
DESIGN OF A MODULAR DIGITAL COMPUTER. SYSTEM

DRL 4

PHASE II REPORT

March 1, 1973

Prepared under Contract NAS8-27926

by

HUGHES AIRCRAFT COMPANY

FULLERTON, CALIFORNIA

for

George C. Marshall Space Flight Center

National Aeronautics and Space Administration

(NASA-CR-124171) DESIGN OF A MODULAR N73-33130
DIGITAL COMPUTER SYSTEM Phase 2 Report,
16 Mar. 1972 - 1 Mar. 1973 (Hughes
Aircraft Co.) 308 p HC $17.50 CSCL 09B Unclas

G3/08 20290

FPCES SUBJECT TO Mi
FR 73-11-168

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

PRECEDING PAGE RLANX NOT FIL vrFD

FOREWORD

This report documents the accomplishments of Phase II of contract
NAS8-27926 whose scope is the design of an Automatically Reconfigurable
Modular Multiprocessor System (ARMMS). The Phase II time period was from
March 16, 1972 to March 1, 1973. The design is being performed by the Data
Processing Products Division of Hughes-Fullerton. M&S Computing, Inc. is

providing support in the area of executive software design under subcontract to
Hughes. The design is being directed by the Astrionics Laboratory of the
Marshall Space Flight Center. The Contracting Officer's Representative is
Dr. J. B. White.

In accordance with the data requirements of NAS8-27926, this report
consists primarily of reproductions of internal reports not all of which have
been edited or retyped for this report. As such, it reflects the evolution of the
design rather than its culmination and must be read from that perspective. Each
report is preceded by a brief discussion of its content and conclusions.

Major individual contributors to the report include the following:

Author Section Subject Page

R. A. Easton 1 Summary of ARMMS Phase II 1-1

R. A. Easton 2 ARMMS Hardware Design - Phase II 2-1

T. T. Schansman
K. H. Schonrock 3 ARMMS Control Executive System
E. I. Eastin
C. E. Turnour
D. Hyde

S. Simpson
B. Cohen 4 ARMMS Component Technology
R. Radys Studies 4-1

J. Bricker 5 Reliability Modeling in the Varying
W. L. Martin Configurations and Loads 5-1

Section 3 was not edited. The remaining sections were edited and this
report prepared by R. A. Easton.

ii

SECTION 1

SUMMARY OF PHASE II OF THE ARMMS DESIGN

SECTION 1

SUMMARY OF PHASE II OF THE ARMMS DESIGN

The primary objective of contract NAS8-27926 is to perform the system
design of an advanced modular computer system designated the Automatically
Reconfigurable Modular Multiprocessor System (ARMMS).

Any computer system justifies the cost of its development to the degree
that it provides new capabilities or allows earlier ones to be satisfied at re-
duced cost. ARMMS is primarily oriented toward providing the following new
capabilities for spaceborne computers for application in the 1975 to 1985 time
period.

1. To provide a modular computer system which is responsive to
many mission types and phases.

2. To achieve through modularity a higher computing capability than
previously available for spaceborne application. A target of several
million instructions per second has been chosen.

3. To provide the capability to choose to maximize reliability through
the use of redundancy or to maximize processing capacity through
multiprocessing. Moreover, this multi-mode capability must be
dynamic; that is, a given system may alternate from one mode to
another as a function of real-time requirements.

4. To maximize reliability in all applications through the incorporation
of fault detection and recovery features and through the use of high
reliability components.

The first consideration of any ARMMS design tradeoff is to avoid com-
promising these basic objectives. However, an advanced paper design will
surely remain only that unless continuous concern is maintained for the practi-
cal requirements of implementation. Such design parameters as power density,
weight, volume, pin count, device count, etc., must influence the design
process.

The evolving baseline as presented here is oriented toward achieving the
ARMMS objectives within a practical hardware and software context.

ARMMS is an outgrowth and extension of two NASA development programs,
the MSFC Space Ultrareliable Modular Computer (SUMC) and the ERC Modular

1-1

Computer. The SUMC program has emphasized the development of a processor
which is effectively partitioned for LSI implementation. To date, a breadboard
TTL prototype has been constructed and a MOS LSI version is nearing
completion.

A modified version of SUMC is anticipated to be the processor module
of the ARMMS system. The breadboard of the ERC Modular Computer is under-
going evaluation at MSFC, and the experience gained will be relevant to ARMMS.
The ERC Modular Computer had the common objective with ARMMS of achieving
a variable configuration for varying levels of processing capacity and reliability.

In addition, the experience of numerous NASA, Air Force, and Navy
architecture and design studies is being reviewed and incorporated into the
ARMMS design where appropriate. In general, these efforts have considered a
subset of the ARMMS objectives. For example, the JPL STAR is oriented toward
long-life reliability. The MSC reconfigurable guidance and control computer
study considers primarily space shuttle requirements. Other studies have con-
sidered space station computer requirements. All have identified design prin-
ciples which form a substantial base of experience for the ARMMS development.

The 24-month contract is divided into three phases. The program plan
covering Phases II and III is shown in Figure 1. At the inception of the contract,
an initial baseline description was provided by MSFC. The primary efforts in
Phase I was to establish general design guidelines necessary to achieve the
ARMMS reliability and performance objectives; to survey published estimates
of performance requirements for future space computers, and to refine the
initial baseline.

The specific objectives to be achieved within the 24 month period are the
following:

1. To perform the detailed design (to the gate level) of all module inter-
faces and switches.

2. To define the design of all ARMMS module types to the detailed
block-diagram (register) level.

3. To perform the functional design of the executive software as it
pertains to error detection and correction. (M & S Computing, Inc.
is performing this task under subcontract to Hughes.)

4. To define the overall system response to all classes of failures.

5. To develop sample packaging concepts for an eventual implementation
of ARMMS.

1-2

32140-1

1972 1973

OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT OCT

1. CPE/BOSS SPEED ENHANCEMENT

2. SYSTEM INTERFACE LOGIC DESIGN
AND CONFIGURATION DOCUMENT

3. BOSS FUNCTIONAL DEFINITION

4. MEMORY REGISTER LEVEL DESIGN
(PRELIM

5. BOSS REGISTER LEVEL DESIGN

6. BOSS INSTRUCTION SET (PRELIM)

7. CPE REGISTER LEVEL DESIGN (PRELIM)

8. SUMC/BOSS COMMONALITY P

9. I/O REGISTER LEVEL DESIGN

10. BOSS DETAILED DESIGN 1
(3 MO. LEVEL OF EFFORT) _

11. RELIABILITY ANALYSIS (COVERAGE >> (FULL MODEL)

12. PACKAGING CONCEPTS

13. EXECUTIVE SOFTWARE DESIGN (FLOW CHART DETAIL) _)(FINAL)

14. MULTIPROCESSOR EFFICIENCY STUDY j
REVIEWS

REPORTS (PHASEII (FINAL)

Figure 6. ARMMS Design Plan

6. To perform a 3 month level of effort detailed processor design study.

7. To develop and apply reliability models as needed to support the
design.

All ARMMS work is expected to be completed on schedule with the
following exceptions: The Add-on to contract NAS8-27926 originally specified
a "Simulation of ARMMS Performance" task. During the time since that task
was specified it has become apparent that this work would largely duplicate
efforts along the same line by Computer Sciences Corporation under contract
NAS8-2180. Therefore, it is proposed that an equivalent 3 month level of
effort in the June through August 1973 period be devoted instead to the detailed
logic design of the ARMMS Block Organizer and System Schedule (BOSS)
module, and/or to detailed logic design of reliability and speed enhancement

1-3

modifications to the SUMC processor. Results of work performed to date on the
BOSS register level design indicate that it should be possible to achieve a con-
siderable degree of commonality between a modified SUMC CPE and BOSS.
Detailed logic design in these areas is of prime importance in ARMMS because
of their unique features whose characteristics cannot be directly extrapolated
from earlier computer experience. The greater level of detail will also provide
benefits to any follow-on to ARMMS and be directly applicable to an ARMMS
breadboard. Specific areas to be investigated as time permits include but are
not necessarily limited to the following areas not included in the original BOSS
Detailed Design Task:

1. Detailed specification of the contents of the BOSS microprogram
read only memory.

2. Detailed logic design of BOSS sequence control logic including in-
struction overlap. Assess the degree of applicability of this controller
to a SUMC CPE.

3. Detailed logic design of BOSS and/or CPE error detection and masking
logic.

As specified in the contract data requirements, the phase reports are to
consist primarily of reproduction of contractor internal documents written dur-
ing the phase. The remaining sections of this report consist largely of documents
prepared at various stages of Phase II together with some new and updated
material. The general subject of each is listed below:

Section 2 - ARMMS Hardware Design - Phase II

These studies started with an evaluation of the SUMC
processor and suggestions for its modifications to increase
its effectiveness in ARMMS. Next, 3 module configurations
are discussed - one of which is recommended as the base-
line for Phase III. Error detection and correction strategy
for other configurations is then discussed followed by
preliminary BOSS module and memory module register
level designs with emphasis placed on an analysis of
potential failure modes and techniques for detecting and/or
masking them.

Section 3 - ARMMS Control Executive System Design

This section is M & S Computing's final report on their
Phase II software design efforts. It covers software
philosophy, task control, event recognition and response,

1-4

resource allocation and control, fault detection and diagnos-
tic processing, information protection and input/output con-
trol. In addition an independent evaluation of ARMMS
impacts on the baseline SUMC processor is included.

Section 4 - ARMMS Component Technology Studies

This section deals with ARMMS component technology
studies involved in choosing a logic family, data bus
technology, and power supply configurations. CMOS logic
was chosen for module internal functions after considera-
tion of all major logic families' projected characteristics
for the 1975 time frame. CMOS will be assumed in devel-
oping ARMMS packaging characteristics during Phase III.
The data bus studies placed an emphasis on loading con-
siderations, detection theory, module interconnection meth-
ods, and reliability. Seven power supply configurations
ranging from a single centralized supply to individual sup-
plies per module were considered. A partially centralized
configuration was chosen for further detailing in Phase III
packaging studies.

Section 5 - Reliability Modeling with Varying Configurations and Loads

This section consists of the manuscript of a paper describing
the most recent reliability model developed for ARMMS
considering configuration and computation load refinements
which can vary at deterministic times during the mission.
It was delivered by J. Bricker at the 6th annual IEEE
Computer Society International Conference (COMPCON) in
September 1972. The remainder of the section discusses
tradeoffs concerning whether to place ARMMS voter switches
internal or external to processor and memory modules.

BLANK PAGE FOLLOWS
1-5,

SECTION 2

ARMMS HARDWARE DESIGN - PHASE II

This section deals with the efforts in the area of ARMMS hardware
design during Phase II. The studies started with an evaluation of the SUMC
processor and suggestions for its modification to increase its effectiveness
in ARMMS. Next ARMMS module configuration studies are discussed - three
alternative configurations are proposed, one of which is recommended as the
baseline configuration for Phase III. Given this configuration, error detection
and correction strategy is discussed for providing maximum reliability and
performance at a minimum cost for special hardware. Finally a preliminary
BOSS module and a memory module register level design are described with
particular emphasis on an analysis of potential failure modes and techniques
for detecting and/or masking them. The level of detail of BOSS design, permits
descriptions of microprogram and scratchpad memory organizations, integrated
circuit partitioning estimates, and assumption of a preliminary standard and
macro instruction set. Refinement of these designs and designs of ARMMS I/O
and CPE modules will occur during Phase III.

I. Evaluation of the SUMC Processor for ARMMS

During Phase II of the ARMMS study MSC's SUMC processor was eval-
uated to find ways to enhance its speed and reliability in the ARMMS context

and to assess its potential for commonality with ARMMS BOSS executive
module. The existing SUMC design is excellent for many applications, espe-
cially those involving missions considerably shorter than 5 years and requir-
ing frequent use of multiply, divide and square-root instructions. Other
implicate changes to SUMC such as the width of busses to and from main
memory are covered later in this report.

Speed Enhancement

An evaluation of the speed limitations of SUMC in ARMMS determined
that the biggest speed bottleneck is likely to be the SUMC logic itself. Assuming
either low-power MSI Schottky TTL (1973 time frame) or projected LSI CMOS
using a silicon on sapphire technology (in the late 70's) maximum microinstruc-
tion clock rates would be on the order of 4 MHz. Data bus transmission from
main memory to processor would be accomplished at 2 to 3 times this rate and
main memory cycle times on the order of 800 nsec should be easily attainable
at low power using plated wire techniques - hence these two areas should not be
a problem. Using these numbers, the average instruction requires 3.5 psec to
execute (examples: Add P 3 psec, Divide t 9.5 psec, jump z 2 psec). Such a
processor should require less than 75 watts of power.

It should be possible to modify SUMC to reduce its power and com-
plexity by some 40% while increasing its speed 50% and increasing its com-
monality with the sort of processor that would be required to execute BOSS
functions efficiently and make the addition of error correcting circuitry more
straightforward. These improvements are achieved through instruction overlap
and logic simplifications.

An average speed increase of from 30 to 40% can be achieved by in-
struction overlap - i.e., fetching the next instruction while executing the
present instruction thus saving memory access and bus transfer time. In the
best case two overlapped cycles correspond to one non-overlapped cycle and
a program can be executed twice as fast as before. This occurs when a pro-
gram consisting of short instructions such as LOAD and ADD is accessing a
memory with no contention from other programs. The worst cases occur on
JUMP instructions, STOREs of data generated in the immediately preceeding
instruction, or when two programs both consisting of short instructions are
in heavy contention for the same memory page. In these cases overlap be-
comes ineffective and the program runs at the same speed as it would have
without overlap. The average speed increases noted have been verified by

2-1

computer simulations performed by Don Taylor of Computer Sciences Corp.
These speed increases allow reducing the average instruction execution time to
2. 5 psec at a 4 MHz microinstruction clock rate.

Instruction overlap logic should amount to about a 5% increase in com-
plexity for ARMMS including increases in both the SUMC CPEs and the main
memory modules. The added logic requirements include:

1. Logic to inhibit overlaps on JUMP and some STORE instructions.

2. Duplicated instruction registers to allow push-pull MROM access.

3. Memory address and data buffering.

For more details on instruction overlap timing you are referred to page 2-27
of this report entitled "Interface Timing. "

Once an in instruction has been fetched it must follow the critical path
shown in Figure 1, during the execution of each microinstruction step.
Note that two adders are included in SUMC to speed up multiply, divide
and square root operations. If only one adder were included in SUMC rather
than the present two, the hardware would be reduced by about 10% and the clock
rate could be increased by about 25% due to the decreased propagation delays,
speeding up all operations except Multiply (M), Divide (D) and Square-Root
(SQR) by 25%. The M, D, and SQR instructions would require approximately
70% more micro instructions than they do presently, hence they would take
26% longer to execute than presently. However, except for programs requiring
large numbers of M, D, SQR operations, SUMC's speed would show a net in-
crease (5% if all instructions are assumed equally likely to be executed). Only
for programs with more than 25% multiply, divide, square-root instructions
would any speed reduction be noted. Such programs are considered unlikely
for ARMMS. Hence removing one adder will not degrade SUMC as a CPE in
most applications and since multiply, divide, and square root are not needed
in BOSS the modified SUMC CPE logic would exhibit greater commonality with
BOSS logic. A final advantage to removing one adder is that this reduces the
amount of redundancy needed in the system since adders cannot be checked
using the same error detecting/correcting coding techniques proposed for the
rest of ARMMS and hence would require duplication and comparing of outputs
if their failures are to be detected. For all these reasons we recommend
using only one adder in SUMC.

In the interest of reducing power and complexity it would also seem
desirable to cut the number of words in the MROM and scratchpad memories
by 50% and to eliminate the IAROM - accessing the MROM directly from the
instruction register. The CPE instruction set uses only 25% of the MROM words

2-2

32140-2

(CONTROL I ER
DATA &D
CONTROL .
FROM
MEMORY PRR

(PRIOR -I IR - MROM SPM MUXES ALU LU MUXES -
CYCLE) #1 #2 -..

I I MAR DATA
TO

I I . .MEMORY

I MQR (FUTURE)I IRCYCLEI I I L-- - -- ii

25 40 30 15 50 50 15 25 ASSUMED

DELAYS & POWER ARE AS FOLLOWS: DELAY NSEC

MROM [SN'54187] 32W
SPM [SN5489] 12W
ALU [SN54LS181] LOW POWER SCHOTTKY WITH HI-POWER

SCHOTTKY LOOK-AHEAD LOGIC 2W
OTHERS [SN54LSXXX] LOW POWER SCHOTTKY 8W

TOTAL 250 NSEC 54 W

CMOS LSI SHOULD HAVE SIMILAR RATINGS BY LATE 70s.

Figure 1. Critical Path Through 3aseline SUMC

and 40% of SPM words. An 8-bit operation code field in instruction words from
main memory would have adequate bits to address the MROM directly and
efficiently allowing elimination of the IAROM function. Since fast ROM and
SPM integrated circuits would consume 80% of an unmodified SUMC's power,
these changes will reduce SUMC power by 40% and reduce its logic complexity
25%.

Comparison of modified SUMC's speed and power with that of the Hughes
H4400 and JPL STAR computer processors strongly favor SUMC. Modified
SUMC's speed-power product is an order of magnitude better than for H4400
or for STAR and 3.3 times better than for the unmodified SUMC. The com-
parison is summarized in Table I.

2-3

TABLE I. COMPARISON OF MODIFIED SUMC PERFORMANCE
TO H4400 AND JPL STAR COMPUTERS

MOD. JPL
SUMC H4400 STAR

JUMP psec 1.4 1.4 36

ADD psec 1.2 1.4 36

MULT psec 5.0 6.0 SOFTWARE

DIVIDE psec 9.6 10.8 SOFTWARE

SQ ROOT psec 7.4 8.6 SOFTWARE

MEM. CYCLE psec 0.6 0.7 18

CLOCK MHz 10 8.33 0.5

POWER watts 30 425 10

CPE/BOSS Commonality

A study was conducted to assess the desirability of using a common SUMC
processor design for both BOSS and CPE functions. This looked attractive because
BOSS will execute routines for data scheduling, system test, repair, and con-
figuration, and interrupt processing. For four simultaneous processing streams
executing programs of an average of 5 msec. duration BOSS will execute at least
800 routines per second. To meet these function and speed requirements, BOSS
will have to be a small special purpose computer including such instructions as
LOAD, STORE, NO OP, JUMP, TEST, SPCJ, AND, OR, SHIFT, ADD, SUB, plus
macro instructions to speed up frequently used processes such as table searches.

Advantages to having a common CPE and BOSS design would include the
fact that if processor spares can accomplish either function fewer total modules
would be required, potentially increasing reliability and lowering system cost.
Maximum logic commonality should cut costs since only one module would need
to be designed and tested and commonality would make small BOSS-less systems
more feasible. Figure 2 is a very much simplified block diagram showing a
functional partitioning of SUMC into BOSS only, CPE only, and common functions.
BOSS will look functionally similar to the SUMC-CPE - however SUMC instruc-
tions such as MULT, DIVIDE, Square Root, floating point and double precision
will not be needed and special system monitoring and control logic will be re-
quired in BOSS but not SUMC. This latter difference leads to a far greater
interconnection problem for BOSS than for a CPE but aside from the interface
most BOSS only logic would be in the form of a different MROM program for
BOSS than for the CPE.

2-4

32140-3

- "CPE" FLOATING
POINT UNIT

(TO) -- (FPU) I
MAIN -- -
MEMORY
(FROM

ARITHMETIC MULTIPLEXER/
ARITHMETIC REGISTER
LOGIC UNIT UNIT

I (ALU) (MRU)

I SL

CONTROL SCRATCHPAD
MCU UNIT FPU MEMORY UNIT

CONTRO (CU) CONTROL (SPM)

L... - ... J
INTERNAL
CONTROL "
LINES L BOSSiL "BOSS" MONITOR BOSS

AND CONTROL LCONTROL

INTERRUPTS -. - 1 UNIT TO OTHER

STATUS FROM - - - (MCU) MODULES

OTHER MODULES L... - - - .

ESTIMATED COMPLEXITY (LSICs) FOR MODIFIED SUMC

"BOSS" ONLY - ---- 2
"CPE"ONLY ------ 7
COMMON 25

Figure 2. SUMC Module Partitioning

We have come to the conclusion that despite their similarity, BOSS and
CPE modules should not be made identical because of the wasted non-common
logic involved (20-25%), the increased intermodule switch complexity if any
module is allowed to assume either BOSS or CPE status, and the physical prob-
lems of inter-connecting status and control lines between all CPE/BOSS modules
in a compact structure. Further we feel that BOSS should physically be one
module with several (probably 4) identically partitioned parts, any combination
of which can be operated in TMR or in duplex in the event of failure of all but 2
of the parts. This will allow maximum packaging efficiency on the assumption
that each BOSS partition will contain 25-30 LSICs and BOSS overall may have 200
or more interconnects to other ARMMS modules. We do strongly recommend that
an effort be made to maximize logic commonality between BOSS and CPE LSICs
to minimize system development costs. As the BOSS and CPE designs become
better defined in Phase I, this commonality will be assessed further.

2-5

Making SUMC Self-Testing

Finally, studies of adding a self-test capability to SUMC have been con-
ducted to enhance its reliability over a five year mission. Hamming-Parity error
detecting and correcting codes could be used to test the address and data reg-
isters and memories. Selective duplication within a processor and/or special
test routines to be executed periodically would be needed to test the processor's
control and arithmetic logic.

Coverage is defined as the conditional probability that all faults will be
detected or masked before they result in erroneous computation. Designers of
successful self-testing computers to date such as Jet Propulsion Laboratories'
STAR and Bell Telephone Laboratories' ESS feel that error detection coverage
approaching 100% is feasible for much less than a 100% increase in logic with
these techniques. In SUMC the added complexity should not exceed 20%. Assum-
ing 100% coverage this allows TMR-like operating capabilities (i. e., correcting
errors without interrupting the program flow) with a duplex system since, when
the voters indicate a disagreement, the output of the unit whose fault detection
circuits sense the faults will be ignored. In many cases this allows uninterrupted
program flow even if TMR capability has been lost due to a failure. It can also
allow two duplex streams to be made of four processor modules giving TMR-like
reliability at twice the system operating speed. A simplex system can detect
errors and retry instructions, and generally perform like a duplex system without
self-test would. Finally, self-test capability is essential to a BOSS processor
and if SUMC can be made self-testing commonality between CPE and BOSS logic
is increased. Therefore, despite the increase noted in SUMC logic and the fact
that self-testing systems cost more to design and test it is felt that the increase
in system performance and reliability afforded by a self-testing SUMC processor
outweighs these disadvantages and should be persued along the lines discussed
above and later in this report.

Summary

In summary, it should be possible to build a modified SUMC processor
using CMOS or Schottky TTL logic that will execute 425, 000 instructions/second
in a BOSS configuration with high reliability over a five year mission. In ARMMS
system speeds exceeding one million instructions/second should be obtainable in
configurations requiring from 100 to 300 watts of power. Some of the areas of
major impact to the SUMC design are summarized in Table II and an analysis of
SUMC instructions including overlap and CPE/BOSS commonality considerations
is shown in Table III. Areas not covered in this section will be discussed later
in this report.

2-6

TABLE II. AREAS OF MAJOR IMPACT ON SUMC DESIGN

* Voter Placement * Interrupt Handling

* Replicated Busses * Software

* Data Path Width * Instruction Set

* BOSS Interface * Error Correcting Codes
(Control Commands and
Status Monitoring) * Power Switch

* System Speed * Processor Synchronization in
TMR Mode

* Internal Fault Detection
* Reconfiguration Features

* Memory Protect

2-7

TABLE III. SUMC INSTRUCTION ANALYSIS

Avg No. of Useful
Cycles Avg Cycles Total Total Improvement Stored in

Instruction Execution Mem Access No Overlap with Overlap with Overlap Microinstr. Boss

LA 8 16 24 12 12 1 Yes
LB 8 16 24 12 12 1 Yes
LX 8 16 24 12 12 1 Yes
STA 8 19 27 15 12 1 Yes
STB 8 19 27 15 12 1 Yes
STX 8 19 27 15 12 1 Yes
DELY 6 8 14 8 6 1 Yes
NOP 6 8 14 8 6 1 Yes
HLT 6 8 14 8 6 1 Yes
JMP 8 8 16 14 2 1 Yes
TE 8 8 16 13 3 3 Yes
TG 10 8 18 15 3 6 Yes
JZ 10 8 18 15 3 4 Yes
JP 9 8 17 14 3 2 Yes
JXNZ 9 8 17 14 3 4 Yes
AXI 6 8 14 8 6 2 Yes
TINS 8 8 16 13 3 4 ?
JMPI 6 8 14 14 0 1 ?
SPCJ 10 19 29 21 8 2 Yes
RAR 16 8 24 18 6 5 ?
RAL 16 8 24 18 6 5 Yes
SRAD 28 8 36 30 6 6 No
SLAD 28 8 36 30 6 6 No
SRL 18 8 26 20 6 6 Yes
EOR 10 16 26 14 12 2 Yes
OR 10 16 26 14 12 2 Yes
AN 10 16 26 14 12 2 Yes
EORR 10 8 18 12 6 3 ?
ORR 10 8 18 12 6 4 ?
ANR 10 8 18 12 6 4 ?
A 8 16 24 12 12 2 Yes
S 8 16 24 12 12 2 Yes
AR 10 8 18 12 6 4 ?
SR 10 8 18 12 6 4 ?
M 46(30) 16 62(46) 50(34) 12 16 No
D 92(60) 16 108(76) 96(60) 12 19 No
SQR 72(40) 8 80(48) 74(42) 6 7 No
DA 14 24 38 20 18 6 No
DS 14 24 38 20 18 6 No
DSQR 78(46) 8 86(54) 80(48) 6 8 No
FA 20 16 36 24 12 19 No
FS 16 16 32 20 12 11 No
FM 52(36) 16 68(52) 56(40) 12 14 No
FD 96(60) 16 108(76) 96(64) 12 19 No

Total 19.2(15.6) 12.3 31.5(27.9) 23.2(19.7) 8.2 239 44
BOSS 9.9 12.5 22.4 14.6 7.8 79 25

Notes: Numbers in () assume two adders, otherwise one assumed.

Fetch and IO microprograms of 22 microinstructions are included in totals.

2-8

II. ARMMS Hardware Configuration Studies

One of the major efforts under ARMMS Phase II has been to study alter-

native configurations for interconnecting various ARMMS modules. These con-

figurations were developed chronologically as A, B and C. Configuration A was

characterized by busses between all major module classes with voting on the bus

outputs in the TMR mode being done internally to the modules. Configuration B

was similar to Configuration A except that the voters were considered as a

separate module class rather than as a part of other modules. Reliability model-

ing led to the conclusion that the reliability gain due to this additional partitioning
was marginal in comparison to the added interface wiring and software configura-

tion complexity caused by the additional voter module class since voter switches

are very simple compared to processors or memories. Hence, Configuration B

was considered to be less desirable than Configuration A. Configuration C is a

refinement of Configuration A that completely internalizes all voter switches,

and functionally combines main and BOSS memory and several bus classes further

reducing software configurational complexity and increasing reliability through
more efficient utilization of memory and bus resources. Configuration C is now

the ARMMS baseline. The 3 configurations are shown in Figures 3, 4, and 5 and

described below.

Configuration A

The major characteristics of Configuration A are the following:

a) Bus System. A system of 4 busses interconnects each set of modules.

Switches are decentralized and under BOSS control. Busses consist

only of wires interconnecting appropriate module classes. Implicit

in each interface is some word assembly/disassembly hardware.

b) A small high-speed local store is contained within each processor.
This store retains the previous eight instructions for efficient loop-

ing and possibly one instruction ahead for overlapped instruction
fetch. When memory access is initiated, the address is first com-

pared to data in the faster local store.

c) Error Detection and Correction - All processors contain a single
error correcting, double error detecting network at the memory
interface. Processor to I/O data is not coded since critical output
data will utilize a TMR or duplex configuration.

d) Memory Protection - In addition to the protection afforded by voting
and error correction, protection against unauthorized or untimely
access is provided in configuration A by a system of locks and

priorities contained in each memory module's address decoding
network.

e) Configuration Control - Configuration control is a BOSS function.
BOSS has the capability to send power switch setting, voter and bus

switch setting(s), status commands, and status requests. Each
module has a Module Status word which can be transmitted to BOSS
on request.

2-9

32140-4

EXEC. MAIN MAIN MAIN MAIN
BOSS

MEMORY MEMORY MEMORY MEMORY MEMORY

EXEC. -
BOSS

,MEMORY i

IH1
EXEC. -- tS E I

MEMORY .

IOP ... IOP CPE 00* CPE

EXEC. >4...
BOSS SYSTEM INPUT BUS

MEMORY

/SW t C u V/SW

SYSTEM OUTPUT BUSSES

Figure 3. ARMMS System Configuration "A"

32140-5

MAIN MAIN MAIN MAIN

EXEC. MEMORY MEMORY MEMORY MEMORY
BOSS

-MEMORY >

SV/SW I V SW

EX E• OPCE C, P

EXEC. BS -7
BOSS

MEMORY

EX~r~ E C. BOSS - ----

V/Sw

MEM"SYORMYNPT U

EXEC.
BOSS V/

MEMORY

IOP 000_ IOP I-JIICPE 000. CPE

EXEC.>
BOSS

MEMORYI

- I SYSTEM INPUT BUS

V/SW * V/SW

SYSTEM OUTPUT BUSSES

Figure 4. ARMMS System Configuration "B"

32140-6

MEMORY MEMORY MEMORY . *...... MEMORY
1BOSS 2 3 16BOSS

TO/FROM
MODULE
BUSES
(2)

PROC TO MEM
BUSES (4)

BOSS PART 1

BOSS PART 2 '

-BOSS PART N

MEM TO PROC.
BUSES (4)

MVL

OP IOP CPE • CPE
1 4 1 7

- SYSTEM INPUT BUS

SYSTEM OUTPUT BUS

Figure 5. ARMMS System Configuration "C"

2-12'

f) Voter Placement. Voters connected to BOSS and external I/O are
critical since there is no serial checking of their outputs. Consequently,
these voters are located external to the modules and their outputs are
compared in BOSS. Signals which are internal to the system can be
voted on at least twice so that voter failures can be masked. Internal
voters have been placed in the input interface of each module.

Configuration B

The major distinction between Configuration A and B is that voters in
Configuration B are individual units inserted in the bus system between appropri-
ate modules. Each voter receives inputs from all four busses and is set up by
BOSS to vote on any three, to duplex any two, or to simplex the specific bus to
which it is assigned. The output of each voter is then bussed to each destination
module which has been set up by BOSS to receive on a particular bus. The major
tradeoff aspects of this approach are that at the total amount of voting hardware
in the system is reduced at the expense of added module types, interconnections,
and busses, additional software and reduced bus speed. Figure 6 compares the
2 voting methods. The reliability study leading to the decision to reject Configura-
tion B is described in the reliability section of this report.

Configuration C Design Philosophy

One of the toughest challenges ARMMS faces is reliable rapid reconfigura-
tion at a reasonable cost in power, volume, and complexity. A prime considera-
tion of Configuration C is minimization of the number of module classes and the
number of system level interconnections between modules without sacrificing
reliability or performance. To this end many of Configuration A's busses, and
ports, and all of its external voter modules have been eliminated and their func-
tions are now performed by the remaining modules and/or busses. Four module
classes and three internal bus classes remain:

BOSS - This single, subpartitioned module will execute routines for data
and I/O scheduling, interrupt processing, system test, repair, and configura-
tion, and power and clock switching and distribution. BOSS will be an internally
redundant self testing and repairing special purpose computer including such
instructions as LOAD, STORE, NO OP, JUMP, TEST, SPCJ, AND, OR, SHIFT,
ADD, SUB, plus macro instructions to speed up frequently used processes such
as table searches and special control instructions used for monitoring and con-
trolling other ARMMS modules. BOSS will consist of four or five identical sub-
partitions "B" containing power supply, timing oscillator, memory bus interface
and control bus voting components.

2-13

32140-7

1 V 2v F -[

Figure 6A. A Module Class with Internal Voters

32140-8

1 2 M

VI V2 V3 V4

Figure 6B. A Module Class with 4 External Voters

2-14

IOP - ARMMS can accommodate up to 4 I/O processors. Each I/O proc-

essor contains standard logic matching it to ARMMS system interfaces. Internally

the processors can be mission dependent containing either general or special

purpose logic. Identified IOP functions include paging between bulk and main

memory modules, spacecraft status monitoring and preprocessing, and space-
craft control. IOPs can be used singly, in pairs, or in triads, or can be in-

ternally redundant with multiple bus outputs.

CPE - ARMMS can accommodate up to 7 CPEs (Central Processing Ele-
ments). Up to 4 CPEs can be on line simultaneously with up to 4 IOPs and BOSS.

CPEs can be utilized singly, in pairs, or in triads depending upon mission

requirements. It is envisioned that the CPE will be an outgrowth of the SUMC

processor modified to include self test logic. BOSS monitor and control inter-

faces and overlapped memory accessing.

MM - ARMMS can accommodate up to 16 main memory pages correspond-

ing to 16 active memory modules in simplex configurations or larger numbers in

dual or triad configurations. The total number of modules would be limited by

bus driving components and might nominally be 25. The nominal module size is

8, 192 words each containing 32 bits of data plus a 7 bit single error correcting,
double error detecting code for data.

PMB - ARMMS contains 4 processor to memory busses. Each CPE is

connected to 2 of these busses. IOPs are also nominally connected to 2 PMBs

but can be connected to any number depending upon their design. BOSS and all

memories will be attached to each of these 4 busses. Each bus contains 13 data

lines, including error coding, and an Access request line. Software will keep
track of the 2 non-existent bus ports on each processor in the same way as it

does failed bus ports.

MPB - ARMMS contains 4 memory to processor busses each of which is

connected to every processor module in order to allow TMR voting between any

triad of busses and unlimited choice of processors with which to make up the
triad. Each bus contains 13 data lines, and a response line.

BMB - Finally ARMMS contains 2 (one plus a spare) BOSS to/from
module busses on which BOSS sends control codes to processors and memories

and receives status information upon request. All commands and responses are

coded and commands are address-tagged on this bus. The bus will nominally
consist of 8 data lines plus dedicated parity, clock, and sync lines. BOSS may
command or interrogate other modules at will or in response to individual
interrupts from them.

2-15

Memory Usage

Configuration C memory usage differs in several respects from Config-
uration A:

1) Instead of a local store, BOSS utilizes temporarily dedicated por-
tions of main memory for most storage requirements. This
eliminates the need for separate busses between BOSS and dedicated
memory and allows spare memory modules to be dedicated either
to BOSS or to processing as needed, reducing the total number of
modules required.

2) Instruction overlap speeds ARMMS processors up sufficiently to
negate any advantages of a high speed local store hence no words are
retained automatically in the processor after their use except in
processor registers.

3) Base and bound registers are assumed for memory protection rather
than Configuration A's more complex lock and key scheme.

4) Rather than providing separate busses between IOPs and CPEs con-
figuration C provides for CPE to IOP transfers via a processor to
memory and memory to processor bus pair using a memory as a
switching point for a special transfer command. A need for a direct
IOP to CPE path has not been established and has not been provided
for although such a path could be handled similarly to the CPE to
IOP transfer - again using a memory as a switching point.

Startup Procedure

In Configuration C the system start up procedure is as follows: Initially
all BOSS partitions and all memories are powered. Memories all initially answer
to a Page 0000 address. The BOSS partitions vote to choose the three lowest
numbered partitions "A" capable of agreeing with one another and the lowest
numbered partitions "B" self-checking OK. Other BOSS partitions are then
voted off. The BOSS module then accesses memory location 0... 0 which con-
tains previously stored data as to which BOSS partitions were in use previous
to power down and which memory modules contain BOSS memory. These parti-
tions and memories are powered and the other memories powered down. Follow-
ing successful completion of BOSS diagnostics with this memory the configura-
tion routine is called to begin powering up and testing other memories and
processor modules as required, and provide them with program status words
(PSW) on the BMB lines to allow resumption of normal operation. It is expected
that BOSS configuration control, job and I/O scheduling and interrupt processing
would be performed as in Configuration A.

2-16

Error Detection

Configuration C error detection differs from Configuration A, in that:

1) Instead of a negative acknowledge scheme, all modules will com-
municate their error detection findings directly to BOSS where
BOSS will make judgements as to which modules are in error by
analyzing the data and running diagnostic routines on the modules
in question as needed.

2) A 6-bit Hamming code plus an overall parity bit will be appended to
stored memory data to allow correction of one error occurring in
memory. This equivalent to providing a spare memory bit plane in
that 2 bit planes must fail before a memory module will be con-
sidered failed but it avoids the problem of actually switching in a
spare plane and loading it with previously stored data. This com-
bination of codes will also detect up to 4 errors allowing for detec-
tion of a failed bus line for example. A similar code will be used
to detect improper memory address accessing. Code checks will
be performed with every inter-module data transfer. Decoding occurs
prior to the ALU, with decoding following the ALU. The logic in
between is duplicated and outputs are compared since the Hamming-
Parity code is destroyed by arithmetic operations. This is discussed
further in the section on Error Detection Strategy.

3) Voting on BOSS commands to other modules is done internally to
BOSS (in subpartition B) using duplicated voters and busses and
internal subpartition switching in the event of a voter disagreement.
This eliminates the need for the external BOSS to voter busses and
command voters of Configuration A. If a need for redundant output
busses from I/O is established a similar scheme can be employed.
I/O processors can be made internally redundant as needed and the
I/O to voter busses and external output voters eliminated.

Modules will first try to detect and correct errors by masking in the TMR
or duplex mode or rollback and retry methods in simplex mode or in duplex mode
cases where masking cannot be achieved. In both cases errors will be tallied.
If the modules are not successful in correcting the error BOSS will be interrupted
and will obtain status information from the modules in question via the BMB lines.
BOSS will determine which module has failed through diagnostic routines, place
it at the bottom of that module classes' spare queue and try other modules until a
good one (hopefully) is found, place the good module on line, and resume computa-
tion. In the TMR mode the task will continue to completion at top priority and then
the diagnostic procedure will be applied. ARMMS will be considered to have failed
if and only if BOSS cannot find a usable module in each class by this procedure or

2-17

C

if an erroneous computation goes undetected. A module is not considered to have
failed until the failure manifests itself. Using internal error detection within
modules allows masking of errors in duplex mode and detecting them in simplex
so as error detection coverage approaches unity duplex operation looks like TMR
and simplex looks like duplex. In many cases this could allow higher throughput
and longer system life due to using fewer modules per stream.

Intermodule Interface Approach

An intermodule interface has been designed that allows any CPE, IOP, or
BOSS module to address any non-protected memory page. It allows any combina-
tion of simplex, duplex, or TMR streams with any combination of relative prior-
ities to co-exist with minimum bus contention providing that no more than 4 CPEs,
4 IOPs, and BOSS are involved simultaneously. Volatile storage defining a mod-
ule's role in ARMMS has been minimized and coded such that transients cannot
cause an undetected change in the module's status. The interface allows all
modules of a class (CPE, Memory, etc.) to be virtually identical. Interface gate
complexity and module to module interconnections have been minimized. When-
ever a stream is formed BOSS sends each processor module involved a stream
status code on the BMB lines defining all bus connections within the steam. Once
assigned to a stream a processor always uses the pair of busses specified by the
stream status code for communication to and from memory eliminating bus con-
tention among processors of a given type. For redundancy each processor can
output on a choice of two busses. This choice is made by BOSS command. To
reduce bus contention between processors of different types a hierarchy is es-
tablished such that I/O and BOSS modules can inhibit CPE modules from starting
a new memory access cycle when the former modules require access to a mem-
ory bus. Similarly BOSS (but not CPE) modules can inhibit I/O modules' bus
access. Once any module has been granted access it will continue to have it until
transfer of the word involved has been completed. Usually only processors using
busses needed by other processors are inhibit except that all processors operat-
ing synchronously in a duplex or TMR stream are inhibited if one or more proc-
essors in the stream are inhibited insuring maintenance of synchronization
between these processors. Modeling indicates that speed lost due to bus conten-
tion between processors of different types should be less than 3% exclusive of
memory contention losses that are independent of the interface design.

BOSS assigns each memory module a page address and a high, middle,
or low bus response assignment in the case of memory accessible by a TMR
stream (or a high or low assignment for access by a duplex stream). If further
studies result in elimination of the TMR memory mode, TMR streams will be
able to access duplex memories. Presently a memory module can be accessed
only by stream of equal or lower critically than its mode. Access by a stream of
higher critically results in an interrupt to BOSS to initiate a paging routine to
increase that page's criticality. Memory page size will equal memory module

2-18

size. All memory modules assigned to a given page output on the same bus when

accessed by a simplex stream or on different busses according to their bus

response assignment when accessed by duplex or TMR streams. Examples are

shown in Figures 7 and 8. All duplex or TMR stream processors receive

memory outputs on all busses assigned to that stream. Each processor access

request contains a page address and a bus priority code. Processors will con-

tinue to request access until it is granted or until they are temporarily inhibited

by other processor's desire to access.

The assignment codes discussed above require 6 bits from BOSS to

memories, and 5 bits from BOSS to processors plus extra bits for error detec-

tion coding. Each module input interface includes voting and fault detection cod-

ing logic. These interfaces can be implemented at an estimated cost of 4 to 5

LSICS/module (~250 gates each) - this represents approximately a 10 to 15%
increase in ARMMS overall logic.

The ARMMS priority structure will involve both hardware and software
elements. The hardware recognizes a minimum of 16 different priority levels.
The software then selects different subsets of these 16 as program requirements
dictate. The highest hardware priority goes to BOSS since the efficiency of the

rest of the system depends on BOSS completing its tasks efficiently. The second

highest priority is a special TMR CPE mode used only in the event of an error
in one of three TMR channels to insure completion of the TMR task with maxi-
mum speed prior to initiating diagnostic tests on the stream. The next seven

priorities are for I/O streams on the assumption that the timing of external
events happening and mass data transfers is more difficult to control than the

timing within processing streams and hence IOP memory access requests should

be given higher priorities than CPE access requests. The seven lowest priori-
ties are for CPEs.

So long as BOSS, I/O, and CPE programs are mostly segregated into
different memory pages all 3 types of programs should be able to be executed
simultaneously with minimal bus or memory contention. When these programs
wish to access the same memory page the internal logic design of the memory
access logic will tend toward letting the streams access the memory a word at
a time in turn since each processor will release the memory temporarily be-
tween access requests letting the next higher priority stream gain access for
one word. This results in all contending streams slowing down but none stopping
entirely. Obviously this does not preclude the need for designing the software to
minimize memory contention if ARMMS is to perform efficiently as a multiprocessor.

The seven priority levels available for normal I/O and CPE scheduling

are ordered in descending priority as shown in Table IV allowing the 14 modes

listed in the table. The logic allows any of the combinations listed for CPEs to

be used simultaneously with any of the combinations listed for IOPs. Note that

2-19

32140-9

PROCESSOR "A" MEMORY "W"

C S C S

ADDRESS "Q"

PROCESSOR "B" MEMORY "X"

C S IC S

PROCESSOR "C" MEMORY "Y
PAGE Q

C * S C C S
* s

PROCESSOR "D" MEMORY "Z"

C S IC S

REDUNDANT CONNECTIONS C CONTROL FROM BOSS S STATUS TO BOSS

Figure 7. ARMMS Processor/Memory Interconnections - I. Processor B Access to Memory Y In Simplex

2-20

32140-10

ADDRESS "Q"

PROCESSOR "A" MEMORY "W"

C S C S

ADDRESS "Q"
SMEMORY "X"

PROCESSOR "B" I PAGE Qf - -"HIGH"

C S C • S

MEMORY "Y"
PROCESSOR "C" PAGE Q

- ,"MIDDLE"

C S C S.

.. • MEMORY "Z"
PROCESSOR "D" PAGE Q

"LOW"
ADDRESS "Q"

Cl • SI C S

REDUNDANT CONNECTIONS C CONTROL FROM BOSS S STATUS TO BOSS

Figure 8. ARMMS Processor/Memory Interconnections - II. Processors A, B, D Access To Memories X, Y, Z
X, Y, Z In TMR

2-21

TABLE IV. ARMMS PROCESSOR PRIORITY ASSIGNMENTS

Priority Proc. Stream
Code Type Criticality

1. (Highest) 0000 BOSS TMR
2. 0001 CPE TMR (Special)
3. 0010 IO SIMPLEX A (SA)
4. 0100 IO DUPLEX A (DA)
5. 0110 IO TMR (TR)
6. 1000 IO SIMPLEX B (SB)
7. 1010 IO DUPLEX B (DB)
8. 1100 IO SIMPLEX C (SC)
9. 1110 IO SIMPLEX D (SD)

10. 0011 CPE SIMPLEX A (SA)
11. 0101 CPE DUPLEX B (DB)
12. 0111 CPE TMR (Normal) (TR)
13. 1001 CPE SIMPLEX B (SB)
14. 1011 CPE DUPLEX B (DB)
15. 1101 CPE SIMPLEX C (SC)
16. (Lowest) 1111 CPE SIMPLEX D (SD)

NOTE: IN A FULL PROCESSING STREAM AN IOP MAY BE GIVEN
THE STREAM'S CPE PRIORITY CODE.

IOP AND CPE STREAMS MAY INDEPENDENTLY HAVE THESE 14 MODES:

4 Processors 3 Processors 2 Processors

(SA, TR) or (TR, SB) (TR) (DA)
(DA, DB) (SA, DA) or (DA, SB) (SA, SB)
(SA, SB, DB) or (SA, ... , SC)
(SA, DA, SB) or 1 Processor
(DA, SB, SC)
(SA, ... , SD) (SA)

2-22

the choices allow for any combination of relative priorities between streams of
differing criticality and that the software system can change the priority assign-
ment of a given stream at will. Also that combinations such as 2 duplex IO
streams and a simplex plus a TMR limited processing stream are allowed. If
IOPs and CPEs are to be tied together in the concept of a "full processing
stream" via software both processor types could be given either the same CPE
or the same IOP priority assignment by BOSS. Otherwise BOSS assigns IOPs
only I/O priority codes and CPEs only CPE priority codes and the hardware
provides for complete independence of the I/O and limited processing streams
subject only to software restrictions.

Signals Across Intermodule Interfaces

In order to access data from memory a processor must provide a 4-bit
page address to select one of 16 memory pages, a 4-bit priority request to allow
the given memory page to choose the highest priority stream's request and de-
termine if the correct number of processors agreed on this request, the number
being determined by the priorities mode (simplex, duplex, or TMR), a 3-bit
2 out of 3 coded Read/Write/Transfer request and a 13 bit word address to
select one of up to 8, 192 words in a memory module. The first 8 of these 24 bits
must be present for a memory to make a decision as to whether or not to grant
the request. In addition a sync or "access request" signal must be present to tell
the memory that it is supposed to be making such a determination if these 8 bits
are to be transmitted on lines that can also carry word addresses and data that
might otherwise be confused with page and priority information. The processor
to memory bus must be at least 8 bits wide plus the access request line and any
desired parity lines in order to function efficiently.

One micro-instruction period is available in which to transfer an address
between a processor and memory for the shortest instructions with maximum
instruction overlap. If more time is used the transfer will slow down the proc-
essor. Similarly 1-1/2 micro-instruction times are available in which to trans-
fer data from the memory back to the processor without incurring time penalties.

Assuming a 32-bit word plus 7 error correction code bits this totals 39
bits. Five clock times would be needed to transfer this data over an 8-bit bus,
4 over a 10-bit bus, or 3 over a 13-bit bus. The address would be transferred
in 3 clock times over a 10-bit bus or in 2 clock times over a 13-bit bus. Taking
into account the awkward timing and the marginal speed capability of running
the transfers at 3 times the micro-program instruction rate with 10-bit busses
13-bit busses and a transfer to micro-instruction clock ratio of 2:1 were chosen
both to and from memory. Wider busses would not provide any additional speed
advantages.

2-23

In addition to data lines, the memory to processor bus must contain a
dedicated memory response line to signal the processor that the first 13-bits of
address have been accepted and the processor is to continue the transmission to
completion. If a processor does not receive this response signal it will continue
to transfer the first 13-bits of the address to the memory interface until either
the processor is inhibited by another processor or the memory responds to the
data. Since only one processor can use the bus at a given time all requests and
responses are unambiguous. Unsolicited "Data Ready", "Memory Cycle Complete",
and "Lock Control" lines between memory and processor are not required in
Configuration C.

Three additional lines are required in connection with the memory busses
at the processors only. Each processor receives inhibit lines from each of the
other two classes of processors and sends an inhibit to these other two classes,
describing each processor's bus activity. In addition an I/O busy line may be
required from IOP to CPE in the event of several CPEs wishing to access a
given IOP simultaneously. This will depend on the details of the IOPs and is
shown for completeness. Note that the BOSS module receives the IOP's Memory
Access Request as an inhibit rather than the IOP's normal inhibit line which
does go to the CPE. This is because the IOP's memory access request line will
not go true until all busses needed by the IOP have been cleared of traffic and
hence this line will inhibit BOSS only in the event that the IOP can gain access to
the memory through use of free busses or inhibiting CPEs, maintaining BOSS
priority over the IOP. The information to be transferred to or from a memory
by processors is summarized in Figure 9.

The BOSS to-or-from Module Bus must carry addresses capable of dif-
ferentiating between all ARMMS modules for the purpose of sending commands:
Each module can then contain a decoder that responds only to commands addressed
to it. With up to 25 memory modules, 4 IOPs, and 7 CPEs this can be accom-
plished with an 8-bit (2-byte) 2 out of 4 code. Following the addressing, commands
identified to date could easily be transmitted within 1 to 2 additional clock times.
In addition to the data lines, clock, sync and possibly parity lines are required
from BOSS to each module. In addition to the bus BOSS will have to provide for
non-bussed power control lines to and interrupt lines from each module. For
reliability's sake each of the lines between BOSS and the processors is made
redundant and are compared within each module. The BMB is a two-way bus
due to its assumed light usage as it was in Configuration A. All interconnections
for each type of module in ARMMS are summarized in Tables V.a, V.b, and V.c.
The BOSS has substantially more interface lines than do the other modules but
since it is packaged in a larger package and internally subpartitioned rather than
specified as a group of small modules they should present no mechanical packag-
ing or reliability problems. I/O modules may prove to be the most pin limited
depending on their size and the nature of their connections to external inputs and
outputs. However, Hughes packaging technology experts indicate that connectors
capable of meeting ARMMS demands are currently available.

2-24

32140-11

PROCESSOR TO MEMORY BUS.

PRIORITY CODE READ/WRITE/ PAGE ADDR. WDA
PWla I P (SEE TABLE IV) XFER CONTR.

P= PARITY 4 3 2 1 3 2 1 MSB 3 2 Isb msb

ACCESS REQUEST (AR)
(DEDICATED LINE)

PWlb 0 P WORD ADDRESS (WDA)

S oI I I I I I I I I I I

12 11 10 9 8 7 6 5 4 3 2 Isb

(WRITE OR XFER ONLY)

PW2 0 P DATA

D32 D27 I CK6 D26 I I D22

PW3 0 DATA

D21 I I I D12 CK5 I Dll D10

PW4 0 DATA

09 I D5 ICK4 I D4 I D3 I D2 CK3 D1 CK2 CK1

14 13 12 11 10 9 8 7 6 5 4 3 2 1

MEMORY TO PROCESSOR BUS.

MW1 DATA

D32 D27 I CK6 I D26 I I D0 22

MW2 DATA

D21 I I I I D12 I CK5 I D11 D10

MW3 DATA

D9 I I D05 CK4 I 0D4 I D3 D2 I
C K 3

I I CK2 CK1

13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 9. Configuration C Memory/Processor Word Formats

2-25

TABLE V.a. CPE INTERFACE LINES ESTIMATE

PROCESSOR TO MEMORY BUS

DATA/ADDR. 13

Incl. error det/corr. code

ACCESS REQ. 1

INHIBIT TO OTHER PROC. 1

15 x 2 = 30

MEMORY TO PROCESSOR BUS

DATA

Incl. error det/corr. code

MEMORY RESP. 1

INHIBITS FROM OTHER PROC. 2

16 x 4 = 64

BOSS TO/FROM MODULE BUS

COMMANDS/STATUS 8

PARITY 1

SYNC 1

CLOCK 1

11 x 2 = 22

NON-BUSSED LINES

INTERRUPT TO BOSS (red.) 2

POWER CONTROL (redundant) 2

IO BUSY (optional) 4

POWER SUPPLY 2

TOTAL 30+64+22+10 = 126

IOPs will have same lines as CPE plus additional system input and output bus
connections and discrete command lines. Assume 30 lines per bus plus 2x re-
dundancy and 25 commands yields 219 IOP lines total. Note that processor xfer
request and access request lines must go to IOPs to signal CPE IOP xfers.
(8 lines).

2-26

TABLE V.b. MEMORY INTERFACE LINES ESTIMATE

PROCESSOR TO MEMORY BUS

DATA/ADDR

Incl. error det/corr. code

ACCESS REQ. 1

14 x 4 = 56

MEMORY TO PROCESSOR BUS

DATA

Incl. error det/corr. code 13

MEMORY RESPONSE 1

14 x 4 = 56

BOSS TO/FROM MODULE BUS

COMMANDS/STATUS 8

PARITY 1

SYNC 1

CLOCK 1

11 x 2 = 22

NON-BUSSED LINES

INTERRUPT TO BOSS (red.) 2

POWER CONTROL (red.) 2

POWER SUPPLY

TOTAL 56+56+22+6 = 140

2-27

TABLE V. c. BOSS INTERFACE LINES ESTIMATE

PROCESSOR TO MEMORY BUS

DATA/ADDR.

Incl. error det./corr code

ACCESS REQ. 1

INHIBIT TO OTHER PROC. 1

15 x 4 = 60

MEMORY TO PROCESSOR BUS

DATA

Incl. error det./corr code 13

MEMORY RESP. 1

INHIBITS FROM OTHER PROC. 2

16 x 4 = 64

BOSS TO/FROM MODULES BUS

COMMANDS/STATUS 8

PARITY 1

SYNC 1

CLOCK 1

11 x 2 = 22

NON-BUSSED LINES (assumes 36 modules controlled)

INTERRUPTS TO BOSS 72

POWER CONTROL 72

POWER SUPPLY 2

146

TOTAL 60+64+22+146 = 292

2-28

Interface Timing

Analysis has shown that microprogram clock speeds on the order of 4 to
5 MHz will be the maximum to be realistically expected from a modified SUMC
with SOS CMOS technology in the late 70's time frame. An optimistic baseline
choice of 5 MHz has been made. Plated wire technology easily allows non-
volatile storage with access times of 300 ns and cycle times of 600 ns for read
and 800-900 ns for write accesses to memory at reasonable power figures. Semi-
conductor technology could also achieve these figures but was deemed undesirable
for ARMMS due to its volatility. Bus speeds on the order of 15 MHz are obtain-
able but these numbers must be reduced to take interface logic into account. Bus
speeds of 10 MHz (twice the processor speed) should provide a good match for
the memory and processor speeds listed. These figures will be adopted as base-
line numbers for Configuration C. Worst case numbers may be somewhat lower
but should continue to track each other well.

Figure 10 shows a non-overlapped instruction. For n micro-instructions
such an instruction would require 2n + 8 10-MHz clock cycles for all instructions
except writes and interprocessor transfers, 2n + 11 cycles for WRITES (assuming
that the data must be present before the WRITE cycle is initiated), and 5 cycles
for transfers. Figure 10 shows an overlapped instruction where a new instruc-
tion is fetched while the previous one is being executed. Instructions requiring
a 2nd operand require two fetches. Basically overlapped fetches require 600 nsec
each vs. 1200 nsec without overlap but JUMP instructions and WRITE instruc-
tions involving the previous instruction's operand cannot be overlapped and hence
require an extra fetch limiting the average speed increase with overlap to 40%
rather than 100% - still an impressive improvement. When more than 4 clock
cycles are required by an overlapped fetch and execution (i.e., more than
2 micro-instructions involved), or a WRITE is involved, the next memory access
will be delayed as shown by the cross-hatched areas in Figure 10 or Table VI
or the processor busy test in Figure 11. Recall that the page address, priority,
Read/Write/Transfer fields, and the most significant bit of the word address
are transferred on the first address transfer clock-time and the remaining
12 word address bits on the second address transfer clock-time assuming that
the first transfer was accepted. When a processor inhibit or lack of memory
response occurs all operations except for completion of a previously started data
transfer cycle cease until the conditions change. Hence any clock cycles lost in
this way are directly additive to the execution time of the program in the absence
of delays and the timing diagrams remain the same except for these delays.

2-29

32140-12

TIME SCALE (10 MHz CLOCK)

I I I I I I I I I I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000

NSEC.

NORMAL CYCLE:

ADDRESS MEMORY DATA EXECUTE&FETCH
P1 b DELAYSS MW1 MW2 MW3

I I I I I I I

SMEMORY CYCLE

LOSS IF MEMORY BUSY

WRITE CYCLE:

ADDRESS DATA MEMORY
PW1 ACCESS EXECUTE & FETCH

a b PW2 PW3 PW4 DELAY

SII I I I I I

MEMORY CYCLE
LOSS IF MEMORY BUSY

CPE--- IOP TRANSFER CYCLE

ADDRESS DATA
PW1

a b PW2 PW3 PW4

OVERLAPPED CYCLE

ADDRESS MEMORY DATA I NEXT
PW1 ACCESS MW1 MW2 MW3 EXECUTE & FETCH ADDR

a b DELAY (EXCEPT FOR M = 6 PW1
WRITE)a b

W M"-4=0
MEMORY CYCLE DELAY DURING

WRITE ONLY

LOSS IF MEMORY BUSY

IPREVIOUS ADDRESS PW2' PW3' PW4 MEMORY

M"=4 a b (WRITE CYCLE DELAYL. a b ONLY) DELAY E ET

SMEMORY CYCLE M-4=2 NORMAL WAIT

NOTE: IN EXAMPLE PW1 CAUSES A NORMAL CYCLE, PW1' CAUSES A WRITE CYCLE.
MW1 3 FROM MEMORY TO PROCESSOR BUS
PW1 4 FROM PROCESSOR TO MEMORY BUS

Figure 10. Configuration C Memory/Processor Transfer Timing

2-30

32140-13

MICROPROGRAM STEP FETCH

PC + 1 - MAR
S-+ PC

"READ"
MAR- MEM

IM/OR YES
RBOSSO

REQUEST

NO

MEM
OR YES

PROCESSORBUSY
NO

MR-lIR
MRD+ B-+MDR

-2ND0 OPERAND
REQUIRED

YES

PRR + X -- MAR

"READ"
MAR 4 MEM

I/ OR YES

REQUEST

NO

OR YES
PROCESSOR

BUSY

NO

EXECUTE
INSTRUCTION

FETCH

Figure 11. MOD-SUMC Fetch Cycle

2-31

TABLE VI. OVERLAPPED PROGRAM EXECUTION EXAMPLE

PROGRAM: ADD X
STORE Y
JUMP Z
Q -

ZJ+1 -

J+2

1. ACCESS INSTR. "ADD"
PC + 1-MAR

2. MR + X-MAR, LOAD MROM ADDR / / / / / / / / / / /
MAR + B-MAR ACCESS INSTR. "STORE
MAR-.-MEM

3//MR + X--MAR, LOAD MROM ADDR' time
MAR + B--MAR gained

ACCESS OPERAND SPM'-PRR, (USE MROM ADDR') due to

MAR--MEM overlap

4. MR + SPM-SPM, (USE MROM ADDR)
PC + 1-MARPC + 1-MAR STORE OPERAND
MAR-MEM

5. ACCESS INSTR "JUMP" PC + 1-MAR Effort
MAR -MEM wasted

time --------------

lost 6. MR + X-MAR, LOAD MROM ADDR / / / / / / // / / due to

due to MAR + B--MAR ACCESS INSTR. "Q" JUMP

JUMP MAR -MEM (USE MROM ADDR)-- a---
7. ACCESS INSTR. "J + 1" (NO OP)

PC + 1- MAR

8. MR + X-MAR, LOAD MROM ADDR.
ACCESS INSTR. "J + 2"

2-32

As noted in the text and Figure 10 data transfer to or from the memory
requires three 10 MHz clock cycles and a memory access time of 300 nsec
requires 3 of these clock cycles. Execution time requires 2n clock cycles for
n micro-instructions. The interested reader is referred to Table III of this
section for examples of timing of SUMC micro-instructions using overlapped
fetch cycles. Figure 11 shows the overlapped program's fetch and execution
cycle. Table VI shows the execution of a sample program. Events in the left
hand column occur simultaneously with those in the right hand column. Termi-
nology is from SUMC documentation.

Interface Logic Details

The Configuration C drawing shows the interface logic to a register
level, but a few words are in order as to finer details. Within each processor
is an access request network that will request memory access whenever an
appropriate bit appears in the processor's micro-program, subject to the
inhibitions from other processors discussed earlier. The choice of inhibiting
factors is controlled by the Stream Assignment Register. The logic also cor-
relates memory responses to its access request and, when a response from
the correct memory modules occurs, sets a flip-flop allowing the access to
go to completion and inhibiting other access to the bus until the cycle is com-
plete as signalled by a second micro-program bit within the processor. Figure
12 shows a gate level drawing for this logic in the case of a CPE module. Logic
for IOP and BOSS is similar.

Figure 13 gives a detailed view of the logic within each memory module's
access control block in the Configuration C diagram. As the data comes in on
each bus, busses whose access request lines are true and have page addresses
agreeing with a memory module's page address will be tested for access to the
memory registers. The 16 priorities are decoded and applied to the request
detection and priority ordering logic. If this circuit detects the correct number
of requests of the highest priority present at the time of the test and the memory
is not already in use the memory responds on the busses assigned to the proc-
essor generating the request and gates the response decision into the Response
and Criticality fields of an Assignment Holding Register and to the voting logic
to allow the voted data to go to the memory registers and to set up the proper
output bus paths for the memories data output in the case of a Read. When the
cycle is complete the Response and Criticality fields of the Assignment Holding
Register are cleared and the memory is ready for the next access.

Each module also contains voting logic which will vote any combination
of 3, compare any combination of 2, or transfer any one busses' inputs to an
appropriate module register signaling any disagreements to the module's status/
command network which will interrupt BOSS as appropriate. In simplex and
duplex modes the voting logic correlates error detecting code outputs with its

2-33

32140-14

MEMRES 1

MEMRES 3

MEMRES 4

BOSSINH1

IOINH1

BOSSINH2
DS1EA

IINH2

MEM REQ A
DS210BUSY --

IOXFR

CPE DESIRE MEM REQ B

BOSSINH3 TO ACCESS

IlOINH3
SET

CPEINHA
DS3

BOSSINH4

IOINH4 I CPE
ACCESS COM PLTM COCLR OL

CPEINHB

S- DS4

>

BOSS CONTROL- - - STREAM BUS
ASSIGNMENT REG

*ONE OF THESE GATES IS REQUIRED FOR EACH
CPE- 10 XFR PATH INVOLVING AN IOP THAT
COULD BE BUSY WHEN THE XFR IS TO TAKE PLACE.

DS1 ... 4, TMR CONTROL BUSS VOTER LOGIC

COMPLEXITY: 26 GATES, 6 FLIP-FLOP
2 2

PINS

TMR
TO
VOTER

Figure 12. CPE Access Control Logic

2-34

32140-15

Al

PRIORITY CODE 41 A4

Al BOSS

PRIORITY CODE 11 REQUEST REQUEST

STDETECTION
DECODERS

S ORDERING GENERATORS
S (4G LOGIC RS1
16G (1) X
16G 108G 17G

PRIORITY CODE 44 I P4 SMPX P

UP1 L P4
PRIORITY CODE 14 L P

PAGE
ENABLE
1....4

MEMORY RESPONSE
TO ACCESS REQUEST

PROC.TO MORBUSY
MEMORY INHIBIT
BUSES CRITICALITY

(SIMPLEX
DUPLEX TMR)

PAGE ADDR. 11 1

PAGE
S ADDRESS DS1

COMPARATORS
(4) MEMORYTO

0 X PROCESSOR I MEMORY
S 17G BUS SELECT OUTPUT

PAGE ADDR' 4
4 LOGIC B(1) • ENABLES

15G
DS4

PAGE ADDR 14

ACCESS REQ.
1.....• 4 -

PGID INPUT BUSS
1.....4 SELECTION

BUS OUTPUT MODE
L •(LO, MID, HI)

I I I

PAGE CRIT RESP. BOM ASSIGNMENT
ID (2) (4(2) ASSIGNMENT

(4) FF FF FF G
FF REGISTER

MEMORY
STATE
FROM
BOSS

COMPLEXITY = 324 GATES, 12 FLIP-FLOP, 50 EXTERNAL CONNECTIONS.
COULD BE TWO LSICs.

Figure 13. Memory Access Control Logic - (16 Priority Levels)

2-35

own decisions allowing for masking most errors in the duplex mode and detect-
ing them in simplex. In processor modules the voter paths are controlled by
the Stream Assignment Register while in memory modules they are under the
control of the Response and Criticality fields of the Memory Assignment Hold-
ing Register. This logic allows for maximum software flexibility in the ARMMS
configuration process with a moderate amount of hardware.

III ARMMS Error Correction Strategy

A major ARMMS objective is to provide an efficient trade-off between a
high-reliability mode in which most faults are masked and a parallel processing
mode where faults may cause momentary disruption of activity but must not
preclude recovery. Originally these were envisioned as TMR and simplex modes
respectively.

From the mission profile analysis of Phase I it became clear that the
majority of the processing load has to be performed in a high reliability mode.
However this implies only that any error should be detected prior to propagation,
not that it should be immediately corrected (i. e., masked), only a minority of
tasks required immediate connection. Our Phase II hardware reliability studies
indicate that both processor and memory modules can be made to detect most
faults and mask many others at the cost of a complexity increase on the order
of 20% so that even in the simplex mode 99% of all faults are estimated to be
detected and 55% to be masked. In the duplex mode detection is expected to be
virtually 100% and 99% masking is expected to be achieved. If these results
were compared to duplex and TMR operation with non-redundant modules respec-
tively we see a hardware decrease of from 40 to 20% achieved for comparable
operational reliability (i. e., if a single non-redundant module has a complexity
of 1.0 and an error coded module has a complexity of 1.2, then the comparisons
are 1.2 vs. 2. 0 and 2.4 vs. 3. 0 modules). Most programs would be run in error-
coded simplex, some in error coded duplex and for some missions a TMR proc-
essing mode might not even be necessary to achieve ARMMS desired degree of
reliability.

Figure 14 shows the ARMMS data path used for error analysis. The
objectives of this study were to determine:

1. Which codes are most efficient for error detection

2. Is error detection adequate or is error correction also beneficial

3. Where should the error coding logic be located

4. How should error detecting/correcting codes interact with TMR
voter switches for maximum benefit.

2-36

32140-16

I I

PROCESSOR
MODULE

SCRATCHPAD
MEMORY

I I

CERO EWORDS, BITS BS ARITHMETIC
INT ERFACE VOTER/ REG. PLATEDWIRE REG ERFOTER/ RE/ T REG

SWITCH ARRAY & SWITCH MUX
ELECTRONICS LOGI

I I
CONTROL LOGIC MODULE CONTROL LOGIC

Figure 14. ARMMS Data Path For Error Analysis

As will be discussed in the sections on memory and BOSS processor design 55%
of memory and processor logic is subject to faults effecting only a single bit of
a word. Thus, a single error correcting code can mask failures in this logic.
This provides a strong argument for the use of a code that can correct as well
as detect errors since such codes are not difficult to generate.

Choosing an ARMMS Error Code

Originally a residue code was considered for ARMMS error detection
because it is not destroyed by arithmetic operations in the processor. However
our recent studies indicate that only 10 to 15% of the processor's logic is in-
volved in arithmetic operations and of course no memory logic is. Further,
while residue codes detect errors, they do not correct them. Finally, if a
residue code is internally generated in each processor and no speed penalty is
to be allowed for this process at least as much residue codes logic would be
required as for duplicating the processor's ALU and comparing outputs. There-
fore a Hamming plus overall parity code is recommended along with duplication
of ALUs in all CPE modules, rather than using residue codes. BOSS ALUs need
not be duplicated if BOSS partitions will never be operated in the simplex mode
and our reliability studies indicate that with 4 BOSS partitions the chance of 3
failing within 5 years is less than .0002; hence BOSS need not be operated in
simplex.

Six code bits are required for single-error correction of 32 bit words
using a Hamming code. If an additional overall parity bit is used in addition to
the Hamming code all odd numbers of errors will be detected and the combina-
tion of these two codes will detect up to 3 errors and 50% of error combinations
involving more than 3 errors. As illustrated in Figure 15, checkers could be
placed either in each memory module or in each processor module but since
most ARMMS configurations should contain fewer processor modules than
memory modules and the Hamming-parity code checkers should ideally be
located as close to the ALU as possible for maximum coverage with minimum
hardware, both checkers will be placed in each processor module. A Hamming
code is generated as follows:

1. n bits provide SEC/DED protection for k=-2n-n-1 data bits

2. Example for n=3 and k=8-3-1=4:
Construct Parity check matrix whose columns are all non-zero
code vectors.

1 00 111 1

1010101

C1 C2 D1 C3 D2 D3 D4

2-38

32140-17

HAMMING DISTANCE 3

TO INCORRECT
MIRROR CORRECT
MIRROR CODEWORDCODEWORD

HAMMING CODE: S NS NS S NS

OVERALL PARITY CODE: S NS S NS S

HAMMING CODE: 5 NS NS S NS

OVERALL PARITY CODE: NS S NS S NS

SI I I I
- PATTERN REPEATS

9 a 7 6 5

INCORRECT INCORRECT

CODEWORD CODEWORD

ALGORITHM: CORRECTABLE ERROR WHEN BOTH CODES ARE NOT SATISFIED
DETECTABLE ERROR WHEN EITHER CODE IS NOT SATISFIED
NO ERROR WHEN BOTH CODES ARE SATISFRED

ASSUME: PROBABILITY OF N ERRORS > PROBABILITY OF N + 1 ERRORS

NOTE: THIS CODE DETECTS 1....4, 8....10, 14...16, ... ERRORS, CORRECTS 1 ERROR.

Figure 15. Hamming Plus Parity Code

2-39

3. All columns containing a single "1" are code vectors. Other column
vectors can be expressed as linear combinations of these code
vectors.

C1 = D1 D 2 (D4

C2 = D1G D3 D4
C3 = D2 D 3 D4

4. States of (C3 , C2 , C1) now indicate which bit is in error:

(C3 , C2 , C1) Bit in Error

001 C1

010 C2

011 D1

100 C3

101 D2

110 D3

111 D4

5. These decoded states are used to invert the bit in question correcting
the single error.

6. A parity code over the data and code bits allows detection of multiple
errors in addition to correcting the single error.

7. Assuming LSICs of ~ 250 gates each.

32 bit Parity Check 1/2 LSIC x2
32 bit Hamming + Parity Check 3/4 LSIC x2
32 bit Error Correction Add-On 3/4 LSIC xl

Total Logic per Processor 3-1/4 LSIC

(6 Hamming Code bits plus a parity check bit are required to encode
a 32 bit word in this way.)

2-40

Error Coder - Voter/Switch Interactions

It has been determined that the simplest voter/switch design would
pass data to a code checker and registers in the simplex mode, compare
data bit-by-bit outputting "1" to the code checker and registers in the duplex
mode, and vote on the data in the TMR mode. This requires only one holding
register and one code checker per module. It masks single bit errors in all
modes, and "no output" and multiple "Stuck on "O" errors in all but the simplex
mode, while detecting single bit, not output, and many multiple bit errors in all
modes. In duplex or TMR operation, if 2 processors both show a data error
this places the blame on the memory. If only one shows an error blame is placed
on the processor showing the error and its output is set identically to "0" for
that operation in which case the memory module's voter/switch will accept the
output of the good module as noted above.

The method just discussed (Method B) along with an alternative (Method
A) are shown in Figure 16. Method A has an advantage over Method B only in
duplex operation where it can isolate faults to a specific module rather than to
a module class and can mask multiple "stuck on 0" errors from a module that
would otherwise be detected but not corrected. Method B is recommended due
to its simplicity - saving about 12 ICs per module over Method A or perhaps
400 ICS in a large ARMMS configuration. Figure 17 is a detail of the voter
switch logic of Figure 16 for one data bit. This logic will be duplicated 13 times
for a 13 bit bus.

Most error code logic resides in the processor modules. Errors are
detected and corrected at the ALU input and data is encoded at the ALU ouput.
Error detection and correction can be implemented at a cost of under 4 LSICs
(250 gates each) per processor. This is approximately the same amount of logic
that would have been required to implement a residue code checker and about
twice what would have been required for parity checker plus voting.

Error Detection and Masking Procedure

When errors occur, the processor masks the error if possible, other-
wide it attempts a roll-back. If masking or roll-back is successful the proc-
essor completes its task before interrupting BOSS, in all modes. Once BOSS is
interrupted it will usually have to run software diagnostic routines on a module
to positively verify the failure and then replace the offending module.

BOSS places modules considered to have failed at the bottom of the
spare module queue and then tries other modules in the queue until a good
module (hopefully) is found. BOSS then places the good module on line and
continues the computation. ARMMS will be considered to be failed if, and
only if, BOSS cannot find a working module in each class by the above

2-41

32140-18

METHOD #A -PRE VOTER/SW ERROR CHECKING

BUSS 1 BUSS 2 BUSS 3 BUSS 4 #of LSICS/MODULE

39 BIT 39 BIT 39 BIT 39 BIT X 4 =4
REGISTER REGISTER REGISTER REGISTER

ERROR ERROR ERRORERROR
DET/COR DET/COR DET/COR DET/COR 2 X 4 = 8
LOGIC LOGIC jLOGIC LOG IC

PASS SIMPLEX
39 BIT PASS DATA CODED CORRECTLY 4 X 1= 4
VOTER/SWITCH IN DUPLEX 16/MODULES(VOTE IN TMR

METHOD #B - POST VOTER/SW ERROR CHECKING

BUSS 1 BUSS 2 BUSS 3 BUSS 4

P A S S S IM P L E X

OUTPUT "1"
13 BIT ON DISAGREE- 1 1/4
VOTER/SWITCH MENT IN DUPLEX

VOTE IN TMR

39 BIT I
REGISTER

ERROR
DET/CO R 2

LOGIC 4 1/4/MODULE

Figure 16. Error Checker/Voter-Switch Interaction

2-42

32140-19

FLT1

OUT

DATA A

DSl-- -- FLT3

GA 2O

OS2,i-l

DS31
i ED

FLT4

DATA 1....DATA 4 DATA FOR EACH OF 4 BUSES

DS1....DS4 BUS SELECTION LOCK OUTPUTS (RML)

TMR TMR MODE SELECT SIGNAL (1 = TMR, O = SMPLX, DUPLX)

OUT SIGNAL OUTPUT TO DATA REGISTERS

COMPLEXITY = 25 GATES/BIT 4 LINES/BIT + 5 RAILS

Figure 17. Universal Bus Voter/Switch (One Bit Slice - 13 Required Per Module)

2-43

procedure or an erroneous computation given undetected. A module is not con-
sidered to have failed until that failure manifests itself either through errors
detected during normal operation or during a periodic software diagnostic
routine.

Estimates of ARMMS intermodule error detection coverage have been
made assuming the module designs discussed in the next sections. These
results are summarized in Table VII, and show the relative likelihood of
various types of memory and processor errors and whether or not they can
be expected to be detected and/or corrected as a function of stream criticality
(simplex, duplex or TMR operation).

TABLE VII. ARMMS INTERMODULE ERROR DETECTION COVERAGE
STUDY RESULTS

Simplex Duplex TMR Rel. Prob.
Memory Bit Errors Correct Correct Correct .60

Memory Word Errors Detect Correct Correct .39 Mem

Bus/V-Sw. Errors Detect Detect Correct .01
most

Processor Bit Errors Correct Correct Correct .15

Processor Word Errors Detect Correct Correct .81 Proc.

Loss of Control Errors May cause Detect Correct .03
failure most

Total Detected ~99% ~100% ~100%

Total Corrected ~55% -99% ~100%

IV Preliminary BOSS Register Level Deisgn and Technology Study

A preliminary register level design and reliability analysis have been
completed for BOSS along with a tentative basic instruction set and list of
macro instructions. Effort in Phase III will further refine the BOSS design.
A partitioned BOSS module should be capable of achieving a reliability of . 9998
over a five year mission and would require approximately 100 LSICs (of 250
equivalent greater complexity each) to implement.

2-44

BOSS Functional Description

BOSS will execute routines for data scheduling, system test, repair,
and configuration, and interrupt processing. For four simultaneous processing
streams executing programs of an average of 5 msec. duration BOSS will
execute at least 800 routines per second. To meet these function and speed
requirements, BOSS will have to be a small special purpose computer including
such instructions as LOAD, STORE, NO OP, JUMP, TEST, SPCJ, AND, OR,
SHIFT, ADD, SUB, plus macro instructions to speed up frequently used proc-
esses such as table searches requiring correlations and list processing.

BOSS will look functionally similar to the SUMC CPE - however SUMC
instructions such as Multiply, Divide, Square Root, Floating Point and double
precision will not be needed and special system monitoring and control logic
will be required in BOSS but not in the CPE. BOSS will be capable of accessing
and testing half-words, bits, and variable length.fields for efficiency in list
handling. If modified SUMC related design is used for BOSS, speed require-
ments would limit average BOSS program lengths to about 875 operations per
task assuming 4 streams operating simultaneously with a 5 msec average task
length. Individual BOSS processor partition complexity is expected to be from
50 to 60% of the present SUMC complexity or from 70 to 80% of that of a
modified SUMC processor.

Originally BOSS was envisoned as a group of identical modules any
three of which could be operated in TMR to provide ultra-high reliability.
However, as mentioned in the configuration section, BOSS will have nearly
300 system level interconnects and if a group of BOSS processors were used
each one would need almost this many interconnects. In addition, with indi-
vidual BOSS processor modules, location of BOSS power and configuration
control, command voting, oscillator and power supply logic becomes a problem.
One solution is to group these functions into a very simple and hence very
reliable internally redundant "super-BOSS" module. The interconnect problem
which can effect both volume and reliability is solved by grouping the BOSS
processors and the "super-BOSS' physically into one module requiring only
one set of system level interconnects. The BOSS processors and the "super-
BOSS" become partitions "A" and "B" respectively. Reliability estimates based
upon BOSS register level design indicates that 4 "A" partitions and 2 "B"
partitions should meet ARMMS reliability goals.

BOSS Reliability Analysis

By operating BOSS in at least a duplex mode (and in TMR so long as
possible) failures in other BOSS logic will be detected - particularly those in
the ALU and control logic blocks. Parity checks can be performed inexpensively
on BOSS memory and the Hamming Parity logic is required in order to check

2-45

the main memory, keeping the cost associated with self-checking BOSS to a
minimum. Over 90% of BOSS failure modes can be masked to allow continued
operation so long as at least 2 BOSS partitions "Al" are operational. BOSS is
estimated to have a .9998 probability of successful duplex operation after 5
years and a .9976 probability of continued TMR operation over that period,
assuming 4 partitions "A" are flown. These reliability figures assume the
register level designs shown in Figure 18. Table VIII lists BOSS failure modes
along with resultant error patterns, failure rates and suggested corrective
action as a function of the component block failing. Table IX gives a preliminary
CMOS LSIC functional partitioning estimate for both BOSS and memory modules.
It is expected that most BOSS integrated circuit designs would be usable in the
CPE as well and this will be investigated further in Phase III. Memory modules
are anticipated to use 6 chips of 3 types and BOSS partition "A"s. are anticipated
to use 25 chips of 9 different types. The dashed lines in Figure 18 delineate
these partitions.

Referring to Figure 18 similarities can be seen between BOSS and SUMC
since SUMC was used as a starting point. However, the memory Input and
Instruction registers are duplicated to allow for instruction overlapping, there
is no MQ register or floating point unit since these functions are not needed in
BOSS, error detection logic and bus interfaces and voting logic have been added,
and the ALU-multiplexer structure has been simplified. At a detailed level
radical changes are expected in the structure of the microprogram read-only-
memory and scratchpad memory and in general the design has been simplified
and streamlined to increase the processor's speed and ease error detection and
correction. Hence SUMC hardware is not likely to be useful for BOSS and the
CPE should probably be an extention of the BOSS design rather han a modifi-
cation of SUMC since these should tend to maximize commonality and minimize
cost within ARMMS.

Referring to Table VIII it can be seen, assuming no duplication of the
ALU logic within a BOSS partition and at least duplex operation, that 75% of
BOSS failure modes will be maskable and that virtually all will be detectable.
In TMR operation, virtually all failures can be masked. The number in the
table should also be representative of CPE failure rates except that with
duplication of ALU and floating point arithmetic logic the conditional probability
of being able to detect a failure given that one occurs while operating with sim-
plex mode rises accordingly. As noted earlier simplex operation of BOSS is not
necessary or desirable in ARMMS while simplex processor operation is both to
be expected and desirable. Note that parity checks are made on BOSS internal
memories. Ideally one parity bit would be included in each word in each mem-
ory chip so that parity could be computed for each chip allowing testing
for an "all 0" output condition in addition to testing for odd numbers of
stuck bits. Certain on-chip addressing logic problems are not detectable

2-46

32140-20

BMB MPB1 1 I,
IRPsINPUT I.

MUX

13

VOTER/SW. INTERRUPT
j13 REG 32

131 32

-- - . I I -- 1
SCRATCHPAD
MEMORY
32 X 36

MEM. OUTPUT I MEM INPUT
REG. REG.-39 RG 391 _ . MEMORY

ADDR.

REG
36

ALU ARITHMETIC SHIFT
ITER " MUX LOGIC UNIT - MUX

39 32 32

emmam m m mm 391 1 MEMORY

t L DATAMORREG.
39

INSTRUC. INSTRUC.
REG 1 REG 2

16 16

PARITY HAMMING
CHK ENCODE

---- -CONTROLTO RROR BMB

mm alin.. INHIBIT

BUSS BUSY I 1
MICROPROGRAMMEM. RESP. MEM ACC. SEQ. ROM

CONTR CONTR. TO FAULTS IN

PARTITION OTHER BOSS
ACC REQ. BCHKR MODULES

PARITY CHECK

Figure 18. ARMMS BOSS Functional Block Diagram

TABLE VIII. BOSS FAILURE MODES

Components Failing Result Failure/106 Hrs Corrective Action

Input Mux or Voter/Switch Triple-Bit Error .04 Detect with H-P Code-
Inhibit Output

Mem In, Addr, Data Reg Single Bit Error .12 Detect and Mask with H-P

Output and ALU Muxes Code

Scratchpad Memory (SPM) Single Bit Error .10 Detect with parity check
inhibit out est. coverage = 0. 9

Arithmetic Logic Unit Multiple-Bit Error .10 Detect in duplex, mask in TMR.
Est coverage = 0*

Microprogram ROM Control Bit Error .10 Detect with parity check
(MROM) inhibit out est coverage = 0.9

Instruc. Reg. & Mux SPM or MROM Addr .02 Detect by comparing with
bit error memory in reg-inhibit out

Interrupt Reg., Iter Ctr, Improper Execution, .02 Detect in duplex, mask in TMR

Seq & Mem Acc Contr Loss of Sync. est. coverage = 0

Error Detection Logic False Error Indication .10 Inhibit Output

TOTAL .60

*This failure mode could be detected and masked internal to the partition by duplication of the ALU and

comparing outputs. Since BOSS is not to be operated in simplex this redundancy is not necessary nor
recommended although it is desirable in processor modules.

TABLE IX. PRELIMINARY CMOS LSIC PARTITIONING ESTIMATE

Function Bit Width Quantity

Memory (6)

1. Voter/Sw-Register-Output Mux 3 4

2., 3. Access and BOSS Control Logic N/A 2

BOSS (25)

1. Voter/Sw. - In and Out Mux 7 2

2. Data Reg. - ALU Mux 8 5

3. ALU - Shift Mux - H/P Corrector 8 4

4., 5. Error Detection N/A 4

6., 7. Sequence-Access-BOSS Control Logic N/A 2

8. Scratchpad Memory (32 Word) 9 4

9. Microprogram ROM (256 Word) 10 4

Most BOSS chips should be usable in the CPE as well.

250 gates/chip complexity CMOS logic assumed throughout.

with a parity check therefore memory coverage is expected to be " 0. 9 rather

than unity. Coverage is assumed to be unity in the tables "corrective action"

column except as noted. When one partition's output is inhibited, the memory

module's voter/switch will mask this output allowing the other partition's cor-

rect output to propagate to the memory. The same thing is true of partition "B"

command voting logic.

Given a non-maskable failure in a BOSS partition the replacement

algorithm implemented a partition "B" is as follows:

1. Power on partitions 1, 2, 3 at the start of the mission.

2. Replace the first failing partition with partition 4 (prob . 0806).

2-49

3. Power off the second failing partition - BOSS is now in duplex opera-
tion (prob .0024).

4. If a third, non-maskable failure occurs (prob. . 0002) ARMMS will cease
operating and wait for outside assistance. Retrying BOSS partitions
can be done on command but will not be done automatically since this
won't necessarily correct the failure and can lead to undetected erroneous
computations being outputted from the computer.

Partition B is statistically very reliable but conservative design calls for
providing a spare partition to be switched in automatically upon self-detected dis-
agreement within the first partition.

BOSS Register Level Design

The BOSS microprogram read only memory organization is summarized in
Figure 19. Bits have been provided to implement all BOSS micro and macro in-
structions discussed later in this section. This MROM would have to be modified
for CPE operation. Fields are included for interrupt, scratchpad memory, ALU,
hardware register, bus interface, and sequencer control functions. Each MROM
word uses 36 bits plus parity and 256 words are provided reducing the memory
to one eighth the size of the one in SUMC.

Figure 20 shows the BOSS instruction and data formats. Three types of
instruction and one data format are recognized: Main memory reference in-
structions contain an address for a 2nd operand fetch including a choice of 3
index registers, 3 base/bound registers plus a no index or base register option
when these fields are "0". An 8 bit op-code accesses the MROM directly with
the op-code of an instruction being the MROM address of its first micro instruc-
tion. Two register addresses are provided for accessing two words from scratch-
pad memory during the course of the instruction. Field R 1 can access any non-
privileged SPM location while Field R 2 accesses the lowest 8 accumulators.
Single operand instructions have formats the same as above except that a third
general SPM register may be accessed with Field R3 rather than a main mem-
ory location. Link word instructions are used for list handling and provide
two main memory address fields allowing indirect address linkage to a data
item in main memory and to the next link in the list. Data words allow 32 bit
signed fixed point data to be accessed by BOSS.

Figure 21 shows the organization of the BOSS scratchpad memory. It
contains 23 accumulators, plus 3 base and 3 index registers directly accessible
by the program. In addition a rollback program status word (RPSW) and inter-
rupt status word (IPSW) provide for program jumps on errors and interrupts
and three base registers provide for extended main memory access when summed
with an instruction displacement field. The RPSW, IPSW, and Program counter are
read accessible but not write accessible under normal conditions.

2-50

32140-21

S C R A T C H P A D

IRPI SCATCHAD ARITHMETIC LOGIC UNIT CONTROL REG. CONT. BUSS CONT. SEQUENCER CONTROL

ALU ALU SHIFTADDM. x UX
SOURCE WIDTH WIDTH CONT. OPERATIO CONT. OPR

I I I I I I I i I I I I I I I I I I

35 32 31 26 25 22 20 19 18 17 16 15 14 13 12 9 8 1

0 0 MAR
0 1 MDR

0 READ 1 0 RIx TOGGLE
1 WRITE 1 1MINx

WRITE 1 1 MNx OVERLAP ON 1

1 BMB
0 0 NO-OP 0 MEM BUS
0 1 LS HALF WRD
10 MS HALF WRD

00 0 R1 1 1 WHOLE WORD

00 1 R2 0 0 NO OP

0 1 0 R3 A 0 1 READ
0 1 1 PC 1 0 WRITE
1 0 0 BASE 00 0 A+1 1 1 XFER

101 INDEX 0 0 A+B
110 RPSW 0 1 A-B

11 1 IPSW 00 A-B MDR STROBE
1 0 1 A^B

1 1 0 AOB MAR STROBE
1 1 1 B-A

0 NORMAL IRSTROBE
1 IRP-ALU

0 0 0 NO OUTPUT
00 1 NO SHIFT
0 1 0 LFT CYCLE BYTE
0 1 1 LFT CYCLE 1
1 0 0 RGT SH BYTE
1 0 1 RGT SH 1
1 10 LFT SH BYTE
1 1 1 LFT SH 1 CODE FUNC/TEST IR OPR. IC OPR.

00 0 0 NORMAL +1 +0
0 0 0 1 (SPARE)
0 0 10 UNC.XFER -+N +0
0 0 1 1 COND. XFER -MDR +0
0 1 0 0 UNC.LOOP +1 -N
0 1 0 1 COND. LOOP +1 -MDR
0 1 1 0 (SPARE)
0 1 1 1 (SPARE)
1 0 0 0 TEST IC (LOOP, SHFT CONT) +0/-+N -1 IF > 0

1 0 0 1 TEST IC (LOOP, SHIFT CONT) +r/-+N - 1 IF >0
1 0 1 0 TEST IC (BYTE, SHFT CONT) +0/-*N -8 IF > 0
1 0 1 1 TEST IC (BYTE, SHFT CONT) +1/-N -8 IF>0
1 1 0 0 TEST ALU SIGN +1/-N +0
1 1 0 1 TEST ALU OVERFLOW +1/-*N +0
1 1 1 0 TEST ALU NON-ZERO +I/-+N +0
1 1 1 1 TEST IRP REG. +/-*N +0

Figure 19. BOSS Microprogram Memory Organization

32140-22

MEMORY REFERENCE INSTRUCTIONS:

E- BYTE #1 -- BYTE #2 - BYTE #3 - - BYTE #4

R1 (GEN.
OP CODE (MROM ADDR.) REG. ADDR.) R2 X B DISPLACEMENT

BYTES #1, 2 GO TO INSTRUCTION REG.
ALL BYTES GO TO MEMORY INPUT REG. BASE REG ADDR.

INDEX REG. ADDR.

MASK/SEC ACCUM REG. ADDR.
LOAD/STORE FORMAT

SINGLE OPERAND INSTRUCTIONS:

. T BYTE #1 - BYTE #2 BYTE #4

RI(GEN. REG.
OP CODE (MROM ADDR.) ADDR. OR R2 R3(GEN REG.

SHIFT CONT.) ADDR.)

BYTES #1, 2 GO TO INSTRUCTION REG. MASK/SEC. ACCUM ADDR
ALL BYTES GO TO MEMORY INPUT REG.

3RD ACCUM. ADDR.

LINK WORD FORMAT (2ND OPERAND)

- BYTE #1 BYTE #2 I BYTE #3 -- - BYTE #4

X B DISPLACEMENT (ATOM LINK) X B DISPLACEMENT (LIST LINK)

1 _ CAR e CDR
ALL BYTES GO TO MEMORY INPUT REG.

DATA WORD (2ND OR 3RD OPERAND)

I'- BYTE #1 " BYTE #2 BYTE #3 BYTE #4

s I DATA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
ALL BYTES GO TO MEMORY INPUT REG.

Figure 20. BOSS Instruction and Data Formats

2-52

32140-23

0 ROLLBACK PROG. STAT: WORD (RPSW)

2 BASE REGISTERS (3) B

4 INTERRUPT PROG. STAT. WORD (IPSW)

a INDEX REGISTERS (3) X

7

8 .PROGRAM COUNTER (PC)

9
INTERNAL

10 CONTROL
!_ (PRIVILEGED

WRITE)

12 MASK OR SEC. ACCUMULATOR REGISTERS (7) R2

13

14

orCr - -.- - - - - - - - - - - --R3
16

17

18 PRIMARY ACCUMULATOR REGISTERS (16)

19

21

22

23

24

25

26

27

28

29

30

31

32 BITS + BYTE-PARITY

Figure 21. BOSS Scratchpad Memory Organization

2-53

BOSS Interaction with Other Modules

BOSS will command and interrogate other modules via a 2-way BOSS/
Module bus (BMB). Each module will contain bus interface logic capable of
decoding a unique access code for that module plus a general sync code which
allows simultaneously starting several pre-primed processors working together
in the same stream. The interface logic will also gate the module's status word
MSW onto the BMB in response to an interrogate command from BOSS to the
module. Both processor and memory MSWs would contain their BOSS assign-
ments (memory page, processor bus access code) and in addition memories
could use a one bit code to indicate failures and the CPEs would include a 4 bit
status code as follows:

Error Code (2) Termination Code (2)

00 No Error 00 Normal termination unless error code > 0
01 Memory Error 01 Memory Page available
10 Processor Error 10 Lock variable request
11 Undetermined Error 11 Unlock variable request

BOSS would then use the code to determine which subroutine to branch to in
response to the processors' status. BOSS could interrogate processors periodi-
cally or in response to interrupts from them. Descriptions of, and formats for,
BOSS commands to other modules are shown in Figure 22. The "save" and
"restore" data commands cause the processor to store or load data respectively
from an area of memory defined in the commands. This allows BOSS access to
the processor's registers including privileged Base/Bound registers not
accessible by general programs. Transmission on the BMB will be parity coded
and a sync line is included to activate modules' access decoders. The BMB is
duplicated so that modules can verify accuracy of commands through comparison
of signals on the 2 buses and BOSS can likewise verify data from the modules.
Further hardware details were included in the configuration "C" description
section of this report.

BOSS Instruction Set

Recently M&S computing proposed a set of BOSS macroinstructions
covering bit and byte testing, byte, half-word and field load and store instruc-
tions and a set of instructions for formation and manipulation of linked lists.
These instructions were designed to allow rapid, efficient manipulation of various
tables, lists, queues, and other data structures contained in BOSS memory.
Their macroinstruction set has been analyzed and modified where necessary to
fit it into the framework of a 32 bit word machine. Some of the instructions have
been combined and made more powerful where doing so did not reduce BOSS speed.

2-54

32140-24

CODE COMMAND MEMORY PROCESSORS ARGUMENT (6)

00 STOP - SAVE DATA X MEMORY ADDR.

01 RESTORE DATA* - PRIME FOR SYNC
START X MEMORY ADDR.

10 TRANSMIT MSW X X SUBCODE = 0

11 LOAD ASSIGNMENT REG X X ASSIGNMENT

10 SYNC START X SUBCODE = 1

*GIVES BOSS WRITE ACCESS TO PRIVILEGED BASE/BOUND REGISTERS.

FORMAT:

SYNC PARITY DATA

TIME t 1 P 8 BIT 2 of 4 CODED ADDRESS

CODE ARGUMENT OR SUBCODE
TIME t+ 1 0 P (2) (6)

Figure 22. BOSS to Module Commands

TABLE X. BOSS MACRO-INSTRUCTION DESCRIPTIONS

1. GENERALIZED "CLEAR AND ADD" AND "STORE" INSTRUCTIONS

Boss M&S R2 Left Right
Mnemonic Mnemonic Field Halfword Oper. Halfword Oper.

CLA, STO LH, SH x01 NO-OP LOAD, STORE

CLA, STO LH, SH x10 LOAD, STORE NO-OP

CLA, STO - xll LOAD, STORE LOAD, STORE

CAI, STI XCDR, SCDR x01 NO-OP INDIRECT ADDR.
INDIRECT ADDR. LOAD, STORE

CAI, STI XCAR, SCAR x10 LOAD, STORE NO-OP

CAI, STI xl INDIRECT ADDR. INDIRECT ADDR.
LOAD, STORE LOAD, STORE

TIMING = CLA = 1.2 pSEC STO = 1.5pSEC CAI = 1.8 pSEC STI = 2.1 SEC

MEMORY EST: CLA= 1 STO= 1 CAI=2 STI= 2 WORDS

2. GENERALIZED TEST INSTRUCTIONS

(ARGUMENTS ARE ASSUMED TO BE STORED IN RESPECTIVE
REGISTERS PRIOR TO EXECUTION OF THESE INSTRUCTIONS)

BON R 1 , R 2 , A BRANCH IF BIT ON

BOF R 1 , R 2 , A BRANCH IF BIT OFF

TUM R 1 , R 2 , A TEST UNDER MASK, BRANCH ON EQUAL

TDM R 1 , R 2 , A TEST UNDER MASK, BRANCH ON EQUAL,
ELSE DECREMENT INDEX

R 1 = BIT NO. TO BE TESTED IN BON, BOF

R 1 = GENL. REG. TO BE COMPARED WITH MEMORY
IN TUM, TDM

R 2 = BRANCH ADDR. IN ALL INSTRUCTIONS

A = ADDRESS (INCL. BASE & INDEX) OF MEMORY
LOCATION UNDER TEST

R 2 + 1 = ADDRESS OF 32-BIT MASK IN TUM, TDM

INDEX REGISTER TO BE DECREMENTED IN TDM IS SPECIFIED
BY THE X PORTION OF A.

2-56

TABLE X. BOSS MACRO-INSTRUCTION DESCRIPTIONS (Continued)

2. GENERALIZED TEST INSTRUCTIONS (Continued)

NOTE: THERE IS NO ROOM FOR INCLUSION OF A MASK FIELD WITHIN THE

FORMAT, THEREFORE M&S TUM WAS MODIFIED AS SHOWN AND BYTE IN-

STRUCTIONS DELETED.

TIMING: BON, BOF= 2.0 SEC TUM = 2.2 SEC TDM = 2.4 pSEC

BON, BOF= 4 TUM = 5 TDM = 6 WORDS

3. GENERALIZED PARTIAL WORD INSTRUCTIONS

(ARGUMENTS ARE ASSUMED TO BE STORED IN RESPECTIVE REGISTERS

PRIOR TO EXECUTION OF THESE INSTRUCTIONS)

CLF, R 1 , R 2 , A CLEAR AND ADD MASKED FIELD

STF R 1 , R 2 , A STORE MASKED FIELD

R 1 = GENL. REG. TO BE LOADED OR STORED FROM

R 2 = ADDR. OF 32-BIT MASK

A = ADDRESS (INCL BASE & INDEX) OF MEMORY
LOCATION CONTAINING BITS IN QUESTION.

BITS OF R OR A CORRESPONDING TO MASK POSITIONS CONTAINING

"1" WILL BE CHANGED, REMAINING BITS WILL NOT BE CHANGED.

NOTE: THERE IS NOT ENOUGH ROOM TO SPECIFY M&S LF AND SF INSTRUC-

TIONS WITHIN A 32-BIT WORD. EQUIVALENT PERFORMANCE IS OBTAINED

BY SPECIFYING A MASK AND JUSTIFYING THE GENERAL REGISTER POSITION

PRIOR TO STORE AND FOLLOWING LOAD WITH SEPARATE SHIFT INSTRUCTIONS.

TIMING = CLF = 2.0 SEC STF = 2. 1 pSEC

MEMORY EST: CLF = 4 STF = 4 WORDS

2-57

TABLE X. BOSS MACRO-INSTRUCTION DESCRIPTIONS (Continued)

4. LIST MANIPULATION INSTRUCTIONS - NO CHANGE FROM M&S SPECI-
FICATION (ARGUMENTS ARE ASSUMED TO BE STORED IN RESPECTIVE
REGISTERS PRIOR TO EXECUTION OF THESE INSTRUCTIONS).

BOSS Specification M&S Mnemonic Function

NXT R 1 , -, -, NEXT W STEP TO NEXT ITEM

INS R 1 , -, A INSERT W, A INSERT A AFTER W

RMV R 1 , -, - REMOVE W REMOVE W

FND R 1 , R 2 , R 3 FIND W, M, C FIND ITEM ACCORDING
TO MASK

R1-W WORD OFFSET IN THE (ASSUMED) ATOM TO
BE FETCHED

R2 -- M MASK WITH "1" BITS IN BIT POSITIONS TO
BE COMPARED

R3 -C GENL. REG. CONTAINING WORD FOR
COMPARISON

A POINTER ADDRESS

TIMING: NXT = 2.1, INS = 5.4, RMV = 4.0, FND 3.0 pSEC/ITEM

MEMORY EST: NXT = 4 INS = 7 RMV= 5 FND = 11 WORDS

2-58

TABLE XI. TENTATIVE BASIC BOSS INSTRUCTION SET

Avail
in Timing Microprogram

Mnemonic Instruction SUMC psec Storage

JRE Jump On Register Equal Y 1.5 4
to Memory

JRG Jump on Register Greater Y 1.4 2
than Memory

JRN Jump on Register Not N 1.5 4

Equal to Memory

JRL Jump on Register Less N 1.4 2
than Memory

SPJ Store Program Counter N 2.1 2
and Jump

JMP Jump Unconditionally Y 1.4 1

JPI Jump Unconditionally Y 1.4 1
Immediate

XEC Execute N 0.8 1

ADM ADD Memory to Register Y 1.2 2

SBM Subtract Memory from Y 1.2 2

Register

ANM AND Memory with Register Y 1.4 2

ORM OR Memory with Register Y 1.4 2

XOM Exclusive OR Memory with Y 1.4 2
Register

ADR ADD Register to Register Y 1.2 4

SBR Subtract Register from Y 1.2 4
Register

2-59

TABLE XI. TENTATIVE BASIC BOSS INSTRUCTION SET (Continued)

Avail
in Timing Microprogram

Mnemonic Instruction SUMC psec Storage

ANR AND Register with Register Y 1.2 4

ORR OR Register with Register Y 1.2 4

XOR Exclusive OR Register with Y 1.2 3
Register

ICT Increment Memory N 2.3 3

NOT Complement Register N 1.6 3

DLY Delay N Cycles Y 0.8 1

HLT HALT and Wait for Interrupt Y 0. 8 1

CWM Compare Register with N 2.2 4
Memory

CSR Compare Register Selectively N 2. 2 5
with Register

SHR Shift Right N Bits Y 2. 0 6

CYL Cycle Left N Bits Y 1.8 5

SHL Shift Left N Bits N 2. 0 5

COM Command Module via BMB N 1.2 1

INM Interrogate Module via BMB N 1.2 1

LRR Load Rollback Reg. from N 2.1 2
Program CTR

NOTES: 1. Load and store instructions are included in the MACRO Table X.
2. Speeds assume 10 MHz system clocks.
3. Microprogram storage estimates assume an additional 6 word

fetch routine.

2-60

The result was a set of 14 macroinstructions listed in Table X using an
estimated 60 words of microprogram read-only-memory and having an average
execution time of 2.4 psec each, assuming 10 MHz system clock. This com-

pares with 30 basic instructions listed in Table XI having an average execution

time of 1.4 psec and requiring 95 words of microprogram storage. It is ex-

pected that the BOSS instruction set will contain these macros plus many from
the basic set and that further discussions will be held prior to choosing a final

set for implementation later this year.

V Memory Module Reliability and Register Level Design Study

It is likely that the least reliable of the ARMMS modules will be the main

memories due to the large number of discrete components and small scale inte-

grated circuits required and the power levels associated with accessing the
plated wire planes. Fortunately, however, analysis has shown that due to their

organization it is possible to achieve 99+% memory reliability on a system basis
through judicious use of error detecting and correcting codes which are generated
and checked within processor modules and stored in each memory word, internal
redundancy within memory modules, spare modules, and duplex memory opera-
tion for duplex or TMR processing streams. Software read-after-write in the

simplex mode and duplication of data from a good memory into a spare memory
in duplex or TMR modes would also be desirable. Using these techniques the

results shown in Tables XII and XIII have been obtained. Table XII summarizes

probabilities of occurrence of dominant failure modes along with recommended
solutions while Table XIII lists various causes of memory failures again with

their contributions to the memory module's failure rate. A block diagram of the

proposed memory module is shown in Figure 23. The failure rates were derived

from data in a 1971 Autonetics Space Station Study. The memory is assumed to

use plated wire technology in an 8192 word by 39 bit (32 data bits plus error
correcting codes) organization.

Memory Module Register Level Design

Plated wire technology was chosen for the ARMMS main memory because
of its low, power, weight, and volume and non-volitility in the presence of

power transients. Such memories are being used extensively in space computers

being designed today for these reasons. The basic organization consists of a

512 word by 628 bit structure which is accessed in a 2-1/2 D configuration

requiring 512 word drivers, a 628x39 low level bit multiplexer and 39 bit switch/
sense amplifier circuits allowing 32 data bits plus 7 error detecting/correcting
code bits per word. The memories' cycle time is assumed to be 600 nsec for

READ and 800 nsec for WRITE. The details of the memories' control and voting

logic were discussed in the configuration and error correction sections respec-
tively of this report. The remaining logic is straightforward except for noting
that since the memory must sometimes output data on one bus while the address

for the next cycle is being inputted on another a one word Access-Request Buffer

is required to hold the current address stable until the end of the memory cycle.

2-61

32140-24A

SENSE OUT , MEM TO
AMPS / MUX PROC. BUSES

READ

PLATED LO . ETC13
WORD WIRE LEVEL XFER
DRIVER ARRAY BIT

SWTCH 512 X 628 MUX
628 X 39 DATA REG.

512 BT39

SWITCH

ADDRESS REG.

13 13

PROC. TO MEM
I ss I M BUSES

ACCESS

ASSIGNMENT ACC. RE. BUFF.REQUEST
HOLD

I
REG. DECODE ACC. REQ.

I LOGIC MEM RESP.

PAGE ADDR., ETC. B k a

ERROR
CHK

BOSS TO/FROM
BOSS MODULE BUSES
CONTROL
LOGIC TIMING, SYNC.

Figure 23. ARMMS Main Memory Functional Block Diagram

TABLE XII. DOMINANT MEMORY FAILURE MODES AND
RECOMMENDED SOLUTIONS

1. Wrong Output of a Single Bit in Each of a Group of Words

Cond. Prob. /Given Failure = ~. 575

Solution - All Modes Hamming-Parity Error Masking Code

2. No Output of all Bits in a Group of Words

Cond. Prob./Given Failure = ~.225

Solution - Simplex All "O" Output-Parity Error-.Detection
- Duplex Voter/Switch Output "1" on Disagree-

ment -. Masking
- TMR Majority Vote*-Masking

3. Selection of Two Words in Memory at Once

Cond. Prob./Given Failure = ~. 200

Solution - All Modes Employ Series Redundant Word Drivers
to reduce this prob. to . 0004

4. Improper Memory Output Synchronization

Cond. Prob./Given Failure = .601

Solution - Simplex None

- Duplex Detect Disagreement at Voter/Switch

- TMR Vote and Mask at Voter/Switch

2-63

TABLE XIII. ARMMS MEMORY FAILURE MODES

Failures/106 Hours

Enhanced
Basic Reliability

Component Failing Result Memory Memory Corrective Action

Word switch or cur- No output 2.4 4.8(. 005)* Detect with Inv.
rent source open, (whole words) Hamming-Parity code
power supply failed

Word switch shorted Select 2 words 2.4 .005 Not always detectable
at once

Plated wire or sense
amp failed Single bit failed 6.6 7.8/ Correct with Hamming-

Mux or bit current 1. 07** Parity code.
switch open or short

Control logic failures Select wrong .005 .005 Detect and inhibit with
address parity code

No response to .01 .01 Processor timing check
access request

No output .06 .06 Detect with inv.
(whole word) Hamming-parity code

Single bit .06 .06/ Correct with inv.
failure NIL** Hamming-parity

code

Detectable .06 .06 Detect with inv.
garbled Hamming-parity
output code

Parity checker .005 .005 Detect with Software
failure

Total Failing Rate 11.6 12. 8/6. 0**

*Number in () assumes quadded word drivers - not recommended due to ex-
cessive hardware involved.

**First number is probability of correctable failure, second number is probability
of detectable but not correctable failure.

2-64

Memory Reliability Analysis

The dominant failure mode of Table XII can be masked by a single error
correcting code. The second mode can be detected by such a code if the code bits
are inverted prior to storage so that a code check on a word consisting of all "O"
will fail. The third mode is the most serious because it can cause properly coded
words to be written or read from the wrong location in memory undetected. It is
caused by a stuck-in "1" condition in one of the hundreds of plated wire word line
drivers. By employing series redundancy in these drivers, the conditional prob-
ability of occurrence of this condition can be reduced to a negligible . 005. Series
parallel redundancy (quadding) in these drivers will also eliminate the principal
cause of the second failure mode. However, it is probably preferable to provide
additional spare memories rather than to resort to quadded word drivers due to
the large hardware increase involved in quadded word drivers.

The mean failure rate of a memory employing single error correction
coding and serial redundant word drivers is half that of a memory without these
features. What is more, undetectable failures make up less than 0. 1% of the
total failure modes yielding a coverage in excess of .999. Thus, use of triplicated
memories in TMR processing stream does not seem to be justified and use of
duplex memories for duplex or TMR stream and simplex memories for simplex
streams is recommended to make most effective use of ARMMS hardware. Duplex
operation is required when it is desirable to avoid program rollbacks in the event
of a non-correctable memory failure.

In duplex operation the contents of the good memory can be written into a
spare module or used in simplex for the duration of the program. In simplex
operation it is essential to avoid writing bad data into the memory, or good data
into the wrong location. The former condition can be protected against by im-
mediate verification of all written data by reading out the same location immedi-
ately after writing into it in a simplex program. If the data is wrong the procedure
can be repeated until the WRITE is accomplished successfully. The latter condition
can be protected against by employing an address parity check code at the memory
and inhibiting WRITE operations any time address parity is violated. Parity
checkers can be provided in each memory at a small hardware cost.

Another result worth noting is that as the number of memory modules
required goes up, the ratio of operating modules to required spares decreases,
making the use of spares vs internal redundancy more attractive for larger
numbers of modules required. A memory module incorporating a single error
correcting code and series redundant word drivers should have a probability of
surviving a 5-year mission of . 869 (compared to . 603 for a memory without these
features). This means that if 5 modules are used there will be a . 9884 probability
that 1 will be operating after 5 years. If 10 modules are flown there will be a
.9870 probability that 5 survive and if 25 modules are flown there will be a . 9832
probability that 15 survive, and a . 9945 probability that 14 will survive. This
means that if 25 modules were flown allowing 12 duplex pages at the beginning of
a mission, that there would be a better than .99 probability of having an opera-
tional simplex memory of the same size available at the end of the mission.

2-65

32140-248

0.869 PROB/OPERATIONAL MEM MODULE AFTER 5 YRS
(NO CATASTROPHIC ERROR)

-------- 0.600 PROB/OPERATIONAL MEM MODULE AFTER 5 YRS
(NO MASKABLE ERROR) 0.673

40

(0.683)
10 MEMORIES 5 MEMORIES (6'

0.584
30

0.269
(0.337

(0.631)
25 0.819 0.916

0.291 (0.913)
(0.381)
r' (0.833) -

20 -

15

0.942
(0.166) 0

0.944)

10

0.074 4o.oj 0.9884 (0.990)

I ~-1
I 0.987

05 (0.0460 L!. 9 87)

I 0.998 I(-998)
0.006 0.9998 0.999311

0 1 2 3 4 5 6 7 0 1 2 3 4 5

20 - 25 MEMORIES 0.467 0.649

(0.587)

15 0.283 0.798 (
- 0.734)

.273) 1

10 - 0.139
(0.153

r 0.924)

0.956
05 -00.051 L(0L.967)

0.983
0.0124 (0.029 0.994 0.988)

.. 00.0.00 2 (9 9)r- 0.998 .9999 0

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NUMBERS ARE PROBABILITY THAT < n MODULES WILL HAVE FAILED AFTER 5 YEARS

Figure 24. Effects of a Spare Pool on Memory Reliability. Probability Distribution of Memories Failing
After 5 Years

2-66

Conversely, if fewer than 10 memory modules are flown this will probably not
be possible. Figure 24 shows the probability distribution and the cumulative
probability of various numbers of memories failing after a 5 year period. It
should be noted that it is probable that several memory modules will fail during
a 5 year mission, even with redundancy included, and a good system design
must be able to cope with such failures gracefully. It is possible to detect or
mask 99.9% of all memory failures in all ARMMS modes with the redundancy
recommended at a power increase of 20% and a negligible weight and volume
increase. Incorporating less redundancy than this would require TMR memory
operation to achieve ARMMS system reliability goals and would thus require
more weight, power and volume than the recommended approach.

2-67/

SECTION 3

ARMMS CONTROL EXECUTIVE SYSTEM DESIGN

ARMMS software design of the control executive system was performed

by Hughes' subcontractor M&S Computing, Huntsville, Alabama, concurrently
with much of the hardware design described in the previous section. Hence

some detailed discrepancies exist which will be reconciled during Phase III.

None are considered to be severe problems at this time. This section consists

of a discussion of software design philosophy, executive conceptual design in-

cluding task control, event recognition and response, resource allocation and

control, fault detection and diagnostic processing, information protection and

input-output control. In addition a discussion of ARMMS impacts on the hard-

ware SUMC processor is included. This SUMC study compliments but was
independent of the one in Section 2.

TABLE OF CONTENTS

Section Page

LIST OF ABBREVIATIONS 3-iv
LIST OF FIGURES 3-vi

1. INTRODUCTION 3-1

1. 1. Purpose 3-1
1. 2 Project Task Summaries 3-1

1. 3 ARMMS Baseline Configuration 3-2

3-4
2. CONTROL EXECUTIVE SYSTEM DESIGN

OBJECTIVES

3. CONTROL EXECUTIVE SYSTEM SERVICES 3-6

3. 1 Task Scheduling 3-7
3.2 Task Dispatching 3-9
3. 3 Task Resource Allocation 3-10
3.4 Event Processing 3-13

3. 4. 1 Introduction 3-13
3. 4. 2 Event Definition 3-13

3. 4. 3 Alerted Events 3-14

3.4.4 Event Processing Commands 3-15

3.5 Fault Detection Progressing 3-16
3. 5. 1 Basic Concepts 3-16

3.5. 2 Fault Categories 3-17
3. 6 Information Protection 3-22

3. 6. 1 General Description 3-22

3. 6. 2 Storage Access Protection 3-22

3. 6. 3 Data Access Synchronization 3-23

3. 7 Graceful De gradation 3-25

4. CONTROL EXECUTIVE CONCEPTUAL DESIGN 3-27

4. 1 Definition of Terminology 3-27
4. 2 Design Groundrules and Assumptions 3-29

4. 3 System Design Overview 3-31
4.4 Task Control 3-35

4. 4. 1 Task Control Overview 3-35
4.4. 2 Task Control Components 3-41

3-i- 0

TABLE OF CONTENTS
(continued)

Section Page

4.5 Event Recognition and Response 3-65
4. 5. 1 Event Processing Overview 3-65
4. 5. 2 Event Processing Components 3-74

4. 6 Resource Allocation and Control 3-87
4. 6. 1 Resource Control Overview 3-87
4. 6. 2 Stream Resource Allocation and Control 3-87
4. 6. 3 Diagnostic Resource Reservation 3-88
4. 6. 4 Memory Management 3-92
4. 6. 5 Locked Logical Pages 3-94

4.7 Fault Detection and Diagnostic Processing 3-107
4. 7. 1 Diagnostic Overview 3-107
4. 7. 2 Diagnostic Processing Components 3-108

4.8 Information Protection 3-128
4. 8. 1 General Description 3-128
4. 8. 2 Base/Bound Registers 3-128
4. 8. 3 Processor Architecture Implications 3-130
4. 8. 4 Shared Data Locks 3-131
4. 8. 5 Lock-Variable Contents 3-134
4. 8. 6 Subtask Accessing 3-138

4.9 Input/Output Control 3-139
4. 9. 1 Types of I/O Transmissions 3-139
4. 9. 2 Types of Input/Output Streams 3-139

4. 9. 3 Residency of Input/Output Control 3-141
4.9.4 I/O Summary 3-142

5. MAJOR IMPACTS ON BASELINE SUMC 3-143

5. 1 Processor Speed 3-143
5. 2 Basic Instruction Set 3-144
5. 3 SUMC/BOSS Communications 3-146

5. 3. 1 General Description 3-146

5. 3. 2 Hardware Modifications to SUMC 3-149
5.4 SUMC/BOSS Control Commands 3-153

5. 4. 1 Fetch Cycle 3-153
5.4. 2 Task to Control Executive Commands 3-153
5. 4. 3 Control Executive to Processor Commands 3-155

3-ii

TABLE OF CONTENTS
(continued)

Section Page

5. 5 SUMC/Memory Communications 3-163
5.5. 1 Communication Paths 3-163
5.5.2 Error Conditions 3-163
5. 5. 3 Hardware Modifications to SUMC 3-165

5. 6 SUMC/I/O Communications 3-167
5.6.1 1/O Commands 3-167
5. 6. 2 Hardware Modifications to SUMC 3-169

5. 7 Summary of SUMC Modifications 3-171

3-iii

ABBREVIATIONS

ABEND - Abnormal Ending or Terminating
ACES - ARMMS Control Executive System
AFI - Alert File Item

AFM - Alert File Memory

ARMMS - Automatically Reconfigurable Modular Multiprocessing
System

BOSS - Block Organizer and System Scheduler

BSW - Bus Status Word

CPE - Central Processing Element

CSRW - Configuration Stream Request Word

DP - Diagnostic Processor

FBSM - File Block Status Matrix

FD - Fault Detector

FM - File Memory

FPS - Full Processing Stream

I/O - Input/Output
IOP - Input/Output Processor

IOPS - I/O Processing Stream

IP - Input to (CPE) Processor (Bus)

LA - Logical Address

LAAT - Logical Address Assignment Table
LM - Logical Module

LP - Logical Page

LPS - Limited Processing Stream

LSI - Large Scale Integration

LU - Logical Unit

MET - Master Execution Table

MFW - Module Fail Word
MI - Memory Input (Bus)
MIC - Memory Input (Bus from) CPE

MIP - Memory Input (Bus from) IOP

MO - Memory Output (Bus)
MOC - Memory Output (Bus to) CPE
MOP - Memory Output (Bus to) IOP
MSW - Module Status Word

3-iv

ABBREVIATIONz
(continued)

GB - Output Bus (IOP to VS)

PO - (CPE) Processor Output (Bus)

PSW - Program Status Word

Q - Queue - (Timer Queue or Priority Queue)

RPC - Resource Pool Counters

TD - Task Dictionary

TDIB - Task Dictionary Information Block
TDIF - TMR Dispatcher Inhibit Flag

TMR - Triple Modular Redundancy

TQI - Task Queue Item

TQM - Task Queue Memory

TTE - Time to Execute

UST - Unit Status Table

VS - Voter Switch

WF Weighting Factor
WFM - Wait File Memory

WFP - Wait File Pointer

WI - Wait Item

WIQ - Wait Item Queue

3-v

LIST OF FIGURES

No. Title Page

1-1 ARMMS Baseline Configuration 3-3

4-1 ACES Overview 3-32
4-2 Task Control Overview 3-36

4-3 Task Queue Item (TQI) 3-37
4-4 Master Execution Table (MET) 3-39

4-5 Task Scheduler 3-42

4-6 Schedule Task Call (Functional Definition) 3-45
4-7 Task Request Dictionary Entry (Functional Definition) 3-46
4-8 Timer Scheduler 3-49

4-9 Priority Scheduler 3-50
4-10 Dispatcher 3-52

4-11 Initiator 3-60

4-12 Timer Processor 3-62

4-13 Task Terminator 3-63

4-14 Event Processing Overview 3-67

4-15 Wait Call (Functional Definition) 3-68

4-16 Wait Item (Functional Definition) 3-69

4-17 Alert Calls (Functional Definition) 3-71

4-18 Alert File Item (Functional Definition) 3-72

4-19 Wait Call Processor 3-75

4-20 Wait File Processor 3-78

4-21 Wait Event Processor 3-79

4-22 Alert Call Processor 3-81

4-23 Alert File Scan 3-83

4-24 Alert Event Processor 3-85

4-25 System Wait Call 3-86

4-26 Reservation Processing 3-89

4-27 Reservation Calls 3-91

4-28 Configurator 3-96

4-29 Stream Search Subroutine 3-97

4-30 Memory Reconfigurator 3-100

4-31 Reservation Call Processor 3-102

4-32 Reservation Monitor 3-105

4-33 Fault Detector 3-109

4-34 Search Pageable Units 3-111

4-35 Page Routine 3-112

4-36 New Task Dictionary 3-114

3-vi

LIST OF FIGURES
(continued)

No. Title Page

4-37 Memory Fail 3-115
4-38 Diagnostic Processor 3-117

4-39 Fail 1 3-120

4-40 Fail 2 3-123

4-41 Fail 3 3-125

4-42 Log Intermittent 3-127

4-43 Lock Variable Usage 3-132

4-44 Lock Request Logic 3-133

4-45 Unlock Request Logic 3-135

4-46 Lock Variable 3-136

4-47 Types of I/O Streams 3-140

5-1 SUMC/BOSS Communications 3-147
5-2 Interrupt Decoder 3-148

5-3 Processor to BOSS Communications 3-150

5-4 Memory/BOSS/Processor Communications 3-151

5-5 Hardware Modification to SUMC for BOSS Com- 3-152

munications
5-6 Fetch Cycle 3-154
5-7 Call Instruction 3-156

5-8 Microprogram Abbreviations 3-157

5-9 Save to Main Memory 3-159

5-10 Stop Instruction 3-160

5-11 Restore from Main Memory 3-161

5-12 Start from BOSS 3-162

5-13 Processor/Memory Communication Paths 3-164

5-14 Memory/Processor Communications 3-166

5-15 Processor/I/O Communications 3-168

5-16 SUMC Modifications 3-170

3-vii

1. INTRODUCTION

1. 1 Purpose

The purpose of this contract was to conceptually design the
ARMMS Control Executive System (ACES) functions pertinent to the
reliability and reconfiguration aspects of ARMMS.

The design was preceded by a requirements analysis which
resulted in various system concepts and design groundrules.

1. 2 Project Task Summaries

The project was performed in a logical sequence of tasks.

Task I: Mission Analysis Profile

During this task historical data from previous airborne/space-
borne flights and future projections for such flights were analyzed to
establish a baseline mission profile. This profile determined the
range of computational and reliability capabilities required by the
onboard computer during various modes of operation. In addition, it
provided information concerning the basic operational characteristics
of the application software necessary to perform the various missions.

The results of this task are documented in "Design of a Modular
Digital Computer System DRL, Phase 1 Report (U)," Contract No.
NAS8-27926, Hughes Aircraft Company.

Task II: Review of MSFC Processor

The MSFC processor (SUMC) is to be the basic processor
module in ARMMS. The purpose of this task was therefore to review
the SUMC architecture and recommend modifications necessary to
support the necessary Control Executive functions.

During this task, however, it became exceedingly clear that
the majority of the Control Executive functions had to be performed
in an ultra-reliable mode to retain systems control under any and all
failure conditions. Therefore most Control Executive functions were
selected to reside in BOSS, the special-purpose controlling processor
of ARMMS. This task therefore emphasized Executive Control Sys-
tem design concepts and groundrules necessary for BOSS. These are
documented in Section 4 of this document.

3-1

Modifications to the SUMC identified during this task were
mainly concerned with the support of BOSS-SUMC communications.
These are documented in Section 5 of this document.

Task III: Preliminary Design of Control Executive Functions

Based on the results of the previous tasks a preliminary
conceptual design was performed for the ARMMS Control Executive
System (ACES). A design review was held for this design that
resulted in various modifications and refinements of the proposed
design.

Task IV: Final Design of Control Executive Functions

This task then completed the conceptual design. The design
establishes a great degree of confidence in the feasibility of the
basic objectives of ARMMS. This design provides the basis for a
complete detailed functional design of ACES.

1. 3 ARMMS Baseline Configuration

The systems configuration to which ACES was designed is
characterized in Figure 1-1.

BOSS is a single ultra-reliable special-purpose processor
providing central control of the system. Several copies of Memory
Modules, Central Processors, and I/O Processors may exist in a
particular ARMMS configuration. Any of these modules can be
combined with other identical modules to run in a (triple or dual)
redundancy mode, if so desired. Interconnections between modules
are switchable, such that any logical combination of operational
modules can be used to process a task.

An I/O Processor can be connected directly to Memory
and thus be shared by several Central Processors. An I/O
Processor can also be connected to a Central Processor and thus
be dedicated to it, if so desired

3-2

ARMMS BASELINE CONFIGURATION

MEMORY

CENTRAL

BOSS - - - PROCESSOR

I/O
-- PROCESSOR

-External Devices

Intermodule switch

control/status communication path

data path

Figure 1-1

3-3

2. CONTROL EXECUTIVE SYSTEM DESIGN OBJECTIVES

A primary objective of ARMMS is to provide the ability to
support a long life mission with a high probability of success.
ARMMS can therefore, for example, be configured as a TMR System
with standby spares for each module.

ACES, therefore, must first of all be able to react to error
indications from the hardware, isolate a failing module, switch in
a spare module, and allow the system to continue successfully.
This has to be accomplished without any human assistance. ACES
must further be able to allow the systems to degrade gracefully
until the point that all of a particular type of module have failed.
In addition, ACES must provide the application designers with as
many aids as possible to prevent the propagation of software errors.
That is, the effect of undetected software bugs must be contained
within the software module containing the error. This may allow

the system, in most instances, to continue its most critical functions
regardless of software failures.

ARMMS can be selected to be configured as a high-perform-
ance system consisting of modules identical to those used in the high
reliability mode described above. To accomplish this the system
can be configured into a multiprocessing system.

ACES must therefore be able to schedule execution of
programs on a varying number of independently operating modules.
It must allow an application to be designed such that it can be divided
in concurrently executing modules. It must not, however, force an
application into a special design when multiprocessing is not necessary.
Program modules, executing concurrently, must, of course, be pre-
vented from interfering with each other's operation.

The primary types of applications, which ARMMS is anticipated to
support, are real-time applications such as vehicle control, experi-
ment control, etc. ACES is, therefore, primarily designed to support
"process-control" type applications. This does not imply that "batch-
processing" will not or cannot be performed. It implies that many
support services characteristics of "batch-processing" (such as File
Management) are not a standard service within ACES, but many
"real-time control" services are. It is anticipated that, where
batch-processing is required, that particular job and its support
service routines are run as a single task under control of ACES.
Batch-processing is thus considered incidental to the ACES design.

3-4

Finally, it is necessary to keep the ACES system as small
and simple as possible. ACES directly influences BOSS and its
interfaces with the ARMMS Modules. The complexity of BOSS and
its interfaces directly affect the overall reliability and cost of the
system. In addition, the Control Executive itself must not fail,
for obvious reasons. It should therefore be possible to test ACES
(nearly) exhaustively. The ACES design must, therefore, lend
itself to a true modular design; that is, a design with simple
interfaces between modules,resulting in a finite number of combina-
tions of inputs and outputs for each module.

3-5

3. CONTROL EXECUTIVE SYSTEM SERVICES

This section describes the functions performed by ACES from

the viewpoint of the systems user, such that the design of the functions

provided in Section 4 will be more meaningful to the reader.

The functions described here are primarily executed by BOSS.

They were selected for execution by BOSS on the basis that hardware

failures during execution of these functions would cause loss of opera-

tional systems control. BOSS is the only module in the system that is

assumed not to fail.

The ACES services are described in this section in slightly

different categories than those used in the component design descrip-

tions in Section 4 . Once this section is understood, however, the

correlation between ACES services and the design components is

relatively easy to understand.

3-6

3. 1 Task Scheduling

Key to the ability to multiprocess an application, is the
ability to identify pieces of the application for concurrent processing
on more than one processor. These pieces of an application are
(in ACES as well as other systems) called Tasks.

Task Scheduling controls the potential start of execution of
a Task and can be based on various conditions. The actual assign-
ment of a task to a processor for active execution is called Task
Dispatching and is described in Paragraph 3. 2.

Task Scheduling is explicitly controlled through commands
from the application programs. The commands available to the
application programs are described below.

SCHEDULE (PARAMETERS)

This command requests the start of execution of a task based
on the associated parameters. Two types of parameters can be
associated with this command: Execution Type and Dispatch Conditions.

Execution Type specifies that a task is to be executed once, or
that it is to be executed periodically at specific time intervals.

Dispatch Conditions specify the conditions to be met before a
task is released for dispatching. Conditions can be time (at real-time
or after timed interval) or events. The latter specifies that certain events
have to be satisfied prior to dispatching. The exact definition and use
of events is described in Paragraph 3. 4. If time as well as events is
specified as a dispatch condition, the time requirement will be satisfied
before the status of the events is interrogated.

Dispatch Conditions associated with a periodically executing
Task can only gate the first execution, subsequent executions can
only be gated by the (periodic) time interval.

WAIT (PARAMETERS)

This command requests that execution of the Task, executing
this command, is suspended unless/until the dispatch conditions speci-
fied as parameters are met. These dispatch conditions are identical
to those listed under the SCHEDULE command.

3-7

TERMINATE

Obviously once a Task has started execution it requires a

command to signal the end of its execution.

DELETE

This command causes any scheduling requests previously

initiated to be negated. It is used, for example, to terminate

scheduling of periodic tasks. It is also used under abort conditions

or at any other time that currently scheduled tasks have to be pre-

vented from being executed.

3-8

3.2 Task Dispatching

After the conditions (SCHEDULE PARAMETERS) described

in the previous paragraph have been met, the task is ready to be

executed. The function associated with putting the task into active

execution is called Task Dispatching.

Task Dispatching, first of all, selects one task from all tasks that

are ready for execution. This selection is based on a (dispatch) priority

which has been pre-assigned by the user to a task. This priority is

called the Dispatch Priority. This Dispatch Priority is selected by

the user to obtain near optimum use of the system, considering task

execution deadlines, task execution times, task precedence relations,

etc.

Subsequently, Task Dispatching attempts to find the appropriate

resources (reference Paragraph 3. 3, Task Resource Allocation) for

the execution of this selected task. If successful, the task execution

is initiated.

Different tasks may have different resource requirements.

Therefore if a Task cannot be executed because of unavailable

resources, Task Dispatching will attempt to dispatch the next highest

priority task.

As will be noted in the next paragraph, Task Resource

Allocation, a Task may preempt resources from an actively executing
Task, based on their assigned dispatch priorities. Once a Task is

put into active execution, it is assigned an Execution Priority by

ACES. The value of the Execution Priority is normally identical to

the Dispatch Priority. Under certain conditions it is necessary to

raise the Execution Priority to the extent that the resources of a

Task will not be preempted by another Task. For example, it is not

normally desirable to suspend an I/O Task (i. e. , data transmissions).

The Execution Priority cannot be controlled by the application, but is

solely controlled by ACES.

3-9

3. 3 Task Resource Allocation

To execute a Task various combinations of modules and buses
are required. These combinations are called Processing Streams.
Task Resource Allocation is concerned with keeping track of available
resources, selecting available Processing Streams, or selecting avail-
able modules and connecting them into a Processing Stream, for task

dispatching.

The types of Processing Streams required for different types of
Tasks are the following:

Full Processing Stream:

This consists of a CPE, an IOP, and associated interconnecting
buses.

Limited Processing Stream:

This consists of a CPE only and an interconnection with main
memory.

Input/Output Stream:

This consists of an IOP only with a connecting bus to memory.

Note that any Processing Stream is connected to all of memory.
Memory modules are shared resources and are not dedicated to a
particular stream. Any stream, of course, can be TMR'ed, or Duplexed.

Any of the ARMMS modules are marked to be in any one of the
states described below. These states are meaningful to Task Resource
Allocation to perform various "levels" of resource searches described
further on in this paragraph.

Fully Operational:

Such a module has no limitations as to use. It has two sub-
modes: spare or active (i. e. actively being used).

Partially Operational:

Such a module has limitations as to its use (e. g. , one of its
parts is non-operational), but is not excluded from use. It has the same
two submodes described above.

3-10

Non-Operational:

Such a module has failed to the extent that it cannot be used
under any circumstances until it has been repaired.

Powered Down:

This is essentially a spare module which has been powered
down until its use is mandatory. When powered up it may become
either Fully Operational or Partially Operational, depending on its
state prior to Power Down. Non-operational units can, of course, also
be powered down.

Reserved:

Such a module is set aside, or to be set aside, for use by
diagnostic routines. When a module is suspected of failure it is
frequently necessary to run diagnostics to, positively, determine the
existence and extent of the failure. To perform these diagnostics it
is often necessary to use other operational modules. Those modules
are thus "Reserved" for diagnostic processing. Operational modules
may become reserved even though they are in active use. This means
that they will not be reassigned to a processing stream after the current
task has completed execution. It does not mean that the currently exe-
cuting task will be suspended.

When a Task has been selected for dispatching a search is
performed for the required resources. A table is kept where the
available modules, their status, and existing bus connections are noted.
This search is one of the more time-consuming functions performed
by the Control Executive. To keep this search as short as possible,
under normal conditions, several "levels" of searches have been defined.

First of all (level 1) a search is made for an existing (i. e.,
interconnected) spare processing stream with the appropriate con-
figuration. If that search fails,a search (level 2) is made for spare
and operational modules that can be interconnected. If this level 2
search is successful,the modules are interconnected and the task is
initiated.

If the level 2 search fails, however, a level 3 search is made
for spare modules that are either fully or partially operational. This
search is more time-consuming than a level 2 search because of the
complexities of interconnecting partially operational modules into a
fully operational stream.

3-11

Only if the level 3 search fails, are the priorities of the
executing tasks interrogated to determine if any of the modules can
be preempted. This is only a last resort, because it is desirable to
minimize forced suspensions of executing tasks and because the search
is again a bit more complicated and thus more time-consuming than
the previous levels.

3-12

3.4 Event Processing

3.4. 1 Introduction

The real-time application of ARMMS emphasizes the controlled

interaction of concurrently but asynchronously, progressing, processes.
These processes include external processes (such as vehicle control

and experiments) as well as processes internal to ARMMS (i. e., Tasks).

These processes interact with each other through data and control sig-

nals. It is the control signals which are of interest here. Control

signals include such things as lines into discrete registers or interrupt

registers, program flags set by tasks, or any state change desired to be

signalled.

ACES includes a unified control signalling concept, to provide a stand.-
ard and centralized mechanism for use by the applications programmer.

This mechanism is called Event Processing. It provides a simple,
reliable and consistent mechanism to provide interprocess control
communication.

3. 4. 2 Event Definition

Central to Event Processing is the definition of events. In ACES
an event is an occurrence which:

1) The system has been designed to recognize.

2) The system has been requested to act upon.

An occurrence can be anything from an external signal, coming on,
to the termination of execution of a task. Obviously, unless the software
is designed to note the occurrence and potentially handle it as an event,
the occurrence is meaningless to Event Processing. Additionally, unless
the system has been requested (by a Task) to take some specific action as
the result of the occurrence, the occurrence will appear and disappear
without any effect, and is therefore meaningless to the system, andthus not
an event.

Occurrences which may be used as events by the applications
programmer are:

o Task Termination

o External (to ARMMS) attention requests

3-13

o Input/Output Completion

o Setting/Resetting of special events called Program Flags

o Detected Software Faults (reference Paragraph 3. 5).

Other events have been defined for use internal to ACES. These are
described in Section 4.

An Event's status is normally unsatisfied (off). When ACES

recognizes an occurrence it considers the associated Event satisfied
for as long as it is necessary to perform the actions requested (by a
Task). Thus, actions specified after an occurrence has been recog-

nized will not be executed until an occurrence is recognized again
An Event is therefore a pulse and is never explicitly reset by a Task.

An Event can be created (i. e., an action specified upon recog-
nition of an occurrence) by a Task through a SCHEDULE, WAIT, or
ALERT call. The SCHEDULE and WAIT calls were previously dis-
cussed in Paragraph 3. 1. The ALERT call is discussed in the follow-
ing paragraph.

3. 4. 3 Alerted Events

Note that the SCHEDULE/WAIT upon event, depends on the
recognition of an occurrence from that point on. It is sometimes
desirable to recognize an occurrence during a time period prior the
point that it is necessary to perform the SCHEDULE/WAIT call. It
is also true that sometimes different tasks are interested in recog-
nizing occurrences during different but overlapping time periods. To
allow the Tasks to accomplish this, the concept of the Alerted Event is
introduced. An Alerted Event is simply equivalent to a "flag" that is
set on when the associated event is satisfied and remains on. Alerted
Events are created by an ALERT call. An ALERT also creates an
event: it specifies that an Alerted Event is to be set when the under-
lying occurrence is recognized. Once an Alerted Event has been set,
it is not reset until a new ALERT is issued. Note that multiple Alerted
Events can be associated with a single Event. Parameters for
SCHEDULE and WAIT calls can include Alerted Events as well as Events.

3-14

3. 4. 4 Event Processing Commands

The total set of commands available to the Task to control
Event Processing includes the SCHEDULE/WAIT, and ALERT calls
as well as the commands summarized below.

CANCEL ALERTED EVENT

This deletes the identified Alerted Event from further participation.

TEST ALERTED EVENT

This provides a test of an Alerted Event status to base program
decision logic upon.

SET/RESET EVENT

This allows the Task to stimulate a specific class of Events called
Program Flags to perform intertask coordination.

Any occurrence may in fact be simulated by SET Event. This is
not normally allowed, however, to be used by the application programmer.
The application programmer's main intertask coordination mechanism is
the Program Flag.

3-15

3. 5 Fault Detection Processing

A significant part of the ARMMS design deals with fault tolerant
aspects of uni- and multiprocessing. The following explains the basic
design philosophy used in ACES, to support a high degree of fault-
tolerance.

3. 5. 1 Basic Concepts

ACES uses two broad, general classifications into which computer
faults can be divided: hardware faults and software faults.

Hardware faults are defined as faults which are the result of com-
ponent failures. These component failures may be due to fatigue, broken
wires, insufficient power, etc. Any particular component of a system,
even though properly designed, manufactured, and installed, may fail.

Software faults are all other faults which are not clearly caused
by component failures. Typical examples includes divide overflow,
addressing error, non-existent operation code, etc. Past experience
has shown that even thorough testing of a complex program will not com-
pletely eliminate all program faults. These bugs may result either because
the programmer failed to comprehend the full magnitude of the program
and improperly designed it, or because the programmer made a mistake
in the actual coding of the program even though it was properly designed.

Software faults are initially assumed to be the result of these types
of software bugs. However, a hardware failure could yield a fault which at
first appears to be due to a software bug. It is for this reason that as part
of the software fault recovery procedures, module self test-diagnostic
routines are executed. If the fault is found to be due to a hardware failure,
the self-test diagnostics will be responsible for communicating this to
BOSS (through ACES).

In ARMMS, all faults, hardware and software, are communicated
to BOSS via the Module Status Word (MSW). Each module contains an
MSW which indicates the status of that module. A section of the MSW
contains information concerning the faults detected by the module. This
section of the MSW is divided into two subsections, one for hardware
faults and the other for software faults.

3-16

It is expected that whenever a hardware fault occurs, a bit is

set in the hardware subsection of the MSW (by the hardware), and if the

bit was not previously set, an interrupt notification is sent to BOSS

along with the new MSW. For these types of faults, BOSS (through

ACES) will be responsible to perform fault diagnostics and to take

corrective action.

Whenever a software fault occurs, it is expected that a bit is set

in the software subsection of the MSW to indicate the type of software
fault. The CPE (or IOP) will then execute a predefined instruction

sequence to process the software fault. A task will have the capability

to mask any software faults such that they are not processed. (Hardware

faults cannot be masked.) The software fault processing will vary

dependent upon the type of error. However, it is anticipated that most

processing will result in abnormally terminating the current task utilizing

the processor, and executing a simple processor self-test program to

insure the processor hardware is not at fault.

BOSS periodically will poll each MSW and determine if it has been

updated since its last polling. It is by this means that BOSS has know-

ledge of the software error. However, BOSS does not actively participate
in the fault processing of software faults unless a particular module con-

tinues to experience abnormal terminations of tasks, or a self-test indi-
cates a component failure.

3. 5. 2 Fault Categories

Tables 3-1 through 3-4 define the fault types applicable to each
module class. The fault types are defined by an example, definition, etc.

The module which is expected to process each type of fault is identified

along with the possible sources of the faults. These fault classifications
are preliminary and may be modified as future requirements dictate.

3-17

CPE FAULT CLASSIFICATIONS

FAULT POSSIBLE FAULT
UNIT FAULT TYPE REASON, EXAMPLE, DEFINITION HANDLER SOURCES

CPE Illegal Operation 1) Non-Existent Operation Code CPE CPE, Programming

2) Illegal Register Designation

3) Addressing Error - (Displace-

ment Out - of-Range)
4) Privileged Instructions

5) Boundary Alignment

Data Error 1) Overflow CPE CPE, Programming

2) Underflow
3) Improper Divide

4) Sum Check

Input Error 1) Parity BOSS Bus, Memory, IOP,

2) Correction Codes Error Detection
Logic in CPE

Communication 1) Timers Time-Out BOSS Bus, Memory IOP,

2) Illegal IOP Busy Timers, Logical
Addr. Not Available

Table 3-1

IOP FAULT CLASSIFICATIONS

FAULT POSSIBLE FAULT
UNIT FAULT TYPE REASON, EXAMPLE, DEFINITION HANDLER SOURCES

IOP Illegal Operation 1) Non-Existent I/O Operation Code IOP Programming, IOP
2) Addressing Error (Out-of-Range)
3) Privileged Instructions

Input Error 1) Parity BOSS Bus, Memory, CPE,
Error Detection
Logic in IOP

Communication 1) Timers Time-Out BOSS Bus, Memory, CPE,
Timers, Logical
Address Not Available

Table 3-2

MEMORY FAULT CLASSIFICATIONS

FAULT POSSIBLE FAULT
UNIT FAULT TYPE REASON, EXAMPLE, DEFINITION HANDLER SOURCES

MEMORY Input 1) Parity BOSS Bus, CPE, IOP,

2) Correction Codes Internal Fault

Detection Logic

Memory Read 1) Error Correction Code BOSS Memory

Detected for Memory Read

Protection Violation 1) Read Attempt Requesting Programming,

2) Write Attempt Processor Memory Addr. Decode

Logic, Invalid Key,
Read/Write Locks

Table 3-3

VOTER/SWITCH FAULT CLASSIFICATIONS

FAULT POSSIB L E FAULT
UNIT FAULT TYPE REASON, EXAMPLE, DEFINITION HANDLER SOURCESHANDLER SOURCES

Voter/ Voter Non-Compare 1) Input Disagreed With Other BOSS Voter, Switch,

Switch Input(s) Memory, CPE, IOP,
Bus

Illegal Configuration 1) Not Legal Configuration From BOSS BOSS Software,
Command BOSS BOSS Firmware,

BOSS Hardware,
Switch, Bus

WInput 1) Parity From BOSS BOSS BOSS, Detection

t Logic, Bus

Table 3-4

3. 6 Information Protection

3. 6. 1 General Description

Information Protection is concerned with the protection of infor-

mation, used by a Task (i.e., its instructions and accessible data),
against inadvertent modification by other Tasks.

A software or hardware failure may cause a task to address the

wrong storage location. Protection against this is called storage access
protection.

Concurrently executing Tasks, accessing a common data base,
may interfere with each other's proper execution in, for example, the
following manner. Assume that Task A uses input data, which is com-
puted and updated, at appropriate times, by Task B. There is not
necessarily a sequential dependency between the two tasks. Task B
may, for example, be executed more often than Task A. These Tasks
will obviously execute properly without any sequential dependencies, as
long as the Task A input data is consistent whenever Task A uses that data.
Thus, Task B must be prevented from updating the data whenever Task A
is actively using it to prevent Task A from using data that is partially
updated and therefore not consistent. Protection against this type of inter-
ference is called Data Access Synchronization.

The mechanisms designed into ACES to provide information
protection are described below.

3. 6. 2 Storage Access Protection

This is a mandatory requirement in a fault tolerant system such
as ARMMS. Without it, a single software/hardware failure during task
execution could cause total loss of system control.

Three basic schemes exist to accomplish Storage Access
Protection: Segmenting, Storage Protect Keys, and Base-Bound
Registers.

Segmenting is easily the most flexible and elegant solution. It
was implemented in full glory in MIT's Multics System. The sole draw-
back is that information accesses frequently require multiple storage
accesses. This would prohibit ARMMS from meeting its performance
objectives and was therefore discarded.

3-22

Storage Protect Keys are, for example, used in the IBM 360/370
systems. The main drawback to the scheme is that the protected storage
block has to have a predetermined fixed size and has to start on fixed

boundaries. The advantages are that it does not affect performance, and is
relatively simple and inexpensive to implement. Although discarded for
ACES, it is a valid backup in case the selected ACES scheme turns out
to be impractical for one reason or the other.

Base-Bound Registers allow the protected storage blocks to

vary in size, allowing storage allocation to be more efficient than with
storage protect keys. Although less elegant, and less of a unified concept
than Segmenting, it does not have the significant performance disadvantages.
Its disadvantage is that it only detects failures up to the Storage Address
Register. Any hardware failures, occurring beyond that point, must be

detected in a different manner. Storage Protect keys, on the other hand,
are checked at the memory module during memory access and therefore
do check the complete path to the memory modules. ARMMS does provide
an alternate method to check the Storage Address Register - Memory
Module path (TMR or Duplex), therefore this disadvantage is negligible in
ARMMS. Base-Bound Register protection was therefore the compromise
solution selected for ARMMS. It is described in detail in Section 4

3. 6. 3 Data Access Synchronization

As briefly described in Paragraph 3. 6. 1, a basic mechanism is
required to enable Tasks to obtain exclusive use of common sets of data.

The most common, current, mechanism provided is the "Test
and Set" instruction. Tlis instruction allows a flag to be tested and to be
set on, if it was off. This needs to be done within one instruction to insure
that no Task can access the flag between testing of the flag and setting of
the flag by another Task. Each set of data, which needs access synchro-
nization, can thus be assigned a flag. Any Task requiring exclusive use,

performs the "Test and Set" and gains control of the data, or waits until
it can gain control. The mechanism is simple and inexpensive but has

some basic shortcomings. First of all, proper operation is totally dependent
on the programmer. It is not detectable, at execution time, whether the
programmer has properly protected the data before accessing it. There is

also significant opportunity to cause deadlocks. Both these problems can
be largely overcome, however, by static checking during compilation/
assembly time. A more significant disadvantage is, that multiple Tasks

3-23

cannot be allowed simultaneous read access to a set of data. That is,
a Task which sets the flag to be protected from other Tasks writing
into the data, locks out other Tasks from reading the protected data as

well.

In most batch processing and time sharing systems the limitations

discussed above are not of major magnitude. In a system such as ARMMS,
the real-time multitasking and multiprocessing characteristics are such

that the access of common data is far more common, and it is far more
critical that synchronization is assured and performed efficiently.

The ARMMS Data Access Synchronization scheme therefore dis-
cards the Test and Set Instructions for a scheme based on the following
g roundrule s:

1. All common data is under access protection of the Control
Executive. That is, a Task cannot access a set of common
data before it has explicitly requested access to it from the
Central Executive.

2. The Access request has to specify explicitly the type of lock
needed. A Read Lock will prevent other Tasks from writing
into this set of data until the lock has been removed, but will
not prevent other Tasks from concurrently reading it. A
Write-Lock will prevent other Tasks from reading the data
concurrently and may (system option) prevent other Tasks
from writing into the data concurrently.

3. To prevent potential deadlocks, a Task must request all its
data-locks at the same time. No additional locks may be
requested until the existing ones have been removed.

As it later described in Section 4 , Data Access Synchronization
makes use of the existing Base-Bound scheme defined for storage pro-
tection in Paragraph 3. 5. It thus requires very little additional logic
over the basic Storage Access Protection available.

3-24

3.7 Graceful Degradation

An integral part of any fault-tolerant system is graceful degra-
dation. That is the system must be able to experience loss of modules
without losing control of the system.

Thus, for ARMMS, the objective is that the system must be able
to continue operation as long as there is one module of each kind; that
is, one CPE, one IOP, and one Memory Module. BOSS is assumed to be
fully operational at all times.

There are two main facets to graceful degradation. First of all,
the system must be independent of which modules fail. That is, scheduling
and dispatching algorithms must be independent of the number and types of
modules usable in the system. Secondly, some means must be provided
to adjust the load of the system to the loss of processing power.

Loss of CPEs, IOPs, and buses is easily handled during dispatching.
ACES performs its resource allocation, during dispatching, based on a
table of available resources. The numbers and types of resources noted
as available have no effect on the normal operation of the dispatcher.

Loss of memory modules (i. e. directly addressable storage) is
handled through a simple paging scheme. Page size for ACES is equivalent
to the size of a memory module. When an addressing exception occurs,
the required page is brought from back-up storage (drum or disk) and
swapped with the contents of one of the operational memory modules.

To adjust the load on a degraded system it is first of all necessary
to detect that the system has degraded to a point where it cannot process
its normal load.

In this preliminary design there are two points at which this can
be detected. When the system during diagnostic processing has to remove
a failed module from further participation, it can scan the total set of
available modules, and evaluate this against a predetermined set of criteria.
Also when the system tries to allocate resources prior to dispatching, it
may detect conditions that signal a potential overload due to excessive
degradation.

Once it has been detected that the system has lost an excessive
percentage of its performance, the processing load has to be readjusted.
At first glance it would seem that this can be accomplished by interrogating

3-25

the available Task priorities. However, the normally used Task priorities

are dispatch priorities established to obtain efficient performance and meet

required deadlines. A Task that has a low dispatch priority may be
more critical (i. e., necessary) to a mission than a Task with a higher
dispatch priority.

An approach to this problem may be to assign a second priority

to each Task, the mission priority. During degraded operation, the

dispatcher could then be influenced by the mission priorities. This
scheme has two main disadvantages. First of all the Control Executive
would rapidly run out of storage necessary to keep track of the Tasks
waiting for dispatching. Secondly, a significant amount of Control
Executive overhead is used to handle Tasks that may never go into
execution.

The solution used in ACES is to allow the user to predefine
several different Task loads for several levels of degradation. When a
certain level of degradation is reached, ACES will access the (user-
provided) corresponding Task load definition and reload the system, or
flush non-critical tasks from the system as appropriate.

3-26

4. CONTROL EXECUTIVE CONCEPTUAL DESIGN

4. 1 Definition of Terminology

Prior to describing the ARMMS Control Executive System (ACES),
a number of terms used in the remainder of this report must be defined.

These definitions are listed below in alphabetical order. Other defini-

tions are provided in the appropriate paragraphs.

1). Configuration Wait - An executing task is placed in a
configuration wait when the resources utilized by

that task are required by a higher priority task, or

when the diagnostic software/hardware has identi-
fied a failure in a stream component.

2) Criticality - Criticality is equivalent to the required

mode of operation; TMR, duplex, or simplex. The
terms "stream weight" or "stream weighting factor"
are often used as a measure of criticality where a
stream weight or weighting factor of three (3) is
equivalent to TMR operation, a stream weight of
two (2) is equivalent to duplex operation, and a
stream weight of one (1) is equivalent to simplex
operation.

Criticality is considered to be a characteristic of
both streams and individual tasks.

3) Dictionary Period - The period of time during which a
given task dictionary is in effect.

4) Logical Memory Module - A logical memory module is
defined to be a set of physical memory modules with
a common logical memory address. A logical memory
module can be a triad with a criticality of TMR, a
pair with a criticality of duplex, or a single module
with a criticality of simplex.

5) Module - A module is a specific ARMMS module such as a
memory module, a CPE module, or an IOP module.
Buses are not considered to be modules.

6) Module Number - A module number or address is an
identifier defining a particular module port. It is
likely that multi-port modules will have multiple
module numbers.

3-27

7) Overload Condition - An overload condition exists when
the total number of components is sufficient to build
the desired stream but (due to one or more higher
priority tasks currently utilizing some or all of the
operational components) the necessary resources are
not currently available to build the desired stream.
The overload condition is temporary and is syn-
onymous with scheduling overload and not to be
confused with the,much more critical,processing
overload.

8) Port - A module port is the capability of a device to sup-
port and control an input and an output channel.
A four-port module would therefore be capable of
supporting four independent input and output channels.

9) Process - A process is the total set of operations required
to perform a defined application effort, excluding
those operations performed by the control system.
The execution of a process is normally implemented
as a set of related programs responsible for performing
the process operations. A process can be implemented
as a single task or as a set of related tasks.

10) Processing Overload - A processing overload exists when
the available resources are insufficient to process
the tasks within a required time period. It is a perm-
anent condition caused by failures of the modules.

11) Resource Problem - A resource problem exists when a new
task is potentially the highest priority executing task,
and it cannot be put into execution on existing opera-
tional resources. In other words, if all processing
streams were halted and all operational components
were made available, the total number of necessary
components would be insufficient to build the desired
stream.

12) Stream- A stream is the interconnection of devices required
to support the execution of a task. A stream consists
of the IOPs, CPEs, buses, output switches, and voter
configurations required to support task execution.

A stream's criticality can be TMR, duplex or simplex,
and three types of streams will be supported by ARMMS:

3-28

a) A Full Processing Stream consisting of CPEs, IOPs,
and associated buses with the IOPs connected to the
CPEs.

b) A Limited Processing Stream consisting of CPEs and
associated buses (no IOPs).

c) An I/O Stream consisting of IOPs and associated buses
with no CPEs.

Memory modules are not members of a stream. Memory
modules are shared devices and are not dedicated to any
specific stream.

13) Task - A task is a unit of work. That is, a set of instruc-
tions, data and control information capable of being
executed by a single Central Processing Element
(CPE) and/or by an Input/Output Processor (IOP).
It can be a program to be executed on a processing
stream or a block of data to be received or trans-
mitted via an I/O stream.

14) Task Dictionary of Lower Level - A task dictionary of
lower level is a task dictionary dependent on fewer
resource components for successful and timely ex-
ececution than the current task dictionary. (See
Section 4. 3 for Task Dictionary.)

4. 2 Design Groundrules and Assumptions

To bound the operational characteristics of the ARMMS Control
Executive System (ACES), a number of basic design groundrules were
established. Also, a number of design assumptions were made based
on engineering judgement and experience concerning desired system
capabilities and services. All of these groundrules and assumptions
were reviewed to ensure that no serious design incompatibilities exist
between the current software and hardware design concepts.

The following paragraphs define the groundrules and assumptions
which governed the definition of the ACES philosophy.

3-29

1) The TMR full processing stream consists of three IOPs,
three CPEs, and a logical memory module of multiples
of three physical memory modules. A TMR Logical
Memory Module (LMM) is called a TMR triad. The TMR

limited processing stream or I/O stream configuration
is assumed to consist of three CPEs and a TMR LMM,
or three IOPs and a TMR LMM, respectively.

2) The duplex full processing stream configuration consists
of two IOPs, two CPEs and an LMM made up of multiples
of two physical memory modules (a duplex pair). The
duplex limited processing stream or I/O stream config-
uration consists of two CPEs and a duplex LMM, or two
IOPs and a duplex LMM, respectively.

3) The simplex full processing stream configuration consists of
an IOP, a CPE, and an LMM consisting of one or more

single physical memory modules. The simplex limited

processing stream or I/O stream consists of a CPE and a

simplex LMM, or an IOP and an LMM, respectively.

4) Stream to memory interconnection is task independent.
That is, memory is not a dedicated resource. The ACES
configurator will attempt to connect all defined streams
to all defined LMMs with a criticality or stream weight

equal to or greater than that of the defined stream.

5) The Dispatcher will not impose any limitations on the
number of simultaneously executing streams. The
Dispatcher will attempt to build as many simultaneous
streams as it can use so long as resources are avail-
able.

6) A real-time clock and interval timer(s) are available
to BOSS and to the individual CPEs. Any such clocks
and timers will be accurate to at least 100 ps.

7) Certain error conditions within streams will result in
alerts (interrupts) to BOSS. Such failures will auto-
matically halt the failing stream (all modes except TMR)
until BOSS takes corrective action. TMR streams will
continue to execute until task completion regardless of
the occurrence of failures, unless two or more failure
locations are identified.

3-30

8) The memory input and output buses will be multiplexed
such that an IOP and a CPE can be simultaneously con-
nected to the same memory buses. However, multiple
CPEs or multiple IOPs cannot be connected simultaneously
to the same memory buses. Also, multiplexed IOP buses
may be treated as completely independent of multiplexed
CPE buses.

9) The ACES scheduling algorithms are based on asyn-
chronous executing concepts in which the Executive soft-
ware is primarily concerned with dispatching application
program tasks as a function of task priority and time to
initiate execution.

10) All streams will be constructed from available resources
maintained in a centralized resource pool. Failing streams
will be disassembled and all operational components will
be returned to the resource pool. Terminating streams
will remain connected until individual components of that
stream are required for a different type stream.

4. 3 System Design Overview

This subsection gives an overview of the ARMMS Control
Executive System functions, as indicated in Figure 4-1 which presents
a simplified functional overview of ACES.

The Task Dictionary is a list of all possible task requests for
a given phase of the mission. In addition, the Task Dictionary contains,
for each task request, a definition of static execution parameters of
concern to ACES. A separate Task Dictionary is loaded into BOSS
memory for each mission phase, or whenever resource failures dictate
the need to limit processing to a degraded set of mission tasks.

Task Dictionary entries are utilized by the Task Scheduler to
build a Task Queue Item (TQI) for each task execution request which
contains the execution control parameters of the request.

The Task Scheduler accepts requests for task execution from
currently executing processing streams. The request parameters
from the request call are combined with the static parameters from the
Task Dictionary by the Task Scheduler which builds the TQI for that
request. The TQI is placed either in the Timer Queue or in the Pending
Task Queues depending on the request parameters.

3-31

AC ES OVER VIEW

Phase _ I Task
Initializer Dictionary

Event Recognition

Timer

Queue Wait

File

Task

Scheduler

Pending

Task
Queues Resource

Commands

aster

Execution Dispatcher
Table

Configurator

Task
Initiator

Fault
Interruption Executing (Fault) t

S -- Detection &
SProcessing

,Completion

-. _ Task

Terminato r

Figure 4-1

3-32

The Timer Queue contains a list of all TQI requests where task
execution is not to commence prior to some specific future time.

Once the time requirement has expired, or if no time requirement
was specified in the call, a task's TQI is placed in the Pending Task
Queues. There are as many Pending Task Queues as there are defined
levels of task priority and, within each Pending Task Queue, TQIs are
treated by the Dispatcher on a First-In, First-Out (FIFO) basis. TQIs
within the Pending Task Queues may have specified events which must
occur before they can be eligible for execution. The definition of such
events resides in the Wait File and the TQI is marked waiting in the
Pending Task Queues.

The Dispatcher is responsible for sequencing the execution of
tasks eligible for execution; i. e., those tasks having requests in the
Pending Task Queues which are not waiting for an event to occur. The
Dispatcher always attempts to put the task with the oldest, highest pri-
ority task request into execution next.

If sufficient resources are available in the resource pool to build
a new stream with the task criticality required by the TQI, the stream is
identified and established in the Master Execution Table (MET), the
Dispatcher uses the Configurator to interconnect the stream components,
and the task is initiated by the Task Initiator.

If sufficient resources are not available in the Resource Pool to
build a new stream as required, the Dispatcher determines whether a
resource problem exists or whether the system is just in a temporary
overload condition. A resource problem exists when a new task is
potentially the highest priority executing task and it cannot be put into
execution on existing operational resources. Such a situation either
requires the Dispatcher to modify the criticality of the requested task
so that it can make use of available resources, or that a new Task
Dictionary be brought into the system which is tailored for the degraded
configuration of operational resources.

If an overload condition exists (i. e., sufficient resources are
operational to handle the current task request criticality but higher
priority tasks are now executing), the current task request will be
left in the Pending Task Queues and no further attempt will be made
to dispatch it until sufficient resources are available and it is the
highest priority pending task request.

Once a task request is dispatched (that is, sufficient resources
have been identified to support its execution and a stream has been re-
served in the MET and wired by the Configurator), the Task Initiator
is given control.

3-33

The Task Initiator is responsible for initiating task execution
on the prepared stream hardware. Three types of streams are to be
supported by ACES: full processing, limited processing, and I/O
streams. These types of processing streams can either be entering
execution for the first time or resuming an execution which was pre-
viously interrupted by a higher priority task or relinquishing control
until a specific event(s) occurs. In any event, the Task Initiator must
be able to distinguish between a start operation and a restart since
different initiation procedures are required. Similarily, the initiation
procedures for an I/O stream are different from those required by a
processing stream.

Once a task is executing on a stream, it will run until comple-
tion, or until the task places itself in the wait state, or a fault is
detected by ACES, or the task is interrupted by the Dispatcher which
requires its stream resources for a higher priority task.

An executing task interrupted by the Dispatcher is said to be
in a configuration wait and its TQI remains in the Pending Task Queue.
It is eligible for restart under the normal dispatching algorithm; that
is, as soon as resources become available and it is the highest priority
pending task request.

An executing task interrupted by the detection of a fault also
is placed in a configuration wait. However, in this situation, certain
resources may be reserved by the Fault Detection and Processing software
in order to isolate the cause of the fault and remove the failing module
from the resource pool.

If an executing task runs to completion and terminates properly,
the Task Terminator will free the available resources, update the Re-
source Pool (unless the stream can be used in its present configuration),
update the MET, and return control to the Dispatcher. This allows the
Dispatcher to make immediate use of the available resources if task
requests are currently stacked in the Pending Task Queues.

The TQI associated with a task that requests to be placed in an
event-dependent wait state is marked waiting in the Priority Execution
Queues. When the event(s) that the task is waiting upon occurs, the
TQI's wait restriction is removed and it is eligible for restart under the
normal dispatching algorithms.

3-34

4. 4 Task Control

4. 4. 1 Task Control Overview

Task control consists of the algorithms and design concepts
required to schedule, dispatch, initiate, interrupt, and terminate

application program tasks. Figure 4-2 presents an overview of the
task control components and defines their cross communication link-
ages at the functional level.

BOSS memory as presented in Figure 4-2 is the central com-
munication area for controlling all task control operations. Task
commands accepted by the Task Scheduler result in the definition of
a TQI which is placed in Task Queue Memory. The TQI is linked into
either the Timer Queue or one of the Priority Execution Queues (pending
task queues), depending upon whether time parameters are present.

Figure 4-3 defines the functional components of the TQI.

The key parameters that determine the queue the TQI initially
enters is the request type parameter. The request type specifies that
this request is either a priority request or a time request with an
associated time-to-execute parameter.

Any TQls with a request type specifying time, and an unexpired
time-to-execute parameter will be attached to the Timer Queue by the
Timer Scheduler. All other TQIs will be attached to the Priority Execu-
tion Queues. The Priority Execution Queues contain TQIs which have
specific events (wait items) which must occur prior to making the TQI
eligible for execution as well as TQIs which are eligible for immediate
execution.

TQIs resident in the Timer Queue, are ordered according to
time-to-execute and are processed by the Timer Processor. The
Timer Processor accumulates phase and/or mission real time and moves
TQIs from the Timer Queue to the Priority Execution Queues once the
time-to-execute parameter of the TQI has been satisfied.

A different Priority Execution Queue exists for each defined task
dispatch priority level. TQIs resident in the Priority Execution Queues
are stacked in the order in which they are received. A TQI remains in
its Priority Execution Queue until its task either terminates or until the
queues are flushed by the system during a phase change.

Since a TQI can functionally move from queue to queue, con-
siderable system overhead would be experienced if TQIs were required

3-35

TASK CONTROL OVERVIEW

Priority Call Add

Delete
Scheduler eue Status

Real Timeegister
Clock Timer

erProcessorore/Load Task IntervalTerminate
CaTime

SReference Event Recognition and Rescurrentponse
Figurtime 4-

To Dispatcher PrioritY Timer

Scheduler Scheduler

B M Master Task Queue Memory File MemoryTsU

OE Ex R C U B Block Diction- Wait Alert

SM Table P S S S Timer Priority Status ary ems Items

SO (MET) C R T W - Queue Exec. Matrix
R S W Queue s
Y O

nfig, Wait

equest Event

Dispatcher Initiation Request
Processing

From Priori

SConfig. Request " Initiator Restore/Load

Configurator

Task Terminate Call

* Reference Resource Allocation and Control Teminator Abend Call

** Reference Event Recognition and Response

Figure 4-2

TASK QUEUE ITEM (TQI)

Task Q Request Task 0 Pointer to Pointer to Task Pointer to
Item Request Dispatch Criticality 0 e Parameter Status Next Q Name Wait Save
Number Type* Priority (S, D, T) List Flags Item (Number) Area

* Request Type

1) Priority
2) Time (Single Execution or Periodic)

Figure 4-3

to move physically in BOSS memory. Therefore, each TQI contains

pointers with which it can be linked to any queue. Since the TQIs do

not move about in Task Queue Memory, it becomes somewhat more

difficult to control the utilization of Task Queue Memory efficiently.

Holes or gaps in the Task Queue Memory accumulate as TQIs are added

and deleted. Efficient utilization of Task Queue Memory is aided by

subdividing it into fixed length segments, each equal to the fixed length

of a TQI. The Queue Block Status Matrix (QBSM) is then a map of Task

Queue Memory where each bit in a QBSM word represents a TQI block

and identifies whether it is utilized or empty. The QBSM is used by
the Task Scheduler constructing the TQI and inserting it into an available

slot in the Task Queue Memory.

The Dispatcher utilizes the contents of the Priority Execution

Queues to determine which task to place into execution next. The Dis-

patcher is entered whenever a change occurs in the number of available

resources, whenever a change occurs in the status of operational re-

sources, or whenever the status of the Priority Execution Queues is

modified.

Once entered, the Dispatcher will attempt to put into execu-

tion as many pending task requests as it can support with available
resources. The resource pool is defined by the contents of the Unit
Status Table (UST), the Bus Status Word (BSW), and the Resource Pool

Counters (RPCs).

The UST defines the status of all CPEs, IOPs, and output
voter/switches. It defines whether each unit is utilized, available,
failed, reserved, or off-line, and whether it is fully operational or
only partially operational.

The BSW defines the status of all system buses and, for each
bus, defines whether it is utilized, available, failed, reserved, or
off-line. A bus cannot be partially operational; it is either capable of
transmitting data or not.

The RPCs keep track of the total number of available resources
of each type. The RPCs are used by the Dispatcher to quickly evaluate
the possibility of constructing the desired stream, whereas the UST and
BSW are used to identify specific stream components.

Once the Dispatcher has identified the specific modules to be
utilized in the new stream, it requests the Configurator to intercon-
nect the identified resources and establishes an entry in the Master
Execution Table (MET). The functional layout of the MET is presented
in Figure 4-4.

3-38

MASTER EXECUTION TABLE (MET)

Output Output
Memory Buses I/O Buses CPEs IOPs VS Buses > 0 >°

TMR1 N NN,* > >0 Q,1

TMR2 I/O - N NN N NI NI N NN N N N 9

DUPI N N N IN N - * N**N N *N*N*N * * N * N 2

DUP2 N N N N N * * N * *N N **N** N * *N 3

DUP3 N N IN N N N N N* * N N * * N ** N * * N * * N 4

DUP4 I/O N N N N NN N I N N N N N N N NN N N N N
1 0

DUP5 I/O _ N N N N N N N N N NN N N NN N N N N 11

! DUP6 I/O NNN N IN N _ N N NNNNN N N N N N12

SIMI w I TT N N L N NN N N N NN N N NN*NN NN* N N

SIM2 N N N N N N NN N * N N N N N *N N * N N N N 6

SIM3 N N N N N _ N NN*NN*NN N N *NN*NN*NN 7

SIM4 N N N N N N IN N * N N * N N N N N N N N N N 8

SIM5 I/O N N N N N NN N . N N N N NN NN N N N N N NN N N13

SIM6 I/O INN N NN N N NN NN NN NNNNN N N NN NN

SIM7 I/O N N NN I ININ NNNNNNNN NN NN N N N 15

SIM8 I/O IN IN N ININI N N NN NN N N N N N NN NN NNl16

Stream Status Stream Type Legend

Utilized - Built & currently used Processing (Full) * Use dependent on stream type (Full or Limited

Undefined - Not built - not used Processing (Limited) Processing)
Unutilized - Built but not currently used I/O ** Dispatch priority = Execution priority except for

I/O streams
*** Memory bus priority fixed by stream (not variable

by task)

Figure 4-4 N = Not used

In order to identify to the Configurator the resources to be

interconnected and the criticality of the desired stream, the Dispatcher

builds a Configuration Stream Request Word (CSRW) which identifies

the function to be performed and the particular MET entry which identi-

fies the stream components.

The MET defines all potential streams associated with a par-

ticular ARMMS mission, and provides entries for recording the re-

sources dedicated to each defined stream. The MET also defines

the TQI assigned to a given stream and its associated dispatch and

execution priorities.

Normally, the execution priority equals the dispatch priority
for all processing streams. However, if a failure is detected in a

TMR processing stream, the execution priority will be bumped to a

higher level to prevent any other application tasks from interrupting the

failing stream before that TMR task has a chance to complete. I/O
streams will also have an execution priority which differs from the

dispatch priority since, by definition, I/O streams, once dispatched,

cannot be interrupted by higher priority requests.

If the Dispatcher cannot obtain sufficient resources from the
resource pool for the new task, it will identify from the MET the

executing stream of lowest lower executing priority. Any such stream

will be placed in a configuration wait and its stream components made

available to the resource pool. This search operation will be continued

by the Dispatcher until either sufficient resources are identified or

no more streams of lower priority are currently executing. No execu-

ting streams are actually stopped by the Dispatcher until it is certain

that such action will result in sufficient resources for the new stream.

If the stream cannot be put into execution, it will be treated as either

a resource problem or as a temporary overload condition which leaves

the TQI pending in the Priority Execution Queues.

Once the stream has been identified and constructed, the In-
itiator is called to start the requested task executing on the defined
stream. When the task completes, the Task Terminator is called.

The Task Terminator is responsible for deleting the terminating

task's TQI from the system unless the task is periodic. If the task is
periodic, it calculates the next execution time and reschedules the task

for execution. The Task Terminator also initiates the event processing
logic which is responsible for determining if any other task is awaiting
the completion of the terminating task.

3-40

4. 4. 2 Task Control Components

The ACES task control logic has been subdivided into the seven

functional areas listed below:

o Task Scheduler

o Timer Scheduler

o Priority Scheduler

o Dispatcher

o Timer Processor

o Task Terminator

o Initiator

A functional description of each is presented in the remaining

subsections of Section 4.

4.4. 2. 1 Task Scheduler

The Task Scheduler is responsible for'accepting and processing

task control requests from application tasks. Figure 4-5 presents a

functional flow diagram of the Task Scheduler logic.

The Task Scheduler will accept two (2) types of task calls:

1) Task Schedule calls; 2) Delete Task calls.

The Task Schedule call allows any application task to request

the execution of another specific task. Figure 4-6 defines the functional

parameters of the Task Schedule call. The Task Scheduler combines

the functional parameters of the Task Schedule call with the related

parameters defined in the Task Dictionary to build a TQI for the re-

quested task. Figure 4-7 defines the functional parameters of a typical

task dictionary entry.

Two primary types of Task Schedule requests can be accepted

by the Task Scheduler: requests for priority execution with no associa-

ted time constraint, and requests for a timed execution which require

the definition of a time-to-execute parameter and a repetition period

parameter for a periodic task. The request for priority execution with

no associated time constraints, and the request for a timed execution

3-41

TASK SCHEDULER

ASK SCH E
ENTRY A

Reserve Q
item space &

eques N requestor notify request

legal call or call
illegal accepted

Build and
y) store re-

aeques RETURN quired task
Q item

N

aY T Time

SWWAIT EV PRC
N Walt Wait Nrameters Denote space

not available items

pace Navail in file D as waiting
me m

Build wait WAIT FL PRC Disable TIMER SCH

items in _Link new wait items .,Lin, TQ!.
file memory wait items to timer Q

into file

SRETURN

Figure 4-5

3-42

TASK SCHEDULER

(continued)

A

can timer Q

items and elete
elin all time re-

uest
required us

Scan all pri-
ority Q's ac-
tive & wait
items. Delini
.ll required

tor items
requestor

no items delinked

found
Y

WAIT EV PR
Check for
task waiting
on TQM

e-
N source

'valuation
equir

edY
DISPATCHE
Use available
resources if
ossible

Figure 4-5

(continued) (RETURN

3-43

TASK SCHEDULER

(continued)

TASK SCH
ENTRY B

PRIOR SCH

LinK TQI to C
priority Q

ISPATCHER
ara r ers N Use availablearesources if

possible

Enable

wait items RETURN

ALRT FL SC11
Scan alert
file for satis
fied events

SDelete wait Reset task

wait ctr. items withwaiting fla
0 this TQI

RETURN)

Figure 4-5

(continued)

3-44

SCHEDULE TASK CALL (FUNCTIONAL DEFINITION)

--- Wait Parameters,

Call Task Q i Pointer to I
Byte Item I Parameter Field 1 Field 2 Field 3 Field 4

Execute
Count Name List ** i

Condition Sub-Field Sub- Field Sub-Field
Code 1* 2 * 3 *

Sub-Field Usage Event Dependent

Pointer To Data Set To Be Passed From Calling To Receiving Task

Figure 4-6

TASK REQUEST DICTIONARY ENTRY (FUNCTIONAL DEFINITION)

Task Q Request Dispatch Task Pointer to Period of Stream Task

Item Type Priority Criticality Routine to Periodic Type Name
Name (T, D, S) Execute Task (Number)

Program Local Temporary
Base/ Data Storage
Bound B/B B/B
(BIB)

Request Types Stream Type B/B - Base Bound

Registers
1. Schedule Priority I/O

Processing (Full)

2. Schedule Time (Periodic & Single Execution) Processing (Limited)

Figure 4-7

with a time-to-execute parameter, but no repetition period (single
execution), may have Wait Items as part of the request. A request for

a timed execution with a time-to-execute parameter and a repetition

period parameter (periodic execution) cannot have Wait Items associated

with the request. It should be noted that the request type parameter

resides in the dictionary and is not passed to the scheduler in the task
call. In fact, the task's dictionary entry contains all of the major
parameters which govern its mode of execution.

This may initially appear to limit the flexibility of the task
call, since in some instances it may be desirable to dynamically
alter such execution parameters as priority, criticality, etc., as
conditions change during a mission phase. No such limitations exist,
however, since the common parameter which links a Task Schedule
call to a specific task dictionary entry is a Task Queue Item name,
not the task name. This means that a dictionary may contain as

many distinct entries referencing a common task as necessary to
handle any variations required in the execution parameters.

This approach was adopted for two reasons. First, it mini-
mizes the amount of information which must be transmitted to BOSS
dynamically by an application program task. Secondly, it forces the
system users to preplan the required modes of execution for each
phase task, which is compatible with the overall philosophy of re-
quiring the user to preplan worst case phase task scheduling in order
to insure that all critical time deadlines can be satisfied.

The Delete Task call allows any application task to request
that a previously requested task's TQI be deleted from the system.
Such deletion requests will not be honored if the task associated with
the referenced TQI has entered execution.

When the Task Scheduler is entered, it first confirms the
legality of the task call and then determines whether the call was a
Schedule or Delete call.

If the call was a Schedule call and space is available in Task
Queue Memory (TQM) for an additional TQI, a check is made to
determine if wait parameters are present, which must be satisfied
before the task is eligible for execution. If Wait Items are present
and space is available, the Wait Items are moved to File Memory and
linked into the Wait Item file. The TQI is then constructed and placed
in the TQM. The Task Scheduler then examines the key execution
parameters of the TQI, to link the TQI to either the Timer or Priority
Task Queues. If the request was a timed request, and had Wait Items

3-47

associated with it, the Wait Items are disabled so that they will not be

satisfied during the time interval.

After the time interval expires and the TQI is moved to the proper
Priority Queue, a check is made to determine if wait parameters were

associated with the TQI. If not, the Dispatcher is called to attempt

to place the task into execution. If Wait Items are associated with the

task, the items are enabled so that monitoring for the event can begin.
The Alert File is scanned to determine if any of the events had already
occurred, as noted by previously defined alerts. If all the events are

satisfied by the alerts, the Wait Items are deleted and the Dispatcher

is called to attempt to place the task into execution. If not, the Task

Scheduler exits.

If the call was a Delete call, the Task Scheduler deletes the

identified TQI from its present scheduling queue, if its associated

task has not yet entered execution via this TQI. Once a TQI is deleted,
space is available in TQM and it is necessary to determine whether

any task is currently waiting for such space to become available. A

new resource evaluation is required if the occurrence of available

space in the TQM resulted in a change in the status of the Priority
Execution Queues.

4. 4. 2. 2 Timer Scheduler

The Timer Scheduler is entered from the Task Scheduler. Its

primary function is to link the Timer Queue and a new TQI which has
time constraint execution parameters. Figure 4-8 presents a func-
tional flow diagram of the Timer Scheduler.

If the requested TQI's time-to-execute is less than current

time, the Timer Scheduler will pass control immediately back to the

Task Scheduler which attaches the TQI to the Priority Execution Queues.

4. 4. 2. 3 Priority Scheduler

Figure 4-9 presents a functional flow diagram of the Priority
Scheduler. The Priority Scheduler is entered from the Task Scheduler.
Its primary function is to link a new TQI to the proper Priority Execution
Queue. If necessary, the Priority Scheduler opens the required Priority
Execution Queue. Upon completion, the Priority Scheduler returns
control to the Task Scheduler.

3-48

TIMER SCHEDULER

7,'MER CH

TASK SCH-B
eques yShdl o

ime<cur Schedule nonRETURN
rent periodic for REU

mexecution
N

Ini t ialize nte rval
Timer y timer Q imer =time
empty to execute -

pointer current

timeN'

Link new Q Start

Time EUN

f ne Qa N item the interval
tem top

item timer

Halt the
interval

RETURN
timer

Link new Q
item to top
of timer Q

Interval Start the
imer=time inter val _ RETURN

to execute -
current timer
time

Figure 4-8

3-49

PRIORITY SCHEDULER

PRIOR SCH

Determine
pending
request's pri-
ority level

Link new Q I I Initialize
item to proper

priority Q priority

RETURN

Figure 4-9

3-50

4. 4. 2. 4 Dispatcher

The Dispatcher is responsible for determining which task to
place into execution next. Figure 4-10 presents a function flow diagram
of the Dispatcher logic.

The Dispatcher is entered when a system status modification

occurs which alters the contents of the Priority Execution Queues, or
when a task in execution terminates or enters the wait state. When-
ever it is entered, the Dispatcher assumes that a need exists to re-
evaluate all pending tasks in the light of currently available resources
in order to select the next candidate tasks, eligible for execution. It

also determines whether any device failures have been recorded since

its previous entry.

Once entered, the Dispatcher scans each TQI, in turn, to
determine if it can be placed into execution. When a TQI is marked
as waiting for an event to occur, the Dispatcher performs no further
evaluation for the TQI, but rather obtains the next TQI.

The Dispatcher determines if the highest priority pending task
has a dispatch priority greater than at least one of the currently ex-
ecuting tasks. If it does, then it is a candidate for further considera-
tion at this time. If not, then a test is made to determine whether the
system is currently supporting execution of the maximum number of
streams possible at the defined criticality levels. For ARMMS, this
would be equivalent to supporting the simultaneous execution of streams
with a cumulative stream weighting factor of four for both I/O and
processing streams. If the current cumulative stream weighting factor

is less than four of the desired stream type, then the current TQI is

a candidate for immediate further consideration.

Once this decision is reached, the TQI's criticality is examined
and, if the criticality is TMR, a check is made to insure that the TMR
Dispatch Inhibit Flag (TDIF) is not set. If the TMR Dispatch Inhibit

Flag is set, it indicates that a failure was identified in an executing
TMR stream and that no further TMR streams are to be dispatched
until the current TMR stream terminates and diagnostics are run to
isolate the cause of the failure.

For other criticalities, or if the TDIF is not set, a check is
made to insure that the task that is requested has not already begun

execution in any other stream. If so, starting the task in this stream
could yield task re-entrancy problems; therefore, the TQI is bypassed

by the Dispatcher and the next TQI is obtained.

3-51

DISPATCHER

ISPATCHE R

CKUF
Determine if Is Y TMR

any unit the task ispatch B
TMR hibit fla

failures set

N N

Identify
highest avail Is
pending sk in y B
priority xec ution opriority '

This y tream
I in vail & un- P

wait state B tilize

N C N

uff.
rl- .res. full M

ority> Y R tream
xec task

nor

I/O xec.
stream Y /O strea N

TQI WF< 4

RETURN
ec.

rocess :n R
streams

N

RETURN Figure 4-10

3-52

DISPATCHER

(continued)
B

Al

this ie el

eels RETURN E

een che ck.

sed

NE

avadentify next Limited Stream Full
available type
pending
priority level O

STSRCH2 STSRCH3 STSRCH1
L Find limited Find an I/O Find a fuli

stream from stream from stream from
spares spares spares

Figure 4-10

(continued)

3-53

DISPATCHER

(continued)

Identify com-
ponents for a
ully opera-
tional strea

single Y stream Y
tream.prev rev. foun

found

N TN

Save identi- Save identi- Save identi-
fied compon- fied compon- fied compon-
ents as first ents as secon ents as third
stream stream stream

e- e
uired N TMR uired Use identified
task Sm- TMR a components
lex uplex to complete

Y Duplex a TMR strean

Use compon- Use compon-
F ents to com- ents to com-
Fplete a Sim- H plete a Du-

plex stream plex stream
plex stream

Figure 4-10 .A
(continued)

3-54

DISPATCHER
(continued)

CK JF

Unit N
ailures RETURN

Ince las
alle

Obtain first
entry in
MFW

Scan for
task using
failed hard-
ware

Task N End N
found? ofMFW's

Y Y

Place task
in configura- RETURN K
tion wait

CONFIG
Break

stream apart

Mark unit
failed

Figure 4-10

(continued)

3-55

DISPATCHER
(continued)

A
C ONFIG

Re-config.
stream com-
ponents

Update MET

I NITIATOR
initiate exec.
of task on
specifi e d

as

ask an 1/O
tream

Y

Exec. Pri-
ority = max Exec. pri-

priority ority dis-
patch prior-

* Ity

Figure 4-10
(continued)

3-56

DISPATCHER
(continued)

WF1 = # of Reserve
streams preA identifiedstreams pre N stream Y

viously omponents
identified dentifionents &

WF2 - WF1 + Save identi-
W. E for equicn fied compon-
ET stream ingle N ents as first

o prior (stream pre
re. TQr ound stream

Identify 2
F2 stream oflow streamsTas y

rltical- executing ound
tpriority

WF3= WF1 I Place Save identi-
weightingfac stream in a fied compon-
torsfor all config. wait.if ents as sec- Eeuiv. ond streame u c u ting being utilizec ond stream

CONFIG
3 Y Break stream TM

req. TQIinto availabl or Duplex E

ity' I resources I

N
j Duplex

H X

N Criticality of
WF3= 0 TQI = criti-

cality of Cancel all

WF3 reserved
Y components

-TRidentified

RETURN

Note: W. F. =weighting B
factor Figure 4-10

(continued)

3-57

If the requested task has not begun execution in another stream,
the Dispatcher determines if a spare stream of this criticality and type
is already built but not currently utilized. If so, the TQI is placed into
execution utilizing this available stream.

If a spare stream is not available, a scan is made of the RPCs
to determine if sufficient fully operational resources are available to
construct a new simplex stream.

If the scan of the RPCs indicates that sufficient fully operational
resources are available to construct a simplex stream, then the BSW
and UST will be scanned to identify the explicit stream components to
be utilized.

The Dispatcher looks for components for only one simplex
stream at a time. If the TQI criticality is duplex or TMR, then
multiple simplex stream components must be identified. Once suf-
ficient resources have been identified and reserved to satisfy the
criticality of the TQI, the Dispatcher passes control of the Config-
urator which is requested to interconnect the identified components
into a stream with the desired criticality. As soon as the stream is
ready, control is returned to the Dispatcher, which then passes control
to the Initiator which is responsible for initiating task execution on the
defined stream. The Dispatcher communicates with both the Configura-
tor and the Initiator via the MET entry for this stream which defines
the stream components and the using TQI.

Once the requested task has been dispatched, the Dispatcher
loops back to its beginning to determine if it can make use of any of
the remaining available resources to satisfy pending task requirements.

If at any time during its search for fully operational resources,
the Dispatcher determines that insufficient, resources are available
to satisfy the TQI's criticality requirements, it will attempt to identify
simplex stream components made up of any spare resources, fully or
partially operational. The Stream Search subroutine is responsible
for identifying such stream components.

Notuntilall possibilities of using available spare resources
have been exhausted will the Dispatcher consider interrupting an already
executing stream. When such a situation is identified, a number of
tests are performed to determine the potential capabilities of the ex-
isting system as they relate to the criticality and priority of the task
it is desired to dispatch.

3-58

First, a cumulative weighting factor is calculated for all equivalent
spare simplex streams identified in the.search, and for all streams
currently executing with a priority less than that of the requested task.
So long as this cumulative weighting factor is larger than or equal to
the criticality of the requested task, sufficient lower priority streams
and spare available resources exist to construct a stream for the re-
quested task. In such a situation, sufficient lower priority executing
tasks will be interrupted and placed in a configuration wait to make
the resources required by the new task available.

If the cumulative weighting factor indicates that sufficient
spare and lower priority resources are not available to dispatch the
new task, the Dispatcher must determine if a temporary overload
condition exists or whether there is a resource problem.

A second cumulative weighting factor is calculated for all
spare simplex streams identified so far in the search, and for all
tasks currently executing. This is effectively the weighting factor
of the operational system resources. If this weighting factor is
greater than or equal to the criticality of the requested task, then
sufficient resources are currently operational in the system to event-
ually execute the requested task when it becomes the highest priority
pending task. This situation is defined as an "overload" condition
and the requested task's TQI is left pending by the Dispatcher.

If the second cumulative weighting factor is smaller than the
criticality of the requested task, then a "resource problem" is said
to exist since sufficient resources are not operational. When a re-
source problem occurs, the Dispatcher will equate the criticality of
the requested task's TQI to the second cumulative weighting factor.
This enables the requested task to be executed on the available opera-
tional system resources as soon as that task becomes the highest
priority pending task.

4. 4. 2. 5 Initiator

Figure 4-11 presents a functional flow diagram of the Initiator.
The Initiator is entered from the Dispatcher and is responsible for
initiating the execution of a specific task on a stream designated by an
MET entry. The Initiator is capable of starting either an I/O stream,
or a processing stream and, in the case of processing streams, is able
to distinguish between a fresh start and a restart. The restart process
requires a much more complex program restore and initiation sequence.

3-59

INITIATOR

INITIATOR

S

thi Restart program
ore- save data

Fresh "---.-

stream for
res stream fo

Srestart

'7I

tart

Fresh Iiilz

(stre
a m

for T/O

nistream foatenitialize

fre sh s tartf stream for

restarFigure 4-11

Star3-60

strean-L

streand

ntated
iT e

Indicate
stream
iniitiated
roer

RETUR

Figure 4-11

3-60

4.4.2.6 Timer Processor

The Timer Processor is entered in response to a timer inter-

rupt from an ARMMS interval timer. Figure 4-12 presents a func-

tional flow diagram of the Timer Processor logic.

The Timer Processor is responsible for determining when the

time restriction on a requested task's TQI has been satisfied and for

moving that TQI to the Priority Execution Queues.

When entered, the Timer Processor first confirms that cur-

rent time (the interrupt time) agrees with the time-to-execute para-

meter of the top TQI in the timer queue. A disagreement indicates

a timer error condition which must be diagnosed.

The top timer TQI is then moved to the Priority Queues. The

TQI is then interrogated for wait parameters. If any are present, they

are enabled and the Alert File is scanned in order to ascertain the status

of wait events for which alerts have been established to monitor. After

scanning the Alert File, if any of the events are not satisfied, the

Timer Processor exits. If all events are marked satisfied after scan-

ning the Alert File, the TQI waiting flag is reset and the Wait Items

are deleted.

If there are no wait parameters, or if all of the items are

satisfied by the Alert File scan, the Dispatcher is called to determine

if this TQI can be placed into execution.

Next, the Timer Processor advances theTimer Queue and cal-

culates a delta equal to the difference between the time-to-execute

parameter of the new top queue TQI and the current real time. If this

time is zero, the Timer Processor loops back to the beginning to pro-

cess this TQI, whose time parameter has expired. If the delta is not

zero, the internal timer is loaded and started before the Timer Pro-

cessor exits.

4. 4. 2. 7 Task Terminator

The Task Terminator is entered in response to a termination

call from an application task. Figure 4-13 presents a functional flow

diagram of the termination logic.

The Task Terminator is responsible for detaching the completed

task's TQI from the system and restarting a periodic TQI. In general,

the flow diagram is self-explanatory. However, a number of clarifying

statements are pertinent.

3-61

TIMER PROCESSOR

TIMER
PROC

B

mmeet N ERROR
xec top RETURN

PRIOR SCH
dd expired

Q item to
proper
riorit Q

Q Enable
tem Y Scan alert TQI

ave wait wait file for wait ctr =
term- items satisfied 0

events

ISPATCHER Delete Reset task
Determine if wait items waiting
redefinition with this flagRETURN
of executing

Stiimer =

Figure 4-12

ther Y Q pointer time to ex-timer Q cute - cur-
'tems rent time

Stop interval Start the

timer and interval terval

close the timer timer <

timer Q

RETURN B

Figure 4-12

3-62

TASK TERMINATOR

TASK TERM Q

Stop all \ AIT EV PRC
proce.ssors Note space
associated
with the available in

te rm ITQM
stre m

Mark stream
as unutilized, MR
set prioritytc ispatch N
zero in MET nibit

et

WAIT EV PRC
Denote task erm N
terminating ask crit.
as event TMR

Delinh tasl.: MEM RECON

from proper Process pre
viously

priority Q iden. mem.
failure

TQI TTE = RES. MON

TQT y TQI TTE + omplete res

periodic I period in progress
if possible

N

Update the TIMER SCH DISPATCHE

Q block Add TQI to Attempt to
status timer Q use available

matrix resources

A B RETURN

Figure 4-13

Note: TTE - Time to Execute

3-63

First, the Task Terminator does not break apart the stream

that was executing. Instead, when a task terminates, the MET entry
for the stream is marked as not utilized. The act of a task terminating

is a defined event. The Wait Event Processor is called by the Task

Terminator to communicate this event to the Wait and Alert Files.

If a task is not periodic, the TQI is flushed from the system

and the Wait Event Processor is notified of such an event. If the task

is periodic, the next period, or time to execute, must be established

and the TQI placed into the Timer Queue.

Next, if the TMR Dispatch Inhibit Flag is set and the stream

terminating is a TMR stream, it indicates that a failure was previously

identified in a triad memory component and that the failure must now

be isolated and the triad corrected, if possible. This operation will be

performed by the Memory Reconfigurator.

Then, the Task Terminator will call the Reservation Monitor

in order to determine if a diagnostic resource reservation is outstand-

ing which might be satisfied by the resources being relinquished by
this stream.

The last function of the Task Terminator is to call the Dispatcher
to determine whether any pending task can be put into execution on a

stream constructed from the currently available resources.

3-64

4. 5 Event Recognition and Response

4. 5. 1 Event Processing Overview

Event Recognition and Response Processing consists of the
algorithms and design concepts required to:

o Allow application tasks to establish a system require-
ment to monitor and record specific event occurrences.

o Allow ACES to initiate specific application and system
tasks in response to dynamic event occurrences.

o Allow application tasks to set and/or interrogate the
condition of defined events during execution.

An event is defined to be any occurrence for which monitoring
logic has been provided in the ACES. Currently, nine events have
been identified as defined below:

1) Task Termination - a specific task (i. e., a named TQI)
has terminated.

2) Task ABEND - a specific taskhas abnormally ended.

3) Task Waiting - a specific task has entered the wait state.

4) Reservation Complete - a diagnostic resource reserva-
tion has been completed.

5) Logical Memory Address Fully Functional - a logical
memory address has been returned to full opera-
tion status.

6) Space Available in FM - space is now available in File
Memory.

7) Space Available in TQM - space is now available in Task
Queue Memory.

8) Program Flag - a program flag has been either set or
reset.

9) Variable Locked - a specific lock-variable has been locked.

3-65

It is expected that this list will grow considerably in the

future as new "official" events are identified. For example, the
detailed definition of I/O processing requirements will probably re-

sult in a substantial number of new event definitions.

Some events are single shots, while others are flip-flops.
For example, the Reservation Complete event is a single shot. That

is, once a reservation request is completed by ACES, it is irreversible.
Thus, the event status cannot, once satisfied, become unsatisfied.

Conversely, the Program Flag event is a flip-flop event. One task

may set the flag at one point and later another task may reset the flag.

Figure 4-14 presents an overview of the Event Processing com-
ponents and defines their cross-communication linkages at the functional

level.

BOSS memory, as presented in Figure 4-14, is the central com-
munications area for controlling all event recognition and response.

It contains the File Memory (FM), and the File Block Status Matrix

(FBSM). The FM is subdivided into Wait File Memory (WFM) and

Alert File Memory (AFM).

Basically, ACES Event Processing logic provides application
tasks with two separate mechanisms, Waits and Alerts, to initiate
controlled response activity as the result of an event occurrence. In

reality, the two mechanisms are closely interwoven to perform overall
event monitoring. However, for ease of understanding, each is dis-
cussed separately below.

The Wait logic allows a task to request that ACES place it into a
wait state until specific events, specified by the calling task, are
satisfied. Figure 4-15 presents the functional parameters required by
ACES in a Wait Call from an application task. A calling task can specify
up to four separate events which must be satisfied before ACES may
reactivate the calling task. Each of the four main event fields of the
call is subdivided into four divisions. The first division contains the
condition code which identifies the event, and divisions two through
four are subfields used, as necessary, to define the event parameters
which must be satisfied. These parameters are event dependent.

The Wait call parameters are utilized by the Wait Call Pro-
cessor program to build a Wait Item (WI) in Wait File Memory.
Figure 4-16 is a functional definition of WI. As events occur, the
Wait Event Processor scans the Wait File. Whenever an event occurs,
the status field of the WI's specifying this event, is set to the status of
the occurred event. When all WIs, associated with a TQI, are satisfied,

3-66

EVENT PROCESSING OVER VIEW

To Wait Event - Set

Processor Alert Cancel

Processor ProcessStatus

SStatus
Return

B M File Memory
0 E Wait Alert File
SM BlockS 0 File File Block

R Memory Memory Status
Matrix

Alert File
Alert Event Wait File SScan
Processor - Processor

Wait Call

Processor
Call

Wait Event

Event - Processor
Occurrence

Figure 4-14

WAIT CALL (FUNCTIONAL DEFINITION)

Call

Byte Field 1 Field 2 Field 3 Field 4

Count

Condition
Sub- Field Sub- Field Sub - Field

Code 1 2 3

Figure 4-15

WAIT ITEM (FUNCTIONAL DEFINITION)

Task Q Pointer tc Pointer to Pointer to

Item TQI Previous Next File Event Condition Sub- Field Sub- Field Sub- Field

Name File Item Item Status Code 1 2 3

Event Definition Fields

Event Status

0 = unsatisfied

1 = satisfied

Figure 4-16

the WIs are deleted and the TQI waiting flag is reset. This action

eliminates all constraints upon a TQI and allows it to be selected for

dispatching.

Wait Items can be associated with a TQI which has a time-to-
execute requirement. During the period in which the time is expiring
for the TQI, the Wait Items are disabled. This disabling prevents the

WIs from changing from the initialized unsatisfied state. When the
time has expired, the task's TQI is moved from the Timer Queue to
the Priority Queue. It is at this point that ACES begins monitoring
for the occurrence of the event.

The Wait call signals the point in a task where continuation of
execution is dependent upon the occurrence of specified events. It is
often desirable to start monitoring these events prior to the point that
necessitates a Wait call. The Alert mechanism described below is
provided to fulfill this requirement.

The Alert mechanism is invoked through an Alert Request call,
which requests monitoring to be started for a specific event. Obviously,
this establishes the requirement for an Alert Cancel call to request
monitoring of an event to be terminated. The contents of these calls
are functionally defined in Figure 4-17.

The Alert Call Processor uses the components of the Alert
Request call to construct an Alert File Item (AFI) which is retained in
BOSS memory in the Alert File Memory (AFM). Figure 4-18 defines the
functional components of the AFI. It should be noted that each AFI
defines only one specific event and is uniquely identifiable by its name
supplied in the Alert Request call. It is, therefore, possible to define
multiple Alerts, all monitoring the same event, merely by assigning
unique names to each AFI.

The AFI and the WI are similar in structure and, in fact, are
of the same physical length. Since WIs and AFIs are being contin-
ually added and deleted, considerable overhead would be experienced
if the items were required to be in a physically sequential order. To
prevent this "squishing" operation, each WI and AFI contains forward
and reverse pointers with which each item is linked into either the
Wait File or Alert File. Since the WI and AFI are not allowed to
move within FM, holes or gaps accumulate through addition and deletion
of items. Efficient utilization of File Memory is aided by subdividing
it into fixed length segments, each equal to a file item. The File Block
Status Matrix (FBSM) is then a map of File Memory where each bit in

3-70

ALERT CALLS (FUNCTIONAL DEFINITION)

I. Alert Request Call

Request Alert Condition Sub-Field Sub-Field Sub-Field

Type* Name Code 1 2 3

* Alert Request

II. Alert Cancel Call

Request Alert

Type* Name

* Cancel

III. Event Status Call

Request Alert

Type* Name

* Status

IV. Event Set Call

Request Alert Event

Type* Name Status

* Set

Event Status: 0 = Unsatisfied

1 = Satisfied

Figure 4-17

3-71

ALERT FILE ITEM (FUNCTIONAL DEFINITION)

Alert Pointer to Pointer to Event Condition Sub-Field Sub-Field Sub- Field

Name Previous Next File Status* Code 1 2 3
File Item
Item

Event Definition Fields

-4

* Event Status

0 = unsatisfied
1 = satisfied

Figure 4-18

a FBSM word represents a File Item (either a Wait Item or an Alert
Item) and identifies whether it is utilized or empty. Thus, the utiliza-
tion of FM is controlled by the Wait File Processor and the Alert Call
Processor in much the same manner as the Task Scheduler controls
TQM. It should be pointed out that Wait Items and Alert Items are
intermingled in File Memory. Each item is only attached to a par-
ticular file via its forward and reverse pointers. The FBSM defines
the availability and utilization of File Memory, without regard to
whether a slot contains a Wait Item or an Alert Item.

In many cases, a task needs to use an event status to select
different execution paths. To allow a task to test an event status,
without being forced into a wait state, an Event Status call is provided.
The Event Status call requests the Alert Call Processor to interrogate
the status of a specified event, and provide this status information to
the calling task. The Event Status call is functionally defined in
Figure 4-17.

Finally, a mechanism is required to set/reset the status of
individually alerted events and program flag WIs. This capability
is provided to allow flexibility in the utilization of Alerts and in the case
of intertask communication. The mechanism is invoked through an
Event Set call. This call requests that a specified event is set or reset
as specified in the call. The Event Set call is functionally defined in
Figure 4-17.

The following summary comments can be made concerning the
event processing logic.

1) In general, a task can place only itself into the wait
state; not another task. The only exception to this
rule is that at the time of aTask Schedule call (reference
Section 4. 4.2. 1), a task can specify Wait Items which must
be satisfied prior to dispatching the requested task's
TQI.

2) A task can only be in one wait state at a time. How-
ever, that wait can be contingent on multiple events.

3) A wait condition can only be satisfied when the speci-
fied event occurs.

4) It is automatically assumed by ACES that on a Wait
call, the "event status" (reference Figure 4-16), is
initialized unsatisfied. However, if the Wait call
specifies an alerted event, the event status is initial-
ized to the current status of the alert.

3-73

5) Each application task can define its own set of program
flags by the Alert Request call mechanism.

6) When a task makes an Alert Request, the alert name
must be unique.

7) Any task can set, interrogate, or cancel any Alert File
Item so long as it knows the alert name.

8) ACES will not monitor or record occurrences for any
events not defined via an Alert Request or Wait Items.

9) No event history is kept prior to the Alert Request or
Wait call.

10) Event monitoring (the alert mechanism) is a passive
activity. That is, ACES doesn't notify any application
task of event occurrences. The application task must
interrogate, via the status request, the Alert File Item
to determine its current status.

4. 5. 2 Event Processing Components

The ACES Event Processing logic has been subdivided into the six
functional areas listed below:

o Wait Call Processor

o Wait File Processor

o Wait Event Processor

o Alert Call Processor

o Alert File Scan Subroutine

o Alert Event Processor

A functional description of each of these areas is presented in the
remaining subsections of Section 4.

4. 5. 2. 1 Wait Call Processor

The Wait Call Processor is entered in response to a Wait Call
Request. Figure 4. 19 presents a functional flow diagram of the Wait
Call Processor logic.

3-74

WAIT CALL PROCESSOR

C
CLPRO

Is Build wait
the wait N (error) items in
call lega file

Y (To be defined)

Stop all AALRTFLSCN

processors Scan alert
file for event

wishing
Swait satisfied

can FBSM
for avail.loc. TQI

for wait wait ctr. A

request

Y

otify Delete wait
oug caller can- items with

loc. to not accept this TQT
ats y r request

ST RestartInitializephysical
physical

TQI wait RETURN processors
counter of stream

RETURN

Figure 4-19

3-75

WAIT CALL PROCESSOR
(continued)

A B

WTFLPRO M YTas Y MEMRECON
'ihread iLe:i.s dispatch to be waite Piocess p cnhibit :ously iae-.
into wait file n t TMR

eo r onent

Save re-
qui, red

copies of
estart
data

Mar st ream - DISPAT CHIER

unutilized Wait Modify re-
zero priority pro. chang Y source alloca
in MET riority tion if neededQs

Set task
waiting flag

in TQI

RETURN

WAIT EV PRC

Denote task
"waiting" as
an event

Figure 4-19

(continued)

3-76

The Wait Call Processor is the AGES program responsible for

responding to an application task Wait Call Request. When entered,

the Wait Call Processor confirms the validity of the Wait call data and

determines if there is sufficient space in FM for the Wait Items. If

not, the caller is notified that the Wait Request cannot be processed

at this time.

If sufficient space is available, the Wait Items are built in

FM and the TQI Wait Counter is initialized. If the Wait call specifies

an alerted event the Alert File is scanned so that the event status of

the WI can be initialized to the current status of the Alert. If the

Wait call does not specify an alerted event, the event status is assumed

to be unsatisfied.

If all of the Wait Items specified for the TQI were found satisfied

by the Alert File scan, the Wait Items are deleted and the physical

processor(s) restarted.

If any of the Wait Items are still not satisfied, the Wait File

Processor is called to thread the built Wait Items into the Wait File.

(Previous to this, the FM had been a temporary holding location for the

Wait items.) The TQI is marked waiting in the Priority Queue to pre-

vent it from being dispatched. Since a task entering the wait state is

itself a definable event, the Wait Event Processor is called.

If the task which is placed in the wait state has a TMR criticality,

and if the TMR Dispatcher Inhibit Flag is set, the Memory Reconfigurator

is called to process a previously recognized triad memory module failure.

The final function of the Wait Call Processor is to call the

Dispatcher to take advantage of any freed resources.

4. 5. 2. 2 Wait File Processor

Figure 4-20 presents a functional flow diagram of the Wait File
Processor. The Wait File Processor is entered from the Wait Call

Processor or the Task Scheduler,and its primary function is to thread

a TQI's WIs into the wait file, opening the file if necessary.

4. 5. 2. 3 Wait Event Processor

The Wait Event Processor is entered in response to a definable

ARMMS event. Figure 4-21 presents a functional flow diagram of the

Wait Event Processor logic.

3-77

WAIT FILE PROCESSOR

WTFLPRO

Set wait
cntr in TQI
status flag

Obtain wait
file pointer
(WFP)

Is
wait file

open

U ing WFP
lin" new wait
items to
bottom of

Set WFP to wait file
point to this

item

RETURN

Figure 4-20

3-78

WAIT EVENT PROCESSOR

AIT EV PR

wait file Y ae oun N

N

Obtain first Delete wait
wait item item

A

his -Reset task
ttD waiting flag

sati y this D waiting flag
wait

Specify re-
Waif Y source

'tem dis- D re-evaluation

required
Nhis

eent
Update prope Obtain next
wait field La. t
and wait wait itema
event entr

ALPTEVPRO

result o N this event
B \vent set satisfies exis,

call event alert

Figure 4-21

3-79

The Wait Event Processor is responsible for determining if an

event satisfies a waiting TQI event specification or Alert File Item.

When entered, every WI, which is not disabled, and AFI is

examined to determine if the occurring event requires that an update

be made to the event status field of the WI or AFI. Whenever the

wait events associated with TQI is zero, the TQI's Wait Items are

deleted, the waiting flag in the TQI is reset, and a flag is set speci-

fying that a resource re-evaluation is required.

If the event was the result of an Event Set Call, the Alert File

is not scanned as part of the Wait Event Processor since it has already

been updated by the Alert Call Processor.

4.5. 2. 4 Alert Call Processor

The Alert Call Processor is entered as a result of one of the

four Alert calls; Request, Cancel, Set, or Status. Figure 4-22 presents
a functional flow diagram of the Alert Call Processor.

Once entered, the Alert Call Processor decodes the call type

and determines the legality of the call data. If the call was an Alert

Request Call, the Alert Call Processor will construct an AFI and

store it in Alert File Memory.

If the call was an Alert Cancel call, the Alert Call Processor

will scan the AFM for the named AFI and, when found, will delete the

AFI from AFM. The processor will then call the Wait Event Processor

to denote the event of space availability in the AFM.

If the call was an Event Set call, the Alert Call Processor sets
the event status of the named AFI to the condition specified in the call
data and then calls the Wait Event Processor to determine if any WIs are

waiting for this particular status change, if the event was a Program
Flag.

Finally, if the call was an Event Status call, the Alert Call
Processor scans the AFM to identify the designated AFI and transmits
the event status of the identified AFI to the caller.

4. 5. 2. 5 Alert File Scan Subroutine

Figure 4-23 presents a functional flow diagram of the Alert
File Scan subroutine. This subroutine is entered from the Wait Call
Processor and is responsible for processing alerted events for a TQI

3-80

ALERT CALL PROCESSOR

ALRTCLPR

DECODE THE ALERT CALL REQUEST TYPE

Cancel Set Status Request Other

Call N Call N E
legal A legal A

Y

Scan alert Scan alert
file for file for alert

name
alert name specified t'

SB Notify
requestor

request
Alert N B: Alert Nilleal

ame found ame found

Delink identi Set event Notify
fied file item status as caller can- RETURN
& close alert defined by not process

file if neces- set call alert

otify
caller that Pgm. N RETURN
item was flag alert
cancelled

WAITEVPRO
Denote e-vent
specified by
alert as
Soccurred

Figure 4-22

3-81

ALERT CALL PROCESSOR
(continued)

E F

canile for alert ace Nrequstor

name

specified y

Reservee

space in FM I A I T E V P R O

[eques or the new o o spae

found reuest avail in FM

reuestor

aller the acceptd er e t e r m i n e i f

vent status Va rUa 1 rlScUi c e

recorded equired

3uild alert & N
thread intovfile Open t eac
alert fle iie

RETURN |necessary (R E TURN
RETURN

Figure 4-22
(continued)

3-82

ALERT FILE SCAN

ALRTFLSC

Obtain first

wait item

of iin

name wait A
ite rF

Index to

alert itemn

Desrement
Set wait item

Event Y event status wait ctr.
satisfied to satisfied' in TQI

N

ake wait
item's event
same as
alert's

Obtain the
All N next wait

this T m itemn for B
roc'. this TQI

RETURN

Figure 4-23

3-83

currently being processed by the Wait Call Processor. The Wait Call
Processor calls the Alert File Scan program when a task makes a
Wait Call Request or the time-to-execute has expired for a TQI and
the TQI had wait parameters associated with it. In both cases, the
Alert File is searched in order to initialize the event status fields of the
TQI's WI which specified an alerted event.

The Alert File Scan subroutine determines if a Wait Item
specifies an alerted event as the wait event. If so, the program checks
the event status of the alert specified. If the event specified by the
alert is satisfied, the WI is marked satisfied and the wait counter
decremented. If the event is not satisfied, the AFI's condition code
and subfields are copied to the WI's condition code and subfields.
This allows the WI to monitor for the event of interest directly.

4. 5. 2. 6 Alert Event Processor

Figure 4-24 presents a functional flow diagram of the Alert
Event Processor. This routine is entered from the Wait Event Pro-
cessor and scans the AFM to determine if a particular event is being
monitored by an AFI. If a matching event is identified in AFM, the
AFI's event status field is set to correspond to the status of the occur-
ring event.

4. 5. 2. 7 System Wait Call

Figure 4-25 presents a functional flow diagram of the System
Wait Call subroutine. This subroutine is entered from the Memory
Fail routine whenever a simplex or duplex stream encounters a fault
when referencing a TMR triad memory module and a TMR task is
active. In this case, the simplex or duplex task should be placed into
the wait state waiting for the TMR task to terminate.

3-84

ALERT EVENT PROCESSOR

ALRTEVPR

Alert
ile empty O-- RETURN

IN

Obtain the
first alert
file ite m

his
event applyNO 1S

o this
ler

Y

Alert file
item's event
status- event '
status

obtain the
next lertLast

x aalert file
file ite~m item

Y

RETURN

Figure 4-24

3-85

SYSTEM WAIT CALL

A

SYS
WAIT

opies of
res tart

Obtain I data
simulated
wait callw
data

Mark stream
unutilized,
zero priority

can FBSM in MET
for avail

request

Set task

waiting flagNtN Notify calleri

WAIT E
Denote task
"waiting as

Initialize TI RETURN an event

DISPATCHESModify re-
source alloca

Build wait tion if needed

Sitems in
file

RETURN
AIT FL PRO

Thread iten
into wait file

Figure 4-25

A

3-86

4. 6 Resource Allocation and Control

4. 6. 1 Resource Control Overview

Resource allocation and control consists of those algorithms and
design concepts required to control the allocation and utilization of avail-
able CPE's, IOP's, output voter/switches, system buses, and memory
resources. As such, it is concerned with:

o The construction of streams from available resources.

o The maintenance of the resource pool.

o The reservation of specific resources for diagnostic
utilization.

o The management of memory resources to insure that
memory failures and any associated reduction in on-line
memory resources remain transparent to application
tasks.

The remainder of this subsection presents an overview of the follow-
ing key areas:

1) Stream Resource Allocation and Control,

2) Diagnostic Resource Reservation, and

3) Memory Management.

4. 6. 2 Stream Resource Allocation and Control

Stream resource allocation and control consists of those algorithms

and design concepts required to control the allocation and utilization of
stream resources; i.e., IOPs, CPEs, output voter/switches, and system
buses. In the current ACES design these concepts and algorithms are cen-
tralized in the Configurator and Stream Search subroutine and are control-
led by the Dispatcher.

The Stream Search subroutine examines the resource pool and

attempts to identify a set of components required by either a simplex I/O

or processing stream as specified by theDispatcher. To make the domi-
nant search as efficient as possible, every attempt is made to utilize com-
pletely operational resources before resorting to partially operational re-
sources. An example of a partially operational resource is a CPE with a

3-87

single port failure. So long as no attempt is made to use the failed port
in the defined stream, the device can legitimately be utilized.

The Configurator is responsible for interconnecting the identified

stream components into a stream with the criticality specified by the

Dispatcher. It is the Configurator which issues the actual device inter-

connection commands.

If the Dispatcher identifies a need to interrupt lower priority
streams, it is the responsibility of the Configurator to break the defined
stream resources down into available spare components and to update the
resource pool control tables; i. e., the UST, BSW, and RPC s.

4. 6. 3 Diagnostic Resource Reservation

Diagnostic resource reservation consists of those algorithms and

design concepts required to allow the diagnostic software to request that
the ACES reserve specific system resources for diagnostic utilization.

Figure 4-26 presents an overview of the reservation processing logic and
defines its communication interfaces at the functional level. The diagnos -
tic reservation concepts are centralized in the Reservation Call Proces-
sor and in the Reservation Monitor which is accessed by both the Termi-
nator and the Dispatcher.

The Reservation Call Processor can accept and process four reser-
vation calls:

1) Reservation Request Call - requests that the ACES
reserve a specific set of resources for diagnostic
purposes.

2) Reservation Clear Call - cancels a previously initiated
reservation request.

3) Reservation Status Call - requests that the system
interrogate the current status of a reservation
request and return to the caller a definition of
resources currently reserved.

4) Reservation Release Call - releases the specified re-
sources, returning them to an available status.

3-88

RESERVATION PROCESS NG (FUNCTIONAL DEFINITION)

To Reservation < Request
Monitor Reservation

StatusProcessor Rlease
Release

B M
O E Bus Status Unit Reservation Request Release

S M Word Status List List List
S 0 Table

R (UST)

Y

Terminator

eFrom Reserservation
From Reservation Monitor
Call Processor

Figure 4-26

Figure 4-27 presents a definition of the functional components of
each of the four reservation calls.

The Reservation Call Processor uses the data associated with a
reservation request call to build a Reservation Request List. This Re-
quest List defines to the Reservation Monitor the resources required.
The Reservation Monitor then accumulates the desired resources from
the resource pool, identifying and reserving them as they become avail-
able spares, and builds the Reservation List, which identifies the units
so far reserved.

The Release List is constructed and utilized by the Reservation
Call Processor as a result of a Reservation Release call. It defines the
individual resources to be released for general application task utilization.

The following summary comments are pertinent to the diagnostic
resource reservation concept:

1) Diagnostic resource reservation allows the diagnostic
software to reserve specific resources for its exclu-
sive use.

2) The Reservation Monitor will attempt to satisfy reser-
vation requests for a specific resource prior to satis-
fying a request for an arbitrary resource of a particular
type.

3) For the sake of simplicity, the Reservation Monitor
does not look ahead in order to evaluate the possibility
of completing a reservation. So long as one stream is
executing, the system assumes that it may still be pos-
sible to satisfy an incomplete reservation.

4) Only one reservation request will be accepted at a time
and a reservation request, once completed, will be held
until it is specifically cleared via a reservation clear
call.

5) If a requested resource is failed, it will be marked as
such in the reservation list.

6) While only one reservation can be processed at a time,
the total number of reserved resources is cumulative
as sequential reservations are made until a reservation
release is commanded.

3-90

RESERVATION CALLS (FUNCTIONAL DEFINITION)

I. Reservation Request

Call Call Memory Buses I/O Buses Processors IOPs
Byte Type MO1 MO2 MO03 04MI1 MI MI3 M14 IPl IP2IP3 IP PO1 PO2 PO3 PO4 P P2 P3 P4 IOP1 IOP2 IOP3 IOP4
Count (Res. # # # # # # # # # # # # # # # # #

Request)

= Module Number, or
"Not Used" indicator, or Output VS Output Bus
"Any Spare" indicator VSI VS2 VS3 VS4 OBI OB2 OB3 OB4

II. Reservation Clear

Call Call

Byte Type
Count (Res. Clear)

III. Reservation Status

Call Call
Byte Type
Count (Res. Status)

IV. Reservation Release

Call Call Memory Buses I/O Buses Processors IOPs
Byte Type MO1 MO2 MO3 MO4 MI MI2MI3 MI4 PlIP2 IP3 IP4 POPO2 PO3PO4 P1 P2 P3 P4 IOPI IOP2 IOP3 IOP4
Count (Res. # # # # # # # # # ## # # # # # # # # # # # # # # # # #

Release)

= Module Number, or Output VS Output Bus
"Not Used" Indicator VSI VS VS3 VS4 OB OB2 OB3 OB4

Figure 4-27

4. 6. 4 Memory Management

Memory management consists of those algorithms and design
concepts required to control the utilization of the ARMMS memory re-
sources. These concepts are centralized in the Memory Reconfigurator
which is driven by the error detection software when a memory failure
or addressing error is detected.

The memory paging techniques within the ACES framework are
somewhat unique to ACES. Therefore, a discussion of the paging concepts
and techniques is necessary. However, it is first necessary to summarize
the paging groundrules and definitions adopted during the current design of
the ACES philosophy:

1) Associated with any specific task dictionary will be a
specific set of logical memory modules and spare
physical modules.

2) A spare physical memory module can only replace a
failed logical memory module. It will not be used to
obtain additional logical memory modules for the cur-
rent dictionary.

3) Paging will only be allowed upwards within any given
dictionary period. That is, a simplex stream can only
be paged into a simplex, duplex, or TMR pageable
logical module and, once paged, utilizes the whole logi-
cal module. A duplex stream can only be paged into a
duplex or TMR pageable logical module and a TMR
stream can only be paged into a TMR pageable module.

4) A corollary to rule 3 is that pageable logical units are
never broken into new logical units of lower criticality.

5) If it is desirable to have access to more memory pages
of a specific criticality during a dictionary period than
there are available logical modules of that criticality,
then at least one logical module of that or a higher
criticality must be pageable.

6) The system will always drop to a dictionary of lower
level if an attempt is made to address a non-available
page and there is no logical module pageable with a crit-
icality equal to or higher than the criticality of the re-
questing stream.

3-92

7) A triad failure, when it is being utilized by a duplex or
simplex stream, will be treated as a normal duplex or
simplex failure. No attempt will be made to dynamically
modify the way in which the duplex or simplex stream is
connected to the triad in an attempt to circumvent the
failure.

8) If a component of a memory triad or pair fails and there
are no spares currently available, the failing component
will be taken off-line and the remaining components will
be made available as spares.

4. 6. 4. 1 Logical Module Concept

The ARMMS design allows BOSS to assign logical addresses to phy-
sical memory units. Multiple physical memory units may have the same
logical address, when in TMR or duplex operation. This provides the
mechanism for programs and data to be resident in two or more memory
modules simultaneously. All physical modules which share the same logi-
cal address are conceptually grouped together and called a "logical module".
Stream criticality defines the number of physical memory modules re-
quired by a logical module. A simplex stream normally utilizes logical
modules composed of one physical module, duplex streams normally refer-
ence logical modules composed of two physical modules, and TMR streams
may reference only a triad logical module.

There exists, however, a general need for any stream to have
access to a logical module of equal or higher criticality. Global data, for
example, will probably exist in a TMR logical module; however, simplex
jobs must be capable of referencing it. To make this possible, whenever
the same page must be referenced by multiple streams of differing criti-
calities, the page must reside in a logical module associated with the high-
est criticality stream referencing it.

The logical module concept is an integral part of the ACES paging
technique. Whenever paging occurs, logical memory pages are placed
into a logical memory module of the same criticality as the executing stream.
Since lower criticality streams can reference higher criticality logical mod-
ules, but not vice versa, whenever an addressing exception (due to a logical
address not being available) occurs, the paging algorithm first determines
if the same logical page resides in a lower criticality logical module. If
not, the page is brought from bulk memory to a logical module of proper
criticality. If the page is already in main memory but in a logical module of
less criticality, the page is copied from the lower criticality to the higher

3-93

criticality logical module and the lower criticality logical module is made

a spare. This provides a mechanism for pages to "float" upwards to

higher criticality logical modules as needed. This also insures that only

one logical module contains a specific logical page at any given time.

4. 6. 4. 2 Locked Logical Pages

It is often desirable to prevent certain logical pages from being

removed from main memory due to their high frequency of use or because

of critical response time requirements. Any global data logical pages

are a clear example of such data. The concept of locked logical pages

increases overall efficiency by eliminating paging time for certain logical

address pages which have a high utilization factor.

Locked logical pages, once resident in main memory, are not

allowed to be replaced by another logical page. Thus, once such a logical

page becomes resident in main memory, it is locked there and, while it

may be moved to a higher criticality logical unit, it cannot be returned to

bulk store. All logical pages are initially brought in to main memory at

phase initialization time or on an addressing exception the first time the

page is referenced.

Locked logical pages are defined for the duration of a task diction-

ary. Whenever a new task dictionary is set up, a new set of locked pages

can be defined to exist during that dictionary period.

4. 6. 5 Resource Control Components

To perform the functions described in the previous paragraphs, the

following components have been defined:

o Configurator

o Stream Search Subroutine

o Memory Reconfigurator

o Reservation Call Processor

o Reservation Monitor

A functional description of each of these components is presented
in the following subsections.

3-94

4. 6. 5. 1 Configurator

The Configurator is responsible for accepting and processing

Dispatcher requests to construct or disassemble a specified stream.

Figure 4-28 presents a functional flow diagram of the Configurator logic.

The data passed to the Configurator by the Dispatcher consists of
a Configuration Stream Request Word (CSRW) which defines the function

to be performed and identifies the MET entry which contains the module iden-

tification numbers of the stream components of concern.

When entered, the Configurator establishes the legality of the con-

figuration request and determines whether it is required to assemble or

disassemble a stream.

If a stream is to be disassembled, the BSW, UST, and RPCs are

updated accordingly. If the function code specifies a stream assembly,

the proper interconnection control commands are constructed and trans-
mitted.

4. 6. 5. 2 Stream Search Subroutine

The Stream Search subroutine is entered from the Dispatcher and
is responsible for identifying the stream components required by a simplex
stream of a specific type. Figure 4-29 presents a functional flow diagram

of the Stream Search subroutine logic.

The Stream Search subroutine has three entry points, one for each
defined type of stream; i.e., full processing, limited processing, and I/O.
Once entered, the Stream Search subroutine will attempt to identify from
the UST and BSW a set of usable and interconnectible simplex stream com-
ponents of the type specified. It will not only identify spare major compon-
ents, CPEs, IOPs, etc., but will also insure that it is possible to inter-
connect them properly into an operational simplex stream.

4. 6. 5. 3 Memory Reconfigurator

Figure 4-30 presents a functional flow diagram of the Memory Re-

configurator logic.

The Memory Reconfigurator is called on a memory failure in order
to attempt replacing the failed physical unit with a spare module. If no
spare modules are available, an attempt is made to page the required logi-
cal page into an available module.

3-95

CONFIGURATOR

CONFIG

on- Niuration error
eauert

Update
ion code N pointers RETURN
uild cod accordingly

Stop CPE(s) Full Stream I/O
to be used type

Build com- Stop CPE(s) Build com-
mands to con- to be used
nect desired nect desired
full stream I/O stream

Build com-
mands to con-
nect desired
limited
stream

Output
constructed
ommands

Update
pointers to
reflect cur-
rent config.

RETURN

Figure 4-28

3-96

STREAM SEARCH SUBROUTINE

STSRCH1 STSRCH2

Initialize for
irst IOP &

VS entries

Obtain the

first proces-
sor entry in
UST

he !t Obtain next
processo N processor CPE & in-
available n list itiate for

id efirst OPA
Set returned

Record CPE
identification Fno stream

id entified

MO
N ports &

vail.bu RETURN

Record MO
bus identifica

tion

Figure 4-29

M

3-97

STREAM SEARCH SUBROUTINE

(continued)

M

MI mon IP N E
A prts or ts

avail. bu uvail.

Y

Record IP

Record MI bus identi-

bus identi- fication

fication

esired

N 0
on PO E

orts & avai

OP en ti N Last
n USTavOP

IOP inP

bln USUST

Record PO

bus identi-
Record IOP fication
identification A

Compare CP
IOP IP

fields in UST
entries

Figure 4-29

(continued)

3-98

STREAM SEARCH SUBROUTINE

(continued)

STSRCH3 C

Initialize for
first VS & Is

he next N
OP entries VS aail-

0 as Record the
Is VS identifi-

Sast IOP i cation

aavailab ST

OB

0 F ports an G

vailable H
bus Y

Record OB

bus identifi-
Record MO cation
bus identifi-

cation

Set return
indicator =
"rstream

ports an N identified"
available H

bus

Record MI RETURN
bus identifi-
cation

Figure 4-29
(continued)

3-99

MEMORY RECONFIGURATOR

MEMRECO

Write copy Mark good

Any N Simple N of LP to component(s
spare mep n--t-

ories LU bulk of LU as
spare

Y Y

Wire spare TRYPAGE

memory Attempt to

identical to page if
failed one not TMR

Read LP P TrN T

of in N from bulk rt A
emor to memory

Copy LP
from mem- B
ory to spare
memory

Change LA Fiad LU Duex N

of failed
memory Y Y

WAIT EV.PR WAIT EVPRU WAITEVPRC

Change LA I ost Post P o st

of spare criticality criticality criticality
memory of 3 of 2 of

Reset TMR

Figure 4-30 dispatch
inhibit

Note: LU = Logical Unit'
LA.= Logical Address
LP - Logical Page

RETURN
3-100

The Memory Reconfigurator first determines if any spare mem-

ory modules are available. If no modules are available, a check is made

to determine if the physical module which failed is the member of a sim-

plex logical module. If so, TRYPAGE is called to attempt to page the

desired logical module into main memory. If.the module which failed

is a member of a duplex pair or a TMR triad, a "valid" copy of the failing

logical page is written to bulk as the latest available copy. Since no spare

memory modules are available and since this logical module has a failed

component, and as such is unusable as a module, the good modules are

marked spare for possible later use. After the good modules are marked

spare, TRYPAGE is called to attempt to page the needed logical page if

the module was part of a duplex pair, to enable restart of the task.

If a spare memory is available, configuration commands are issued

to the spare memory to connect it to the memory buses in the same way

the failed physical module was connected. If a copy of the logical page is

in main memory, the logical page is copied to the new physical module;

otherwise, a copy is read from bulk storage into the module. Proper logi-

cal addresses are then set up for the memory modules involved in the re-

placement operation. The Wait Event Processor is then called to "post"

possible tasks which are waiting for the logical page to become available,

and the TMR Dispatch Inhibit Flag is reset to allow TMR dispatches to con-

tinue if the corrected failure was in a TMR triad.

4. 6. 5.4 Reservation Call Processor

The Reservation Call Processor is entered in response to a reser-

vation call. Figure 4-31 presents a functional flow diagram of the Reserva-

tion Call Processor logic.

Four reservation calls are currently defined:

1) Reservation Request Call

2) Reservation Clear Call

3) Reservation Release Call

4) Reservation Status Call

The ReservationRequest call establishes the reservation require-

ments and calls the Reservation Monitor in an attempt to immediately

fulfill the specified requirements. A reservation request will only be

accepted if a Reservation Clear call has been previously accepted.

3-101

R ESERVATION CALL PROCESSOR

R ESCALL

DECODE THE CALL

Res. Request Res. Res. Res. Other

YQ B I caller of

erroneous
Clear res. call

previous N A list. Status
cleared = No res.

RETURN

Status = [WAIT EV PRC
incomplete. Note res.

Build Iclear event
request list

RES MON

Fill the res. 1RETURN
request

RETURN

Figure 4-31

3-102

RESERVATION CALL PROCESSOR
(continued)

B

all N A
legal

Build Y

release list t
Return

contents of
res. list to

Initialize for caller

search of
release list

So RETURN

Unit N elN N
ist scan D

pecified done

Y Y

otify Is

ue stionable eserved o

request ailed

Update
pointers to
show unit
now available

Figure 4-31
(continued)

3-103

The Reservation Clear call clears the Reservation List and calls

the Wait Event Processor in order to determine if any task is currently

waiting on the reservation clear event.

The Reservation Release call is used by the calling task to return

specific resources to an available (spare) status.

The Re servation Status call is used by the calling task to request

the current status of the Reservation List.

4. 6. 5. 5 Reservation Monitor

The Reservation Monitor is currently entered from either the Ter-

minator or the Reservation Call Processor. Figure 4-32 presents a func-

tional flow diagram of the Reservation Monitor logic.

The Reservation Monitor is responsible for examining the resource

pool control tables; i. e., UST and BSW, to determine if any available re-

sources can satisfy a reservation requirement. If any of the examined units

can satisfy a reservation requirement as specified by the Reservation Re-

quest List, the resource is "reserved", the unit identifier is added to the

Reservation List, and the request is removed from the Reservation Request

List.

The Reservation Monitor.always attempts to satisfy reservation re-

quests for specific resources prior to determining whether resources

exist to satisfy a general request for any module of a particular type.

3-104

RESERVATION MONITOR

RES MON RES MON
ENTRY B ENTRYA

tatus
not Y RETURNr com e

, N

Obtain first

resource #

from request
list

B

Al Cbt-ain next
Unit N eq. list resource #

requestd chece from re.
list

Y Y

Initialize

SPass 1 Pass 1 Y f a 2

N

pecifi -
unit reques Al Set res.

ed equeste Y status
resources•found complete

N

F WAITEVPRC

Note res.

complete

Figure 4-32

RETURN

3-105

R ESER VATION MONITOR
(continued)

E

The
specific N
nit spare

pre y Note such a N
unit ;N A failed or

vailable unit off-line

1. Reserve unit

and update

'all pointers

1Note unit

a nit in :5 cc failed or
pera-

Set slot in

request list
= "rno t used"

Figure 4-32
(continued)

3-106

4.7 Fault Detection and Diagnostic Processing

4. 7. 1 Diagnostic Overview

Fault detection and processing in BOSS is divided into two indepen-

dent tasks which execute at different priority levels. These tasks are

Fault Detector (FD) and Diagnostic Processor (DP). Both of these involve

extensive communication with the ACES Dispatcher.

Fault detection is a high (if not highest) priority ACES task. It is

placed into execution via a hardware interrupt to BOSS which signifies one

or more module status words that have changed due to a failure. It is

assumed that the hardware stream in which the fault occurred is automati-

cally stopped when the MSW is updated, unless the stream is associated

with a TMR task and thus is a first failure. The Fault Detector identifies

the MSW(s) which have been updated and by interrogating these MSW(s)

determines which units have failed. It then updates a Module Failed Word

(MFW) accordingly and calls the Dispatcher and Diagnostic Processor.

When control is passed to the Dispatcher, it determines if an up-

dated MFW exists. If so, the Dispatcher determines which units may be

at fault by scanning the MFW and marks these units in the necessary tables

as being failed. It then scans its streams to determine if any streams are

utilizing possibly failed hardware. Any streams utilizing suspected hard-

ware are placed into a configuration wait and are disassembled into indivi-

dual components. The Dispatcher then continues its normal operation.

The Diagnostic Processor is a low (if not the lowest) priority task

within the ACES. The Diagnostic Processor begins execution by scanning

the MFWs to determine which components are suspected of failing. The

Diagnostic Processor utilizes the MFWs and their corresponding time tags

to determine the sequence of failures and attempts to run diagnostics upon

the suspected failed units. In order to determine if a failure is continuous-

ly occurring, the DP must have the capability to reset the failure indications

in the MSW. Communication is established between the FD and the DP so

that when diagnostics are being performed upon individual components, the
FD does not need to process those errors that are the result of the DP diag-

nostics. Since all possible failed components are initially marked by the
Dispatcher as failed, the DP can perform diagnostics on those components
without fear of their use by other executing streams.

As failure indications are diagnosed and pinpointed or resolved,

non-failed modules are returned to the resource pool as available resources,

and the Dispatcher is called so that they may be utilized in application
streams as required.

3-107

As failures are found, a brief history of the failure is logged and

the DP reschedules the diagnostic to be performed again on the module at
some later time to determine if the failure no longer occurs after a per-
iod of time. If so, the modules are restored to an available status and
returned to the resource pool.

4. 7. 2 Diagnostic Processing Components

The ACES fault processing is divided into two main programs, the
Fault Detector (FD) and the Diagnostic Processor (DP). The following
subsections describe the basic function of each program.

4.7.2.1 Fault Detector

The Fault Detector is entered upon notification of a failure condi-
tion. Typical notification conditions are an MSW changing states or a pro-
cessor attempting to reference an illegal address. An addressing excep-
tion interrupt is generated whenever a logical page is referenced and that
page is not currently assigned to any physical memory module. Figure
4-33 presents a functional flow diagram for the Fault Detector.

The FD first determines if the entry was due to an attempt to ad-
dress an absent logical page. If so, an attempt is made to "page" the logi-
cal page from bulk to an available logical memory module (reference Sec-
tion 4. 7. 2. 2 for a complete description of the TRYPAGE paging routine).
After the logical page is in main memory, the stream is restarted by a
"start" command and FD exits.

If the entry was not due to a paging exception, the MSWs are scan-
ned to determine if a failure condition bit has been set. If a failure condi-
tion indication is found in an MSW, ACES needs to diagnose the error and
a Memory Fail Word (MFW) is built by the FD based upon the information
in the MSW. The MFW contains information concerning the type of error
which occurred (number of voters which detected an error, etc.) and iden-
tifies suspected failed modules.

Once the FD has completed the MFW, the count of the number of
MFWs is incremented. If no memory module was suspect, the Dis-
patcher is called to disassemble the stream(s) utilizing the failed module(s).

If a memory module is suspected, the subroutine MEMFAIL is
called to switch a spare physical memory module into the failing logical
memory module. After MEMFAIL processes the memory module failure,

3-108

FAULT DETECTOR

FAULTDET

SDISPATCHER
dd r TRYPAGE Waory N Call dispatc

exc. due t Y Page needed mm er to recon-
no LA LA into main ault figure

memory
N

SMEMFAL
Scan MSW's MEM

for new Call memory

ciange of Is sue start fail routine
state command

DIAG PR OC

detected Call DP to.
diagnose
problem

RETURN

Build MFW
from MSW Al
fault indica W's N
tion scanned

Increment
MFW over-

all count RETURN

Figure 4-33

3-109

-32

the DP is called to perform diagnostics on the modules specified in the
MFW(s). If the DP can reproduce the error indication, the unit is marked
"failed" in the resource pool control table, making the unit unavailable
for normal utilization. Otherwise, the unit(s) are returned to the resource
pool as available resources.

TRYPAGE

TRYPAGE is a subroutine used by both the Fault Detector and the
Memory Reconfigurator. TRYPAGE determines whether the desired
logical page can be brought into main memory. If not, a memory overload
condition has occurred which requires that a task dictionary of lower level
be initiated. A functional flow diagram of TRYPAGE is presented in Fig-
ure 4-34.

Upon entry, TRYPAGE determines if the logical page in question
is "pageable". If not, and it does not exist in another logical module, the
number of pageable logical modules will be reduced since, once a non-page-
able page is resident, it cannot be returned to bulk. Thus the count of the
current number of pageable logical modules for the current task dictionary
will be decreased and compared to the number required during this task
dictionary period. If the number is not sufficient for the current task dic-
tionary, paging is not performed, but rather a new task dictionary of lower
level is brought in from bulk store.

PAGER

PAGER is a subroutine called by TRYPAGE when an available logi-
cal unit has been found into which a logical page can be paged. PAGER
performs the actual paging functions. Figure 4-35 presents a functional
flow diagram for the PAGER subroutine logic.

To insure that all pageable logical units are paged through sequen-
tially, PAGER keeps account of which logical module at each criticality
was the last module paged. Therefore, by beginning the scan for the next
available logical module at this point, the logical modules can be cycli-
cally selected. The current contents of the chosen logical modules are
first written to bulk to insure that an up-to-date copy of the page is avail-
able for later use. If the logical page required is already resident in main
memory, it is copied to the new logical module and the old logical module
is made a spare. If a copy is not in main memory, it is read from a bulk
storage device.

Once the desired page is in main memory, a call is made to the
Wait Event Processor to signal that a memory module paging function has

3-110

SEARCH PAGEABLE UNITS

TRYPAGE

P N x # pageable ment

pageable ower criti- N # pageable required A
alit- LM orTD

Y Y

a e- PAGER
agae yableLM a Page LP - ,(RETURN

current into main
rit. memory(s)

em - Increment

riality memory
3 criticality

NEWTD
Obtain new B
task diction-
ary

RETURN

Figure 4-34

3-111

PAGE ROUTINE

PAGER A

Obtain last Change LM
LM paged at to proper
this critical- logical
ity address

WAIT EV PR
Obtain next em-Obtain next Post critical-
LM pageable ry triad ity of 3

criticality .

Write cur- WAITEVPR
rent content, emor y

of logical pair

Copy LP
s WAITEVPRC

from old L Post
In me to new LM

ory criticality of

Read LM Mark old

from bulk LM as spare

to memory and chane RETURN
LA to null

Figure 4-35

3-112

been performed, in case a task is waiting upon the newly loaded logical

page. Since TMR triad logical memory modules can be accessed by duplex

and simplex streams, three separate calls must be made to the Wait

Event Processor to identify the availability of the new page to the TMR,

duplex, and simplex streams that might wish to utilize it. Similarly, if the

logical memory module was a duplex pair, both waiting duplex and simplex

streams are posted.

NEW TASK DICTIONARY

The New Task Dictionary (NEWTD) routine is called from TRYPAGE

whenever a memory overload condition occurs requiring that a task diction-

ary of lower level be initiated. The functional flow diagram of the New Task

Dictionary program is presented in Figure 4-36.

NEWTD stops all processing streams upon entry. It then deter-

mines which task dictionary is to be initiated and loads it into BOSS memory.

The routine then updates the pointers associated with task dictionaries and

initializes the count of the number of pageable units. The New Task Dic-

tionary is then initialized and initiated.

MEMORY FAIL ROUTINE

The Memory Fail (MEMFAIL) routine attempts to recover from a

memory module failure by replacing that module with a spare. If the physi-

cal memory module is a member of a TMR triad logical unit, certain condi-

tions must be satisfied before the unit is replaced. Figure 4-37 presents a

functional flow diagram for the Memory Fail logic.

Upon entry, MEMFAIL marks the suspected failed memory module

failed in the Logical Address Assignment Table (LAAT). If the memory

module is not a member of a TMR triad, the Memory Reconfiguration rou-

tine is called in an attempt to replace the suspected failed module.

If the module is a member of a TMR triad, a check is made to deter-

mine if it was a TMR stream which detected the failure. If so, the stream

should be allowed to continue executing the task until it completes or until

it enters the wait state since all single point failures from the module will

be masked. However, a bit is set to inhibit further TMR dispatches and the

task's execution priority is set to the highest possible level to insure the

problem is corrected at the earliest time which will not interfere with this

task's execution.

3-113

NEW TASK DICTIONARY

NEWTD

Stop all
processing
streams

Obtain new
task diction-
ary index
from TDIB

-4-
Read new
dictionary
from bulk
storage

Increment
task diction-
ary pointer
to next

Set up count
of # pageable
available

TDINIT
Initialize
for new task
dictionary

RETURN

Figure 4-36

3-114

MEMORY FAIL

MEMFAIL

Mark
memory

failed (

S NMEM RECON Reset TMR

memory Attempt |dispatch
memory unit inhibit
replace

MR Inhibit Increment
Y rther TMR TMR job

task entrispatche priority to RETURN

uispatche s
s Inhibit

a TMR N further TMRask execut A
ing dispatches

SYSWAIT
Place duplex
or simplex
job into wait
on TMR term

Firs
ime erro Y
noted B

RETURN

Figure 4-37

3-115

If a TMR stream did not note the failure, a check is made to deter-
mine if a TMR task is currently executing. Any such TMR stream should
not be interfered with when replacing the failing module. However, the
simplex or duplex stream which noted the failure must be placed into the
wait state until the TMR task completes or enters the wait state and the
failing logical memory module can be repaired.

If the failure had been noted previously, no further processing is
needed and MEMFAIL exits. Otherwise, further TMR dispatches are
inhibited and the current TMR task's execution priority is incremented so
that it will come to a timely completion.

If a TMR task is not currently executing, further TMR dispatches
are inhibited while the failing memory unit is being repaired, to insure
that no TMR tasks began execution during the replacement operation.

4. 7. 2. 2 Diagnostic Processor

The Diagnostic Processor is called by the Fault Detector to per-
form diagnostics on suspected failed modules. The Diagnostic Processor
performs diagnostics and communicates to the Dispatcher the status of
the module. The Diagnostic Processor is also executed periodically to
retest all previously failed modules so that any module which at some future
time resumes proper operation can be returned to an operational status.

To confirm the overall diagnostic philosophy developed, a detailed
design has.been completed for one segment of the diagnostic package. The
programs FAIL1, FAIL2, and FAIL3, present the concept as it applies to
the faults which are discovered by voter detection logic within ARMMS.
These programs diagnose failures which occur during a TMR task execu-
tion.

Figure 4-38 presents a functional flow diagram for the Diagnostic
Processor logic.

When entered, the DP tests to determine if a voter has detected
a failure since the DP's last execution. This is accomplished by testing
the MFW(s) as they are built by the FD whenever an error occurs. If an
error has occurred, the DP calls the appropriate routine to diagnose the
error. A unique routine is available for each type of error that may occur.
After the appropriate diagnostic routine has completed, the overall MFW
count is decremented to indicate that the error has been processed.

3-116

DIAGNOSTIC PROCESSOR

DIAG PROC

count > 0

Y
CALL APPROPRIATE DIAG. ROUTINE TO PROCESS ERROR

Undefined
FAIL 1 FAIL 2 FAIL 3

Process 1 Process 2 Process 3
voter fail. voter fail. voter fail.
indication indication indication

Decrement
overall
count of
MFW's

DISPATCHER
Call dispatch-
er to utilize
freed hard-

ware

Figure 4-38

3-117

DIAGNOSTIC PR OCESSOR
(continued)

B

o retest N
another RETURN

comp.

Call appropriate routine
o retest failed compon-
nt

st presen

II
ISPA TCHER
all dispatch

er to utilize
freed hard-

Figure 4-38
(continued)

3-118

Since units marked failed previously may have been returned to
an available status, the Dispatcher is called to determine if any of the
resources freed may be used to form a required stream.

The DP then loops to determine if more MFWs are awaiting
processing.

FAIL1

FAIL1 is a subroutine of the Diagnostic Processor that diagnoses
failures due to a single voter of a TMR set (i. e., memory triad, CPE
set, or IOP set) detecting a failure condition. When one voter in a TMR
set detects a failure, one of two possible single point failures can exist:

1) Localized Bus Port Failure - A localized bus port
failure has occurred where only one bus input was
received in error. If the complete bus had been
in error, the other two voters would have detected
the same failure condition.

2) Voter Failure - A voter failure within one component has
occurred such that a non-compare is indicated.

Since these are the only two single point failures that can occur
with FAIL1, the MFW associated with the diagnostic routine FAIL1 con-
tains the bus port address marked as failed by the module and the module
which noted the failure. FAIL1 determines which failure actually occur-
red. Figure 4-39 presents a functional flow diagram for the FAIL1 logic.

Upon entry, FAIL1, via a Reservation Request call, requests the
other necessary modules (buses, memories, etc.) necessary to form a
usable stream to diagnose this particular problem. A Wait call is then
issued to wait for the reservation to be completed, since the requested
units must be available before meaningful diagnostics can be performed.
A module test is then performed for the module which is believed to have
failed. If no failures are detected by the diagnostic software, an inter-
mittent failure indication is then logged for both the bus port and the mod-
ule since both were suspected.

A check is then made to determine if either the bus port or module
has had an excessive number of failures. This check is performed to
identify modules which have had a high number of apparent intermittent
failures which the diagnostic routines have not been able to recreate. If
it is decided that either the bus port or the module has had an excessive
number of failures, they are marked "failed" and retesting is scheduled
for later in the mission.

3-119

FAIL 1

RESCALL isconnect
eques t

m e-dules need believed

to perform failed bus an
diagnostics connect good

WTCLPRO Execute
Wait for module
modules to
come avail. test

1 Mark bus
Execute Any

Exe cute e port failed
module test & module

good

Any J ul Reschedule
failures B gdbus port

port good test

Reschedule RESCALL
module test elease

reserved

components

Figure 4-39

3-120

FAIL 1
(continued)

Log
intermittent
for bus port
& module

xc. Mark module
ailure Y failed. Re-

ccurred o schedule
odule

te.s t

Mark module

good

Mark bus
a res y port failed.

ccurred o Reschedule
uspor test

Mark bus

port good

RESCALL
Release
reserved
modules

Figure 4-39

(continued)

RETURN

3-121

If the intermittent counts for the modules are not excessive,
each is marked good and returned to an available status. The reserved
modules are then released for general use by the Dispatcher.

If a failure is detected by the module test, the failure has been re-
created and the routine begins to determine which module really failed.
The bus associated with the failed bus port is disconnected and a new bus
is connected to the suspected module. The unit test is re-executed. If
failures are still present, the unit is declared failed. If failures are not
present, it is assumed the bus port marked in the MFW is at fault and it
is marked accordingly. The module which was marked failed is resche-
duled for later test and the operational reserved modules are released.

FAIL2

FAIL2 is a subroutine of the Diagnostic Processor which diagnoses
failures due to two (2) voters of a TMR set (i. e., memory triad, CPE set,
or IOP set) detecting a failure condition. When two voters in a TMR set
detect a failure, only one single point failure can occur. This failure
must be a result of partial bus failure which causes some (this case at
least two) input ports to receive incorrect data and other input ports to
receive valid data. Since, functionally, there is no difference between a
port failure and a partial bus failure from a receiving device standpoint,
the ACES philosophy will identify partial bus failures as input port failures.
Therefore, the two input bus ports suspected of failure are identified in
the associated MFW. Figure 4-40 presents a functional flow diagram for
the FAILZ logic.

Upon receiving control, FAILZ requests, via a Reservation Re-
quest call, the necessary modules needed to form a usable stream to diag-
nose the suspected problem. A wait is then issued for the desired units
to be reserved since they must be available before meaningful diagnostics
can be performed. A diagnostic test is then performed in an attempt to
recreate the failure. If failures are found, both the input ports are marked
failed since the failure could be recreated.

If no failures were detected, an intermittent failure indication is
logged for both input ports. A check is then made to determine if either
or both input ports have had an excessive number of apparent intermittent
failures. This check is performed to fail components which have a large
number of apparent failures which the diagnostic routines cannot recreate.

3-122

FAIL 2

FAIL 2I
RESC Log

equest intermittent
modules need on bothed fo r t
iagnstis ports

TCLPRO Mark busaitfor xce Y port failed.
modules to sive failsport failed.
come avail- n port Reschedule

able test

Exe cute Mark port
diagnostic good
tests

An N ces Mark bus
failures ive ais on Y port failed.

ort B Reschedule

Mark bus Mark port RESCALL

ports as good Release
failed reserved

modules

Reschedule)
test

RETURN

Figure 4-40

A

3-123

If either input port has had an excessive number of failures, it
is marked "failed" and retesting is scheduled for a later time. If the
failures are not excessive, each is cleared of the suspected failure and
returned to an available status.

FAIL3

FAIL3 is a subroutine of the Diagnostic Processor which is called

to diagnose failures due to all three (3) voters of a TMR set of voters de-
tecting a single failure condition. Whenever three voters detect the same
failure, one of three possible single point failures can exist:

1) Unit Failure - One transmitting unit could have failed
and sent invalid data to all three receiving units.

2) Output Bus Port Failure - An output bus port from a
transmitting module could have failed, thereby
sending invalid data to three modules.

3) Total Bus Failure - One bus could have failed which
would cause all modules to receive invalid data.

The MFW associated with this failure denotes the suspected failed
module, bus port, and bus. A functional flow diagram of the FAIL3 logic
is presented in Figure 4-41.

FAIL3, upon entry, requests the modules necessary to form a
usable diagnostic stream to diagnose the problem. A wait is issued until
the desired modules are made available by the reservation system. Diag-
nostic tests are then performed in an attempt to recreate the problem.
If the failure condition cannot be recreated, it is assumed to have been
intermittent. LOGINT is called to log the intermittents and the reserved
modules are released.

If the failure is recreated, the diagnostics begin to determine
which module caused the failure. The output bus, which is suspected, is
disconnected and another bus is connected to the diagnostic stream.
Diagnostic tests are again executed. If failures still occur, the suspected
module is marked failed since the failure is still present and neither the
bus nor output port is functional within the diagnostic stream. The module
test is rescheduled for later, in the event the unit becomes functional at a
later time, and the reserved modules are released for use by the Dispatch-
er.

3-124

FAIL 3

FAIL 3

RESCALL Mark module
Any Y failed

ules needed failures
for I
dia:nostics N

S w a p u n i t s

WTCLPRO in diag. Reschedule

Wait for stream est

nodules
available

Exe cute

diagnostic
Execute test
diagnostic
test

Any Mark bus

failures N port failed

ny N Log Y
failures intermittent

failures Mark bus Reschedule
failed. Re- test
schedule
test

Swap bases
to module B

ESCALL

Please
reserve
modules

Execute
diagnostic
tests

RETURN

SFigure 4-41

3-125

If failures were not detected, the module is assumed to be good
and the diagnostics must determine if the bus port or bus caused the fail-
ure. Another unit is connected to the stream in the place of the module

just discovered to be good. The original suspected bus is connected to
the unit and the diagnostic test is again executed.

If no failures are found, the bus is determined to be good since
valid data flows through it when connected to another module. Therefore,
by default the original suspected bus port is marked failed.

If errors are present with the new module and the original bus,
the bus is marked failed, and the reserved modules are released.

LOGINT

Log Intermittent (LOGINT) is a subroutine of FAIL3 which is called
to log failures that cannot be reproduced. Figure 4-42 depicts the Log
Intermittent logic in a functional flow diagram form.

An intermittent failure is logged for the suspected bus, bus port,
and module. A check is then made to determine if any module has asso-
ciated with it an unusually high number of recorded intermittent failures.
If. so, the module is marked failed. If excessive failures are not found,
the module is marked good and returned to spare status.

3-126

LOG INTERMITTENT

LOGINT

ark module
Log xce s y ailed. Re-
inte rmittet siv faLs e
ior is, ' s ~on unit schedule
port & module

N

Mark bus Mark module

Mark bus
Mark port asfaileces

ive fail's Y failed. Re-
good bus scedule

test
NN

Mark bus

good

RETURN

Figure 4-42

3-127

4. 8 Information Protection

4. 8. 1 General Description

Execution time protection of main memory contents in this pre-
liminary version of the ACES is concerned with three areas:

o Protection against unanticipated accesses (hardware/
software errors).

o Coordinated use of data shared by multiple, concur-
rently executing, tasks.

o Coordinated use of subtasks (subroutines common to
tasks) by multiple, concurrently executing, tasks.

The method proposed uses base/bound registers, rather than protect keys.
That is, access to an area in memory is authorized by the ACES by pro-
viding the task with the lower and upper limits of an area in memory. Any
access to mcmory is checked against these lmit pri r o +the eu'r.iin of

a memory access.

The main advantages of this particular approach are the following:

o Accessible areas in memory may start and end anywhere
in memory. That is, the size and location of a protected
memory area are completely flexible.

o Once accesses have been authorized, further participa-
tion by the ARMMS Control Executive is not necessary,
thereby preventing excessive overhead.

o A minimum of special hardware is required.

The majority of the logic required to accomplish this function can
be resident within the individual processors, rather than within BOSS.
The exception to this is the logic that should be added to ACES to interface
with the function discussed here.

4. 8. 2 Base/Bound Registers

Access to a memory area is enabled for a task by providing it with
the access limits in a set of registers, called the base/bound registers.
Accesses within this memory area are performed relative to the contents
of the base register.

3-128

An individual task may require access to four separate (non-
contiguous) memory areas and therefore requires, at least, four sets of
base/bound registers. These registers and their associated memory

areas are discussed below:

1) Program Base/Bound

These registers delineate the area used for program

storage. It is, therefore, only used during an instruction

fetch to insure that the program did not go outside its

anticipated bounds.

These registers are set when a task is assigned to a
processor for execution by the Task Initiator.

2) Local-Data Base/Bound

These registers delineate the memory area containing

data local; (i. e., non-shared) to a task. Whenever the base
register is used to form an address, the effective address

is compared against the base/bound limits prior to access.

These registers are set when a task is assigned to a
processor for execution by the Task Initiator.

3) Temporary-Storage Base/Bound

Temporary storage (i.e., work storage) may be dynam-
ically allocated when a task is scheduled for execution, and
automatically deallocated when a task terminates execution.
Temporary storage may also be requested and released dur-
ing task execution.

The main purpose for dynamic allocation/deallocation
is to minimize required memory by sharing work storage
between multiple tasks.

These registers, therefore, delineate the memory area

assigned to a task for temporary storage. Whenever the
base register is used to form an address, the effective ad-
dress is compared against the base/bound limits prior to
access.

These registers are set if and when ACES assigns tem-
porary storage to a task.

3-129

4) Shared-Data Base/Bound

These registers are used to delineate a memory area
containing data accessed by more than one task. Such
common data requires certain types of synchronization
locks prior to access. Locking logic is described in detail
in Section 4. 8. 4. Whenever this base register is used in an
address, the effective address formed is compared against
the base/bound limits prior to access.

These registers are set whenever a lock request (ref-
erence Section 6.4) has successfully been executed.

4. 8. 3 Processor Architecture Implications

The implementation of this method has several implications which
impact the basic processor architecture. The major effects are described
below:

1) Base Register Addressing

Although other methods are possible, a base register
instruction addressing format is the most logical format.

The main requirement is that the instruction address
indicates which base/bound registers are to be used for
access verification. Note that the program base/bound
registers are never explicitly indicated in any instruction,
but are completely internal to the instruction fetch logic.

2) Separation of Base Registers from Other Registers

To insure full protection, the base registers should
not be directly accessible by an application task. There-
fore, any registers used for indexing or as accumulators
should not be used as base registers.

3) Base Register Set/Reset Flag

To insure that a base register is not used by a task,
unless it has been set by the ACES for that task, a set/
reset flag has to be associated with each base/bound reg-
ister pair.

The flags have to be reset whenever a processor ter-
minutes or suspends execution of a task for any reason.

3-130

4. 8. 4 Shared Data Locks

Any contiguous set of shared data locations may be "Read-Locked"
or "Write-Locked".

A read-lock, applied to a set of data, prevents any other task from
modifying that data set until the read-lock has been removed. A write-
lock, applied to a set of data, prevents any other task from reading that
data set until the write-lock has been removed.

To accomplish the locking, ACES uses "Lock-Variables". A lock-
variable is a memory location that contains lock information pertaining to
a contiguous set of shared data locations. To facilitate their use, a hier-
archy of lock-variables may be defined as depicted in Figure 4-43.

The lock-variable contains user provided information and various
system flags to indicate lock activity. The contents are described in Sec-
tion 4. 8. 5.

Two Control Executive commands are provided to provide the inter-
face between a task and the locking logic.

[READ READ
1) LOCK WRITE XXXX, WRITEAD YYYY

This command requests that lock-variables XXXX and
YYYY are to be read or write-locked. If the lock cannot
be applied, the task will be suspended until the lock can be
accomplished.

A task may only have one active (maximum of two lock-
variables) lock request. A new lock request may not be
issued until all previous locks are removed, to prevent dead-
locks.

The functional logic of the ARMMS Control Executive to
handle the lock request is depicted in Figure 4-44.

Since lock-variables may be within a hierarchy structure,
the Lock Request routine insures that all lower level variables
can be locked before any lock is actually applied. If no lower
level locks are found or, if found, are of the same type, the
lock request is fulfilled by setting the proper indications and
incrementing a lock count in each lock level below the request-
ing variable involved in the lock hierarchy.

3-131

LOCK VARIABLE USAGE

Level 3 Locks Level 2 Locks Level 1 Locks

Lock

Lock Variable 1

Variable n+1

Lock

Variable 2

Lock 4 SHARED

Variable n+2 DATA

ETC L
LOCATIONS

Lock

Variable n

Figure 4-43

3-132

LOCK REQUEST LOGIC

LOCK
VARIABLE A

Is Apply lock to
variable Y requested
locked variable &

all lower
N level locks

Increase

LA lock count
for all
variables

Scan next j Transmit
lower level base/bound
locks for lock

Restart

locks Similar N lace task wt.
locksSimilar ait state wt. physical

ocks for variable processor
to unlock

N Y

Reset PSW
to lock re-
quest will be
re-executed

EXIT

Figure 4-44

3-133

If a dissimilar lock is found in the lock search, the
lock request cannot be fulfilled at this time and the request-
ing task is placed into the wait state, waiting for the dis -
similar lock-variable to be unlocked. The requesting task
Program Status Word (PSW) is reset so that when the task is
reactivated, the lock request will be re-executed.

2) UNLOCK XXXX, YYYY

This command removes the lock from lock-variables
XXXX and YYYY.

Note that it is assumed that two sets of base/bound regis-
ters can be used to access shared data. However, both have
to be set within a single command to prevent deadlocks.

Figure 4-45 depicts the functional logic flow of. the ARMMS
Control Executive to handle the unlock request for a locked
variable.

Upon entry, the routine insures that the variable which is
to be unlocked is locked. If not, an error return code is sent
to the requesting program.

The count of the number of similar locks is decremented
by the routine. If the count reaches zero, indicating the varia-
ble has no further lock requests, it is unlocked. Since a task
may be waiting for a variable to become unlocked, the Wait
Event Processor is called to indicate the event of the variable
becoming unlocked. This procedure is followed until all lower
locks in the hierarchy have been processed. The Base/Bound
registers are reset by the Unlock Request routine before exit-
ing.

4. 8. 5 Lock-Variable Contents

The lock-variables are generated by the user and are placed into main
memory. At phase initialization time, the location of the lock-variables is
made known to ACES. Figure 4-46 defines the functional components of a lock-
variable.

The contents of the lock-variable are functionally described below:

3-134

UNLOCK REQUEST LOGIC

UNLOCK
VARIABLE

Return error
ariable N condition
locked RETURNcondition

to program

Decrement
lock counts

Lock N
count = 0

y

Unlock
variable

WAITEVPRO
Denote event
of unlock of
this variable

Level =
level -1 N Level1 lock

Reset
base/bound
register < RETURN

Figure 4-45

3-135

LOCK VARIABLE

Field Field Field Field

1 2 3 4

Counters Memory Area Hierarchy (Down)

Indicators Base Bound First Second

Figure 4-46

Field 1 - Lock applied.

This field contains four indicators:

Indicator 1 - Signals whether access lock is necessary.
If not on, a lock request is immediately exe-
cuted without any actual locks being set.

Indicator 2 - If on, indicates that at least one read-lock
has been applied.

Indicator 3 - If on, indicates that at least one write-lock
has been applied.

Indicator 4 - If on, indicates that multiple write-locks may
be applied.

Field 2 - Lock counters.

This field contains two counters:

Read Counter - Multiple read-locks may always be applied.
To insure that the read-lock is not removed
until all UNLOCK requests have been com-
pleted, a count of active read-lock requests is
kept.

Write Counter - This serves a similar purpose as the read
counter for those variables to which multiple
write-locks may be applied (see Field 1).

Field 3 - Memory area.

This field contains the base/bound of the memory
area that the lock is applied to.

Field 4 - Hierarchy pointers.

This field contains the pointers establishing the
position of this variable in the lock-variable hier-
archy.

3-137

4. 8. 6 Subtask Accessing

It is desirable that tasks may utilize common subroutines. To
distinguish these from local (to a task) subroutines, they are called sub-
tasks.

To insure that no usage conflicts occur, calls of subtasks have to
go through the ACES. Subtasks could be made into tasks and be called
through the normal scheduling mechanism. However, to minimize over-
head, a separate mechanism must be used. The sole purpose of this
mechanism is to insure that no re-entrancy problems will occur.

An ACES command will be provided: CALL SUBTASK ZZZZ

If the subtask can be used, the ACES will store all task registers and load
the registers with subtask information. A subtask may, therefore, have
completely different base/bound information.

3-138

4. 9 Input/Output Control

The design of the Input/Output (I/O) Control is highly dependent
on the type of input/output devices to be handled, the residency of the
input/output functions of the Control Executive and the characteristics
of the Input/Output Processors. Specifically, the latter is key to the
overall design. It is, therefore, obvious that a design of the Input/

Output Control is not practical at this point. Nevertheless, Input/
Output Control should be considered within the current design effort
to minimize potential incompatibilities and establish a basic Input/

Output Control philosophy to guide future design efforts.

This section, therefore, discusses mainly input/output trans-
mission characteristics, the input/output configurations anticipated in
ARMMS, and the potential residency of the input/output functions.

4. 9. 1 Types of I/O Transmissions

Potentially, two types of I/O transmissions may be required
in ARMMS missions.

The first type involves the transmission of relatively large
volumes of data such as disk/drum input/output and telemetry. Such
a bulk transmission typically requires from several milliseconds to
several seconds to complete.

Conversely, the second type is characterized by short messages
(say four words or less), and consequently, may require only micro-
seconds to complete. Communication with many of the space vehicle
devices is likely to fall in this category. Significant is that these may
have to be performed at short, and relatively precise, time intervals
(e.g., sampling and control rates).

4. 9. 2 Types of Input/Output Streams

To support the above mentioned transmissions, two types of
Input/Output Streams (i. e., input/output processing configurations)
have been established: an Input/Output Processing Stream (IOPS) and
a Full Processing Stream (FPS). Both of these are depicted in Figure
4-47.

The Input/Output Processing Stream (IOPS) is designed to process
the long, bulk I/O transmissions. This transmission is normally inde-
pendent of the CPE and, therefore, the CPE is not needed as a module

3-139

TYPES OF I/O STREAMS

Full Processing Stream

Memory CPE IOP Voter
Switch

System System

Input Output

Bus Bus

I/O Stream

Memory IOP Voter
Switch

System System

Input Output

Bus Bus

Figure 4-47

in the stream. The IOP is connected directly to memory and is started
in the same manner as any other processing stream. ACES makes no
distinction, for dispatching purposes, between a task to perform I/O
and a computational task. The Dispatcher places any type task into
execution, based upon priority and availability of appropriate modules.
While Figure 4-47 depicts an I/O stream in the simplex mode, I/O
streams may be simplex, duplex, or TMR, as required.

The Full Processing Stream (FPS) is designed to satisfy the
need for a computational task to occasionally output small quantities
of data within a limited time frame. Figure 4-47 depicts the FPS in
a simplex mode. The IOP is directly connected to the CPE and is
dedicated to it. The IOP cannot be time shared by other CPEs or bulk
transmissions in this mode. This makes for inefficient use of an
IOP since its utilization is low relative to the total task time. Another
disadvantage is, that additional buses are required to connect the CPE
for just this one type of processing stream. However, it will be con-
sidered a required stream until a better solution has been identified.

4. 9. 3 Residency of Input/Output Control

The Input/Output Control functions, such as device scheduling
and manipulation, are not anticipated to reside in BOSS. There are
many reasons for this.

First of all, it is desirable to off-load BOSS as much as possible
to prevent BOSS from becoming unnecessarily complex, and to prevent
BOSS from becoming a systems bottleneck.

Secondly, it is not necessary to control I/O from BOSS as
failures of I/O scheduling and manipulation are recoverable and do not
cause loss of systems control in contrast to other, previously discussed,
Control Executive Functions.

Last, but not least, I/O requirements may differ considerably
from mission to mission. Input/Output Control should, therefore, be
as adaptable as possible and should, therefore, not be an integral part
of BOSS.

The question remains whether the Input/Output Control is pre-
dominantly executed on a CPE or an IOP. This, of course, is highly
dependent on the selected IOP design concept. Most desirable would be
to provide these functions as an integral part of the IOP. It is most
desirable to off-load the CPEs and maximize adaptability to mission
requirements (by tailoring IOPs to missions).

3-141

4.9.4 I/O Summary

ACES thus contains no specific I/O Control other than the

ability to configure I/O oriented streams and schedule I/O oriented

tasks.

It is recommended that intelligent IOPs be considered to

obtain a true and relatively simple application of modularity to

mission adaptability as well as to obtain additional systems efficiency.

3-142

5. MAJOR IMPACTS ON BASELINE SUMC

5.1 Processor Speed

Speed of a single processor module within ARMMS has been
estimated to be 1 - 1.8 MIPS.

(Roughly) Estimated speed of SUMC is currently .5 MIPS
(add equivalents). Maximum estimated speed with near future
technologies is estimated to be 1. 5 MIPS. This is limited by the
number of logic levels, and can therefore not be increased without
a redesign.

The following information was derived early in the contract
(Task II) and therefore may not match the information described in
the previous sections (Tasks IV and V). However, as it fulfilled
its intended purpose, no attempt has been made to update this in-
formation.

3-143

5.2 Basic Instruction Set

The currently proposed set resembles an IBM/360 subset. As

the SUMC has some flexibility because of its microprogrammed con-

trol, the exact makeup of the current instruction set is not of major

significance. What is of significance, is the amount of flexibility
actually realized through the microprogrammed approach.

Memory interference and bus traffic considerations in ARMMS

suggest that the ratio of the instruction execution time and the instru-

ction access time should be as high as possible.

This ratio should be emphasized in the design of the instruction

set by the following groundrules.

o The instruction length of the majority of the executed

instructions should be short.

As this is mainly accomplished by limiting the size of

the addressing fields, the instruction set should be heavily

register or stack oriented.

o The instructions should be powerful.

By increasing the amount of "work" performed within

a single instruction, the ratio mentioned above can also

be improved. Potential powerful instructions, applicable

to the ARMMS environment, include those that perform

functions such as:

Matrix/Vector operations

Bit(s) insertion/extraction

Table Search

Local Executive functions

Mathematical functions

Logical testing of bit combinations

Although a detailed study of the microprogram flexibility of the SUMC

has not been performed, initial information is available that at least

3-144

indicates that this is likely to be an area of concern. An MSFC internal
report is available that lists: "Instructions which cannot be micropro-
grammed without hardware modification". This list includes (IBM/360
type) instructions such as:

Load Multiple

Store Multiple

Pack

Unpack

Test under mask

Translate and test

Test and set

This would indicate some limitations, inherent to the SUMC data flow,
that may be too restrictive for the intended use.

3-145

5. 3 SUMC/BOSS Communications

This section describes the main characteristics of the com-

munication path(s) between BOSS and the individual processors,

necessary to perform the Executive functions.

5. 3. 1 General Description

The communication is functionally depicted in Figure 5-1.

The physical implementation can, of course, be performed in num-

erous ways.

Regardless of the actual implementation, the TMR (DUPLEX)

mode of operation constrains the communication process as follows:

(1) BOSS must be able to synchronously start each processor

in a TMR (DUPLEX) configuration.

(2) BOSS must be able to vote (hardware or software) on

requests made from processors in a TMR (DUPLEX)

configuration.

The first item above requires a means of synchronously starting

a TMR (DUPLEX) task at the same microinstruction (clock time) for

those processors used in the TMR (DUPLEX) mode. Each processor

can be primed individually over a common data bus, but all processors

must start execution at the same time to guarantee the integrity of the

data for the voting elements.

The second item is more complicated. In this case a TMR

(DUPLEX) set of processors needs to communicate with BOSS. BOSS

must guarantee that the processors are all making the same request

and no failure has occurred during execution. A hardware and a software

solution are outlined. In each case assume all tasks are in a TMR

(DUPLEX) mode.

In the software solution an interrupt decoder is sequentially

scanning each processor for an interrupt condition (See Figure 5-2).

When an interrupt is decoded, BOSS is notified which processor has

sent the interrupt and conditions that processor to send the data

associated with that interrupt. BOSS then places the interrupt honored

processor in an idle state, and allows the interrupt decoder to search

for the next sequential interrupt. In a TMR (DUPLEX) mode two (one)

interrupts should be pending if no error has occurred. BOSS reads the

3-146

SUMC/BOSS COMMUNICATIONS

INT

DATA

BOSS PROCESSOR
INT

DATA

Figure 5-1

3-147

INTERRUPT DECODFR

BOSS

INT FROM P1

IN T INT I" " P2
DECODER " " P3

" " P4
" " P5

INT FROM P6

Figure 5-2

3-148

data associated with the other interrupts, forcing each processor in
the idle state. BOSS then verifies via software that the TMR (DUPLEX)
set has made the same request. If no error is detected, BOSS issues a
start to the TMR (DUPLEX) set. If an error is detected, BOSS turns
control over to the Configurator.

The hardware solution requires a switch between the processors
and BOSS (See Figure 5-3). BOSS configures the switch to a TMR
(DUPLEX) mode when processors enter this mode. All requests are
voted (compared) by the switch before BOSS is notified of a request.

The voting of interrupts and data to BOSS could be performed
by the same voting element that provides voting of data between pro-
cessors and memory as outlined in baseline 1. Figure 5-4 depicts such
dual use of the voting switch. In this configuration the outputs of the
processors are gated to memory and BOSS. An interrupt to BOSS or
a memory request determines the destination of the data from the pro-
cessors. In this case BOSS would need an interrupt detecting network
to decode the interrupt and a multiplexer to allow the data associated
with that interrupt to be strobed into BOSS.

5. 3. 2 Hardware Modifications to SUMC

Figure 5-5 depicts the hardware modifications to SUMC to pro-
vide communications with BOSS.

o Parity Generator

A parity generator should be added to generate parity for
data to BOSS.

o Pari ty Checker

Parity should be checked on data from BOSS and the control
section should be notified in case of an error.

o Control Section

Microprogram control to send and sense an interrupt and
acknowledge from BOSS needs to be added.

3-149

PROCESSOR TO BOSS COMMUNICATIONS

INT FROM P1
INT " P2 INT
INT " P3 - TMR /

INT " P4 a DUPLEX/ BOSS
INT " P5 a SIMPLEX

INT FROM P6 p SWITCH DATA

DATA FROM P1
DA TA " P2

DATA " P3

DATA " P4

DATA " P5 ERR OR
DATA FROM P6

Figure 5-3

MEMOR Y/B OSS/PR OCESSOR COMMUNICA TIONS

From Memory

SIMPLEX SWITCH

P1 P1 P6

INT6

VOTING SWITCH INT:

B OSS

DATA
To Memory

REQUEST
To Memory

Figure 5-4

3-151

HARDWARE MODIFICATION TO SUMC

FOR BOSS COMMUNICATIONS

DATA
M P

DATA p A PARITY

X GEN I]
B

PARITY
CHECKER CON-

TR OL

ACK N
INT

ACK

Figure 5-5

3-152

5.4 SUMC/BOSS Control Commands

Communication between BOSS/SUMC is performed through the

execution of Control Commands. This section provides a potential

approach to estimate potential impact on the SUMC microporgram.

For simplicity of description, BOSS is assumed to be a microprogram-

med unit.

5.4.1 Fetch Cycle

Figure 5-6 depicts the current microinstruction sequence for

the fetching and execution of machine instructions. Before each instruc-

tion is executed the microprogram looks for an I/O (interrupt) request.

At the present time three different interrupts are wired into the SUMC

hardware. If BOSS processes all interrupts, these three interrupts will

be sufficient for BOSS to communicate with each processor. At the

present time the overhead to decode the instruction is 5 microinstructions

and the execution time requires from 1 to 27 microinstructions. There-

fore the maximum time to decode the interrupt would be 32 microinstructions

and typical would be 4 microinstructions. These times do not include any

waiting on memory.

5.4. 2 Task to Control Executive Commands

A preliminary list of Task Control Commands was described in

paragraph 4. 1.

1. SCHEDULE

2. DELETE

3. TERMINATE

4. ABEND

5. SUSPEND

6. SIGNAL

To conserve microprogram memory and provide an expandable

format, the processors will communicate with BOSS by a "CALL" in-

struction.

3-153

FETCH CYCLE

PROCESS R AND BOSS

FETCH

1 I/O Y I/O

REQUEST DECOD

4

FETCH

NEXT

INSTR UC-

TION

1-27 0
XECUTE

NSTR UC-
TION

NOTE @ NO WAIT FOR MEMORY INCLUDED
G TIME TO I/O DECODE

MIN 1

MAX 32
AVER 3 to 4

Figure 5-6

3-154

CALL, type, N

Data

Data

where CALL is the instruction mnemonic to transfer to the microprogram
memory, type is one of the six commands listed above (or others), and N

is the number of data words (conditions) associated with this command.

The CALL instruction requires 6 microinstructions in the pro-
cessor [See Figure 5-7 (abbreviations listed in Figure 5-8)]. The instruc-

tion will send an interrupt to BOSS and wait for an acknowledge from BOSS.

The processor will loop waiting for BOSS to honor the interrupt. When

BOSS honors the interrupt an ADDRESS is gated to the MAR. The ADDRESS
in this example is that of its own dedicated memory, although the structure

could be changed to use SPM or main memory. The Control Executive will

need to maintain this address. BOSS and the processors continue to transfer

data by a sequence of interrupts and acknowledges.

At the completion of the transmission BOSS transfers to a
COMMAND TYPE routine. This routine is not shown. Two approaches are

possible. In the first case BOSS takes appropriate action before returning
to its fetch cycle. This approach requires less hardware but has the dis-

advantage of locking out all external interrupts. In the second case the

processor interrupt is treated as an interrupt level and the PSW would be
exchanged to reflect an interrupt level. This approach would allow higher
level interrupts (errors) to be honored before the CALL sequence is
terminated.

5.4.3 Control Executive to Processor Commands

Several commands from BOSS to the processor have been assumed

for the design of the Control Executive software.

1. SAVE

2. STOP

3. RESTORE

4. START

The microprograms for these instructions will now be described.

3-155

CALL INSTRUCTION

BOSS PROCESSOR

INT CALL

ADDR ESS IRD IC # WORDS
- MAR PC -MAR

R -ME

I/O -- PRR 1st WORD MR PRR

W-MEM INT -- BOSS

*1
PRR -SAVP ACK N

from
ACK-- PR OC - Sm

MAR +1A- 1 Y ___I PC
A VE - y --- IC
SAVE omman IC =
SAVE Type 0

N(More word N

MAR + 1
SMA---> MAR FETC

---- -ARR64 - IC R >MEM

C--Call Exe c
C - lCommnad N

--- >IC Error
IC=

INT D
N from

PROC

Y

I/O-- PRR , Figure 5-7
W---3MEM

ACKPR OC 3-156

MICROPROGRAM ABBREVIATIONS

AO - GENERAL REGISTER 0

Al - GENERAL REGISTER 1

A15 - GENERAL REGISTER 15

ACK - ACKNOWLEDGE

D - DISPLACEMENT

IC - ITERATION COUNTER

INTX - INTERRUPT TO. PROCESSOR X WHERE X =1, 2, . .

IR - INSTRUCTION REGISTER

MAR - MEMORY ADDRESS REGISTER

MEM - MEMORY

MR - MEMORY REGISTER

PC - PROGRAM COUNTER

PROC - PROCESSOR

PRR - PRODUCT REMAINDER REGISTER

PSW1 - FIRST PSW WORD

PSW2 - SECOND PSW WORD

R - READ

W - WRITE

Figure 5-8

3-157

o SAVE

BOSS sends an interrupt and a main memory address. The
processor transfers the contents of the 16 general registers,
8 floating point registers, and PSW to main memory and enters
the STOP state (See Figure 5-9).

o STOP

BOSS sends an interrupt and stop command. The processor
enters the STOP state, and loops (looking for an interrupt)

(See Figure 5-10).

o RESTORE

BOSS sends an interrupt and main memory address. The pro-
cessor loads the 16 general registers, 8 floating point registers,
and PSW from the specified starting address (See Figure 5-11).

o START

BOSS sends an interrupt and a two word PSW. The processor
loads the PSW registers and returns to the fetch cycle (See
Figure 5-12).

3-158

SAVE TO MAIN MEMORY - 16 GENERAL REGISTERS AND
2 WORD PSW & 8 FLOATING REG.

B S PRO ESSOR

SAVE SAVE
INT TIME 52

64>-- IC ACK-BOSS
MR--PRR I/O --- MAR

INTX PROC----

AO---PRR

AC Y W---MEM
from FETCH

MAR +1
--- > MAR

N C-1
-IC

IC=0
FOR Al

A1--l PR R
W----->MEM

ERROR

Same FOR
8 6 18

A2 to A15

Save INTx Save & PSW, & 8 FLOAT. REG
Address

MAR + 1
> MAR

PSW2 -- PRR
W---MEM STOP

Figure 5-9

3-159

STOP INSTRUCTION

STOP

N 1/0
REQUEST

I/O

ECODE

S PROCESSOR

STOP STOP
INT

64>--IC
ACK-+PR OC

INTX- PROC

Y STOPERROR - IC

NO RESPONSE N
FROM
PROCESSOR

ACK Nfrom
PROC

FETCH

top INTx ,J Figure 5-10

3-160

RESTORE FROM MAIN MEMORY - 16 GENERAL REGISTERS AND
2 WORD PSW AND 8 FLOATING
POINT REGISTERS

BOSS PROC ESSOR

64O !-- IC ACK-BOSS
MR---sPRR 1/0 MAR

INTX-3PRO; R--MEM

AO

MR-- AO
AC
from &L IFETCH

PRO C

MAR + 1
-- 6MAR

- IC
ICA .I, A1

MR >Al

NO RESPONSE
ERROR FROM PROCESSOR

8 6 18 MAR + 1

Res INT Restore > MAR
I Address IR MEM

Same FOR
A2 to A15 &
PSW, & 8 FLOATING REG

MR--+PSW2 MAR + 1
STOP ---- MAR

Figure 5-11
3-161

START FROM BOSS - BOSS SENDS START INTERRUPT &
2 WORD PSW

BOSS PROCESSOR

STATAR T 3
INT

64--->IC

DM MAR

R - MEM CK- BOSS

MR ---PR R

INTX -IPRtOC I/ N

IC =0 3

N

FETCH
AC N
from

PROC

64Figure 5-IC
3-+1---16

MAR
R----BMEM

MR---+PRR
INTX-ePROC

8 6 18

Start INTX Pointer

y IC- N ACK Y
ERROR I from FETCH

IC = 0 * PROC

Figure 5-12

3-162

5.5 SUMC/Memory Communications

This section describes the memory/processor communications.
No attempt has been made to describe the use of a buffer memory. It
is assumed that the buffer memory is transparent to the processor con-
trol section.

The mapping of logical to physical memory address has not been
included. The mapping function requires more study. Several alternatives
are possible. BOSS could relocate programs as error conditions occur
and/or maintain base registers accordingly. Memory banks could be
renamed as errors are detected. Also hardware could be added to map
the logical to physical address. The mapping function is embedded in the
software (Compiler, Assembler, and Loader) and hardware. Regardless
of the translation function the following communication paths apply.

5. 5. 1 Communication Paths

Figure 5-13 depicts the communication paths between the pro-
cessor and memory. Parity or other error codes will be generated and
checked on transmissions to and from memory. Each request to memory
will also contain a key. -The key and read/write lock bits in memory will
be used to validate accesses. The control signals provide the timing and
attention signals to allow data and address to flow between these units.

5.5. 2 Error Conditions

Four types of errors can occur in the processor to memory
communications.

1. Illegal Access

2. Error on Data to Memory

3. Error on Data from Memory

4. Error in Memory Access

Item 3 will be decoded by the processor. The other items will
be decoded by the memory unit. All errors have to be known to the pro-
cessor for two reasons.

1. In a simplex system there may not be a BOSS

3-163

PROCESSOR/MEMORY COMMUNICATION PATHS

Key

Data Data
To Memory

From Processor Address
Memory f

Parity Parity

Control Control

Figure 5-13

3-164

2. The exact partitioning of error recovery between BOSS

and the processors has not been resolved.

This may be modified (such as only notify BOSS of a memory
error) as the error recovery and reconfiguration schemes become more
definitive.

5. 5. 3 Hardware Modifications to SUMC

Figure 5-14 depicts the memory to processo-r communication.

o Parity Generator

A parity generator has to be added to generate parity on
data and address memory.

o Protect Key

A method of providing a protect key for the processor and
sending the protect key with each memory request needs to
be added.

o Ready Line

A microinstruction control bit has to be added, so the pro-
cessor will know when memory data is available. Presently
the microprograms allow enough time but, in a multiprocessor
system, memory contention factors must be recognized.

o Parity Checker

Parity from memory has to be checked and the control
section notified in the event of an error.

o Memory/Processor Errors.

The control section should be modified to allow for recogni-
tion of the four memory errors. Probably the four errors
should be combined into a memory error violation and
further decoded if an error is detected.

3-165

MEMORY /PR OCESSOR C OMMUNICA TIONS

RM 5 1 KEY

PARITY P R DATA
DA TA CHECKER PARITY PARITY

ILLEGAL ACCESS- CON- GEN
PARITY TO MEM--* TROL ADDRESS

MEMORY ERROR PARITY
READY GEN PARITY

READ

WRITE

REQUEST

Figure 5-14

5.6 SUMC/I/O Communications

This section describes the I/O/processor communications. The
processors will have the ability to set up the I/O units, but all I/O com-
plete interrupts will be honored by BOSS. Figure 5-15 describes the
processor communications with I/O. The dotted INT (interrupt) and
ACK (acknowledge) signals would be necessary if BOSS was not processing
all interrupts. In this case, an interrupt structure for each processor
would need to be designed. Therefore the processor design for a BOSS
and non-BOSS system is different.

The physical connection of processors to I/O units will be per-
formed by BOSS. BOSS will provide the I/O units for a task before the
task is turned over to the processor for executing. BOSS will configure
the switches to provide the mode (TMR, DUPLEX, or SIMPLEX). In
the event a task requires more than one I/O unit to simultaneously
transmit different sets of data, BOSS will notify the processor (task) the
address of each I/O unit connected to the processor. The address will
allow the task to monitor the state of the different I/O units. If only
one I/O unit is needed per task, the task need not know (except for error
checking) the physical connection.

5.6.1 I/O Commands

At least three I/O commands are needed.

1. START

2. STOP

3. STATUS

o STAR T

The STAR T instruction will contain the source, destination,
number words, keys function code, or pointers to those items
which are necessary to initiate an I/O transaction.

o STOP

This instruction will terminate an I/O operation.

o STATUS

This instruction will allow the task to determine the state

3-167

PROCESSOR/ I/O COMMUNICATIONS

SUMC

DATA

PARITY PARITY

R GEN

SP PARITY DATA

B CHECKE
CONTROL I

t PARITY ERROR

SINT

INT ACK ACK

NEEDED IF NO
BOSS UNIT

Figure 5-15

3-168

(busy, idle) and error conditions for those I/O units con-
nected to that processor.

5. 6. 2 Hardware Modifications to SUMC

Figure 5-16 depicts the modifications to SUMC.

o Parity Generator

A parity generator has to be added to generate parity on
data to the I/O unit.

o Parity Checker

A parity checker for data (status) from the I/O unit needs

to be added. Also the control section will be modified to

record the parity error.

o Control Lines

The control section, under microprogram control, should

be modified-to allow an interrupt to be sent to the I/O unit

and a microprogram Sense line on acknowledge needs to be
added. The Acknowledge line allows the timing for more

than one processor communicating with one I/O unit. The

control section should allow for sensing of parity errors on

status data from I/O.

3-169

SUMC MODIFICATIONS

MI rDATA (B, I/O, M)
DATA (M) PARITY R

CHECKEP PARITY PARITY (B, I/O,
R GEN

DATA (I/O) PARITY X DATA (M)
CHECKE

_ _M PARITY
SPARITY (M)

DATA (B i .
CHECKER- 2

KEY
Key (M)

ILLEGAL ACCESS (M-- - MEMORY READ (M)
PARITY TO MEMORY (M)- CONTROL WRITE (M)

MEMORY ERROR (M)
READY(M) REQUEST (M)

'/O CONTROL

ACK (I/O)*...... INT (I/O)

BOSS

INT (B) -------- ACK (B)
CONTROL

.ACK (B)* INT (B)

B (BOSS)
M (MEMOR Y)

Figure 5-16

5.7 Summary of SUMC Modifications

This section summarized the modifications and investigates
the sharing of functions (see Figure 5-16). The rationale for these
changes have been described in previous sections.

A port to multiplexer MPXA2 has been added to allow BOSS
to communicate with SUMC.

Parity generation can be shared between units at the expense
of speed, however, therefore three parity checkers are shown.

All interrupt lines remain on until an acknowledge is received
or sent from the processor. Each interrupt has an acknowledge assoc-
iated with it.

The read, write, and request control lines already exist in
SUMC. The interrupt from BOSS control line can be used under the
present interrupt structure.

The following additions are recommended:

1. Generate parity for PRR

2. Generate parity for MAR

3. Check parity on MR data

4. Check parity on MPXB1 data

5. Check parity on MPXA2 data

6. Add control for MPXA2

7. Add control for interrupt to BOSS

8. Add control for interrupt to I/O

9. Add ready from memory sense line

10. Add ACK from BOSS sense line

3-171

11. Add ACK from I/O sense line

12. Add Illegal access sense line

13. Add parity to memory sense line

14. Add memory error sense line

15. Add acknowledge to BOSS control

16. Add key on requests to memory

3-172

SECTION 4

ARMMS COMPONENT TECHNOLOGY STUDIES - PHASE II

This section deals with ARMMS component technology studies involved
in choosing a logic family, data bus technology, and power supply configurations.
CMOS is the recommended choice for module internal logic after consideration
of all major logic families' projected characteristics for the 1975 time frame.
The major advantages of CMOS include: 1) lowest power dissipation of any logic
form, 2) excellent noise immunity, 3) high packing density, 4) wide temperature
operation, 5) high fanout, 6) easy interface with bipolar circuits, and 7) opera-
tion over a wide power supply voltage range. CMOS will be assumed in develop-
ing ARMMS packaging characteristics during Phase III.

Bus technology studies placed an emphasis on loading considerations,
detection theory, module interconnection methods, and reliability. A current
source driver operating into a single-ended isolated receiver over a 50 Qmicro-
strip line was chosen to provide best power-speed characteristics with simple
technology and minimum pin count.

Power supply configurations ranging from a single centralized supply to
individual power supplies per module were considered. Since no module was to
depend on one power supply, modularization must be effective over a range of
ARMMS configurations, and it must be possible to switch supplies on and off
under BOSS control, a partially centralized regulator supplying power to up to
5 modules each of which incorporates a DC/DC converter was selected for
further detailing in Phase III packaging studies.

I. ARMMS TECHNOLOGY ALTERNATIVES STUDY

This report has as its objective the evaluation and recommendation of
a logic family to be used in the ARMMS computer. This report will consider the
adaptability of present logic families in the 1975 time frame. It will review sev-
eral device technologies, consider interconnection complexity, thermal control,
electrical characteristics and blue sky trends in the semiconductor industry in
making its recommendation. Both bipolar and MOS technologies will be consid-
ered for possible use.

INTERCONNECTION COMPLEXITY

Future generations of computers will most likely be designed utilizing
two separate component philosophies.

1. The first will most likely be the simple translation of some of the
more commonly used logic functions into MSI or LSI arrays. Those
arrays will, of necessity, be flexible, universal and limited to those
specific elements which enjoy wide spread industry use. Logic im-
plementation would be accomplished by hard wire interconnection
of the standard building blocks to give the desired input output re-
quirements. This system is essentially the same as used today ex-
cept that the gate or flipflop is replaced with more complex logic
functions. The major computer functions will still be constructed
with at least one level of interconnection removed from the chip.

2. Concept two will rely on the development of highly specialized mono-
lithic devices with interconnection designed to perform a complete
computer function or subfunction (on the chip).

Clearly the two systems have applications where each stands out. Sys-
tem one is particularly useful where design costs, weight, volume and power
are not a prime requirement. Applications such as ground equipment, ground
test equipment and most airborne computers will use this concept.

System two tends to excel where volume power and weight are of prime
importance. Because stray capacitance is significantly reduced, propagation
delays are reduced and system speeds increase. Power is reduced by design-
ing each device for its optimum characteristics and not a general set of ground
rules.

Estimates of device complexity which will become available in the post
1973 time frame vary widely. This tradeoff will therefore take a conservative
approach. For bipolar elements, we shall assume 80 equivalent gates per chip.
For MOS devices 250 gates per chip appear to be a practical level of complexity.

4-1- l

Graph I reflects present (1972) gate to pin ratios for several custom and
noncustom devices being manufactured today. Reviewing this information, Table
I reflects a three-to-one decrease in interconnection points for a 250 gate chip
vs. an 80 gate chip. In addition to define a 15K gate processor module, the chip
count drops from near 200 to approximately 60 with the higher complexity
devices.

32140-25

100

80 -

GATE TO PIN RATIO BASED ON
60 - PRESENT HARDWARE

TECHNOLOGY CUSTOM
DESIGNS

40

20
/

10

8.0 /

6.0 -

4.0 - - -- - I

2.0 -

1.0

0.8 -

0.6 -

0.4 -

3 INPUT G ATE
0.2 -

1 2 4 6 8 10 2 4 6 8 100 2 250 4 6 8 1000

GATES

Graph 1

4-2

TABLE I. INTERCONNECTION COMPLEXITY

Total
Gate/ Interconnection

Gates/ Pin Ratio Interconnection Points Between
Logic Family Chip At Chip Chips Points Per Chip Chips

T 2 L (All) 80 4 200 20 4,000

P. MOS 250 4 60 23 1,380

CMOS 250 4 60 23 1,380

A precise estimate of unit volume cannot be given until the overall pack-

aging concept is defined. The only safe statement at this time is that the inter-
connection media is the prime user of volume within a unit, and the fewer num-

ber of points to be interconnected, the smaller and lighter the hardware will be.

Since low power, weight, and volume figures will be prime consideration
in this system, large scale MOS devices are preferred.

POWER DISSIPATION

While increasing the number of gates on a die will tend to increase de-

vice speed and decrease interconnection complexity, there does exist definite
limitations on the number of gates which may be placed on a die without exceed-

ing tolerable power dissipation levels. The assumption will be made here that
this hardware must operate in an uncontrolled (vacuum) environment and, there-

fore, all component cooling must be accomplished by conduction.

Table II reflects the power dissipation per gate (@ 5 megahertz) and total

power dissipation per processor module based upon 15K gates. While the total
dissipated per Schottky T 2 L chip may represent a design problem, it is small
compared with the total thermal control problem. The total dissipation of
Schottky T 2 L or 5400 T 2 L will probably prove unmanageable within the assumed

processor volume of approximately 12 cubic inches.

Assuming a maximum case temperature of 100 0 C on a particular semi-

conductor and a worst case unit temperature of 55 0 C (131 0 F), a Schottky T 2 L
implemented processor module would require a structure thickness of one inch.
Clearly, this would present an intolerable situation. For MOS or lower power
Schottky T 2 L, this structure thickness reduces to 0. 1 inch, a somewhat practi-
cal number. Even if more exotic cooling systems were employed, such as heat

pipes, managing the power densities of T 2 L or Schottky T 2 L will be a near im-
possible task.

4-3

TABLE II. POWER DISSIPATION SUMMARY

Dissipated No. of
Power Processor Module Chips/ Dissipated Power

Logic Type Per Gate Dissipated Power Processor Per Chip

Schottky T 2 L 19 MW 285 W 200 1.4 W

SN5400 10 MW 150 W 200 .75

Low power 3 MW 45 W 200 .225
Schottky T 2 L

PMOS 60

CMOS 2 MW 30 W 60 .50

5%
Schottky T 2 L 20 MW 15 W
95%
CMOS 2 MW 30 W

From a strict power point of view, the low power Schottky T 2 L, CMOS
or PMOS are the only logic families which appear practical.

Electrical Characteristics

Without question, the speed and propagation delays of Schottky T 2 L,
5400 series T 2 L, and low power Schottky T 2 L are within the limits needed for
the processor logic family. Consequently, the ARMMS computer could be im-
plemented today using any one of those three devices.

The present CMOS devices, however, have propagation delays several
times those of the slowest T 2 L family. This fact could make processor logic
implementation difficult and limit the processor operating space. Figure 1 pre-
sents typical speed characteristics for CMOS devices.

The future of CMOS does look bright, however. Semiconductor houses
are today developing ION implantation techniques and silicon gate technologies
for CMOS to reduce parasitic and junction capacitances. Silicon on sapphire
and silicon on spinal substrates will dramatically reduce substrate capacitance
associated with bulk silicon CMOS devices. Device speeds in the range of 100
MHz will be possible without effecting the speed-power relationship established
in present day hardware. However off chip capacitance considerations limit
chip to chip logic speeds to approximately 40 nsec.

4-4

FIGURE 10 - TYPICAL RISE TIME versus FIGURE 11 - TYPICAL FALL TIME versus

LOAD CAPACITANCE LOAD CAPACITANCE
500-z z 400

400 -TA= +250C - 320 TA
= +250C--

300 240
VOD

=
5.0 Vd VDD 5.0 Vdc

200 0 d .< o 10 Vdc

100 80 15 Vd
151Vd5

0 20 40 60 80 100 0 20 40 60 80 100

CL, LOAD CAPACITANCE (pF) CL, LOAD CAPACITANCE (pF)

FIGURE 12 - TYPICAL TURN-ON DELAY FIGURE 13 - TYPICAL TURN-OFF DELAY
CHARACTERISTICS CHARACTERISTICS

280 -1111 280

240 TA= +25
0C -- 240 - TA= +25C

200 00

VDO = .0 Vdc 5VM 10M VDD 5.0 Vd C4- 20- -> ,20-------------------------z -

10 Vdc- 10Vde

04
-,. - -- "- 15 Vdc - 1 Vdc

0 20 40 60 80 100 0 20 40 60 80 100

CL, LOAD CAPACITANCE (pF) CL, LOAD CAPACITANCE (pF)

Typical CMOS propagation, rise time and

fall time vs. load capacitance.

FIGURE 1

4-5

V

DTL and RTL logic lines will not be discussed because it is throught
that their future in new design is somewhat limited because of their relatively
low speed and lack of interest within the semiconductor houses themselves.
PMOS is definitely a possible choice, but has been rejected because of the super-
ior speed, lower power dissipation and greater interest in CMOS. The high
power levels of ECL combined with the fact that their speed is not needed has
caused the elimination of this logic line from consideration.

The advantages of three lines of T 2 L logic and CMOS logic will be dis-
cussed and some of their more important technical characteristics will be ex-
plored. Graph 2 and Table III compare the speed power characteristics of these
elements and list some of their important electrical parameters.

32140-26

100
80 -

60 - LOGIC FAMILY POWER DISSAPATION VS SPEED

40 -

S20 - SCHOTTKY I-L

I-

S10

2 8 - 5400 SERIES T2 L

S6-

4 -

O 2

LOW POWER
SHOTTKY T 2 L

1.0
S.8

u .6

.4 CMOS

+5V VSS

.2

e

.1 I I I I I I I I I I I I I I I I I
100 Hz 2 4 6 8 1 KHz 2 4 6 810 2 .4 6 8100 2 4 6 81MHz 2 4 6 8 10

FREQUENCY

Graph 2

4-6

TABLE III. PARAMETER COMPARISON

Schottky
Low Power Schottky 5400 Series

Parameter CMOS T 2 L T 2 L T 2 L

Power Supply Voltage 4.5-18V 5.0 +0.5V 5.0 ±0.5V 5.0 +0.5V

Power Dissipation

Qui .01 Aw 2 mw 19 mw 10 mw

Dynamic .4 mw/MHz .7 mw/MHz .3 mw/MHz

Propagation Delay 50 ns 10 ns 5 ns 10 ns

Input Current

Logic 1 10 pa 5 ua 50 ua 40 pa
Logic 0 10 pa -. 1 ma -2 ma -1.6 ma

Input Capacity 2.5 pf 2 pf -

Output Impedance O's

Logic 1 750 550 50 70

Logic 0 750 20 10 10

Switching Threshold .45 Vdd 1.4V 1.4V 1.5V

T 2 L logic has become an extremely popular logic element over the past
several years. Its speed and the availability of complex devices from numerous
sources, combined with the ability to manufacture devices with as many as 80
equivalent gates, makes T 2 L a possible logic family for the ARMMS computer.
T 2 L's advantages and disadvantage are listed in Table IV.

T 2 L is the fastest saturated logic faimly of digital elements available
today. As a result of its speed, transmission line problems such as ringing and
line reflections can cause false triggering problems. Many manufacturers now
incorporate a clamp on the input lines to clamp any negative signals to a level
which will not cause false triggering.

The 5400 series (Figure 2) of T 2 L has typical propagation times of 10 ns
per gate and is capable of operating with clock speeds of 20 megahertz. Power
dissipation of 15 mw/gate is common at this speed and decreases at a rate of
approximately 0.3 mw/MHz to a quiescent level of approximately 10 mw/gate.

4-7

Typical power dissipation of approximately 12 mw per gate can be expected at
clock rates of approximately 5 megaHz, the operating speed of the bulk of the
logic within a processor module.

TABLE IV. ADVANTAGES AND DISADVANTAGES OF T 2 L LOGIC DEVICES

TTL Advantages:

1. A large number of different devices and complex functions are
available.

2. Low output impedance results in superior drive capability.

3. TTL has very good immunity to externally generated noise.

4. TTL results in a better system speed-power product than is
obtainable with other saturated forms of logic.

5. High-speed capabilities allow more work to be accomplished in a
given amount of time.

6. Multiple sources and extensive competition have resulted in low
prices.

7. Compatible specifications allow the mixing of various families for
optimum designs.

8. Long history of reliability.

TTL Disadvantages:

1. TTL has high values of di/dt and dv/dt, and therefore more care is
required in the layout and mechanical design of systems.

2. TTL generates "glitches" when switching, and thus additional capa-
citors are required for bypassing.

3. The "implied and" function is not available by tying outputs together.

4. Power dissipation in high density in all but low power Schottky T 2 L.

Sizing a processor module at 15K gates, all operating at 5 megabit, we
may calculate a power dissipation of approximately 180 watts. Assuming a
module size of 12 cubic inch, it is obvious that this amount of dissipated power
would make thermal control a near impossible problem. For this reason alone,
5400 series T 2 L will be unacceptable for use as the logic family for the bulk of
the logic within the computer.

4-8

Input voltage 5 + 1/2 V.

Fanout 10

Propagation delay
0-1 22 ns max.
1-0 15 ns max.

Dissipated power 10 mw/gate quiescent
.3 mw/MHz/gate dynamic

Noise immunity IV typical

TYPICAL 5400 SERIES T2L GATE

FIGURE 2

4-9

At the data bus interface, extremely high speed logic elements are de-
sirable (Figure 3). To live within the 73 ns worst case time budget, high speed
Schottky T 2 L may be necessary at the interface between the processor logic
and the data bus.

Low Power
Input voltage 5 + 1/2 V 5 + 1/2 V

Fanout 10 10

Propagation delay 0-1 4 1/2 ns max.
1-0 5 ns max

Dissipated power quiescent 19 mw 2 mw
dynamic .7 mw/MHz

Noise immunity 1 volt typical

TYPICAL SCHOTTKEY T2L GATE

FIGURE 3

4-10

Quiescent power dissipation of Schottky T 2 L is approximately 19 mw per
gate and increases at a rate of approximately .7 mw/megahertz. At 5 magabit
clock rates, gate dissipation is approximately 22 milliwatts. Typical propaga-
tion delays of 3 ns are common with Schottky T 2 L with clock rates up to and ex-
ceeding 125 megahertz.

The increased speed of the Schottky device is accomplished by not allow-
ing transistors within the device to go into saturation. With the transistors kept
out of saturation, the storage time can be eliminated. The incorporation of a
Schottky diode (during the collector isolation diffusion) across the base to collec-
tor junction performs the function of not allowing the transistor to saturate. The
Schottky diode has the advantage of eliminating storage time but does add a sig-
nificant amount of capacitance to the circuit. Because storage time is eliminated,
primary delays are due to RC time constants on the chip. To overcome these
delays, Schottky devices operate at somewhat higher current levels than 5400
series T 2 L elements. This, combined with unequal turn on and turn off times
of Schottky transistor, results in a higher power dissipation with frequency than
a standard T 2 L.

Lower Power Schottky T 2 L

The low power Schottky T 2 L logic elements are the only bipolar devices
which can compete with MOS for the bulk of the logic in the low speed portion
of the processor module. This line of logic elements is fully capable of operating
at 30 MHz with a reasonably low gate dissipation of approximately 5 mw at this
speed. At speeds of approximately 5 MHz, gate dissipations should run approxi-
mately 3 mw rivaling that of CMOS. Arrays of 60 gates are already available
and prospects for 80 gate arrays for custom chips still seems good.

Assuming a device complexity of 80 gates, approximately 200 chips would
be necessary to complete a processor module. The large number of devices re-
quired, and the interconnections necessary, tend to rule out the use of this logic
family in the ARMMS computer.

Aside from the interconnection problems, the low power Schottky T 2 L
element would be an ideal device for systems use. It does not seem likely, how-
ever, that arrays in excess of 250 gates will become available in the near future.
Nor does it appear likely that processing yields will allow anything other than
discretionary wiring techniques for reaching this level of complexity.

CMOS

The advent of CMOS digital elements has given system designs a new
feel which solves many of the problems of bipolar hardware. CMOS has the

4-11

advantage of extremely low power, high noise immunity, high fan out and wide
tolerance to power supply voltage. Table IV-A lists CMOS's most desirable
features and characteristics. Figure 3A presents the characteristics of a typi-
cal CMOS gate.

TABLE IV-A. CMOS ADVANTAGES AND FEATURES

1. The lowest power dissipation of any logic form, thus lowering
cost.

2. Excellent noise immunity that increases with increased supply
voltage (.45 Vdd).

3. Operation over very wide supply voltage range (1. 2 volts to 18
volts).

4. Has packing density greater than bipolar technology, resulting
in lower cost MIS and LSI functions.

5. Has lower output impedance than PMOS, thus simplifying inter-
facing with saturated bipolar logic.

6. Operates over wide temperature extremes with minimum per-
formance degradation.

7. Very high impedance results in the highest fanout of any logic
form.

8. Logic swing is between power supply and ground.

9. Propagation delay is faster than PMOS, and speeds will soon
approach those of TTL.

Present CMOS elements, with light capacitive loading, are substantially
faster than PMOS elements are comparable with slower speed T 2 L elements.
See Figure 4.

One of the most desirable characteristics of CMOS is its low power dis-
sipation. Under quiescent conditions either the p channel or n channel device is
off; consequently, the device is dissipating virtually no power. Only during the
transistion between states does the device dissipate power. Quiescent power

4-12

Add 4 - 18 V

Fanout 750

Propagation delay 0-1 45 ns C2
= 20 pf

1-0 30 ns

Dissipated power quiescent .01 1w
dynamic .4 mw/mHZ

Noise immunity .45 Vdd

TYPICAL CMOS GATE

FIGURE 3A

4-13

FIGURE 4 - TYPICAL GATE POWER FIGURES - TYPICAL GATE POWER.
DISSIPATION CHARACTERISTICS DISSIPATION CHARACTERISTICS

10 1! 1, ' 10
TA = +250C _TA+25
CL= 6.0 pF L -- CL 50pF
Unusedinputs connected 1. CL

=
25 pF

1.0 to VSS. 1.0 Unused inputs
c: : connected to

0.1 VOD
= 15 Vde O 0 VDO 15 Vde Vdc

o0 e 10 Vdc -5 o
0.01 0.01

0.5 1.0 10 100 1000 5000 0.5 1.0 10 100 1000 5000
f. FREQUENCY (kHz) f. FREQUENCY (kHz)

C MOS GATE DSTSTPATTON VS, R nlQENCYr.. -. - _'Mm,-

VAIOUS
FOR VMtG LOAD CAPACITANCES

FIGURE 4

dissipation is typically 0. 01 jw per gate; dynamic power dissipation is .4 mw/
MHz. With a lightly loaded (6 pf) line, a CMOS gate will dissipate approximately
2 mw at 5 megahertz.

The ability to operate CMOS from a single, relatively wide tolerance sup-
ply bus significantly eases system power supply design requirements. Most
CMOS logic is fully capable of working from a supply voltage from as low as 4
volts, to as high as 18 volts. Noise immunity of CMOS elements is corresponding-
ly high. Noise immunity is typically .45 Vdd and increases with increasing
supply voltage.

4-14

Another significant advantage of CMOS is simplicity of fabrication. See
Figure 5. CMOS requires three major diffusion steps compared to five for bi-
polar devices. Device geometries for CMOS are significantly smaller than for
bipolar elements, and linear resistors are not used. Consequently, a CMOS
gate may be as much as a factor of eight smaller than its bipolar counterpart.
This, combined with simpler fabrication processes, will allow high complexity
chips with moderate yields.

P-CHANNEL MOS DEVICE N-CHANNEL MOS DEVICE

N. DIFFUSION
N-TYPE CHANNEL N.CHANNEL SOURCE-DRAIN GATE GATE

P-CHANNELSUBSTRATE N STOPS SOURCE DRAIN SOURCE DRAIN

SiNM4 - Complemen-

P-TYPE T DIUSION ATE OIDE FABRICATION tary MOS IC Fabrication
N-CHANNEL SUSTRATE GATES FOR PAN Sequence and Cross Sec- U

NCHANNELtion of Complementary yPE /
SMOS Structure. CHANNELSSTOPS

P+ DIFFUSION YPESUBSTRATE

P-CHANNE L SOURCE-DRAIN METALLIZATION

P. CHANNEL STOPS M OXIDE I METAL
L

CMOS DIFFUSION PROCESSES & TRANSISTOR STRUCTURES

FIGURE 5

CMOS elements are now fully capable of operating over the entire mili-
tary temperature (-55 to +125 0 C) with only minimum variations in device
performance.

Because of its relatively low output impedance and high input impedance,
CMOS has the largest fanout capability of any logic form. Fanouts of greater
than 50 are readily achieved. Interface with bipolar logic elements is also rela-
tively simple. CMOS will interface with T 2 L directly, and open collector T 2 L
will directly interface with CMOS. A pull up resistor is normally required to
interface T2 L elements to CMOS inputs.

By eliminating the parasitic capacitance in CMOS junctions and substrates,
speeds near 100 megahertz can be expected. Presently, ION implantation tech-
niques, silicon gate CMOS, silicon on sapphire and silicon on spinnel techniques
are being developed in the industry. These techniques will push CMOS speed sub-
stantially above that needed for the ARMMS processing equipment.

4-15

Conclusions

If a processor module was to be constructed today, and if the processor
had to operate at speeds in excess of 5 MHz, low power Schottky T2 L would be
selected as the best logic choice. CMOS would have to be rejected because of
its somewhat lower speed. This would be the only reason for its rejection.

Since the design of this computer is being projected into the 1974-1976
time frame, it is the author's belief that CMOS processing will have proceeded
to the point that its speed characteristics will equal or surpass that of low power
Schottky T2 L. With the higher speed, lower power, greater fanout, ease of T2 L
interfacing and greater device complexity, the CMOS logic element should be
chosen as the basic logic element in the ARMMS computer.

II. ARMMS Data Transmission Line Study

In the Phase I report hardware speed and performance characteristics
of data base transmission systems were discussed. It was noted that for bus
speeds below 50 MHz current source drivers and differential line receivers arethe optimum bus interface elements, Prsently available bipolar integrated cir-
cuits can manipulate data at rates up to 15 MHz at reasonable power levels. A
transmission line with uniform characteristic impedance and short stubs for
interconnecting the modules was recommended. During Phase II data buses
were studied further with emphasis placed on loading considerations, detection
theory, module interconnection methods, and reliability. The following ground
rules were adapted:

1. Maximum inter-module cable length 5 6 feet.

2. To reduce pin counts single ended rather than differential current
source drivers and receivers will be used.

3. Maximum stub length from module to bus - 3 inches.

4. Each connector pin has a capacitance of about 7 pf.

5. Bus will be contoured microstrip line (propagation delay
equals 2. 25 ns/ft).

6. The number of modules to be connected will not exceed 48.

7. Transmission power shall be minimized as much as possible without
degrading the data transmission quality.

4-16

8. A synchronous clock system with a period greater than worst case
delays in bus and module interfaces is required to allow lock-step
operations in duplex and TMR modes.

Since data is bussed to many modules, it is important that a failed module
does not short the signal bus. If a module fails open, the module is not available
for use by the rest of the system, but this does not result in a complete system
failure. There are many approaches to signal bus isolation; most fall into either
of two classes, parallel bus redundancy or use of series isolation elements.

Using parallel busses would multiply the number of connector pins and
the number of drivers and receivers by the number of parallel busses. Series
redundancy may be accomplished with series elements in each bus line or with
a single series element in series with a group of elements.

To isolate receivers, resistor isolation may be sufficient. For most
driver schemes a switch is necessary. For current drive transmission it is
necessary only to provide a switch in series with the high state supply for the
drivers to isolate a failed or unused module from the signal bus, as shown in
Figure 6. This is because current mode drivers have a low impedance path from
the signal bus to the +5. OV supply, and no low impedance path from the signal
bus to ground. A short circuit failure in both driver output transistors Q1 and
Q2, shown in Figure 6, is necessary to disable the signal bus. If the two re-
ceiver input transistors short circuit fail, the bus is not disabled because of the
isolation resistance. This would only present a load, and not a short, to the
signal bus. If a transistor between the signal bus and the +5. OV supply fails
shorted in either a receiver or a driver, the signal bus would still not be dis-
abled unless the dc-to-dc converter output switch fails shorted also, in keeping
with the "no one component failure disables the signal bus" concept.

Resistor R at the driver input in Figure 6 must be provided in the circuit
design to keep Q1 leakage current from forward biasing Q1. Since the dc-to-dc
converter output is at ground potential when turned off, Q1 could cause Q2 to
conduct from the signal bus to the converter in the event that the +5. OV switch
is shorted.

Each transmission line in the system interfaces with several modules
through connector pins, each with a capacity of five to seven picofarads. The
effect of these discontinuities on the performance of the data transmission is a
function of the transmitting frequency, the average length between these capaci-
tive loads, the standard deviation of these separations, the characteristic im-
pedance of the transmission line, and the detection scheme and the signal to
noise ratio. One of the objectives of this study is to minimize the transmitting
power without degrading the data transmission. This implies that pulse fidelity
should be maintained throughout the transmission line.

4-17

32140-27

TYPICAL
MODULE

+5.1V

TO IC CHIPS NOT
RO+22 V REGULATEDOR) DCTO+5DIRECTLY CONNECTED

CTO-TO A SIGNAL BUS
CONVERTER

LATCH LATCH
IC IC +5.0V

TO OTHER IC CHIPS
COMMAND DIRECTLY CONNECTED
POWER OFF TO A SIGNAL BUS

COMMAND
POWER ON

COMMAND ALL
UNITS POWER OFF

DISTRIBUTED TO
SOTHER SWITCHESSIGNAL BUS IN SYSTEMIN SYSTEM

TYPICAL BUS INTERFACE ELEMENTS

ISOLATION
RESISTOR

S +5.0V

RECEIVER I rCURE NT
MODE

I DRIVER

I I I
LOW IMPEDENCEPATH

SIGNAL BUS

Q2

NO LOW IMPEDANCE
Q1 PATH: ELIMINATES

NEED FOR SWITCH
IN GROUND LINE

Figure 6. Dual Isolation System. Two transistors must short circuit fail before the signal bus is disabled.
Use of receiver input resistors and current mode type drivers eliminates the need for switching the power
ground to the modules.

4-18

Detection theory is applied to the problem to define the transmitted levels
and the receiver configuration for a low probability of error. In this problem the
receiver in each module is synchronous or coherent to the transmitter via a com-
mon clock. A pulse S(t) of duration T seconds may be transmitted for a logical
one, and no pulse (no signal) transmitted over the duration of T seconds for a
logical zero or for no data transmission. The transmitted signal is masked by
noise over the data link channel. In ARMMS, the noise will mainly be ground
noise between modules since each receiver is referenced to a ground not identi-
cal to the transmitter ground. Other noise sources will be crosstalk or coupling
of power lines and other transmission lines to the line of interest.

One of the design requirements is to reduce the pin count at the interface
of the modules and the transmission line. This requirement implies single ended
instead of differential transmission. The greatest advantage of this interconnec-
tion technique is the pin count reduction derived by the single ended transmission
and reception. However, this approach presents several weaknesses. First, the
transmitting current is returned to the transmitting module via the signal ground
path. This in turn will develop a potential difference between the transmitting
module and the receiving modules. Since the receiving modules have threshold
detectors referenced to a ground more noisy than the transmitter ground, the
received voltage will be interpreted by the receiver as signal plus noise.

Figure 7 plots transmitter power vs bit rate for a single bit bus as a
function of the number of modules on the line. These numbers will be multiplied
by up to 104 times to obtain peak transmission power for 8 thirteen bit buses.
Figure 8 and Table V illustrate and list the sources of worst case transmission
delays. Voter and control logic implemented in the modules would add addition-
al delays.

The baseline bus design characteristics for configuration C are as
follows:

1. 100 nsec clock rate (10 MHz)

2. A maximum of 25 memory modules, 7 processor modules, 4 I/O
modules, 1 BOSS module (37 total)

3. Line characteristic impedance = 50 ohms

4. Line driver current requirement = 100 ma

5. Signal voltage amplitude = 2 volts

6. Average driver power dissipation (50% duty cycle) = 250 mw leading
to a peak bus transmission power requirement of 26 watts (3. 25 watts
per active module).

4-19

32140-28

500
NO MATCHED FILTERING 48 MODULES
BIT SETTLING 99.999% (25 OHM LINE)
6 FOOT STRIPLINE

400

S300
I-
I-

24 MODULES
3 (50 OHM LINE)

-J

200

13 MODULES
10 0(70 OHM LINE)

100

I I I I I li I I I l l I l l
1 2 4 6 8 10 20 40 60 80 100

MHz

Figure 7. Transmitter Power versus Bit Rate

32140-29

LD LR

-i CABLE -

CLOCK 1 CILOCK 2

MODULE x MODULE y

CLOCK

GENERATOI Ly

(Lx = Ly)

Figure 8. Typical Intermodule Communication

4-20

TABLE V. SUM OF WORST CASE DELAYS

Clock Skew 10 NS

(Difference between clock 1 and 2)

F/F Resolution 7 NS

Driver Delay 20 NS

Cable Delay 13 NS

(Assumes 6 feet)

Receiver Delay 15 NS

F/F Set-Up Time 8 NS

Total Worst Case Times 73 NS

Development of a current source line driver with the required charac-
teristics may prove to be a problem area. Possible approaches to reducing bus
power include reducing speed, reducing the number of modules in the system by
using matched filters as receivers instead of threshold detectors. This latter
alternative would require more effective bit synchronization and would reduce
the driver power by a factor of approximately four. A typical current source
driver is shown in Figure 9. A matched filter receiver block diagram is shown
in Figure 10.

4-21

32140-30

+5V

R1 R3

Q2

R2

R4

DATA Q1

o CURRENT SOURCE
OUTPUT

Figure 9. Design of a Current Source Line Driver. Current Output is Determined By
Selection of R1, R2 and R3

32140-31

DATAIN VOLTAGE 2POLEFROM FOLLOWER FILTER
LINE BUFFER

THRESHOLD FLIP-FLOP DATA
DETECTOR (OR LATCH) OUT

BIT TIMING
CLOCK

Figure 10. Matched Receiver Block Diagram.

4-22

III. ARMMS POWER DISTRIBUTION STUDY TASK REPORT

The purpose of this study is to accomplish the following:

1. Identify basic alternatives for supplying power to the computer
modules.

2. Discuss the advantages and disadvantages of each alternative.

3. Select a baseline power distribution implementation.

4. Generate detailed circuits illustrating how the baseline design can
be implemented.

5. Provide part count, weight, and power numbers for the baseline
design.

The following ground rules shall be used for this study:

1. Power supply reliability should not limit system reliability.

2. Power supply modularization and standardization shall be used.

3. No module class may depend on one power supply.

4. Reliability modeling will be performed by Division 11.

Primary Power Distribution

Before investigating secondary power distribution it is worthwhile to
briefly discuss the various ways to distribute primary power. Three bus sys-
tems were investigated: a) Regulated AC Bus, b) Low Voltage DC Bus, and
c) Conventional DC Bus. The advantages and disadvantages of each alternative
are summarized as follows:

4-23

BUS ALTERNATIVE A
REGULATED AC BUS

AC BUS PROCESSOR
+28V REGULATED +5
UNREGULATED DC/AC

INVERTER

T /
5

MEMORY

+5

4-24

BUS ALTERNATIVE B
LOW VOLTAGE DC BUS

UNREGULATED BUS PROCESSOR

(6V TO 8V)
+5

REGULATOR

I/o
t+5

REGULATOR

MEMORY

+5

REGULATOR

c/DC /DC
CONVERTER

4-25

BUS ALTERNATIVE C
CONVENTIONAL DC BUS

+28 UNREGULATED PROCESSOR

+5

PRE-REGULATOR
C

I/

+5

DC/DC
CONVERTER

MEMORY

+5

DC/DC -7
CONVERTER

4-26

Alternative A - Regulated AC Bus

Advantages:

1. The module power supplies can be kept very simple.

2. Separate ground isolation for each module is provided.

Disadvantages:

1. The DC/AC inverter would involve some difficult and time consum-
ing design effort.

2. To maximize efficiency, the AC bus would have to be a medium fre-
quency (about 4 kHz) square wave. This would result in a very noisy
bus.

3. AC power is more difficult to switch than DC power. Therefore the
power switching would have to be done past the transformers and
rectifiers. This would lead to a slight loss of efficiency and
reliability

Alternative B - Low Voltage DC Bus

Advantages:

1. Virtually no DC/AC inverters or DC/DC converters would be
required.

2. A minimum part count power distribution system would be achieved.

Disadvantages:

1. No module ground isolation.

2. Poor efficiency. The efficiency gains made by eliminating DC/DC
converters would be more than offset by large line losses due to
large line currents and by the drops across the linear regulators.

3. Other equipment on the spacecraft might have to be modified to use
a low voltage bus.

4-27

Alternative C - Conventional DC Bus (+28V nominal)

Advantages:

1. A +28V nominal DC bus is an industry standard. Therefore a great
deal of experience has been accumulated on how to design equipment
with a +28V DC bus.

2. Module ground isolation.

3. Clean (non noisy) bus.

4. Power switching is easy to implement.

Disadvantages:

1. Large part count.

A conventional DC bus will be assumed as a baseline, since it has a high
vanSge siA uIoUu divaILageb raLIo.

Secondary Power Distribution

The following assumptions will be made before analyzing various power
distribution alternatives.

1. The BOSS modules will be ON all the time.

2. The other ARMMS modules will be pulse commandable. The ON/OFF
command pulses will be generated by the BOSS modules. Therefore
all the non-BOSS modules will contain power switching and power
memory.

3. No sub-module partitioning will be used.

4. DC ground isolation in each module will be provided.

Several secondary power distribution alternatives are illustrated in the
following figures.

4-28

ALTERNATIVE A
CLNTRALIZED POWER DISTRIBUTION,

NO BACKUP
PROCESSOR

428V
UNREGULATED DC/DC +5

CONVERTER -7 T
AND

REGULATOR -

I/o

- +5

-l

MEMORY

SW -7

MEMORY

sw-7

4-29

ALTERNATIVE C
CENTRALIZED POWER DISTRIBUTION,

WITH ISOLATED OUTPUTS

PROCE SSOR
+28V
UNREGULAJ ED 0----- D/Dc 5

CONVERTER
AND

REGULATOR

+ 5

MEMORY

sw -7

4-30

ALTERNATIVE D
DECENTRALIZED POWER DISTRIBUTICON

NO PRE-REGULAT ION

PRO CESSOR

+5

+28 UNREGULATED 3 DC/DC

CONVERTER
AND

REGULATOR

I/o

5

DC/DC
CONVERTER

AND
REGULATOR

MEMORY MEMORY

45 +5

- DC/DC DC/DC -7
CONVERTER CONVERTER

AND AND
REGULATOR REGULATOR

4-31

ALTERNATIVE E
DECENTRALIZED POWER DISTRI BU T ION,

WITH PRE REGULATOR AND REDUNDANCY
-+28 UNREGULATED PROCESSOR

0

+21 REG DC/DC 5

PRE-REGULATOR CONVERTER

BACKUP

REGULATOR

iO

DC DC t5

CONVERTER

MEMORY

+5
DC/DC

CONVERTER -7

4-32

ALTERNATIVE F

DECENTRALIZED POWER DISTRIBUTION,

WITH PRE-REGULATOR, NO REDUNDANCY
+28 UNREGULATED PROCESSOR

+5

DC/DC
PR E-REGULATOR CONVERTER

I/O

+5

DC/DC
CONVERTER

MEMORY

+5

D C/D C
CONVERTER -7

4-33

(-4

The various secondary power distribution alternatives can be grouped
into four basic groups:

1. Fully centralized supply

2. Partially centralized supplies

3. Fully decentralized supplies

4. Partially decentralized supplies

Fully Centralized Supply

In a fully centralized power distribution system, a single power supply
(possibly with one backup supply) would supply power to all the ARMMS modules.
The ARMMS modules (with the exception of the BOSS) would only contain power
switches and power memory. The BOSS modules would receive unswitched
power. Alternatives A, B, and C are examples of centralized power systems.

The advantage of a centralized power supply is minimum narts count.
But a centralized system has many disadvantages. A single component failure
could cause the entire system to fail. This eliminates it from consideration
since it violates one of the study ground rules.

A centralized system is very inflexible since it must be designed for
maximum load conditions. Under minimum load conditions the power supply
would be overdesigned.

Partially Centralized Supply

In a partially centralized system several central power supplies are used,one for each set of modules. Under these conditions if a power supply fails itdoes not cause the failure of an entire ARMMS system. A partially centralized
system also provides greater felxibility at the cost of a greater part count. Al-
ternatives A, B, and C are examples of partially centralized systems if these
alternatives are repeated several times.

One remaining problem with a partially centralized supply system is
providing DC ground isolation on the module level. One way of doing this is
shown as alternative C. But alternative C introduces regulation problems. There
does not appear to be any way to achieve ground isolation and good regulation
with a centralized or partially centralized system.

4-34

Fully Decentralized Supplies

in a fully decentralized power distribution system, each module contains
its own complete power supply. An example of a fully decentralized power dis-
tribution system is shown as alternative D.

A decentralized system provides extremely good flexibility, good effi-
ciency, good regulation, and DC ground isolation. The main disadvantage of a
decentralized system is the high part count that is required.

Partially Decentralized Supplies

In a partially decentralized power distribution system, each module con-
tains its own power supply. But instead of each supply operating from an unregu-
lated bus, each supply would operate from a regulated bus supplied by a common
pre-regulator. Each pre-regulator would supply power to several modules. The
advantage to doing it this way is that now it is possible to remove the voltage
regulating circuitry from each module supply thereby saving a significant num-
ber of parts. Alternatives E and F are examples of partially decentralized
supplies.

In a partially decentralized system a small amount of flexibility is sacri-
ficed to reduce power supply part count.

Conclusion

A partially decentralized system will be used as a baseline. Specifically
alternative F will be used as a baseline. Alternative F was chosen for the fol-
lowing reasons:

1. Low part count

The part count of alternative F will not be the lowest possible, but
it will be lower than alternatives D or E.

2. Ground isolation

DC ground isolation for every module can easily be provided.

3. Good regulation

Since most of the power supply will be inside the module, good
voltage regulation can be provided.

4-35

4. Good configuration flexibility

Alternate F provides greater configuration flexibility than alterna-
tives A, B and C but less than alternatives E or D.

If the total number of modules per configuration are added up, we get
the following summary:

Configuration No. of Modules

Simplex 5

Duplex 10

TMR 15

TMR & Spare 20

MAX 30

The above table shows that the different configurations are separated by
steps of fiuae mdules. By using one pre-regulator fo five modules, it is possi-
ble to insure that each pre-regulator will be operating near its designed output
capability, thereby avoiding one of the weaknesses of a partially decentralized
system.

5. Good bus flexibility

Use of a pre-regulator makes it easier to adapt an ARMMS system
to changing bus characteristics. For example, if an AC bus was used
on a future program, it would only be necessary to modify the pre-
regulators. On the other hand if alternatives D or E were used all
the modules would have to be redesigned.

6. Good reliability

Packaging most of the power supply circuitry inside the module in-
creases reliability, because failure of one supply will only cause
one module to fail.

7. Good thermal characteristics

By packaging the regulation circuitry outside the modules, the losses
associated with regulation are removed from the modules. This will
help to keep the heat rise within the modules down to a reason-
able level.

4-36

8. Good Output Voltage Flexibility

Since power is switched to the primary side of a DC/DC converter,
it is possible to add new secondary voltages without incurring much
of a penalty. In a centralized or partially centralized system sec-
ondary voltages are switched. Therefore the addition of extra sec-
ondary voltages are very costly in a centralized system, but inex-
pensive in a partially decentralized system.

Power Distribution for the Various ARMMS Configurations

Assuming alternate F as a baseline, the power distribution for the vari-
ous configurations would appear as shown in Figures 11 to 15. The pre-
regulators will not be cross-strapped. Cross-strapping helps to protect against
"open" failures but can cause reliability degradation against "short" failures.
For example, if two pre-regulators are diode "ORed" together, a single short
at the output would cause both pre-regulators to fail. By not cross-strapping
pre-regulators, the effect of "short" failures can be isolated. In addition, not
cross-strapping pre-regulators leaves the way open to the effective use of multi-
ple primary busses for even greater reliability. The greatest reliability can be
achieved if each pre-regulator has its own primary bus.

The configurations in Figures 1 to 5 are "first cut" configurations. It
may be possible to interconnect the pre-regulators and modules in a more opti-
mum manner.

Detailed Design

The detailed designs for the module power supplies and for the pre-
regulator are shown in Figures 6 to 8.

Design Discussion

Figure 16 shows the detailed design for the processor, I/O, and memory
power supplies. The Figure 16 power supply is commandable. A +15 volt com-
mand pulse will be used to turn on IC1. IC 1 will then turn on Q1 via Q2 and Q3.
Q1 will then feed back power to IC1 thereby keeping it on. Q1 is a current limit
switch. Should a module fail in a "short" mode, Q1 will go into current limiting.
If the collector voltage of Q1 drops down to a critical threshold level, it will
starve power to IC1 and therefore the power supply will unlatch. This means that
if a module fails in a "short" mode, Q1 will automatically turn off thereby dis-
connecting the failed module from the regulated bus. If the module fails in an
"open" mode, the BOSS can disconnect the module from the regulated bus via
IC1 and Q1.

4-37

FIGURE II
SIMPLEX CONFIGURATION

UNREGULATED PROCESSOR
BUS

+5
REGULATED

BUS

PRE-REGULATOR

r/O
+5

MEMORY MEMORY
(OPTIONAL)

+5

MEMORY
(OPTI ONAL)

4-38
4-38

FIGURE\2

DUPLEX CONFIGURATION

I PROCESSOR
BUS PRE-REGULATOR /0

NO I I BOSS
2 MEMORY

I PROCESSOR
BUS o- PRE-REGULATOR I I/O

NO2 I BOSS
2 MEMORY

4-39

FIGURE 13
TMR CONFIGURATION

I PROCESSOR
BUS PRE-REGULATOR I /0

NO I - I BOSS
2 MEMORY

I PROCESSOR

PRE-REGULATOR > I I/O
NO2 I BOSS

2 MEMORY

I PROCESSOR
PRE-REGULATOR I.1I/O

NO 3 I BOSS
2 MEMORY

4-40

FIGU RE 14
TMR + SPARE CONFIGURATION

I PROCESSOR

PRE-REGULATOR I /O
BUSo

NO I I BOSS
2 MEMORY

I PROCESSOR

PRE-REGULATOR I 1/O

NO 2 I BOSS
2 MEMORY

I PROCESSOR

PRE-REGULATOR I I/O
NO 3 I BOSS

2 MEMORY

I PROCESSOR
PRE-REGULATOR I I/0

NO4 - I BOSS
2 MEMORY

4-41

FIGUREI5

MAX CONFIGURATION
I PROCESSOR

PRE-REGULATOR I I/0
BUS NO I I BOSS

2 MEMORY

I PROCESSOR
PRE-REGULATOR I I/O

NO 2 I BOSS
2 MEMORY

IPROCESSOR
PRE-REGULATOR I I/O

ID ,.3'u Zi BOSS
2 MEMORY

I PROCESSOR
PRE-REGULATOR I. I/O

NO4 I BOSS
2 MEMORY

PRE-REGULATOR I PROCESSOR

NO 5 4 MEMORY

PRE REGULATOR - I PROCESSOR

NO6 4 MEMCRY

4-42

kG LTD
OFF ON DC BUS

1I Fl F2
- SC299 0

BUFFER R2
I)

RI LI 0
R3 C

Q2 CRI R4
CR2 R5

Z -n
R6 0

%^VA , :Q3
CR3 CR4 M

O,

R7 <(-- R8

CR5 CRo CR7 CR8 0

m

R9 RI Q5CR91 ' cz"" Jv .-- , cn

-u
_ _ _ I_ __ __ T I M

CRIO C II
CRI2 CRI3

MEMORY
ONLY L2 I L3

C3 C4
IH

C5 I' C6
-7 1 SIG +5

I I'). RTN
4-43

The DC/DC converter consists of Q4, Q5, and associated circuitry. It
is a conventional saturating square loop converter. Current surges through Q4
and Q5 are limited by R1, R2, and CR 1 through CR4.

Figure 17 shows a detailed circuit design for the BOSS power supply.
This power supply is very similar to the Figure 16 supply. The main difference
is that the Figure 17 supply is self starting while the Figure 16 supply is com-
mandable. Since the BOSS sends commands to other modules, it must be self
starting. The BOSS power supply has an extra +15V output. This +15 volts is
used by the BOSS to generate the ON/OFF command levels.

Figure 18 shows a detailed design for the pre-regulator. This pre-
regulator is designed as a switching regulator in order to save power. L1 and
associated capacitors form the input filter. Q1, Q2, Q3 form the series switch.
ICI contains the reference, comparator, and driver stages. Q4, Q5, and asso-
ciated circuitry protect the pre-regulator from an output short. L2 and asso-
ciated capacitors form the output filter. CR1 is the "fly back" diode.

Weight, Part Count, and Power Summary

The Table VI summary is based on the following assumptions:

1. The baseline power distribution implementation will be used.

2. The module secondary power (excludes power supply losses) dissi-
pations are:

Processor 45 W

I/O 15 W
Memory 20 W (Read, Write)

2 W (Standby)

BOSS 45 W

3. The efficiency of a module power supply is 75%. The efficiency of
the pre-regulator is 85%. Overall efficiency is 64%.

4. The CMOS logic will be powered by +5 volts. At present CMOS logic
can only toggle up to 2. 5 MHz at +5 volts. The assumption is that a
3 to 1 improvement in speed will be achieved in the next 3 years. If
a greater than 3 to 1 improvement is achieved, it may be possible to
operate the CMOS at less than +5V thereby saving a significant amount
of power.

4-44

RGLTD
DC BUS

FIl F2

RI

LI

R2 CI

OD
R3 4I R4 0

CRI CR2 CR3 CR4 ()

QI R5 R6 Q2 0

R5

R7

TI -3TI

CR6 CR7 CR8 CR9

L2
C2 C3

C4
RET +5 +15
SIG

4-45

RGLTD DC BUS R.28
FI LI CI R2 CRI

F2 RI

22~-C

C2

QI 2

Q2 Q N 2I

Q3 L M 2105I K
R4 29

R5
CR2

CR3
L 2 68V V _

R6 cO
510- Q4 LLi

R7 Q
5.1 K ::D

R 9 (D
R8 2201 RIO

5.1K .IK C3

SELECT
Q 5 RII ---

15K RI2 R13
QI 2N2907A -0 A ,w-.
Q2 2N3752 C4 RI4
Q3 2N3599 ---- 2.2 7K

Q4 2N2907A
Q5 2N2222A

C5

Vou-
4-46

5. The module power supply part counts are:

Processor 36

I/O 36

Memory 40

Boss 26

Pre-Regulator 41

TABLE VI.

Total Total Power
Total Power P.S. (Read, Write) Total Power
Supply Part Weight* Mode (Standby)

Configuration Count Pounds Secondary Primary Secondary Primary

Simplex 153 10.1 80W 125W 62W 97W
(1 Memory)

Simplex 233 14.1 120W 188W 66W 103W

(3 Memories)

Duplex 438 24.2 290W 453W 218W 340W

TMR 657 41.6 435W 680W 327W 510W

TMR & Spare 976 55.6 580W 907W 436W 680W

MAX 1368 76.2 830W 1300W 542W 845W

NOTE: Secondary power excludes power supply losses.

Primary power includes power supply losses.

*Power supply weight does not include unit structure weight.

Power Supply Reliability Computation

Using the failure rate numbers from the ARMMS Phase I report power
supply reliability is very high. Based on the sample circuit design just discussed,
the processor and I/O power supply has a failure rate of only .2658 failure per
million hours, about 30% as high as its failure rate for the processor itself. The
power supply failure rate broken down by components is listed in Table VII.

4-47

TABLE VII. POWER SUPPLY RELIABILITY IS VERY HIGH
BASED ON SAMPLE CIRCUIT DESIGN

Failure Rate
Processor and I/O (per 10-6 hrs.)

Power Supply Parts (each) Total

Transformer 1 .0065 .0065

Diodes 9 .0004 .0036

Zener Diodes 1 .0008 .0008

IC's 1 .0066 .0066

Fuses 2 .1000 .2000

Resistors 11 .0021 .0232

Transistors 5 .0025 .0125

Capacitors 4 .0007 .0028

Inductor 2 .0049 .0098

36 .2658

4-48

SECTION 5

RELIABILITY MODELING WITH VARYING
CONFIGURATIONS AND LOADS

The first part of this section is the manuscript of a paper written by
J. J. Bricker and W. L. Martin which describes the most recent reliability
model developed for ARMMS which allows the reliability of modular computer

systems to be predicted considering configuration and computation load require-

ments which can very at deterministic times during a mission. This paper was

delivered by Bricker at the 6th annual IEEE Computer Society International

Conference (COMPCON) in San Francisco, California in September 1972.

The remainder of this section gives the results of a computer analysis
of tradeoffs concerning whether to place ARMMS voter switches internal or ex-

ternal to ARMMS processor and memory modules. The choice as reflected in

Configuration C in the ARMMS hardware design section of this report was to

use internal voters.

RELIABILITY OF MODULAR COMPUTER SYSTEMS WITH VARYING

CONFIGURATION AND LOAD REQUIREMENTS.

Modularity at the level of major functional units (i.e., processors,
memories, I/O units) in computer systems serves three primary goals: to

enhance the speed achievable with available components through operating
modules in parallel; to optimize the configuration used in a given application;
and to enhance reliability by the presence of redundant modules. This paper
describes a model which allows the reliability of modular computer systems

to be predicted considering configuration and computation load requirements

which can vary at deterministic times during a mission.

NASA's Marshall Space Flight Center, as an extension of its Space
Ultra-reliable Modular Computer (SUMC) program, is studying the potential

of modular computer systems in space missions for the post-1975 time frame.

The vehicle for this study is called ARMMS for "Automatically Reconfigurable

Modular Multiprocessor System". As design objectives, ARMMS is intended

to meet the reliability and speed requirements of mission types ranging from

launch vehicles to orbital space stations to deep space probes. A peak compu-
tation speed of several million instructions per second is desired in a multi-

processing configuration, and in addition modules of a given type are to be

usable in Triple Modular Redundant (TMR), Duplex, or other redundant modes

to enhance reliability at the expense of computing speed in support of critical

tasks. The system consists of processor, I/O, and memory module classes

each of which may be required to be further subpartitioned if dictated by re-
liability considerations. The tradeoff between extensive module subpartitioning
and increasing the required number of modules per class was one factor which

necessitated the analysis described here. A dedicated executive approach is

presently envisioned, with the Executive Control Module responsible for con-

figuration control, scheduling, and I/O management.

To assist in the system design process, a reliability model was desired

which would estimate system reliability over the range of cases of interest. A

brief description of the model follows.

Model Description

The ARMMS reliability model [1] allows the analysis of a modular com-

puter composed of an arbitrary number of module classes, each containing a

specified number of identical modules per class, with active and passive failure
rates, each based on a negative-exponential failure distribution law per module/

per class, and a multiple-phased mission. The time duration of each phase may
be arbitrarily given, but it is assumed to be deterministically known. Also the

desired configuration of the computer and the minimal allowable configuration

5-1

level (below which that phase and the resulting mission would be deemed a
failure) may be specified on a per phase and per module class basis. It is then
possible to compute the mission reliability at the end of any phase, for each
module class and for the computer as a whole, with the basic assumption being
that failures are statistically independent. A second key assumption is that
intra- or inter-modular switching, failure detection and location, and switch-
off and switch-on transients (the effects of which are sometimes designated
by the term coverage) [2] behave perfectly and that the voter reliability is
equal to one for each voter in the computer which is not internal to a module.
Any voter internal to a module is treated as part of that module.

Some of the novel aspects of this reliability model (in addition to pro-
viding a powerful design tool) are that 1) the existing treatments of TMR, NMR,
and active-standby redundancy, as given in the literature, are unified and sim-
plified; 2) the hybrid concept of redundancy [3] is extended to allow for degraded
modes of operation; 3) an entire mission profile consisting of an arbitrary num-
ber of distinct phases may be studied and the reliability predicted, via a simple
Markov chain approach, so that the numerical evaluation of reliability is re-
duced to the computation of the product of a finite number of matrices.

In cases where the mission phases are periodic (as might be imagined
for a space station, for example), the numerical analysis is further reduced by
utilizing the periodicity of the process. If the requirements in time, modular
configuration and minimal allowable modular configuration are periodic, then
with the aid of basic matrix formalisms (e. g., the Jordan Canonical form) one
may simplify the numerical analysis so that only a few Markov matrix products
need be computed. This is important for otherwise, for example, in a five-
year mission, if there were two periods per day, the number of matrices that
must be processed would be 3650 x 4 for a 4 module class computer. The order
of these matrices depends on the initial number of modules per class and if
this initial number were Mi for the i-th module class, the associated matrix
would be of order (Mi+1) x (Mi+1).

In non-periodic mission profiles, configuration and minimal allowable
levels of module class degradation may vary widely, depending on the specific
tasks which the computer must perform over the time spectrum of the mission.
While periodicity is not present, the feature of relatively few major phases
(in the ranges 30-50 for proposed mission profiles) [4] keeps the reliability
prediction process within manageable limits.

Sample Uses of the Model

The model may be used either to establish design requirements or to
evaluate proposed configurations versus specific mission requirements.

5-2

The effects of various design parameters may be explored over the

range of possible values. This is the less taxing use of the model since each
module class can be considered individually. For example, module failure

rates ranging from 10 - 4 to 10-6 failures per hour represent reasonable upper
and lower bounds of individual module failure rates in a space environment.
Published estimates of ratios of passive to active failure rates range from

0.01 to 1 although the most convincing data suggests that a realistic value for

space quality components is closer to the latter than the former [5]. Mission
times of interest range from a few hours for booster operations to several tens

of thousands of hours for deep space probes. The designer faces the two prob-
lems of determining what module reliability can be achieved given the available

or projected technology at the time of interest and of estimating the system
reliability which can be achieved for given mission characteristics by employing
the modules in various possible configurations. The model addresses this
second problem.

As a simple example, suppose it is desired to compare the module
class reliability over periods of time ranging from 1 hour to 5 years as a
function of module active failure rate for three basic configurations: 1) a sim-

plex system in which only one module per class is available; 2) a TMR system
in which three modules are available and the system gives correct results as

long as 2 of the three agree; and 3) an active TMR set with one active, standby
spare. Table 1 tabulates module class reliability as a function of time for each
of the three configurations for module failure rates of X = 1 0

- 4 , 10 - 5 , and 10-6
failures per hour.

Of greater interest than the specific problem or the data in Table 1 is
the sort of conclusion which can be reached using the model. For example, if
a module class reliability of 0. 999 is required for a 1000 hour mission, then
a simplex approach can be considered only if very low module failure rates
are achievable. Or, if the same reliability were required for a short term
mission (e. g., 100 hours) and if module failure rates of 10 - 5 were believed

possible, then the added hardware cost of a highly redundant system would be
subject to question. (Of course, separate requirements for back-up systems
would also affect conclusions of this type.) Finally, the data shows that high
long-term mission reliability requires redundancy even under the most opti-
mistic active failure rate assumptions.

The second, and more demanding use of the model, is to describe and
evaluate specific mission profiles and modular computer configurations re-
quired during each mission phase. The model has been structured to encompass
the three major cases of interest: 1) boost phase or short term missions in
which all computer resources may be assumed to be active and available for
use; 2) space station or long term earth orbital missions in which the computers

5-3

TABLE I. MODULE CLASS RELIABILITY BASED ON CONFIGURATION AND MODULE FAILURE RATE

4380 8760 43800
x 1 Hr 10 Hrs 100 Hrs :L000 Hrs .5 Yr 1 Yr 5 Yrs

M=N=D=1 10- 6 .999999 .99999 .9999 .999 .995 .991 .957
-5

SIMPLEX 10- 5 .99999 .9999 .999 .951 .957 .916 .645
-4

10- 4 .9999 .999 .990 .904 .645 .416 .0125

N=3 M=3 D=2 10- 6 * * * .999997 .999943 .999773 .99464

TMR 10- 5 * * .999997 .9997 .9946 .9801 .7119

10-4 * .999997 .999705 .974556 .7119 .376 .0004

10-6
N=4 M=4 D=2 10* * * * * .999997 .9997

-5
TMR+1 Spare 10 * * * * .9997 .9978 .869

-4
10-4 * * .999996 .9968 .8690 .5530 .0009

*> 0. 999999

activity might be periodic, with the periods of activity perhaps determined
either by the activity of the on-board personnel or by the period of earth orbit.

3) Deep-space missions which consist of relatively few phases of widely varying
time duration.

As a highly simplified example, suppose that a Mars orbiter mission
were to consist of an initial 10 hour boost and earth orbit phase (Phase 1) a
3000 hour Earth/Mars cruise phase (Phase 2) and a 500 hour Mars orbit phase
(Phase 3). The computer system is to contain 4 module classes; processor
(A = 20 x 10-6 failures per hour); memory (X = 30 x 10-6); I/O (X = 15 x 10-6),
and executive controller (X = 20 x 10-6). Passive failure rates are taken to be

80% of the active failure rates. During Phase 1, all modules are required to

operate in NMR mode while in Phase 2, a simplex computer (one active module
of each class) is required and in Phase 3, a high experiment computation re-

quirement necessitates 2 parallel processors, 4 memory modules, and 2 I/O
units. In phases 2 and 3, at least two executive modules must survive. Using
the model, we can determine the number of modules of each class which must
be provided to achieve a system reliability of 0. 99 over the entire mission.

The sequence of trials is shown in Table 2. In Trial 1, three modules
of each class were taken as a point of departure. It is seen that the system re-
liability is governed primarily by the memory module, but that at least one
more processor and executive module is required. After Trial 2 it is seen that

4 processor and executive modules are sufficient, but that one additional mem-
ory and I/O module are needed. Thus a successful configuration is reached in
Trial 3. Finally, two additional trials were run to determine the effect of
variations in dormant failure rates. In Trial 4, the active and dormant failure
rates (X and p) were taken to be equal, while in Trial 5, p = 0. 1 X. In this case,
the effect is distinct but not overwhelming. The entire process of conducting
this particular case required 13 minutes at a time-sharing terminal. The model
has also been written in batch processing form for use when numerous sample
cases are to be run.

Conclusion

The contributions of the model described here are that it unifies the
treatment of modular computers of varying configurations and that it is a
flexible design tool which provides the designer with the facility to explore
the effects on total system reliability of variations in configuration, mission
profile, and component reliability.

It assists in the resolution of such basic design issues as how many

replicates of each module must be provided, how complex each module may be
(considering resulting failure rates), and what forms of configuration (if any)
will allow the reliability objectives of a given mission to be satisfied.

5-5

TABLE 2. EXAMPLE OF A SEQUENCE OF TRIALS IN DETERMINING AN ACCEPTABLE CONFIGURATION

Trial 1 2 3 4* 5*

No. of Class No. of Class No. of Class No. of Class No. of Class
Modules Reliability Modules Reliability Modules Reliability Modules Reliability Modules Reliability

Processor

= 20x10-6 3 .98872 4 .99836 4 .99836 4 .99803 4 .99906

I-O

X = 15x10-6 3 .99339 3 .99339 4 .99903 4 .99889 4 .99933

Memory

X = 30x10- 6 3 .96869 5 .91590 7 .99483 7 .99292 7 .99742

Executive

X = 20x10-6 3 .98631 4 .99803 4 .99803 4 .99802 4 .99828

System - .96571 - .90656 - .99028 - .98790 - .99410

*In Trial 4, the dormant failure rate (p) equals the active failure rate (X).

In Trial 5, I = 0. 1X.

It should also be observed in conclusion that the model has not yet
reached its final form. As part of an ongoing design program, it is evolving
with the design. Most notably, coverage and switching unreliability have not

yet been incorporated. These are the next steps in the analysis.

References

1. J. L. Bricker, A Unified Method for Analyzing Mission Profile Reliability
for Standby and Multiple Modular Redundancy Computing Systems which
Allows for Degraded Performance, Hughes Aircraft, Report FR 72-11-450,
April, 1972.

2. W. G. Bouricius, W. C. Carter, and P. R. Schneider, "Reliability
Modeling Techniques for Self-Repairing Computer Systems", ACM 1969
Annual Conference, P 295-309. Also, in greater detail as IBM Report
#RC-2378.

3. F. P. Mathur, "On Reliability Modeling and Analysis of Ultrareliable
Fault-Tolerant Digital Systems", IEEE Transactions on Computers,
November, 1971, P 1376-1382.

4. L. J. Koczela and G. J. Burnett, "Advanced Space Missions and Computer
Systems", IEEE Transactions on Aerospace and Electronic Systems,
pp 456-467, May, 1968.

5. E. E. Bean & C. E. Bloomquist, The Effects of Ground Storage, Space
Dormancy, Standby Operation, and On/off Cycling on Satellite Electronics,
Planning Research Corp, PRC R-1435, May 1970.

ARMMS Voter Switch Placement Study

A study was made during Phase II to determine the optimum placement
of ARMMS voter switches - either as additional self-contained modules external
to the memories and processors or internal to the memories and processors.
The study involved development and execution of a computer program to deter-
mine overall ARMMS reliability over the following ranges of parameters:

1. Module failure rates 1 - 130 failure/106 hours

2. Voter failure rates 0.3 - 30 failure/106 hours

3. Number of modules 4 - 32

4. Number of voters 4 - 10

5. Mission duration 1/2 - 5 years

6. Number of TMR triads required 1, 2

5-7

It was found that the voter placement decision is sensitive to module
and voter failure rates as follows:

Failures/10 hours Result

1 - 1.3 Voter placement has no significant effect

10 - 13 Significant difference in favor of external voter
100 - 130 Long term reliability unattainable

Processor failure rates should be less than 1. 0 per 106 hours and hence
voter placement will not be significant in their case. Memory modules maskable
failure rates fall in the 10 - 13 per 106 hour range with non-maskable failure
rates running one-half this number. Hence memory modules are in the region
of sensitivity.

Table III summarizes the probability of one TRM triad surviving at
several points in the mission for variable numbers of modules and voter con-
figurations where M = No. of modules. The ccafigurations with external voters
have slightly higher reliabilities than those with internal voters but it was con-
ciluded that the reliability differences were not significant enough to dictate the
decision.

Factors favorable to external voters are 1) a small increase in reliability
2) a net reduction in hardware for large numbers of memory modules and 3)
increased modularity. The factors favorable to internal voters are 1) lower
system pin counts, 2) elimination of the external voter module class, 3) reduc-
tion in the number of buses, 4) increased bus speed, 5) reduced executive soft-
ware complexity, and 6) reduced system power. The tangible factors favoring
internal voters are considered to be more important than the small reliability
loss involved - particularly since number of buses and pins were not reflected
in these reliability calculations, the specific requirement for the marginal added
reliability may not exist and moreover the difference could be removed at the
system level through the use of additional memory or processor modules. There-
fore voters located internally to ARMMS modules at their inputs are recommended.

5-8

TABLE 3. PROBABILITY OF 1 SURVIVING TMR TRIAD

Case M t=4380 t=8760 t=43800

Internal Voter,
Module Failure Rate:

11.5 x 10-6 4 .99954 .99673 .82571

7 >.99999 .99996 .96098

8 >.99999 >.99999 .99205

Internal Voter,
Module Failure Rate:

13 x 10-6 4 .99935 .99541 .77928

6 >.99999 .99992 .94095

8 >.99999 >.99999 .98558

External Voter;
Module Failure Rate:

10 x 10 - 6 4 .99970 .99779 .86752
Voter Failure Rate:

1.5 x 10 - 6 6 >.99999 .99998 .97460

4 Voters; 8 >.99999 >.99999 .99439

External Voter;
Module Failure Rate:

10 x 10 - 6 4 .99970 .99771 .86312

Voter Failure Rate:
3x10- 6 6 >.99999 .99991 .96966

4 Voters; 8 >.99999 .99993 .98935

BLANK PAGE FOLLOWS
5-9/.

