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EVALUATION OF CONTROL LAWS AND ACTUATOR LOCATIONS

FOR CONTROL SYSTEMS APPLICABLE TO DEFORMABLE

ASTRONOMICAL TELESCOPE MIRRORS

By Aaron J. Ostroff
Langley Research Center

SUMMARY

Some of the major difficulties associated with large orbiting astronomical telescopes
are the cost of manufacturing the primary mirror to precise tolerances and the maintain-
ing of diffraction-limited tolerances while in orbit. One successfully demonstrated
approach for minimizing these problem areas is the technique of actively deforming the
primary mirror by applying discrete forces to the rear of the mirror. A modal control
technique, as applied to active optics, has previously been developed and analyzed. The
modal control technique represents the plant to be controlled in terms of its eigenvalues
and eigenfunctions which are estimated via numerical approximation techniques.

This paper includes an extension of previous work using the modal control technique
and also describes an optimal feedback controller. The equations for both control laws
are developed in state-space differential form and include such considerations as stability,
controllability, and observability. These equations are general and allow the incorpora-
tion of various mode-analyzer designs; two design approaches are presented. This paper
also includes a technique for placing actuator and sensor locations at points on the mirror
based upon the flexibility matrix of the uncontrolled or unobserved modes of the structure.
The locations selected by this technique are used in the computer runs which are
described. The results are based upon three different initial error distributions, two
mode-analyzer designs, and both the modal and optimal control laws.

INTRODUCTION

There are many advantages to operating a large telescope outside the Earth's atmo-
sphere. The increased resolution and expanded transmission range will allow a greater
exploration of the universe over that which is possible from Earth. However, major diffi-
culties are involved in the large cost of manufacturing the primary mirror and in technical
problems associated with maintaining diffraction-limited performance despite such factors
as gravity release, temperature gradients across and through the mirror, initial fabrica-
tion errors, and various induced stresses resulting from the telescope structure.



One proposed solution which greatly reduces the initial fabrication cost and main-
tains diffraction-limited tolerances is to control actively the figure of the primary mirror.
The first experimental attempt to demonstrate the feasibility of active figure-error con-
trol was to maintain the three segments of a 0.5-meter-diameter spherical mirror in
precise relationship to each other (ref. 1). Although this approach was successful for the
small mirror used, the construction of large off-axis aspheric segments matched in focal
length to diffraction-limited tolerances was beyond the technical state of the art.

A more advanced approach to active figure-error control is to deform a flexible
mirror to the desired figure by applying forces at discrete points on the rear of a pri-
mary mirror by means of actuators (fig. 1). An optical figure-error sensor scans the
mirror and generates signals proportional to the deformations from the nominal figure.
These signals are processed by a controller which in turn feeds appropriate signals to
the actuators.

A modal control technique, which describes the behavior of the mirror and its sup-
porting structure by its eigenvalues (frequencies) and eigenfunctions (mode shapes), has
been developed by Creedon and Lindgren (ref. 2) for application to large orbiting telescope
primary mirrors. This technique was applied to distributed parameter plants where the
eigenvalues and eigenfunctions have closed-form solutions. For typical telescope applica-
tions with complex mirror mounts, a central hole in the primary mirror, and actuator
masses at the rear of the mirror, numerical approximation techniques are required to
analyze the dynamics. A structural analysis program using numerical techniques was
used by Howell and Creedon (ref. 3) to analyze a 1-meter-diameter, solid homogeneous
spherical mirror for application to the active optics modal control loop. Reference 3
contains an explanation of the control system and a design procedure based upon use of
the modal control technique. Two approaches for treatment of initial errors are pre-
sented; the first approach is deterministic for treatment of known or expected errors,
whereas the second approach assumes uncorrelated errors for cases where the disturb-
ances are unknown. The latter approach was found to be less sensitive to variations in
error distribution and was preferred even though it requires more actuators than the
deterministic method for a specific error. Further, for the uncorrelated treatment of
errors, a technique is shown to estimate the number of actuators required to reduce the
initial error by a predetermined amount. The location of actuators will be near the com-
mon node lines of the most predominant uncontrolled modes.

Simultaneous with the theoretical work, laboratory experimentation on a 1-meter-
diameter spherical mirror was being done to demonstrate the feasibility of this approach
(refs. 4 and 5). Investigation of a few control laws showed that the modal control law
requires the fewest actuators to reach the desired performance index (ref. 4).



Although the groundwork for active figure-error control has been established, sev-
eral areas of investigation remain. Previous theoretical work assumes perfect estimates
of the modal-displacement coefficients, and sensor locations always include actuator loca-
tions as a subset. The technique for selecting actuator locations requires an exhaustive
computer search of the areas near common node lines of the most predominant uncon-
trolled modes. For higher order modes, this technique becomes very time consuming •
and costly.

The analysis and computer results described in this paper is an extension of the '
work summarized previously and attempts to improve upon the deficiencies described.
Since the main purpose of this work is to evaluate the steady-state error of the control
system as a function of the number and location of actuator and sensor points, the control
equations are derived in a very general form and allow any number and any location of
actuators and figure sensors. An improved technique for selecting actuator and figure-
error sensor locations includes the effect of all uncontrolled or unobserved modes. The
technique is essentially computerized, requires relatively little time, and is relatively
inexpensive as compared with the search techniques used previously.

The numerical analyses used for this paper allow 250 locations for actuators and
sensors, as opposed to 58 locations for the previous references. Both the mode analyzer
and the force-compensation transformation matrix (described in the section entitled
"Modal Control Technique") are included in a general form to allow evaluation of differ-
ent designs. Previous work assumes only one particular case. A feedback optimal con-
trol law, defined as the least squares fit to the desired shape, is developed for compari-
son with the modal control law. For the analysis in this paper, the performance index is
chosen as the rms error of the mirror surface.

The first section of this paper discusses the modal control technique and includes a
brief description of the structural model used to calculate the eigenvalues and eigenfunc-
tions of the mirror, a description of the modal control loop and all of its components, and
a complete development of the state-space differential equations describing the system.
The steady-state solution to these differential equations is given for a step-input disturb-
ance. Finally, a performance index is defined as the rms error of the mirror surface.

The second section includes the development of a feedback optimal control law, which
is the least squares fit to desired shape. This approach uses all of the estimated modal-
displacement coefficients and weights them by their corresponding eigenvalues and eigen-
vectors. This controller is integrated into the control system, and the state-space diffe'r-
ential equations describing the control system are developed.

The third section of this paper considers stability, state and output controllability,
and observability for both the modal and optimal control laws.



The fourth section describes a technique for selecting actuator and figure-error
sensor locations. This technique is based upon minimizing that part of the potential
energy which is in the uncontrolled modes. In order to minimize the work involved, an
approximate selection technique is described that is essentially computerized, but
requires the designer to select locations from contour plots. Suggested locations for 4,
7, 10, 15, and 20 actuators or sensors are shown.

The control-system equations are very general and allow the incorporation of any
mdde-analyzer design; two designs are described in the fifth section. For each design,
special properties of the coefficient transition matrices are described.

The least expensive and most flexible approach for design and evaluation of an
active-optics control system is by computer simulation. Various numbers and different
locations of actuators and figure-error sensors along with different control laws and mir-
ror configurations can be easily evaluated. The sixth section of this paper describes the
control-system computer results for a 0.762-meter-diameter mirror with a 60-to-l ratio
of diameter to thickness and a radius of curvature of 4.52 meters. Results from several
computer runs are shown for three different initial-error distributions and include two
different mode-analyzer designs and both the modal and optimal control laws. Some spe-
cial properties of the two control laws are given in appendix A.

SYMBOLS

A coefficient transition matrix (see eq. (19))

a actuator force (modal coordinates)

B control matrix for external disturbance (see eq. (19))

C modal-displacement vector

C estimated modal-displacement vector

D dynamic compensation matrix

E output matrix (see eqs. (20))

F control matrix (see eq. (19))

G transmission matrix (see eqs. (20))

H force-transformation matrix
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He force-transformation compensation matrix

I identity matrix

Ip potential energy

Ipu potential energy in the uncontrolled modes

J performance index

K stiffness matrix

L control matrix (see eq. (31))

M total number of modes carried in the analysis

Mm mass matrix

N total number of mirror displacements observed and total number of modes
sensed

n number of controlled modes

Pojjn observability matrix for n controlled modes

pobr observability matrix for r modes observed in addition to those controlled

Poc output controllability matrix

Psc state controllability matrix

p total number of modes carried in the analysis other than those controlled

Q rms error remaining

q external disturbance vector

R remaining modes carried in the analysis that are neither controlled nor
observed



r number of modes observed in addition to those controlled

S coefficient transition matrix (see eq. (31))

T flexibility matrix

U eigenvector matrix

Ue mode-analyzer matrix

V transfer function (see eqs. (13))

W physical mirror displacements

X state variable vector

Xss steady-state value of state variable vector

X differential of state variable vector

Y external reference vector

Z control matrix for external disturbances (see eq. (31))

a actuator force (physical coordinates)

A eigenvalue matrix

Superscripts:

Single letter column vector with dimension of letter

Double letter matrix denoting rows and columns, respectively

T transpose

* conjugate transpose

-1 inverse



MODAL CONTROL TECHNIQUE

In this section the finite-element structural model used to calculate the eigenvalues
and eigenvectors of the mirror is described first and then the equations describing the
modal control system are developed in state-space differential-equation form for com-
parison with an optimal control technique described in the next section. The equations
are very general, allowing both the incorporation of any number and location of actuators
and figure-error sensor points and the evaluation of different mode-analyzer and force-
compensation transformation matrices.

The NASTRAN structural analysis program (ref. 6) has been used to calculate the
eigenvalues and eigenvectors that are needed to model the mirror for control-system
analysis. The finite-element structural model used in the structural analysis is shown
in figure 2 and consists of 253 grid points and 462 triangular elements. All elements are
homogeneous, include both membrane and bending effects, and, except for those elements
on the exterior boundary, are equilateral triangles for best numerical accuracy. The
numbering system used in the analysis was chosen to minimize the bandwidth of the stiff-
ness and mass matrices^ for minimum storage and solution times (ref. 6). Grid points 15,
119, and 247 are the locations of a 3-point kinematic mount; grid point 15 is constrained
in all three directions; grid point 247 is constrained only in the out-of-plane direction;
and grid point 119 is constrained in the out-of-plane direction and in an in-plane direction
that is perpendicular to the line joining grid points 119 and 135. The kinematic mount is
a typically chosen support since the mirror is not overconstrained.

A block diagram of the modal control loop containing a mathematical model of the
mirror, a figure-error sensor, and a controller is shown in figure 3. The vectors and
matrices shown in this figure and throughout this paper are denoted by symbols with
superscripts. A symbol with a single superscript represents a column vector with the
dimension defined by the superscript, and a matrix is defined by a symbol with two super-
scripts denoting the row and column dimensions, respectively. The mirror is represented
by a box which has an actuator forces acting on it and W^ finite-displacement outputs
at M preselected locations. The three channels in this box represent: (1) the n con-
trolled modes which are also equal to the number of actuators, (2) the r modes observed
in addition to the controlled modes which are also observed, and (3) the R remaining
modes carried in the numerical analysis that are neither observed nor controlled. In the
modal representation of the mirror the actuator forces are first transformed from physi-
cal to modal coordinates by the force-transformation matrices and then weighted by the
eigenvalues of the mirror and its supporting structure. For analysis in this paper, the
eigenvalues and eigenvectors have been determined by the NASTRAN structural analysis
program (ref. 6), and the eigenvalue matrices are inverses of those described in refer-
ences 2 and 3. The outputs from the three eigenvalue matrix boxes are summed with the



qM external modal mirror-displacement disturbances to form the C actual mirror
displacements in modal coordinates where

M = n + r + R (1)

with M being the total number of modes carried in the numerical analysis. The modal-
displacement coordinates are transformed to the W^ physical-displacement coordinates
by the displacement transformation matrix UMM, which is the matrix of mode shapes of
the mirror, as

WM = uMMGM (2)

The optical figure-error sensor observes N of the M physical mirror displace-
ments (N = M) and inputs proportional signals to the controller for processing. Although
the C^ coefficients are mathematically obtainable, only the estimated modal-
displacement coefficients C^ can be measured in a physical control system. The C

vector may be calculated by using the mode analyzer Ue which is also a coordi-
nate transformation matrix between the physical and modal domains where

N = n + r (3)

For the modal control technique, only the Cn vector is used for control. Later in this
paper, an optimal controller is described which uses all of the estimated modal-
displacement coefficients. The n estimated coefficients used for the modal control
technique are processed by the dynamic compensation matrix Dnn. The output Xn is
first summed with external reference signals Yn and then transformed to physical actu-

i"1
He

nnator forces by the force -transformation compensation matrix

For this analysis a type 1 control system has been assumed and the integration for
each control channel is lumped in the Dnn matrix. This matrix is assumed to be diag-
onal with an integration in each element and a gain of unity. Since the main purpose of
this work is to evaluate the steady-state error as a function of the number and location of
actuator and sensor points, all other dynamics have been omitted. When given stability,
the control system will go to the same steady-state error. Normally, mirror dynamics
will have very little effect since the eigenvalues are so large. For example, a 0.76-meter-
diameter spherical mirror with a 4.5212-meter radius of curvature, a 60-to-l ratio of
diameter to thickness, and a 3 -point kinematic mount has a lowest eigenvalue of
2.59 x 1()5 rad/sec2 which corresponds to a frequency of 81 hertz (ref. 7). The lowest
eigenvalue for a 3.05-meter-diameter mirror with the same f-number and diameter-to-

8



thickness ratio is approximately 1.47 x 10^ rad/sec2 which corresponds to a frequency
of 19.3 hertz. (See ref. 7.) Despite the lack of low-order dynamics in the dynamic com-
pensation matrix, the stability of the control loop and interaction between control chan-
nels must be evaluated for different actuator and sensor locations, for the design of the

rUe
NN| matrix, and later for the design of the fee

NN matrix.

The approach for calculating the force-transformation matrices is only summa- T

rized in this paper for completeness since it is derived in reference 2. The U
matrix is partitioned into a (3 x 3) matrix as

TMM

[uMM] =

unn

urn

URn

unr

urr

URr

UnR

UrR

URR

(4)

where the rows correspond to grid-point locations and the columns represent the modes.
Normally, the modes will be in numerical order whereas the grid points will not have
any special distribution. The force-transformation matrices are determined from the
n points where actuator forces are applied to the mirror and, for the case where the
force acts over a very localized area, are obtained (ref. 3) by transposing the first row
in equation (4) as

nnR

Hrn = [unr]

HRn

(5a)

(5b)

(5c)

The eigenvalue matrices are diagonal with all positive coefficients and are derived
by again partitioning according to the n, r, and R sets as

[AMM]
-i

Ann

0

0

0

A r rA

0

0

0

ARR

-1

(6)

The figure-error sensor only observes N points on the mirror surface. Perfect
alinement and a large signal-to-noise ratio are assumed for this sensor. The output sig-

Nnal W is, therefore, a perfect representation of the N measured points on the



mirror. The relationship between the input and output of the figure-error sensor is
given as

WN = I N N | ONR]WM
(7)

where W is partitioned such that the first N coefficients represent the measured
points, and 0 represents a null matrix. Substituting equation (2) into (7) yields

WN = : O N R M M C M
(8)

The displacement transformation matrix can be partitioned into a (2 x 2) matrix as

[uMM] =
uNN

URN

UNR

URR
(9)

where the first N rows correspond to the N observed displacement points on the
mirror surface and the first N columns are the sensed modes desired. Substituting
equation (9) into (8) and using equations (1) and (3) yields

WN = (10)

which relates the figure-sensor output to the modal-displacement vector. The estimated
modal-displacement vector is related to the figure-sensor output vector by

Substituting equation (10) into (11) gives

cN^Ue^jVNcN^UeNN]"1! (12)

with the following relationships defined as

rnn

Trn

rnr

vri
(13a)

10



" rnR

TrR
(13b)

By substituting equations (13) into (12) and using equation (3), the estimated modal-
displacement coefficients become

rnn

rrn

rnr

rrr

rnR

TrR
(14)

In the modal control technique, only the first n modes are used for control. Since
these n coefficients are inputs to integrators, a differential equation can be written as

Xn = Cn = VnnCn + VnrCr + vnRCR (15)

Relating the actuator forces to the input reference signal and to the state variables gives
i

-,-1 r -i-l

an =
r r r TTT nn vn „ nn Y

n
He Y ~ He I A (16)

The modal-displacement vectors are related to the force vector by

(17a)

(17b)

CR = qR (17c)

The modal-displacement vectors can be related to the reference vector and state
variable vector by substituting equation (16) into (17) as

11



Cn = qn
 + Ann HnnLI nn Y

nH r J x

•i r Ti r Ti r Ti
Hrn[He

nnj Yn-[A r rJ Hrn[He
nnj Xn

(18a)

(18b)

HRn

1 r r1 i
Yn_ LRR HRn TT nn Ynrip A. (18c)

rix [He
nn]In all previous work, matrix |He | has always been assumed as the inverse of

matrix Hnn, allowing terms in equation (18a) to cancel. The state-space first-order
differential equation that describes the modal control loop is obtained by substituting
equations (18) into (15) and recombining terms. In general form, the equation becomes

Xn = AnnXn + BnMqM + FnnYn (19)

and equations (18) become, respectively,

cn = Ennxn + qn (20a)

Cr = ErnXn + qr + GrnYn

^R T,Rnvn _,Rc = t A + q

(20b)

(20c)

where

vnnAnn nn-1
"̂V11"1 -1 nn (21a)

! ynr | yr (21b)

12



Fnn =

Enn =

-Ann
(21c)

(2 Id)

Ern = , rr
-1

(21e)

-1 r -,-1

H ™ (21f)

-,rn
(21h)

By using the relationship given in equation (21c), the steady-state solution to equa-
tion (19) for a step-input disturbance q is

Xn - -Ass ~
,nn

-1
BnMQM (22)

provided the coefficient matrix Ann is nonsingular and all of its eigenvalues are dis-
tinct and have negative real parts. The restriction of distinct eigenvalues is a practical
consideration to simplify the solution shown in equation (22) and does not limit the gen-
eral equation (19). For all computer runs, the eigenvalues have always been found to be

distinct. Once the state variable vector is calculated, the modal-displacement coeffi-
cients can be found by substituting equation (22) into equations (20) and using the rela-
tionships in equations (21) as

q n -E n n A n n

-1
M (23a)

13



Cr = qr - Ern
• T1

Ann BnMqM (23b)

CR = qR - ERn ,nn
-1

RnM Ma q (23c)

The performance index used for all analysis in this paper is defined as the rms
error of the mirror surface. The derivation is given in reference 3 and shows that the
performance index J can be represented in terms of the modal-displacement coeffi-
cients as

J = \ |C M CM (24)

where the C vector is taken from the solution of equations (23).

DEVELOPMENT OF OPTIMAL CONTROLLER

In reference 3 an optimal control law was defined as the least squares fit to the
desired shape: An open-loop optimal control law was derived where actuator forces
were found that minimize the square of the performance index in equation (24). In this
paper, a slightly different approach is used where an optimal controller is developed for
use in a closed-loop control system. The state-space differential equations that describe
the control loop with this controller are shown at the end of this section after the control-
ler is developed.

It is first assumed that a perfect figure-error sensor is used and that all M points
on the mirror surface are observed (R = 0). After the controller is developed, it will be
combined with the other components in the control loop and equations will be developed
for the case with unobserved mirror displacements. The change in performance index
with respect to the actuator forces is derived in reference 3 as

-1 ^ ' fr r1 1
HMn>an

 + 2< AMM HMn .M (25)

14



where HMn and MM are defined in equations (5a), (5b), and (6). For a perfect
figure-error sensor with 100-percent observability of the mirror surface, the estimated

- Mmodal-displacement vector C is equivalent to the actual modal-displacement vector
C . Solving for qM in equations (17a) and (17b), making use of equation (1), and sub-
stituting into equation (25) yields

= 2< AMM
-1

HMn (26)

where the equation is set equal to zero since the minimum value is desired. Computer
results show (see last section of the paper) that the minimum value is always obtained
for the perfect figure-error sensor case since the error is always less than that for the
modal control law. Partitioning equation (26) into the n and r sets (R = 0) and defin-

ning the vector as X yields

Xn = Unn Ann Tnr Arr
-1

Cr = 0 (27)

M

Equation (27) is the basic equation for the optimal controller and shows that all of the
estimated modal-displacement coefficients are used and weighted by their eigenvalues
and corresponding eigenvectors. Since the control law states that vector Xn must be
forced to zero, each of the n signals is an input to an integrator. Figure 4 is a block
diagram of the least-squares optimal controller and shows vector Xn as the input to
the dynamic compensation matrix. In a practical situation there will always be modes
that are neither observed nor controlled (R * 0). For this case, the assumption that C

Mand C are equal is not completely true. The effect of this assumption is shown in the
computer results discussed later in this paper.

The control-system equations with the optimal controller are essentially the same

as those described for the modal control technique. By letting matrix Kg1"1 be an

identity matrix to mechanize equation (27), equations (7) to (18), with the exception of

equation (15), are applicable to both control loops. Another reason for letting Kg™1

be an identity matrix is described in appendix A, section II. Equation (15) is replaced by

15



i-l !-l

xn = unn
Ann Cn + Unr Arr (28)

and equation (14) remains the same as

Cn = VnnCn + VnrCr + vnRCR (29)

and

Cr = VrnCn + VrrCr + VrRCR (30)

with Vnn, Vnr, V1*, Vrn, Vrr, and VrR defined in equations (13).

The general form for the state-space differential equation is similar to that for
the modal control loop (eq. (19)) and is

Xn = SnnXn + ZnMqM + LnnYn
(31)

where

-,nn UnnAnn
-1 -1

-1 nr

-1
UnrArr V rnAnn Hnn

,-1 rr\ rr-l .
Vrr Arr H1

(32a)

7nM

(32b)

Lnn = _gnn (32c)

16



Equations (29) to (32) show how the optimal controller, which was derived for the
case with R = 0, is used in a control system where all physical displacements on the
mirror are not observed (R * 0). The effect of using the optimal controller in a system
with unobserved mirror displacements is shown in the last sections of this paper.
Equations (20) for the modal-displacement coefficients, with the relationships in equa-

r r1
tions (21d) to (21i) and with the force-transformation compensation matrix He

nn an

identity, are applicable to the optimal control loop. Replacing coefficient matrices Ann

and BnM by S1111 and ZnM, respectively, in equations (22) and (23) results in the
steady-state solutions to a step-input disturbance qM for .the state variables Xn

0So
and the model-displacement coefficients. Both control laws have similar stability
requirements that are described in the next section.

STABILITY, CONTROLLABILITY, AND OBSERVABILITY

Although the only dynamics considered in the control loop is an integration in each

controlled channel, the effect of matrices Ue
NN and HG on system stability

must be evaluated. Improper selection of these matrices can result in interaction
between control channels resulting in complex conjugate eigenvalues and/or positive
roots. Complex conjugate roots have been obtained for certain selections of the mode-
analyzer matrix, and positive roots have been obtained for an improper selection of the
force-transformation compensation matrix. For a multichannel control system with
only one integration in each control channel, complex conjugate roots indicate a coupling
between control channels.

The subsequent analysis is made by using the symbols defined for the modal con-
trol system. However, the analysis is also valid for the optimal control system if S1111

(eq. (32a)) is used in place of Ann (eq. (2la)) and Lnn (eq. (32c)) is used in place of
Fnn (eq. (21c)). Since the control system analyzed in this paper is linear and time-
invariant, asymptotic stability can be determined from the coefficient matrix A1"1 in
equation (19). (See ref. 8.) If the eigenvalues of this matrix have all negative real parts,
then the control system is stable. As an additional criterion for the solution vector in
equation (22) to be valid, all eigenvalues of matrix Ann must be distinct. From the
many computer runs that have been made, the eigenvalues of this matrix have always
been distinct, although complex conjugate pairs have been found.

The definitions for controllability and observability are given in reference 8 and,
therefore, only the basic equations for the control system defined by equations (19)

17



and (20) are presented in this paper. This control system is completely state control-
lable if and only if the composite (n x n2) matrix Psc is of rank n where

"

Fnn
_

AnnFnn
—

,nn
(n-1)

-,nn (33)

By using the relationship in equation (21c), equation (33) becomes

rl (34)

and must be of rank n for complete state controllability.

The system described by equations (19) and (20) is completely output controllable
if and only if the composite [n x n(n + 1)J matrix Poc is of rank n where

poc - EnnFnn EnnAnn
(n-1)

-,nn G1nn (35)

By using the relationships in equations (21c) and (21g), equation (35) becomes

poc ~ ~ Enn AnnA Enn (36)

and must be of rank n for complete output controllability. Notice that only the modal-
displacement coefficients defined by equations (20) have been considered since, with n
actuators, only n channels can be controlled.

Equations (19), (20a), and (20b) are used to check for observability. Modal chan-
nel Cn is completely observable if and only if the composite (n x n2) matrix P0bn is
of rank n where

Pobn = (E™)* (A™)* .nni '(n-1)
(37)
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The symbol * represents the conjugate transpose of the corresponding matrix in
parentheses. Modal channel Cr is completely observable if and only if the composite
(n x nr) matrix Potjr is of rank n where

obr = (Ann)*(Ern' Ern} (38)

Both stability and controllability were checked in all computer runs. For all cases, the
first partition in equations (34) and (36) was found to be sufficient.

SELECTION OF ACTUATOR AND SENSOR LOCATIONS

v Two of the most important steps for obtaining good results in controlling the figure
of a large primary mirror are the selection of actuator locations and figure-error sen-
sor locations. The approach used here is to select actuator locations on the basis of
minimizing that part of the potential energy which is in the uncontrolled modes, whereas
figure-error sensor locations are selected to minimize the potential energy of the unob-
served modes. For the remainder of this discussion the approach will be described in
terms of actuator locations since the criteria for actuator and sensor locations are
identical.

It is first assumed that M external loads representing actuator forces a are
exerted on the mirror causing W finite mirror displacements. A technique and jus-
tification for selecting n of the M actuator locations will then be described. Finally,
specific locations will be shown for 4, 7, 10, 15, and 20 actuator cases.

The potential energy Ip is related to the flexibility matrix T
forces as

MM and actuator

!p = TMMaM
(39)

By using the relationship between the eigenvalue matrix A and the stiffness matrix
KMM (see ref. 9) as

MM (40)
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where the eigenvectors are normalized such that

(41)

and where Mm is the mass matrix, and by noting that the flexibility matrix is the
inverse of the stiffness matrix, the equation for potential energy becomes

(42)

The flexibility matrix is the term inside the braces in equation (42) and is shown in
terms of the eigenvectors and eigenvalues of the mirror. Partitioning the flexibility
matrix into two parts corresponding to n controlled modes and p uncontrolled modes
where

yields

p = r + R

-1 T

UMM[AMM]" [UMM] = [uMn i uMp]
Ann 0

DD0 A

-1
T

[uMn]

T

[UMP]

(43)

(44)

Substituting equation (44) into equation (42) gives

1"
uMnLnnl" [uMnl >a M

+ i
L J L J I 2

(45)

where the potential energy is a function of the energy in the controlled and uncontrolled
modes of free vibration. That part of the potential energy IpU that is in the uncon-
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trolled modes, described by the second term in equation (45), can be partitioned accord-
ing to the n selected actuator locations into

(46)1
2^n

ap

j.
Tnn Tnp

Tpn Tpp

an

«P

and since aP is zero, equation (46) reduces to

T
if nf Tnn n= -[aJ T a (47)

Equation (47) shows the work done on the uncontrolled modes as a function of the actuator
locations and forces, but it does not indicate how these locations are selected. The main
idea is to select actuator locations that give a minimum value for Ipu. One approach is
to try all possible combinations of actuators. The problem with this approach is that the
number of possible combinations becomes unwieldy. For example, if 7 actuators are
used to control 7 modes (n = 7) and 250 possible locations are available (p = 243), the
number of possible combinations is 1.13 x 10^.

An alternate and less time-consuming procedure that is used in this paper is to
work with the flexibility matrix of the uncontrolled modes. (See eq. (46).) The M
diagonal elements of this matrix are extracted and plotted on a contour map at the cor-
responding grid-point coordinates. Minimum values on these contour maps, except near
support points which are always low, are selected for actuator locations. These diagonal
coefficients and their corresponding off-diagonal coefficients form the matrix Tnn

(eq. (47)). Since the flexibility matrix is symmetric and positive definite, the approach
assumes that if all diagonal elements of Tnn are small and approximately the same
value, then the off-diagonal coefficients will also be small and probably smaller than the
diagonal coefficients.

The validity of this assumption and the physical significance is described as
follows: The coefficients of T1111 are described by

MY> i (i = k for diagonal coefficients;
l_, j uijukj i * k for off-diagonal coefficients) ' '

j=n+l

where u represents a coefficient of matrix U p, i and k represent the row and
column indices of Tnn, respectively, and X is an eigenvalue of matrix A^P. For any
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diagonal element in Tnn, each term in equation (48) is positive and the summation
represents a maximum. The off-diagonal terms can be positive or negative and the
summation will probably be less than the corresponding diagonal coefficients since the
same terms are included in both summations. When considering only the diagonal
terms, equation (48) shows that each element belonging to an eigenvector is squared,
weighted by its eigenvalue, and then summed over all the uncontrolled modes. Selec-
tion of the smallest values for actuator locations is motivated by a philosophy similar to
selecting a common node line for all the uncontrolled modes. Although the actuators
will not be on the mode lines of any particular mode, they will probably be near the node
lines of the most predominant uncontrolled modes.

Figure 5 represents contour maps obtained by taking the diagonal elements of the
flexibility matrix for the uncontrolled modes for 4, 7, 10, 15, and 20 actuators cases,
respectively. The peak value on each map is normalized to 100 percent, and the crosses
indicate the locations of actuators (or sensors). These actuator locations have been used
in the computer runs described later in this paper. The four actuator locations shown in
figure 5(a) are identical to one of the best cases found from a complete search of 58 pos-
sible grid points using uncorrelated errors (ref. 3). The seven locations in figure 5(b)
are among the several best cases shown in reference 3, although all seven are not shown
simultaneously. The best seven in the reference were not selected from a complete
search of all the grid points. The contour maps are used to find approximate locations
for actuators. Once the general area is decided upon, a computer printout is referenced
to find the exact location of the minimum.

The technique of selecting actuator locations at points where the potential energy
of the uncontrolled modes is small completely ignores the controlled modes. There are
occasions when matrices Hnn (see eq. (5a)) and U (see eq. (9)) become singular
or ill-conditioned causing extremely poor results. For these cases, the relocation of
one actuator or sensor has eliminated this problem. Physically, an ill-conditioned or
singular matrix means that at least one controlled mode, considering only actuator loca-
tions, is essentially a linear combination of the other controlled modes. The modes can
be controlled in the ill-conditioned case, but only with very large actuator forces causing
increased excitation of the higher order modes. A specific example of an ill-conditioned
case is described in the last section of this paper.

DESIGNING THE MODE ANALYZER

The mode-analyzer matrix Ue in the controller section (figs. 3 and 4) of

the control loop transforms the N measured displacements on the mirror surface from
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physical to modal coordinates. The accuracy of the estimated modal-displacement vec-
*• Ntor C is a function of the method used to design this matrix.

One method of choosing the mode analyzer is to invert matrix U defined in
equation (9). (See ref. 2.) By doing this, equation (13a) becomes an identity matrix, and
for N > n the coefficient matrices Ann and Snn

laws (see eqs. (21a) and (32a)) become, respectively,
for N > n the coefficient matrices Ann and Snn for the modal and optimal control

Ann = -[A1111]"1 ' (49)

and

Snn |TT11I1»11U --[rim TTI11 A 1 I -TTlJ l l f rn \= U A t i + U A H ^ u ;

The derivation of equations (49) and (50) is given in appendix A, section I and assumes
that the modes that are neither controlled nor observed are negligible. This is a real-
istic assumption since enough figure-sensor points will probably be used to get a good
estimate of the modal-displacement coefficients. Both of the aforementioned coefficient
matrices always have negative eigenvalues indicating that the closed-loop control system
is always stable.

A second approach for choosing the mode analyzer is first to invert the displace-
ment transformation matrix U in equation (9) and then to partition the N rows and
columns corresponding to the N sensed modes and grid points, respectively (ref. 4).
For this approach the coefficient matrices Ann and S1111 become

Ann = _ nnAnn- + vnrArr-HrnHnn- (5J)

where
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and

nn
H,nn

+ U n r A r r ~ r (52)

where H, nn
-1

is an identity matrix. Again it is assumed that the modes that are

neither controlled nor observed are negligible and N > n. Neither equation (51) nor (52)
has any special properties for stability. Matrix Ann, which was uncoupled for R = 0
in equation (49), is now a full matrix with interaction between various control channels.
Matrix Snn, which had positive definite and symmetric properties in equation (50), has
neither of these properties in equation (52). Results from computer runs show that com-
plex conjugate eigenvalues can result when using the second approach for designing the
mode analyzer.

i *
The two techniques for designing the mode analyzer have been evaluated by com-

puter runs for both the modal and optimal control laws. The four possible cases are
defined as follows:

Modal control law

Method 1:
i-l

U, NN (53a)

Method 2: u NN U N N *I (53b)

Optimal control law

Method 3: Ufi
NN UNN = I (53 c)

Method 4: LH U™ (53d)
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In the next section the results from several computer runs using methods 1 to 4
for three different initial error distributions are discussed.

CONTROL-SYSTEM COMPUTER RESULTS

The goal of this section is to tie together all of the previously described theory
and compare it to the computer results for the various designs. The results show the
steady-state error remaining for various numbers and locations of actuators and figure -
error sensors. These runs are made for each of the two control laws and for the two
mode-analyzer designs. Included in this section is a description of three error distri-
butions used to get a good variation of results.

All computer runs in this paper have been made for a solid, spherical mirror
(without a central hole) with a diameter of 0.762 meter, a diameter-to-thickness ratio
of 60 to 1, a radius of curvature of 4.5212 meters, and a 3-point kinematic mount located
120° apart. The finite-element structural model of this mirror is shown in figure 2 and
consists of 462 triangular elements and 253 grid points. The supports are located at
grid points 15, 119, and 247 as described earlier in this paper. A modal analysis of this
mirror has been made by using the NASTRAN structural analysis program (ref. 6) which
computed the eigenvalues and eigenvectors needed for the control-system analysis.
Fifty-eight modes have been used for the control-system simulation since this should
provide sufficient accuracy for the final analysis. A more complete description of the
mirror dynamics can be found in reference 7 which includes the natural frequencies of
vibration and contour maps for the first 10 mode shapes. Figure 6 contains a plot of the
first 58 eigenvalues for the mirror used in this analysis.

Three different error distributions have been used to get a reasonably good distri-
bution of results. Since actuator and sensor locations are selected independent of the
initial error, the final results should be reasonably good for all three error distributions.
Figure 7 contains contour maps, normalized to a maximum of -100, representing the
three different initial errors. Figure 7(a) shows error distribution number 1 and repre-
sents the fabrication error measured from an actual mirror described in reference 5
with the physical properties described earlier in this section and with an rms figure
error of one-half wavelength (approximately 0.3 /im). Figure 7(b) shows error distri-
bution number 2 and was arbitrarily generated by making the initial modal disturbance
vector q decrease very rapidly with mode number. The contour plot for this error
is very similar to that for mode 1 of the mirror. Error distribution number 3 (fig. 7(c))
represents the measured mirror displacement resulting from a thermal disturbance
modeled in reference 4 on an actual mirror which has the same properties as the mirror
described in this paper.
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The initial-error disturbance vector in modal coordinates is calculated from the
physical displacement vector by

qM = |UiVllvl| Wm (54)

These modal-displacement coefficients are used to determine the number of actuators
required to reduce the initial error by a predetermined amount, assuming uncorrelated
errors (ref. 3). The rms error Q remaining after n modes are deleted is calculated
by

1/2
M

2

i=n+l
(55)

The percent of rms error left after deleting the n controlled mode is shown in figure 8
for the three error distributions. For very good actuator and figure-error sensor loca-
tions, the error left should follow these initial-error curves.

Typical computer runs made for each error distribution include varying the num-
ber of actuators and sensors in different combinations. Methods 1 to 4 relating differ-
ent combinations of control laws and mode analyzers and defined in a previous section
entitled "Designing the Mode Analyzer" are checked for each run. These methods will
be designated by a number next to the corresponding data point in all of the following
figures. Actuator and sensor locations for the various cases are shown by crosses in
figure 5. The corresponding grid-point numbers for these cases are listed in table I
and refer to the finite-element model in figure 2. The actuator locations are based upon
the vectors Q; being uncorrelated, and a deterministic error is used only to evaluate
the results.

All of the computer results shown in this paper are plotted as a percent of rms
error left for a specific number of actuators and sensors. In figure 9 this rms error is
plotted as a function of the number of actuators with a perfect figure-error sensor that
observed all points on the mirror surface and for initial error distribution number 1.
The predicted error (eq. (55)) is plotted as a reference to show the desired goal for each
number of actuators. For the case where all points on the mirror surface are observed
by the figure-error sensor, the optimal control law (methods 3 and 4) is always equal to
or superior to the modal control law (methods 1 and 2). The difference between the pre-
dicted error curve and the calculated data points indicates the amount of error generated
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TABLE I.- GRID POINTS FOR 4, 7, 10, 15, AND 20 ACTUATOR
AND SENSOR CASES

Number

1
2
3
4
D

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Actuator and sensor locations for cases -

4

31
127
133
217

7

21
57
83
127
182
187
232

10

21
57
79
83
110
124
178
182
187
232

.

15

11
18
56
60
64
68
124
127
131
134
186
190
198
229
243

20

12
18
47
50
53
71
74

. 88
111
122
126
134
164
170
173
206
209
212
229
244

in the higher order modes. For the 4- and 7-actuator cases, the error generated by the
control system.subtracts from the initial error (see eqs. (23)); whereas for the 15- and
20-actuator cases, the error generated by the control system adds to the initial error
in the higher order modes. Since the actuator locations are selected to minimize the
potential energy in the uncontrolled modes and are not at node lines, it is highly improb-
able that locations can be selected that are completely independent of the uncontrolled
modes. The best that can be done is to use several error distributions and select actu-
ator locations that minimize the differences for all cases.

The effect on the steady-state accuracy of decreasing the number of sensor points
for 4 and 7 actuators is shown in figures 10 and 11, respectively. The predicted error
level (from fig. 9) is 67.3 percent for the 4-actuator case and 47.1 percent for the
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7-actuator case. Notice that for the case of an equal number of actuators and sensors,
all four methods give the same results. (See appendix A, section II.) When there are a
few more sensors than actuators, the error increases and is probably the result of poor
estimates for the modal-displacement coefficients. In both figures 10 and 11,15 sensor
points give results that are almost as good as the results from 58 sensor points; this is
defined as the case with all points on the mirror surface observed. In general, method 3
again gives the best results, although this is not always true for a nonperfect figure-
error sensor.

In order to demonstrate that poor actuator locations can cause poor results, the
actuator located at grid point 127 (7-actuator case) was changed to grid point 132. The
relative amplitude on the contour map in figure 5(b) is 1.8 percent higher at grid point 132
Figure 12 shows a plot for the 7-actuator case with several different sensor points and
locations. For 10 sensor points, the final error for method 2 is 102 percent and for
method 4 it is 99 percent.

Another good example is shown by the 20-actuator and 20-sensor cases. For these
cases, grid point 98 rather than grid point 88 would normally be selected from the con-
tour map in figure 5(e) (table I). The results for these cases using the three error dis-
tributions are shown in table II. For the cases with 20 actuators and 58 sensors, the
results for methods 1 and 2 are extremely poor; whereas the results for methods 1 and 3
are extremely poor for the cases with 7 actuators and 20 sensors. Matrix H1111 in
equation (5a) for the 20-actuator cases is the transpose of matrix U in equation (9)
for the 20-sensor cases. These matrices appear to be ill-conditioned as demonstrated
by the norm which is -2.12 x 10. (See ref. 10.) In comparison, the norm of these
matrices when grid point 88 is substituted for grid point 98 is -1.23 x 10 . Although
the results using grid point 88 are reasonably good, it is likely that better results could
be obtained by trying other locations for this actuator or sensor, since grid point 88 is
next to grid point 71. In general, a change of 1 actuator or 1 sensor will not cause
results as poor as those shown in this example.

TABLE II.- STEADY-STATE ERROR FOR 20-ACTUATOR AND 20-SENSOR
CASES USING GRID POINT 98

Error
distribution

1
1
1
2
2
3
3
3

Cases
Actuators

20
4
7

20
4

20
4
7

Sensors
58
20
20
58
20
58
20

[ 20

Error, percent, for method -
1

383
66.8

2969
57.0

2.49
487

39.0
1438

2
162
66.0
45.9

330
1.99

1089
38.2
35.7

3
19.1
66.9

2945
0.695
2.41
3.99

38.7
1589

4
19.7
65.8
44.8
0.702
1.99 i
3.97

38.2
35.4
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The next set of data to be discussed is for error distribution number 2. Figure 13
shows the rms error left as a function of the number of actuators for the case with all
points on the mirror surface observed. Again, the data points are reasonably close to
the predicted error curve for the corresponding number of actuators. The effect of
changing the number of sensor points for a case with 4 actuators is shown in figure 14.
For this error distribution, the results with 7 sensor points is almost as good as the
results with 58 sensor points.

Figures 15, 16, and 17 contain the results using error distribution number 3.
Again the calculated data in figure 15 follow the predicted error curve closely except for
the 20-actuator case. The data points for methods 3 and 4 are still only 5 percent above
the initial curve, whereas those for methods 1 and 2 are 10 percent above the curve.
These results compare to 3 percent and 8 percent, respectively, for error distribution
number 1 (fig. 9). The reason for this small difference from the predicted error curve
has been presented previously in this section. Figures 16 and 17 are for the 4- and
7-actuator cases, respectively. For both cases, 15 sensor points appear to be sufficient
for good results.

CONCLUDING REMARKS

This paper contains the development of a generalized representation of a controller
and then evaluates both a modal control law and an optimal control law that are appli-
cable to figure-error control of a primary error suitable for large orbiting astronomical
telescopes. Both computer results and analysis of the equations show that for a perfect
figure-error sensor that observes most of the mirror surface, the optimal control law
always has a smaller steady-state error than the pure modal control technique, as
expected. Analysis also shows that the "optimal" control approach is generally superior
for relatively few figure-error sensor locations and for different combinations of actu-
ators and sensors even though the modal-displacement coefficients are not completely
known. For decoupling the modal control loop, the force-transformation compensation
matrix is chosen as the inverse of the force-transformation matrix associated with the
controlled modes. When the optimal control law is applied, the force-transformation
compensation matrix is chosen as an identity matrix in order to implement the control
law. For either c.ase, the selection of this matrix has no effect on the final steady-state
error provided the system is stable. When the number of sensors equals the number of
actuators, identical results are obtained from both control laws.

Two techniques for designing the mode analyzer have been presented. One tech-
nique is to invert the eigenvector matrix \jNN consisting of the N observed mirror
locations and the N sensed modes. A second technique is first to invert the displace-
ment transformation matrix U , and then to partition the rows and columns corre-
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spending to the N sensed modes and N observed grid points, respectively. Com-
puter results show that, in general, the former technique is superior. The latter tech-
nique can cause interaction between controlled channels resulting in complex conjugate
roots and possibly an unstable control system.

The technique for selecting actuator and figure-error sensor locations is based
upon minimizing that part of the potential energy which is in the uncontrolled and unob-
served modes, respectively. An approximate technique for selecting these minimum
energy points is based upon plotting the diagonal coefficients of the flexibility matrix of
the uncontrolled or unobserved modes on contour maps and then selecting the minimum
values. Results from computer analysis show that this technique works quite well and
greatly reduces the number of computer searches required to find good locations. All
runs are for a solid spherical mirror (without a central hole) with a diameter of
0.762 meter, a diameter-to-thickness ratio of 60 to 1, a radius of curvature of
4.5213 meters, and a 3-point kinematic mount. For each of the three types of initial
error used, the rms error left for various numbers of actuators and 58 sensor locations
is reasonably close to the predicted value, if assuming uncorrelated errors. For a con-
stant number of actuators (4 or 7) the final error with 15 sensors is almost as good as
it is with-58 sensors.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., June 12, 1973.
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APPENDIX A

SPECIAL PROPERTIES OF CONTROL LAWS

I. Stability

Under certain conditions, both the modal and optimal laws have the special prop-
erty of always having a stable control system. The derivations below are for the control
system described in the paper with the dynamic compensation matrix Dnn a pure
integration.

Modal control law.- This derivation shows that when all physical points on the mir-

r r1
ror are observed (R = 0) and the mode-analyzer matrix Ue and the force-

-1
transformation compensation matrix He

nn are chosen as inverse matrices of U

and Hnn, respectively, the type 1 control system in figure 3 is always stable. For these
cases, equation (13a) becomes an identity matrix with

Vnn = Inn (Ala)

Vrr = Irr (Alb)

Vrn = 0 (Ale)

Vnr = 0 (Aid)

and equation (13b) is nonexistent. The coefficient matrix Ann in equation (2 la)
becomes

, nn I . nn (A2)

which shows that the eigenvalues associated with the controlled natural modes of vibra-
tion of the mirror are also the eigenvalues of the control system. Since the eigenvalue
matrix is diagonal with all positive coefficients, all eigenvalues of matrix A1"1 are
negative and real, resulting in a stable control system.
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APPENDIX A - Continued

Optimal control law.- This derivation shows that when the mirror surface is com-

r T1
pletely observable (R = 0) and matrix Ue is selected as the inverse of matrix

U , the type 1 control system in figure 3 with the controller in figure 4 is always
stable. For these cases, equation (13a) becomes an identity matrix as shown in equa-
tions (Al) and equation (13b) is nonexistent. The coefficient matrix Snn in equa-
tion (32a) becomes

snn = - unnAnn-2
Hnn rr ~ H1 (A3)

Using the relationships in equations (5a) and (5b) gives

,nn (A4)

The two submatrices inside the brackets in equation (A4) are always real, symmetric,
and positive definite, and, therefore, the eigenvalues of matrix Snn are always negative,
if assuming a stable control loop.

II. Selection of the Force -Transformation Compensation Matrix

Modal control law.- This derivation shows that the force -transformation compen-

sation matrix [H -I"'[He J does not affect the final steady-state position in a type 1 con-

trol system but does affect the dynamic properties. The coefficient matrix in equa-
tion (2 la) can be expressed as

Ann = _f"vnnAnn-1
Hnn

-1
(A5)

and the inverse of equation (A5) is

Ann _ _H nnA - ne (A6)
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APPENDIX A - Continued

provided He and the matrix inside the brackets in equation (A5) are nonsingular.
Substituting equations (A6) and (21b) into equation (22) and then solving for the steady-
state actuator force ass in equation (16) yields

HRn nn ynr
S S i i

(A7)

Since the steady-state expression for actuator forces does not contain matrix (He
nn| ,

then the steady-state solution for the modal-displacement coefficients is unaffected by
this matrix. (For reference, see eqs. (17).)

r r1
Optimal control law.- In the main text, matrix H nn is considered an identity

matrix. If this matrix is not an identity, the coefficient matrix Snn in equation (A3)
has a form similar to matrix A n in equation (A5) as

-2 -2
TTnn.nn Hnn T TnrArr Hrn||H nnU A rl + U A xl rl (A8)

The inclusion of matrix Kg™ destroys the special properties of a real, symmetric,

positive definite matrix for Snn. (See appendix A, section I.)

III. Equal Number of Actuators and Sensors

This section shows that when the number of actuators and sensors are equal, iden-
tical results are obtained from both the modal and optimal control laws for a type 1 con-
trol system. Further, it has been shown that the modal control law reduces to point
control at the actuator locations, and both experimental results and computer simulations
have verified these results. For this case, r becomes zero and equations (1) and (3)
reduce, respectively, to
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APPENDIX A - Continued

M = n + R (A9)

and

N = n (AID)

Modal control law.- The coefficient matrices in equations (2la) and (21b) are,
respectively,

Ann = -
" "

(All)

and

BnM nn nR (A12)

Substituting these equations into equation (22) gives

TT
ss - He

nn nn". j^ y ,RR~
-1

[vnnqn + VnRqRl + Yn

and the expression for the actuator forces in equation (16) becomes

-1

fvnnqn + V^q11] (A14)

Optimal control law.- For the case with r = 0, the coefficient matrices in equa-
tions (32a) and (32b) reduce, respectively, to

Snn = -
-1 -1 "™ J- _.n T^n™

(A15)
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APPENDIX A - Continued

and

,nM l~ Vnn j UnnAnn" 1

Rearranging and inverting matrix Snn in equation (A15) yields

(A16)

' "

-1

(A17)

Solving for the state variables in equation (22) yields

xn |vnnAnn
S S

and by substituting equation (A18) into equation (16) with matrix He
nn

matrix, the expression for the actuator forces is

as an identity

ass
" RRn

-1

(A19)

which is the same expression as that in equation (A14). For this special case of an
equal number of actuators and sensors, the actuator forces are independent of the matrix

-1
NN . Using equations (13), (A9), and (A10) gives

U, nn
-1

(A20)

' T1

ue
nn unR = vnR

(A21)
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APPENDIX A - Concluded

and substituting equations (A20) and (A21) into equation (A19) yields

a = Tnn.nn"
T T . u T TU A n + UnRARR~

url
r1

[unn
q
n
 + u

nVl (A22)
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Figure 1.- Schematic diagram of the deformable-mirror active-optics concept.
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(a) Four actuators.

Figure 5.- Contour maps of diagonal elements of flexibility matrix of uncontrolled modes.
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(b) Seven actuators.

Figure 5.- Continued.
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(c) Ten actuators.

Figure 5.- Continued.
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(d) Fifteen actuators.

Figure 5.- Continued.
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(e) Twenty actuators.

Figure 5.- Concluded.
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(a) Error distribution 1.

Figure 7.- Contour maps of three error distributions.
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(b) Error distribution 2.

Figure 7.- Continued.
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(c) Error distribution 3.

Figure 7.- Concluded.
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