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• ABSTRACT '

A method is presented for calculating the amount of depolarization

caused by precipitation for a propagation path. In the model the

effects of each scatterer and their interactions are accounted for

by using a series of simplifying steps. It is necessary only to know

the forward scattering properties of a single scatterer. For the case

of rain the results of this model for attenuation, differential phase

shift, and cross polarization agree very well with the results of the

only other model available, that of differential attenuation and dif-

ferential phase shift. In this model the effective percentage of

oblate rain drops is easily included in cross-polarization calculations.

and allows for good agreement with experimental results. Further

flexibility is possible if one includes a distribution of drop shapes.

Calculations presented here show that horizontal polarization is

more sensitive to depolarization than is vertical polarization for

small rain drop canting angle changes. This effect increases with

increasing path length.



INTRODUCTION . . .

Prediction of the scattering of electromagnetic waves due to rain

is important for communication links at millimeter wavelengths [1].

Rainfall scatter produces both attenuation and depolarization. The

problem of attenuation due to rainfall has received considerable

theoretical attention [2,3], But relatively little about depolariza-

tion is available in the literature. All computations of the cross-

polarization level to date have been based on the differential

attenuation-differential phase shift models proposed by Thomas [A] and

Watson [5] and attenuation values computed using van de Hulst's method

[6]. The differential attenuation-differential phase shift model

recognizes that raindrops tend to be oblate spheroids rather than true

spheres and, thus, a rain-filled space will attenuate and phase shift

waves polarized along the narrow dimension of drop (near vertical) less

than waves polarized along the wide dimension of the drop (near hori-

zontal). Depolarization by differential attenuation is illustrated

in Figure 1, where ET represents a transmitted wave which is polarized

along neither the vertical axis nor the horizontal axis. E can be

decomposed into components along the horizontal axis, E.., and along the

vertical axis, £„. As the wave propagates through a drop E, will be

attenuated more than £„, giving E| and Ei. The resultant vector E_

with components E' and E' is not parallel to E and thus has a com-J. / f

ponent perpendicular to it which corresponds to a cross-polarized wave

(for the linearly polarized case).
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A disadvantage of the differential(attenuation-differential phase

shift model is that it requires the existence of two preferred polar-

izations (major and minor axes of the drop) for which signals are noti

depolarized. Because of the physical symmetry of the individual drops,
i

rain has this property but sleet and snow do not. Hence sleet and snow

depolarization cannot be predicted by the differential attenuation-

differential phase shift model.

A new model is proposed here which involves summing the forward

scattered radiation from each raindrop to obtain the total electric

field intensity at the receiver location. Some simplifying steps dis-

cussed in the next section allow the summation process to be carried

out very easily by computer. There are many variables in a real rain

which affect electromagnetic waves, but this model includes only those

parameters which are necessary for good agreement with experiment and

useful in predicting rain effects on communication links. To this end

we have made several assumptions. We assume that the transmit and

receive antennas are pointed directly at each other and have dual

orthogonal polarizations which are aligned. The rain rate is assumed

to be uniform along the entire path. Although real rain contains a

statistical distribution of.drop sizes we have assumed here that all
5 ••. ' ' • •-

drops are equal 'in size to that of the {nost frequently occurring drop

size in the Laws-Parsons distribution [/]. The shape of the drops is

assumed to be either that of an oblate .spheroid or a sphere. Real

rain is known to be a mixture of spherical, oblate, prolate and

irregular drops [8],• An effective percentage of oblate drops (with

the remainder spherical) is assumed to model the actual rain. All



oblate drops are oriented identically with a canting angle defined as
'' |! "I '' '

the angle between the major axis of the' drop and the horizontal. ASH

a consequence of these assumptions about the rain we may say that the

rain-filled space is large-scale homogeneous. It is further assumed

that the beamwidths of both the transmitting and receiving antennas

are sufficient so that small variations in the beamwidths have negligible

effect on the received signal levels. This implies that many Fresnel

zones are included in the common volume of the main beams of the antennas.

Also the incident and scattered fields are assumed to be spherical waves.

In order to carry out a detailed calculation it is necessary to know

the forward scattering properties of a single raindrop for the particular

frequency of interest. .

•DEVELOPMENT'OF THE MODEL

The exact solution for the scattered field arriving at the

receiving antenna would involve summing up the fields scattered off

of every raindrop illuminated by the transmitting antenna. Fortunately,

it is not necessary to do this. In fact, it is well known that for

isotropic antennas the field at the receiver is exactly one-half that ,

found by considering the first Fresnel zone alone. Since we have

assumed that there are many Fresnel zones inside the common volume

of the antenna mainbeams, the directivity of the antennas will have

only a minor effect. Thus we will work with only the first Fresnel

zone and the actual field at the receiver is found by retaining only
• i •'..•'..•

one-half that obtained using only the first Fresnel zone.

A very important simplification eliminates the need for summing the



micros tructure scattering effects : along;, the path length by making use

of the symmetries involved. Consider a^rain cell of width A& positioned
i

arbitrarily along the path as shoyn in Figure 2. The results may be

stated in the form of a theorem.

The "Trans location Theorem; The field intensity at the receiver is

independent of the actual position of a rain cell of width AJi occurring

along a propagation path. It depends only on the cell width.
\

Proof ; We need to consider the transverse extent of the rain cell only

out to the edge of the first Fresnel zone. The radius of the first

Fresnel zone is the locus of points for which the phase lag relative

to the line-of-sight path is ir radians. • The total path length between

the transmitter and receiver is L, and A£ is an elemental length of

path at a distance H from the transmitter. The elemental volume defined
i

by A& and the boundary of the first Fresnel zone is AV. There is no

rain along the path outside .AV. The radius of the first Fresnel zone

at H is given by [9]. ., /2

I «:<*- a)
Note that in Figure 2 the vertical axis is greatly expanded in scale

relative to the horizontal axis for typical communication links.

Assuming spherical waves are transmitted, the incident field at the

receiver, E , will be inversely proportional to the path length L

while the incident field at £, E*, will be inversely proportional to
J6

I . Thus

Erec I

The scattered field E at the receiver from the raindrops in the :rec •• .

volume AV is directly proportional to the total number of raindrops in

AV. The scattered field at the receiver is also inversely proportional



I
to the distance from AV to the receiver L-£. Thus

E AV-
ES cc -JL 'i (3)
rec L-£ ' ^ J

Using (2)

rec S.L-K

But

AV « F2 A£ ' ' (5)

Substituting (1) into (5) gives

1 2
A \ 7 c c _ f O T _ 0 l A O ((\\u V Y^ \JO-L* A/ ^ UXr , • V*"'/

Using (6) into (4) results in

o A Q I
ES » ~ (!7)rec L x,

We are interested in the scattered field relative to the incident field

at the receiver, so we form the ratio and using (2) and (7) obtain

c A£ ! (8)
E1rec

Hence the scattered field at the receiver (relative to the incident
I

field) is independent of the position of a rain cell along the path

and is independent of path length. It depends only on the width of
i

the rain cell. Referring to (4) and (6) one sees that the reason for
1

this is that the variation in the volume with position H is exactly '

cancelled by the spatial variation of the scattered field at the receiver.

Note that if rain is falling along the entire path, then A£ = L and the

ratio in (8) does indeed depend on the path length. This completes the

proof of the theorem.



This theorem is useful for calculating the scattering in a rain-

filled path. In the model we consider the effect of rain in only the
j

first Fresnel zone, as shown in Figure 3a. To solve this problem we,'

•i • .
divide the total volume into N slabs by dividing the path length L into

'i
N equal segments of length A£ = L/N. The drops in each slab are placed

in a plane at the center as illustrated for N = 4 in Figure 3b. Now the

Translocation Theorem may be invoked. The contribution to the scattered

field at the receiver is the same, for each plane of drops and is

independent of the actual position of the plane along the path. So we

move all planes of drops to a convenient point along the path. When

moving a plane of drops the number of drops must be changed to reflect

the change in volume of the slab as discussed in the proof of the theorem.

In Figure 3c all drops have been located at midpath. All planes are

the same distance L/2 from the receiver and make equal contributions

to the scattered field (since they all make equal contributions in their

former positions). Therefore, all planes have the same number of drops

and are identical. Thus the scattering solution may be found from a

single plane of drops at midpath. • .|

Although all planes can be moved to midpath to simplify calculations,

the effects of multiple scattering from one plane to the next, when in

their original positions, must be included. In other words, when an

i

incident wave strikes a plane of drops the wave which leaves the plane
t

contains the original field plus a scattered field which is changed in

amplitude, phase, and perhaps, polarization. This field is now the

incident field for the next plane of drops, and so on down the path.
i

By the Translocation Theorem the positions of the individual planes

are immaterial to cross polarization and attenuation, so free-space ',



I
phase shift in the region between the pllanes may be ignored. We will1'

i
consider the effect of a single plane first and then the combined effect

of a series of N planes. '. ~
\ • '

For a single plane of drops scattering coefficients are defined

in terms of the main polarization ' (polarization state of the wave
, i

leaving the transmit antenna) denoted w^th subscript 1 and a cross

polarization (orthogonal to the main polarization) denoted with sub-

script 2. These coefficients will be the same for all planes and are

defined as follows:

S = scattered E field with polarization p produced

by an incident E field with polarization q.

The scattered field at the receiver from a.single plane of drops can

be found by summing the scattered fields from each of the drops in the

plane. As discussed previously it is necessary to consider only those

drops in the first Fresnel zone if the result is multiplied by one-
(

half. Since the angle of incidence and the angle toward the receiver

from the plane are very small relative to the line-of-sight in most

situations, we may use the forward scattering coefficients for a single
I

• j
drop f . The scattering coefficients for a plane of drops are then'

of the form

1 i p~Jkr
S = i Z E1 f (9)
pq 2 p pq r

where E1 is the electric field incident on the plane of the drops, r
P

is the distance from the drop to -the receiver, f is the forward

scattering function for a single drop from the p to the q polariza-

tion, and where the summation is performed over those drops in the first

Fresnel zone. Assuming that all drops are identically oriented, then

f is constant for all drops. Also since we have assumed F, « .L we
pq c 1 .



have r ~ L/2 (for planes at midpath) for the r in the denominator of-

(9). Thus

s
pq L

t

For a uniform distribution of drops witjiin the first Fresnel zone, the

summation in (10) is easily evaluated. The result is a complex con-

stant C times the number of drops in the plane D. Hence

E1 f
s = -J2-M c D (11)
pq L vj

The effect of N planes of drops in series may be found by con-

sidering the incident field to interact with the first plane producing

a new field which then interacts with the second plane, etc. until all

N planes have been considered. This may be expressed in closed form

in terms of the scattering coefficients (S *s). It is assumed thatpq
the incident field at midpath has amplitude two so that the incident

field at the receiver has unity amplitude. ' It is also assumed that the

contribution from the S... coefficient (scatter from cross to main

polarization) is small and thus S~, is taken to be zero. This is valid

for cross polarization levels less than about -5 dB.

The total fields at the receiver are obtained by induction from'

the effect of a single plane. After interaction with the first plane

of drops the total main polarization field ^ will consist of the sum
i

of the incident field at the receiver (unity) and the scattered field

Sni. The total cross polarization field Ev will consist only of the
J-JL A

scattered field S,2 since the incident field in this polarization is

zero. The fields leaving plane 1 then interact with plane 2. The main

polarization component is multiplied by another (1 + S,,) factor. The



cross polarization component from plane 2 consists of two parts. The

previous cross polarized component E is multiplied by a (1 + S00) iA 2.2.

factor, and also there is a new contribution from the incident EL. equal

to E: S 2. Thus the fields at the recdiver after passing through two

planes are

and

S1]L) + S12 (1 + S22) (13)

To be rigorous (12) should include a term S..- S~, , but we have assumed

S21 to ^e zero* Continuing this method for all N planes gives the

following result:

EM- (i + su)N . (14)

EX = s12 [(i + s22)
N~1 + (i + s22)N~2 (i + SI;L)

W 9 VI (15>+ .......... + a + s22)a + s11)
w~/ + a + s^r ]

Evaluation of EL and E for rain is discussed in the next section,

but the development presented here is applicable to any population of

scatterers. To use it one must know the scattering properties of an

individual scatterer and the size, shape, and orientation distributions

! of the overall population.

APPLICATIONS OF THE MODEL

In this section the evaluation of the scattering coefficients ••'
|

presented in the previous section will be discussed for rain. Then1

the expressions for the received electric field intensities in (14)

and (15) can be evaluated. The results of several examples will then
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be given. This will demonstrate the usefulness of the model and also,

allow comparison to previous models and experimental results.

Calculation of the scattering coefficients from (10) requires the
i

-ikr
evaluation of two factors, f and I e J . The f factor is the for-pq ; •' pq

f-V» -f-V»
ward scattering function for a single rain drop from the p to the q

polarization. This is the most difficult aspect of the model. Recently,

Oguchi [10] has solved for the scattering properties of oblate rain

drops encountered in real rains for the frequencies of 19.3 and 34.8

GHz. He used three different techniques to solve for the forward and

backward scattering of a single drop when illuminated by polarizations

parallel to the drop minor axis (vertical polarization) and parallel to

the drop major axis (horizontal polarization). Using these results one

may determine f through some simple geometric relationships. If Q is

the angle between the incident linear polarization (polarization 1) and

the vertical we find

2 2- fn, = f cos 0 + f, sin 0 • .".-11 v . h . . • • •

f22 = f sin
2 0 + fh cos

2 0 . / ' • • - . (16) . .

f12 = (fv - fh) sin 0 cos 0 = - f21

where f is the ratio of the scattered electric field intensity from the

drop which is vertically polarized to the incident vertically polarized

field and f, is the ratio of the scattered electric field intensity

from the drop which is horizontally polarized to the incident hori- !

zontally polarized field. ;'

The factor £ e~J r is the summation over all drops which have been

moved to the mid-path plane, extending out a distance 'F. from the line-

i
of-sight path. This accounts for the phase differences of the scattered
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waves from each drop. Letting p be the. radial distance from the llne-

of -sight path we may write '• , ,'
i'
i • 91f

Ze-Jkr"!ze-J;TTp2 (17)
i

since L/2 » p. Here the phase shift along the line-of-sight path has
i

been removed; the total phase shift involves a -jkL term added to the

exponent. Note that for p = F.. the phase lag under the summation sign

is -ir, as it should be at the first Fresnel radius. The summation can

now be carried out by dividing the plane into M rings. The rings will

contain an equal number of drops if the radial distance to the center

of each ring is ,

F t ' •
p = /m-1/2 — ! 1 < m < M. (18)
m M ~ ~

Substituting (18) into (17) and summing over M rings, each with D/M

number of drops, gives

Z e-3
kr=£ I e-jS<

m=l

This series is easily summed, giving

_ 0 -j2 ir/M

Letting M approach infinity we obtain

z e~
jkr s (-j |)D (21)

I

We can identify the complex constant C in (11) as

• C.-jf (22)

The scattering coefficients by (11) may now be calculated using
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the f in (16) and (22). These are then used to compute the receivedpq ; .
field intensities in the main and cross polarized states from (14) and

(15). The number of slabs, N, should be large enough to obtain con-

vergence. Typically this number is about 200 (convergence to within

10% is obtained for N - 20), and the calculations require less than

ten seconds of computer time on an IBM 370/155. •

There are several results which may be obtained from calculations

using this model. First, the attenuation due to rainfall is found as

follows

A = 20 log (lEj) dB . (23)
i

Recall that the incident field at the receiver without rainfall would

be unity so that it is unnecessary to divide K, by E . The atten-

uation as a function of rain rate for a one kilometer path is plotted

in Figure 4 for a frequency of 19.3 GHz. Included for comparison

are the results based on differential attenuation from Oguchi [10].

The two models are in close agreement. In Figure 5 is shown the

differential phase shift at 19.3 GHz for a one kilometer path. This

is the amount that the phase of the received signal for a vertically

polarized transmitted wave leads the received signal phase when a
j

horizontally polarized wave is transmitted. Shown for comparison ;|
i

are the results of Oguchi [10] and Morrison, et.al., [11]. The agree-

ment is not as good as was obtained for attenuation, but there is no

experimental data to support any of the curves.

Another important application of the model is the calculation of

cross polarization level

XPOL = 20 log ( l E / l E ) dB . (24)-'
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This is also available from Watson's method [5] using Oguchi's dif-

ferenti'al attenuation and differential phase shift values [10] for

100% oblate drops. Figure 6 presents a comparison of the cross-

polarization level as a function of rain rate for a 1 Km path at

19.3 GHz and waves linearly polarized at 45° with respect to the

drop axis. The agreement is quite close and for. the first time pre-

sents an independent theoretical confirmation of the differential

attenuation-differential phase shift approach.

The percentage of oblate drops is somewhat difficult to manip-

ulate in the differential attenuation-differential phase shift model,

and for this reason it has been kept at 100%, but it is doubtful that

this is the correct value.

Jones [8] has found that real rain consists of 32% spherical,

28% oblate spheroidal, 18.5% prolate spheroidal, and 21.5% irregular

shaped drops, for drops greater than 1.9 mm equivalent spherical

diameter. All drop shapes except spherical could contribute to the

cross-polarization level. About one-half of the prolate drops would

be expected to be aligned with their elliptical cross-section facing

the incident field and, therefore, producing depolarization. This

would increase the effective percentage of oblate drops to about 37%.

Since the irregular shaped drops would provide a small but unknown

contribution, the effective percentage, of oblate drops is fixed at

40% for this analysis. An increase of 5% in this number yields an

increase of about 1 dB in the cross-polarization. The effective

percentage of oblate drops is included in the calculations by weighting

Sn0 by a factor P(0 < P < 1) which represents the fraction of the
Li. ~ ~~~
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drops which have the oblate shape. S_- and S^ are each the sum of .

two terms: one term calculated using the f for spherical drops and
PP

weighted by the percentage of spherical drops, and the other term

calculated using the f for oblate drops and weighted by the percentage

of oblate drops. Previous models'have assumed that all drops have the

same oblate shape.

Figure 6 displays the expected cross-polarization level for a

1 Km path at 19.3 GHz with 45° linear polarization incident on a rain-

filled volume with 40% oblate drops. This curve is significantly

lower than the curve for 100% oblate drops. It also is in much better ~

agreement with published data [12].

A further application of the model is calculation of the cross-

polarization generated by rain as a function of the tilt angle of the

input linear polarization. See Figure 7. The angle 0 is the angle

between the electric field vector and the drop minor axis. For no

canting angle 0=0° would be vertical polarization. The curves in

Figure 7 are for 1 and 5 Km paths at 100 mm/hr. rain rate. The cross-

polarization response of a rain-filled path 1 Km long is nearly sym-

metrical about 0 = 45°. For longer paths, such as the 5 Km path shown,

the cross-polarization level maximizes nearer to 0 = 90°-than 0=0°.

This has not been reported in the literature. In fact, the statement

that the response is symmetric about 0 = 45° is frequently made. This

result has important consequences. Since the drop canting angle may

vary about 315° from its nominal position of major axis parallel to the

ground, a horizontally polarized wave has a 0 from 75 to 90° and a

vertically polarized wave has 0 from 15 to 0°. From the L = 5 Km curve

of Figure 7 a 15° canting angle gives rise to -18 dB cross-polarization
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for vertical polarization and -9 dJB for [horizontal polarization. Thus,
i i, . I

horizontally polarized waves are much more sensitive to depolarization

i ' • '
due to rain drop canting than are vertically polarized waves, and thej

peak of the cross-polarization level shifts toward 0 = 90° with increasing

path length. Also, for experiments with dual orthogonal, linear polar-

' I i
izations horizontal and vertical polarizations are likely to have a

i

wide scatter of the data about the' expected result because of the

changing distribution of canting angles in real rains. This makes a

comparison with theory difficult. With JT450 linear polarizations for,

say, a 1 Km path the change in cross-polarization due to changes in 0

(due to canting angle changes) is small and an accurate comparison with

theory is possible. This result agrees with an experiment performed

by Shimba [13] who measured a cross-polarization level of -10 dB for

a 4.3 Km path, a 140 mm/hr. rain rate, and a frequency of 19.1 GHz.

The input polarization was horizontal and the high value of cross-

polarization is easily explained using these ideas and assuming a

small non-zero canting angle of the drops.

The new model of depolarization has been developed here only for

linear polarizations transmitted.i Coupling the model with the general
i

theory of depolarization as given by Beckmann [14] one can obtain the
! ,

depolarization by rain for an arbitrarily polarized wave. We can do

this if the depolarization of two orthogonal linearly polarized waves

is known. These, of course, can be found from the model. ;|

' 'CONCLUSIONS

The model presented here provides a means for calculating

precipitation depolarization and attenuation which is independent
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of van de Hulst's equivalent.refractive (index and of the differential,

attenuation-differential phase shift concept. It can be applied to

propagation through precipitation .which jihas no axes of symmetry or

preferred polarizations. Since all of the important parameters are

explicit rather than implicit, it provides a rapid means for analyzing

propagation through rain under arbitrary distributions of drop shapes

and sizes.
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' LIST OF'CAPTIONS

Figure 1. Depolarization by differential attenuation.

Figure 2. Geometry used in proof of theorem.

Figure 3. Division of path when N = 4. .

Figure 4. Attenuation versus rain rate for a 1 km path at 19.3 GHz.

Figure 5. Differential phase shift (vertical minus horizontal) for

a 1 km path at 19.3 GHz versus rain-rate. ""

Figure 6. Cross polarization level versus rain rate for a path length

of 1 km, and a rain drop canting angle of 45° at 19.3 GHz.

Figure 7. Cross polarization level versus 0, the angle between the

electric field vector for a linearly polarized wave and the

minor axis of the raindrops, for path lengths of 1 and 5 km and

a frequency of 19.3 GHz and a rain rate of 100 mm/hr.
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