing with an aliphatic hydrocarbon (heptane) instead of by washing with hot toluene.

Yield of SnCl2

As shown in table I, G(SnCln) increases with SnCl, concentration, reaching the high-
est value of 3.1 molecules per 100 electron volts at the highest SnCl. concentration (3. 0
mole/liter) used. Essentially no effect of total dose (0.10 to 0. 20 coulomb) and beam
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current ^5 to 20 jjA) on energy yield, G(SnCl2), was observed; thus, these results are
not tabulated. A slight increase in G(SnCl2) was noticed when the irradiation was done
at 0° C instead of at 20° C (table I).

As shown in table I the yield G(SnCl2) doubles for a twentyfold increase from 0.15 to
3. 0 molar initial concentration of SnCl,. A more convenient representation of these data
is given in figure 2, which shows an almost linear relation between G(SnCl2) and the
square root of the average SnCl^ concentration. Because a significant proportion of the
SnCl*, especially in the more dilute SnCl4 solutions, is used up in the formation of
SnCl2, average concentrations instead of initial concentrations are a truer presentation
of the data.

Reaction Mechanism

To understand the reaction processes involved in the radiolytic deposition of SnCU
from SnCl. in heptane solution, the mechanism for the radiolysis of both the hydrocarbon
and the metal halide must be considered. As mentioned in a previous report (ref. 1),
saturated aliphatic hydrocarbons are radiolytically reducing with respect to the solute.
The radiolysis of the straight chain hydrocarbon n-butane has been studied in detail
(refs. 7 and 8). Hydrogen is a major product in the radiolysis, G(total H0) = 4. 8 mol-

£t
ecules of hydrogen per 100 electron volts. The reactions leading to hydrogen formation
were investigated by determining the hydrogen yield in the presence of various hydrogen
and electron scavengers. From these yields, the following primary processes and cor-
responding G values for hydrogen formation were formulated (refs. 7 and 8).

From direct excitation and ionization:

- H-

*
n'C4H10 - H'

- H

0.7 G value

1.4

0.6

From the reaction of the solvated electron (produced by radiation) with n-C4H10 ion:

- H- 0. 5 G value

10 + e~ _ H. 0.6



where H- is the hydrogen atom, H- is a precursor of nonscavengeable molecular hydro-
gen, and H« is a molecular ly detached hydrogen molecule.

Based on this reaction mechanism, the reducing yield of product involving scavenge-
able hydrogen atoms corresponds to the sum of G(H-) = (0. 7 + 0. 5) =1 .2 from both direct
excitation and neutralization. However, by consideration of the total scavengeable re-
ducing species from irradiated n- butane (solvated electrons plus hydrogen atoms from
direct excitation) the maximum reducing yield is G(reducing) = (2. 1 + 0. 7) - 2. 8. The
same reaction mechanism probably applies to the heptane (mainly n-heptane) used in our
synthesis of SnCl9; therefore, the corresponding yields of H- , H- , and H2 for n- butane
and n-heptane should not differ significantly. If we assume that both the solvated elec-
trons and scavengeable hydrogen atoms reduce SnCl,, we would expect that a low SnCl,
concentration, G(SnCl2) should be about 2. 8/2 =1.4. (Dividing by 2 is necessary because
a valence change of 2 is encountered in reducing SnCl4 to SnCl«. ) This is indicated in

figure 2; the straight line plot of G(SnCl2) against W C (where C is the SnCl4 concentra-
tion) extrapolates to G(SnCl2) = 1. 4 at zero SnCl, concentration. It should be noted that
no implication in terms of reaction mechanism can be made at this time from the linear
G(SnCl«) against Jc relation.

The increase of G(SnClo) with SnCl4 concentration, however, tends to emphasize the
influence of the radiolytic decomposition of SnCl, rather than heptane on product yield.
In accord with this idea, the maximum equivalent of reducing species formed in irrad-
iated hydrocarbons, G(reducing) = 2. 8 is too low to account for the relatively high yield
of SnCl2, G(SnClJ = 3. 1, which is equivalent to G(reducing) = 6. 2.

By analogy with the radiolysis of cyclohexane solutions of phosphorus (III) chloride
(ref. 9) and pure carbon tetrachloride (CC14) (refs. 10 and 11), primary process in the
radiolysis of SnCl4 may be represented as follows:

SnCl4 - SnClg + Cl-

The decay of the SnCl, radical could possibly occur by disproportionate

2SnCl3 - SnClg + SnCl4

or by dimerization of two SnCl, radicals followed by nonsymmetric decomposition of the
dimer formed

2SnCl3 - (SnClg)2 - SnClg + SnCl4

The scavenging of the chlorine atom by the irradiated hydrocarbon may be comples and
involves reaction with the scavengeable e~ and H- , hydrocarbon fragments, and/or hydro-
gen abstraction from the hydrocarbon to form hydrogen chloride (HCl). The insoluble
SnCl« produced from the disproportionation of SnClo radicals or from the decomposition



of the (SnClgL is, of course, precipitated. The radiolytic yield of CC1_ radicals from
CCL, is 7.0 iO.2 (ref. 12), which is probably close to the yield of SnCl, radicals from

" O

the radiolysis of SnCl4. A G(SnClk) of about 7 is in accord with our maximum G(SnClJ
" O £

of 3.1, which corresponds to G(SnClg) = 6.2. It appears then that the maximum value
of G^nCU) at high SnCl4 concentrations is limited by the SnCl, radical yield.

However, G(SnCl?) increases too slowly with SnCl. concentration (the yield doubled
for a twentyfold increase in SnCl4 concentration) to consider only the radiolysis of SnCl,
in determining the yield of SnCl0. Reduction of SnCl,. and SnCU radicals by the reducing

Lt ~t «J

species from irradiated heptane must be acknowledged as contributing to the yield
G(SnCl2).

Application

With proper care in the handling of starting materials and product in an inert atmos-
phere (e. g., dry nitrogen), the radiolytic method presented here may be used for the
synthesis of several oxygen free, anhydrous metal halides. The method is applicable to
such preparations where the more covalently bonded higher valence metal halide is sol-
uble in aliphatic hydrocarbons (e. g., heptane) and the reduced more ionic lower valence
metal halide is insoluble. Thus, metal halides other than SnCl,, may be prepared by this
method; for example, irradiation of titanium(IV) chloride or tin(IV) iodide in heptane
solution with high energy electrons should deposit anhydrous titanium(III) chloride and
tin(II) iodide, respectively, ft can be assumed that the same reaction mechanisms
postulated for the radiolytic formation of SnCl0 apply to the general preparation of metal
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halides by this method. The maximum yield of product at high metal halide concentra-
tions would probably be limited by the yield of metal halide radicals from the reaction

radiation .
MXn *MX(n_1) + X.

• ,

where MX is the metal halide, MX/ _^ is the metal halide radical, and X is a halogen
atom.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, July 27, 1973,
501-21.
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TABLE I. - PREPARATION OF SnClg FROM A HEPTANE

SOLUTION OF SnCl.

[Electron energy, 2 MeV; dose, 0.15 coulomb; beam current 20
irradiation temperature 20 C unless otherwise specified. ]

Initial SnCl4
concentration,

mole /liter

0.15
.30

.50

.70
1.00
1.50
2.0

3.0
.50

1.0

Energy yield,
G(SnCl2),

molecule/100 eV

1.6

1.9

2.1

2.2
2.4

2.6

2.8

3.1
b2.2
b2.6

Purity of SnClg
(iodimetric
equivalent),
percent

99.4
98.8
98.6

98.2

97.6
97.1

Final SnCl,
3.

concentration,

mole/liter

0.05

.18

.37

.56

.85

1.3

1.8

2.8

.36

.84

Calculated from initial concentration and yield.
blrradiations carried out at 0° C.



Electron beam
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Figure 1. - Irradiation vessel.
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Figure 2. - Effect of SnC^ concentration on SnCI2 yield.
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