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INTRODUCTION

This report is a summary of experimental vibration studies performed on a

number of flight control moment gyros and bearing life test fixtures for the

r

	

	 National Aeronautics and Space Administration, Marshall Space Plight Center,

Huntsville, Alabama. Tests were performed at MSPC, at Wyle Laboratories,

Huntsville, Alabama, and at the Bendix Corporation facilities in Teterboro,

New Jersey. Test period covered is from January, 1971, through July, 1972.

A description of test and analysis equipment is included as well as test pro-

cedures and overall performance rankings. Advanced ultrasonic rolling element

bearing fault detection techniques were applied for bearing analysis along with
i
i	 conventional vibration and sound analysis procedures.j,



TGST RESULTS AND CONCLUSIONS

I. A tabulation of results from all CMG testing is included as sheets D-1

through D-6. Based upon bearing condition, unbalance levels, bearing

misalignment, and acoustic noise, the overall performance ranking is as

follows:

Rank	 Serial No.	 Comments

Best	 0008	 Smooth bearings, low unbalance, low

sound level, good alignment.

2. 0007	 As above, nearly as good as 008

3. 0009	 Slightly more noisy than units above

but very good.

4. 0002	 Bearings rough, probably due to ball wear.

Unbalance fair - no mounting problems.

Noise fair.

5. 0010	 Unit bearings good until retainer squeal -

Apparent mounting problems produced 2 per

rev vibration. Unbalance low, noise high.

6. 0004	 Bearings rough, outer gimbal damaged by

shake tests. Resonant response of structure

to rotation frequency - even with best IG (0008)

II. Test results from engineering IGRA units E-2 and E-3 are tabulated on sheet
E.	 Based upon selected parameters at 7900 rpm, ranking is as follows:

Rank	 Serial No.	 Comments

Best	 E-2	 Bearings fair, unbalance very good. Sound

level low, bearing mounting good.

2.	 E-3	 Bearings fair to poor, unbalance good, sound

fair to poor. Bearing mounting problems present

Both units rank below worst flight IGRA-'s but better overall than CMG 0010 and

CM00004.
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III A tabulation of results from LTF units is included as sheets F-1 and F-2.

Hank Serial No.

Best 1

2 4

3 5

4 3	 r

J5, 2

6 6

Comments

Very good performance

nearly equal

Very nearly the same - good performance

Bearings rough - worn - balance fair

IV. Further conclusions are as follows:

1. The bearing fault detection technique developed under NASA Contract

NASB-25706 can be applied to the analysis of problems occurring in

Life Test Fixtures and Control Moment Gyros.

2. High endurance hour test vehicles show increases in high frequency

resonant responses characteristic of general wear rather than from

discrete faults.

3. Preflight noise and vibration tests appear to inflict more damage

upon outer gimbal components than upon gyro rotor support bearings.

4. Bearing retainer squeal and the resulting material removal appears

to be the most likely failure mode of CMG bearings.

5. Bearing retainer squeal produces significant response at 900 H
z 
and

3100 Hz which can be used for two possible uses:

a. To indicate the presence of squeal in a particular bearing.

b. To aid in research to define the mechanism of retainer squeal

and techniques to minimize or eliminate the occurrence.

6. Dynamic loads generated within CMG bearings during sweeps from

one angular position to another might produce structural problems

not predicted by analysis techniques. Apparent loads in excess of

100 pounds at 300 H z were demonstrated for CMG 0010 at 3° per second

sweep rate.
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Definition of Dearing Failure

The application of rolling element bearings to machinery support systems often

produces a number of significant operating advantages: starting and running

torque requirements are minimal, lubricant flow demands are low, load capacity

is large for steady state and transient conditions, generated temperatures

are reasonable, and vibration levels are low. Failure of the bearings typically

is caused by or results in a change in the above conditions. Torque require-

ments go up as surfaces deteriorate or debris builds up. Interruption of oil

flow usually results in unusual wear and friction with a resulting increase

in torque and temperature. Increasing roughness produces greater amounts of

bearing generated vibration which may interfere with the use of the complete

machine. The ultimate failure of a particular bearing may be from a number

of possible modes. The classic failure is fatigue, where the surface of one

of the elements of the bearing is stressed beyond its ability to resist and a

crater is formed as material pops off. A typical fatigue fault is 0.008 to

0.012 inches in diameter and 0.001 to 0.004 inches deep. As wear progresses,,

additional faults occur and general deterioration is accelerated. Improvement

in material properties due to such techniques as vacuum degassing of steel has

produced lower statistical failure scatter and has extended fatigue life

beyond the hours predicted.

An increasingly more common failure mode of rolling element bearings is due to

retainer or separator failure. Advances in ball and race materials and in

lubricant properties have permitted increased speeds, loads, and temperatures

which have sometimes exceeded retainer capabilities. Fracture or rapid wear

often occur during a retainer failure to produce large changes in bearing torque,

excessive heating, high vibration levels, and audible noise. Failure of the

bearing may be very sudden and dramatic.

A third bearing failure mode involves the general deterioration of rolling

contact surfaces due to wear. Deterioration progresses from the first revolu-

tion of the bearing until at some point the increased roughness of the surfaces

produces increased torque, temperature, and vibration beyond permissable levels

i
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The rate of wear is dependent upon time, lubricant performance, and foreign

material present within the contact region.

A fourth failure mode is termed lubrication failure. The gradual or sudden

cesution of lubrication usually does not cause instantaneous failure, but in

time leads to retainer difficulties or to increasing wear rates. If the bearing

is dependent upon the lube supply for cooling, deterioration will progress more

rapidly as components lose strength with increasing temperature, noise, or

vibration limits.

Other bearing failure modes would typically result in rapid advancement of one

of the failure modes indicated above. Improper mounting, for example, might

produce local high stress as a cocked race forces a few balls to carry the total

bearing load. Greatly increased retainer load follows any distortion of the

normal stress distribution within the bearing.

The limits which are applied to bearing condition must be set by the application

Obviously, when bearing torque exceeds driving torque then the machine will

slow down or stop. Other limits are more subtle, dependi'ag upon such criteria

as, the importance of complete availability or the permissable level of acoustic

or mechanical noise.

Bearing Fault Detection

A bearing fault detection technique based upon ultrasonic frequency range

vibration has been developed under NASA, contract NAS B-25706 and reported in

Mechanical Technology Report No. 71TR-1. This fault detection technique has

been applied to condition monitoring of control moment gyro inner gimbal rotor

assembly bearings and to life test fixtures used to develop bearing systems for

the flight gyros.

The principal of operation of this fault detector is quite straight-forward.

As a ball rolls between the inner and outer race of a new bearing, the smooth

surface of the ball " sees" an equally smooth track which offers minimum surface

irregularity. The resulting vibration levels are very low. During the life

I n. .
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of the bearing these contacting surfaces gradually roughen and the higher peaks

of roughness ceutact ono another such that local high stress regions exist. In

time, repeated high stress contact will result in the development of a spall

which will be a discrete gap or void in the rolling track, and each ball passing

over that gap produces an impact as the ball load is relieved and then suddenly

re-applied much as the tire of a vehicle is shocked by contact with a chuck-hole

in a road. The energy of the impact is a pulse input to the system which causes

the components of the system to resonate or "ring" at natural frequencieu of

vibration. As the components of a properly operating rolling element bearing

are very regular, discrete repetitions of the impact occur as subsequent balls

hit a race defect or as a pitted ball alternately contacts inner and outer race.

(The ball defect may not always be in the track of rotation of the ball, but

under conditions of uniform speed and load a ball tends to run in one preferred

plane. A ball defect then will appear for some period and then disappear as

loads or speeds change.) It usually is expected that a struck part will resonate

strongest at its first natural mode of vibration, and this is true for free

unmounted components with minimum damping, however, lower modes of vibration

are apparently suppressed while high modes are quite readily transmitted.

Further emphasis of high frequency components is accomplished by measuring

acceleration (which is related to force) rather than the often used displace-

ment vibration limits. Acceleration is increased by the square of the frequency

(Acceleration - 0.0511X(frequency) 2 X Displacement) so resolution is enhanced.

A primary problem with high frequency vibration analysis in the peat has been

the availability of suitable sensors. About the time of the original bearing

fault detection pro,aram, several accelerometers with capability of response to

40KHz and above became available so these have been used to allow evaluation

of the ultra-sonic region. The 107 size ball bearing used in initial Life Test

Fixtures and Inner Gimbal Rotor Assemblies produced a major response at 28,000

Hz when an artificial flaw was inserted. This frequency was later resolved to

be approximately the third ring mode resonance of the inner race the fifth

ring mode resonance of the outer race, and, depending upon load, possibly the

resonance of the ball on its oil film. The ring mode resonances were evaluated

experimentally and were found to correspond well to computed values. It was

found that race mounting conditions significantly affected lower mode response

amplitudes but that higher modes were quite insensitive to the fit between shaft

'r
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and race or race and housing. This may explain the greater response of the

28KH z signal... the lower modea were suppressed by external influences, and

the component resonances combined to produce the superior output. It should

be noted also that the levels of vibration measured, ten to thirty G's peak

(gravity units) are displacements of 0.00000025 inches to 0.00000075 inches

peak-to -peak. Most fluid and friction damping mechanisms require significant
deflections to be effective so this may explain the good transmissibility of

the high frequency data with only moderate interface lose.

I	 ,
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The high frequency resonant response of the bearing components is treated as

a communications wave carrier to extract additional information about the
source of impact response. A single spell in the inner race ball track will

produce regular impulse - and - decay responses as each ball in turn contact

is shown as modulation of the resonant response frequency of the bearing, and

demodulation produces a sine -like wave which clearly shows the ball -defect
contact frequency. For the 107 size bearings used in the CMG program, an

inner race defect contact occurs at 8.7 times inner race rotation frequency,

an outer race defect contact occurs at 6.3 times inner race rotation frequency,

and a ball defect contact occurs at 6.0 times inner race rotation frequency.

(These frequencies are computed from ball and race dimensions and will vary

depending upon geometry. A fair rule of thumb is that retainer rotation is

approximately 40% of inner race rotation frequency so that in one revolution

an inner race spot will overtake 60% of the balls in the complement. For this

bearing there are 15 balls, so inner race fault frequency is about 9 times

rotation.)

To minimize resolution, only the demonstrated bearing resonant frequency is

demodulated. A band pass filter centered at 28KHz attenuates other high

frequency components while passing those which define fault character. The

Bearing Fault Detector can be applied directly to raw bearing data or it can

be used to aid in analysis of tape recorded accelerometer responses.

Application of Fault Detection Techniques

Soon after the high frequency bearing fault detection technique was demonstrated

it was applied to operatingcontrol moment gyro assemblies to determine the

effects of pre-flight vibration and noise tests upon bearing condition. Tests
were done at MSFC in Hartsville, Bendix test facilities in Teterborough, N.J.,

î m
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and at Wyle Laboratorie4 in Huntsville on complete control moment gyros, inner

gimbal rotor assemblies, and life test fixtures. Individual task results were

reported by memos and by verbal presentations at Huntsville and at Teterborough,

but this report will consolidate test procedures, results and conclusions, and

attempt to relate the various tasks to a common performance base.

Test Sensors
i

Analysis of complete mechanical systekl problems is beat accomplished by monitor-

ing a number of appropriate outputs. High frequency response accelerometers,
u

Bruel and Kjaer Model 4344 units with selected response characteriatice, were

attached to the external housings as near the bearings as possible. The accelero-

meters were stud attached to a one inch by one inch by one-fourth inch aluminum

block which was glued to the unit using brittle cyano-acrylate adhesive (Eastman

910 or equivalent) at a location in the radial plane of the bearing being tested.

For the CMG and IGRA units, this location was on the main body of the inner

1
gimbal frame as shown on sheet A. For life test fixtures, the accelerometer

mounting blocks were glued to the hexagonal end pieces which support each bear-

ing mount assembly. These model 4344 accelerometers have mounted resonance

frequencies near 85KH z and so the usable frequency range is greater than 50 KHz

with only minor amplitude errors. This frequency band includes the selected

bearing resonance frequency of 28 KH
z

Other test sensors used to define overall system performance included the built-

in Kistler accelerometers which were mounted directly on the housing and sleeve

assemblies which hold the gyro rotor bearings. The use of these sensors was

limited by a major problem: the mounted resonance of the accelerometers occurs

in the range between 32 0 000 and 40,000 H z , and very often the built-in electronics

of the accelerometers were saturated by large responses at accelerometer reso-

nance. Because the accelerometer charge conditioning equipment was located

within the unit, it was not possible to filter out this resonant response

j	 before amplifier overload occurred, so results often were questionable.

Additional low frequency response accelerometers were mounted on the inner

gimbal frame to measure axial vibrations of the gyro rotor as shown also on
n

sheet A. Bruel and Kjaer Model 4333 or Kistler Piezotron Model 568 units

were used to define frequency components to 5000 Hz . Major usage of these

sensors was for component measurements at rotational and twice rotational

frequencies.
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Several outer gimbal locations were used to monitor low frequency vibrations
n

under specific test problew conditions. The Bruel and Kjaer 4333 units and

the Kistler 568 Accelerometers were used alternately at these sites.

A significant indicator of overall machine performance is the acoustic output,
t	 u

so a Bruel and Kjaer Model 2203 preei6ion sound level meter with one inch con-

denser microphone was used to monitor sound levels. The microphone was placed

next to test bearings for LTF and IGRA toots (two inches to B inches away from

individual bearing locations) and was inserted into the port in the cover of

the complate CMG fur those tests. Octave filter levels were tabulated for

initial testu, bctl; it was found that narrow band frequency analysis was necessary

?	 to discriminate pure tones generated at rotation and two times rotation frequency.

Data Record

L
All test signals plus gyro speed indications were recorded on magnetic tape

with a Lockheed Electronics Model 417D seven channel recorder operating at 30

inch per second tape speed. An edge voice track allowed a running commentary

of test conditions and impressions to be recorded along with the test sensor

outputs. The Lockheed recorder has plug-in electronics which permit the selection

of Direct or FM record capability for each tape channel. At 30 ips, the FM

record channels have linear response from DC to 10,000 H z while the Direct record

channels respond from 200 H z to 100,000 li z within €3db.

This latitude permits complete spectrum coverage - the model 4344 high frequency

accelerometers were recorded on FM and Direct while other sensors were recorded

on FM only.

Between sensor and recorder channel, Encore Electronics Model 501 amplifiers
f

j	 were used to provide adjustable gain capability. Signals need be in the one

volt rms range to optimize recorder signal-to-noise levels and the Encore unite

permit precise gain adjustment from 0.1 to 1000 in 1-2-5 steps. A data log was

used to identify recorder input gain and teat conditions for each channel.
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Test Procedurea

An effort was made to standardize on a test plan to minimize possible errors

and to provide maximum machine performance identification. A typical CMG test

arrangement was tie follows,

1. Steady state performance with gyro rotor centerline horizontal

2. Steady state performance with gyro rotor centerline vertical with

bearing number 1 down.

3. Sweep from bearing 1 down to bearing 1 up at 3° per second sweep

rate

4. Steady state performance with gyro rotor centerline vertical with

bearing 1 up.

5. Sweep from bearing 2 down to bearing 2 up at 3 0 per second, sweep

rate

6. Steady state performance at any special axis position (to define

an unusual performance condition such as retainer squeal).

Tests on IGRA units followed this plan as closely as possible within the

restraints of the support structure for each test vehicle. Life Test Pixtures

were operated with the shaft center line horizontal and the machine base set

on rubber pads to isolate the unit from other machine vibrations.

Gyro rotor speeds initially were set at 7900 rpm but part way°through the test

program the need for additional gyro energy pushed operating speeds to 9000 rpm.

Many of the unite were checked at both speeds to define performance differences.

8

Test Data Reduction

Tape recorded data were analyzed at Mechanical Technology, Inc. laboratory

facilities using a Spectral Dynamite Model 301A Real Time Spectrum Analyzer

(with the SD302 Time Averager) as the primary tool. This unit provides narrow

band frequency analysis of sensor outputs which allow identification of the

source of machine vibration and noise. To permit full frequency band analysis,

the Lockheed tape recorder was operated at 7 1/2 inches per second to effectively

compress the high frequency response data signals from 200 to 80,000 H z into a

band from 50 to 20,000 Hz , the operating frequency band of the real time analyzer

on its highest range setting. Real time analyzer outputs were recorded by

Hewlett-Packard 7004 X-Y Recorder.	 A

r--
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Performance Analysis
i	 -

Analysis of overall machinery condition was based upon a number of considerations.

Tito high frequency bearing analysis technique was applied to monitor bearing

condition, even though limits of performance have not yet been established.

Relative levels can be used, and the bearing fault detector instrument built

for NASA on this contract does permit the discrimination of faulted bearing

component frequencies, preliminary testing of a flight type CMG bearing with

an induced fault has indicated that that bearing ties a resonance at 26,000 11Z

which responds to bearing impacts, so both 26KH z and 28KHz spectrum response

levels were recorded as a measure of performance.

Gyro rotor unbalance response was defined by radial accelerometer outputs at

rotational frequency. Comparisons between units permits another input to

machine performance ranking. The internal Kistler accelerometers were reviewed

when possible, and external B and K accelerometer levels were used otherwise.

I ,	

Radial accelerometer outputs at 2 times rotational frequency usually are in-

1

	 dicative of bearing mounting problems such as race skew or out-of-roundness,

i
	 so this parameter was evaluated as an additional performance measure.

Axial acceleration at rotational and at two Limes rotational frequency also

provide an indication of bearing mounting condition as these components cannot

be generated without irrregularities in the rolling element components, Not

all tests had axial accelerometer data available, but where possible these

parameters were evaluated in defining performance. It was assumed that mount-

ing errors will produce locally higher bearing stresses and higher ball separ-

ating loads which will decrease the life of the overall system (or at least

increase the possibility of premature failure). No attempt was made to assess

the effects of additional vibratory loads upon other structures or devices in

the CMG area.

Overall sound pressure level and the presence of discrete frequency components

in the sound spectrum form an additional rather subjective parameter for use

in ranking complete machines. The narrow band spectrum analyzer permits

i
	 resolution of frequency components which otherwise would be lost by normal

analysis techniques, such as separating a 63H  retainer rotation frequency from

60 Hz noise.



I,,

Test Conditions For Ranking

It was found that a horizontal shaft position produced the most consistent

output of low and high frequency data. It also was theorized that gravity thrust

loading was an unrealistic load condition for either bearing to have on it, so

the horizontal position was most like a space situation. In the low frequency

range the differences between vertical and horizontal positions made only minor

response changes, but again optimum bearing loading occurs in the horizontal

mounting condition so rating is done with that plane.

Sweep tests were recorded whenever possible with bearing performance recorded

as the unit is "rated" from bearing down to bearing up. This produced some

rather startline level changes in some machines, and unfortunately quite often

produced signal levels in excess of tape recorder level capacity so the record

e	 was "clipped" due to saturation. One example, included as Sheet B, shows the
n	

two times rotation component for a sweep for bearing No. 1 down to up showing

a 20 time increase in level, from 0.020 G up to a maximum of 0.460G at Just

above horizontal and then slowly dropping to 0.200 "G" Just before the sweep

is concluded. Included sheet C shows the saturation of the FM record channel

record of the same test sensor as for sheet B.

It is theorized that this complex response is made up of some small changes in

bearing operating conditions due to gravity and preload washer loadings and

operating contact angles within the ball bearings. Some machines, however,

produced only minor dynamic sweep level changes. Due to uncertainties abour

the mechanism of response, no performance ranking was done based upon sweep

teats, but it appears that significant dynamic loads are occurring which might

produce control or structural problems outside the CMG area. A 1/2 G acceler-

ation of the complete IGRA is equivalent to a load in excess of 100 pounds.

Performance Ranking

Based upon experimental results, an overall performance ranking has been

produced for'aach type of unit tested. For complete Control Moment Gyros,

the ranking is as follows:
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Rank Serial No.

Best 0008

2 0007

3 0009

4 0002

5 0010

Worst 0004

Because all performance factors are not equal in their influence upon unit

life, any such ranking is open to considerable discussion. CN.G unit number

0010 was derated significantly because of excessive response at two times

rotation frequency which indicated that problems existed in the bearing mountings.

Inspection by Bendix showed that components were made to blueprint specs and

that significant improvement in vibration levels occurred when lubricator nuts

were exchanged end for end, but elimination of excessive noise and vibration

were not accomplished. The fact that bearing retainer squeal developed within

this unit muy or may not have been related to the large twice rotation frequency

noise and vibration which were present.

The retainer squeal phenomenon appeared to be a common failure mode for the CMG

bearings as it occurred in several tested units. The deterioration and removal

of retainer material which can accompany squeal would produce excessive drag

from ball track "litter" and lead to premature failure. Test measurements in-

dicated that squeal produces significant sound and vibration signals at 900 HZ

and 3100 HZ which some investigators  consider to be retainer whirl frequencies.

Maximum response occurred at the internal Kistler accelerometer and it is

concluded that a simple monitor could be built to give warning of the presence

of squeal. It may also be possible to detect squeal symptoms ahead of the

audible output which could serve as a screening test for flight units.

The bearing fault detection technique did not give any indication of retainer

squeal problems, but it is assumed that bearing resonant response would occur

Kingsbury, E.P. "Torque Variations in Instrument Ball Bearings" ASLE
Transactions 8-435-441 (1965)

j
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as debris builds up in the dolling track.

The ranking for CMG 0004 was very low because of apparent damage to the outer

gimbal which occurred during vibration tests at Wyle Labs. This damage showed

up as an excessive response at rotation frequency when the spin axis of the

gyro was vertical. The inner gimbal rotor assembly from CMG number 0008 was

inserted into 0004 outer gimbal and it also produced excessive rotational

frequency response, indicating than: the outer gimbal was at fault. Close in-

spection by Eendix apparently did not produce a satisfactory source of this

low freouency response.

Ranking of the two engineering prototype inner gimbal unite indicated that unit

E-2 was better than unit E-3, but that both unite were poorer in performance

than any of the flight IGRA's.

Life Test fixture ranking required some d'.fficult decisions as performance broke

down into 3 groups. Unit number 1 was best, but unit number 4 was very close

to it. Units 5, 3, and 2 were grouped together in the next three ranked positions

with very good performance and little significant difference between them. LTP

number 6 was last with significantly lower performance than the others.

d
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