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PREFACE

This project i{s under the supervision of Ivan I. Mueller, Professor
of the Department of Geodetic Science at The Ohio State University, and
it is under the technical direction of Mr. Richard L. Nance, Photo-
grammetry and Cartography Section, NASA/MSC, Houston, Texas.
ccntract is administered by the Space Sciences Procurement Branch,
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A revised version of this report has been submiited to the Gradunte -

School of 1he Ohio State University in partial fulfillment of the reguire-
ments for degree Doctor of Philosophy.
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ABSTRACT

This study was undertaken so as to develop the observation equations

- necessary to utilize lunar laser ranging and Very Long Baseline Interferometry

{VLBI) m.:asurements for the establishment of a primary control network on
the moon. The network consists of coordinates of moon points in the seleno-
detic Cartesian coordinate system, which is fixed to the lunar body, oriented
along the three principal axes of inertia of the moon, and centered at the
lunar center of mass. |

The determination of coordinates of points on the moon using earth-based
observations requires the knowledge of the following dynamic behavior of the
earth and the moon: the orbital motion of the moon about the barycenter, &e
rotation of the moon on its axis and the motion of the earth about its center
of mass. In addition, the knowledge of the éeocentric positions of the terres-
trial stations is essentia:.

Since our knowledge of the parameters related to the above phenomena can

ve improved simultaneously witk the determination of coordinates of lunar

~ points, the observation equations derived in this study are based on a general

model in which the unknown parameters included the following:

(a) The selenodetic Cartesian coordinates.

{b) The geocentric coordinates of earth stations.

(c) Parameters of the orientation of the selenodetic coordinate
system with respect to a fixed celestial system.

(d) The parameters of the orientation of the "average' terrestrial
coordinate system with respect to a fixed celestial coordinate
gystem.

(e) The geocentric coordinates of the center of mass of the moon,

given by a lunar ephemeris.
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The orientation parameters of both the earth-fixed and the moon-fixed
coordinate system were represented in this study by three Eulerian angles
which, along with their time rates, could be obtained by numerically integrating
the differential equations of motion of the respective bodies. This resulted in
the reduction of the number of parameters (in the adjustment model), which
are related to the orientation of the two bodies. The general adjustment model
developed for the analyses of laser and VLBI observations is based on the
theory of adjustment computations with matrix algebra.

The numerical tests performed in this study with simulated as well as real

da(a demonstrated that the numerical integration of the earth's orientation

angles yields values which are very close to the classically computed angles,

and that the initial conditions for the integration are capable of being solved
in an adjustment process. Also, the results of the numerical experiments
performed with simulated laser data confirmed the feasibility of the method

developed in this study.
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1 INTRODUCTION

1.1 General Discussion.

The science of lunar mapping is an old one whose origin can be

traced to the beginning of telescopic astronomy, started by Galileo Galilei
. in the seventeenth century. Since the first lunar map was published by

Galilei around 1610, numerous authors have been engaged in mapping the

earth's closest celestial object. Traditionally, this field has been part of

the domain of astronomers, However, things changed during the advent of v
L the space age, and scientists of differing disciplines became interested in
lunar mapping and related scbjects. The quality of published maps of the
N moon improved with time, due to the advancement in both theory and ‘
' insfmmentation. A detailed history of lunar mapping has been published
- by Kopal in Chapter 15 of his book on the moon 511,

O e s

The mepping of an area requires as a first step, the establishment of a

consistent network of control points, whose coordinates have been obtained

e

in a unified and well-defined coordinate system. As opposed to the method

1y

of esfabushing geodétic control for earth mapping, past selenodetic con-

Frne s,

i ah o Cn Fa e g AT a1y

trols have been obtained through the use of earth-based observations. Thus,

; the determination of coordinates of pointson the moon through classical 7
‘, methods is rigorously tied to the following extraneous parameters: ;
& . v T
i . {
£ (i) ‘he coordinates of the moon's center of mass in a
t geocentric inertial coordinate system i
h . . 3
- (ii) the orientation of an earth-fixed coordinate system i
] with respect to an inertial coordinate system ; :
L i
g; ) :»';1
" %
£, N
1 E

T L NN
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(if1) the orientaticn of a defined set of moon-fixed
coordinate axes with respect to an earth-fixed

X coordinate system

(iv) the atmospheric refraction model used for reducing

the earth-based observations.

Our knowledge of these parameters is constantly improving due to a

natural loup of events, ir which improvement in the various theories

demands better instrumentation and observation reduction procedures,

while more accurate observations demand improvements in existing theories.
The classical types of observations used in lunar position determination

were the heliometer observations and earth-based lunar photography. In

many instances, the same observations (with or without additional observa-

tions) were re-evaluated many times as a result of significant improvéments

in theory. It now appears that further refinements in the reduction methods

for the old observations can neither significantly improve positional

accuracy of lunar control points, nor contribute to further improvement

in theory. Hence, over the past few decades, new forms of observations

have been used to provide selenodetic control, and the application of new

instrumentation for selenodetic control has been suggested, The main

objective of this study is to investigate how two of the new observational

systems can be applied for establishing a'prlmary networic of lunar control,
In the section that follows, a brief review of past methods of determin-

ing coordinates of lunar features will be presented. The last section of

this introductory-chaptev lists the new observational systems suggested,

the problem areas to be investigated and the approach used in this study. -
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1.2 Review of Past Methods,

‘The classical method of determining the moon's rotational constants
(I - the mean inclination of the moon's equator with respect to the mean
ecliptic and f - the rhoon's so-called mechanical flattening), its geometri-
cal figure and the physical libration uses the reduction of heliometer observa-
tions. The heliometer is a refracting telescope of small aperture which:
measures angular distances between a “first ﬁmdamental" point on the
moon and other lunar features and the moon's limb, The 'first fundamental"
point is Mosting A,‘ a medium-~sized crater situated close to the center of
the moon's disc. The basic observation technique de)signed by Bessel in .
1839 has been used with certain modifications to obtain the numerous . ;

heliometer observations available today [39].

Those heliometer observations involving the moon's apparent limb
and Mdsting A have been used by many famous astronomers to simultaneously ‘
solve for the lunar physical librations and the coordinates of MGsting A. The
adjustment procedure involves the fit of a best fitting sphere to the observed
moon's limb, and the coordinates of Mdsting A obtained in this manner
are referenced to the center of figure, ’

- The determingtion of coordinates of other fundamental control points
on the moon utilizes the heliometer observations made between lunar
features and Mosting A. Using the available physical libration parameters,
these posifions are determined relative to the "first fundamental" point. In
1899, Franz, a German astronomer determined the coordinates of eight

fundamental control points on the moon [27]. Later, coordinates of four addi-
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tional craters were obtained by Hayn. Most of the existing coordinates of
lunar features today are based on the coordinates of these fundamcntal
control points,

The extension of lunar control was achieved through the use of
earth-based photography. In general there are two types of lunar photography,
namely phase and full-moon photography, each possessing its own advantages
and disadvantages. Furthermore, moon photography is either with or with-
out star background. The star background provides the orientation of the
camera system as well as the focal length of the telescope. On the other
hand, photographs without star backgrouhd rely on the fundamental points
for scale and orientation, _

- With the use of full-moon photographs taken at Lick Observatory at
different librations, Franz extended the original eight points of Franz into
a system of 150 points [281. For the first half of this century this set of
points was used as the primary control network on the moon., Later, in
1956-58, an Austrian astronomer Schrutka-Rechtenstamm undertook an
extensive review of the moon libration theory, and then recomputed Franz's
150 points (89 1. Thus, the Schrutka-Rechtenstamm system was established,
and has since been used for further control densification.

In the late 1950's and early 1960's, there was a great need for more
accurate control extensions on the moon so as to provide a basis for lunar
cartography and to meet the needs of the manned lunar explorations. Several
individuals and agencies became involved in the lunar control and lunar
mapping work, among whom were two U, S, agencies - the Aeronautical
Chart and Information Center (ACIC) and the Army Map Service (AMS, now
TOPOCOM). Using different types of moon photography as well as reduction

’-.‘.»ﬂA‘
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procedures, each agency obtained a set of coordinates for lunar features,
In spite of large differences between the two systems, a combined
solution was performed by the Army Map Service in which both the ACIC
data and the AMS data were used to obtain selenodetic coordinates of

734 craters, This solution is now referred to as the Department of
Defense (DOD) Selenodetic Control System 1966 [ 7 ).

Another direct result of man's lunar exploration over the past few
decades is the addition of satellite-borne methods of determining coordinates
of features on the moon to the classical methods mentioned above. These
metheds include photography of the moon by lunar satellites and direct
angular observations of features of the moon by éstronauts in a manned
spacecraft. These and other methods are discussed in [ 78].

The main features of the classical methods of obtaining selenodetic features
as reviewed above are that they are based on earth-based photographs and
on a fundamental control network established through heliometer measurements,
The earth-based photographs suffer from scale and resolution limitations,
and the heliometer is a short-focal length teleécope with limited resolution.
Coordinates of points on the moon tied to fundamental control points are
affected by the center of figure - center of massbias. Relative accuracies
of positions of lunar features from earth-based photography are approximately
1 and 1.5km near the origin, in the horizontal and vertical components
respectively, and degenerate rapidly towards the lunar limb {757,

1.3 Future Observational Systems for Selenodetic Control.

In the summer of 1965, the Natioral Aeronautics and Space Admini-
stration (NASA) sponsored a Lunar Exploration and Science Conference in
Falmouth, Massachusetts [ 74]. Two years later, a follow-up conference
was held at Santa Cruz, California [75]. Among the groups participating
in each of these lunar conferences was a Geodesy and Cartography working
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group. This group, after ’clarifying its scientific objectives, went on to
suggest ways of achieving these goals, The scientific objectives agreed

upon at the_meetingsvincluded the following:

(a) more accurate determination of the position and
orientation of the moon (and their variations
with time) with resbect to the earth

(b) determination of the mass and gravitationa! field
of the moon

(c) determination of the physical size and shape of
the moon, theasurements of tdpographic variations
and development of a lunar geodetic network over

the entire lunar surface.

- In order to achieve these goals, the group suggested the use of observa-

~ tional systems (some new and others oid) such as

(i) laser ranging (to the moon and lunar satellites)

(i) earth-based radio tracking of the moon and lunar satellites (with
Doppler and ranging transponders on the moon and on the lunar satellites)

(iif) orbiting camera systems

(iv) independent-clock radio interferometry (VLB))

(v) surface gravimetry, and gradiometer measurements

taken from lunar satellites.

To this list was later added satellite altimetfy. satellite-to-satellite tracking

and earth - moon, moon-moon Very Long Baseline Interferometry (VLEI) 187].
Since these new observational systems were proposed, few papers A

have been presented at different scientific. meetings on what some of

the abdve instrumentation (notably the laser and VLBI) could achieve in the

field of selenodesy. However, these papers are usually of a general nature,

without specific and detailed m_athematical developmént of how these instru-



ments can be used to improve selenodetic control and related parameters.

The primary aim of this study is to develop observation equations

SIEN C T AN S

which could be used with new observations to achieve some of the goals
listed above. In doing this, only the lunar laser ranging and the VLBI ;
have been considered. These observational systems offer a
means by which a new primary lunar control network can be ' !

“ established, while at the same time the position and orientation
_ parameters of the moon can be improved. S\_xch a primary control
, network established through the instrumentation considered in this work can
be extended through other modern methods (see [ 78]) together with lunar !
5 surface measurements. The current status of the positibn and orientation | :
’ parameters of the mcon will be discussed briefly below. ’

- Lunar Pogition,

The problem of finding the position of the center of mass of the moon in
a g:ocentric inertial coordinate system has attracted the attention of numer-

R T
AN S

o

ous s~ientists since the time of Newton. This has resulted in a few lunar
theories, each one being an attempt to analytically solve the differential
equations of motion of & perturbed two~body system. A general account
of the different metheds used in obtaining the moon's motion in space is -
contained in a book by Brown [11].

A L Gy by A b
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The result of any lunar theory is the lunar ephemeris which contains

the positions of the moon in tabulated form, The ephemeris in general use

= today is based on the Hill-Brown theory, with corrections by Eckert [ 20].
Over the past few years, the Jet Propulsion Laboratory (JPL) has intro-
duced another method of obtaining lunar position. This involves the numer-

jeal integration of the equations of motion using digital computers. The
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last of the series of numerical lunar ephemeris published by JPL and
available on magnetic tape (DE-69), is the LE-16 [ 77] which is believed
to be gravitationally consistent and the most accurate ephemeris available
today. Nevertheless the estimated uncertainty in the ephemeris is about
50 meters in range and 100-150 meters in position. The expected pre-
cision of laser and VLBI measurements is much higher than that of any
lunar ephemeris available, and thus the expectation that the new observa-
tions can be used to improve the current status of the lunar theory.

Moon's Orientation,

Traditionally, the orientation of the moon in space is defined by three
Zulerian angles between a moon-fixed set of axes and the mean ecliptic
coordinate system. The orientation angles are obtaired through the solution
of the moon's rotational equations of motion. The rotation of the moon
follows approximately the empirical Cassinilaws, and the deviations of the
true motion from that defined by the Cassini laws are the physical librations
of the moon.

The physical libration of the moon is traditionally solved by applying
heliometer observations to the linearized forms of the equations of motion.
Hence the accuracy of these angles depends on the accuracy of the heliometer
observations as well as the errors intreduced in the process of obtaining the
linearized form of the equations of motion. Currently, lunar orientation
(i. e. physical libration) is estimated to be accurate to ahout 20" of arc
(about 200-m on lunar surface) [75].

It has been recently proposed that the lunar orientation angles be obtained

by direct integration of the original equations of motion [ 78], The resulting
angles and their rates will deperd only on the six initial conditions and the
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moon's physical parameters (for example the principal moments of inertia).

These parameters can then be corrected in an adjustment using the new

types of cbservations,

- Earth's Orientation,

Since the laser and the earth-moon VLBI are observations involving
earth stations, the orientation of the earth in space must also be known,
The earth's orientation in the past has been calculated through precession,
nutation, and polar motion and its accuracy is considered to be within that
demanded by current types of astronomical observations,

The use of modern instrumentation of higher accuracy such as the
VLBI and laser introduces the possibility of updating our present knowledge

about precession nutation and polar motion, In order to do this without having

. to adjust all the numerous coefficients of the series expressions for nutation and

precession, it has been proposed in this work that the orientation of the
earth with respect to an inertial system be defined by three Eulerian angles.
These angles and their time rates can be obtained by direct numerical
integration of earth's equations of motion in its original form, The advantage
of this method is that the earth's orientation parameters are reduced to the
six initial conditions only. |

In this study, both the earth and the moon have been assumed to be rigid
bodies, and the equations developed are valid for a rigid earth and moon. The
effects of non-rigidity of both celestial bodies on the equations derived are two-
fold. Firstly, there is the Qirect effect of earth tides and lunar tides on the
geocentric and selenodetic coordinates of earth and w.oon stations respectively.
Some discussion on this effect has been included in Appandix B. The non-rigid-
ity of the earth and the moon also affects the rotational equations of motion of

the two celestial bodies in a rather complicated manner. Investigations on

these two effects are continuing.
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The presentation of this work is organized as follows: The next chapter
presents the equations related to laser measured distances. Partial

derivatives necessary for the evaluation of observation equations

- are fully derived. Most of thé equations in this work are expressed in

compact forms uéing either vector or matrix notations. In Chapter 3, equations
for the VLBI measurements are derived for three cases (earth-moon baseline,
moon-moon baseline, earth-earth baseline). The numerical integration method.
of calculating the earth's orientation angles is presented in Chapter 4. The
equations of motion are derived for the case.of a rigid earth withou? any
other assumptions, and preliminary computational results are included.

In the fifth chapter, equations for a least-squares adjustment prd—
cedure for the laser and VLBI observations are given, and preliminary
computational results using simulated laser ohservations are presented.
Thé last .chapter contains the summary of the work done on this study and

the conclusions reached.
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2. APPLICATION OF LASER RANGING TO SELENODETIC CONTROL

2.1 Mistorical Background

Lascr, an acronym for light amplification by stimulated emission of
radiation, is the result of an extension of the principles of microwave ampli-
fiers (MASERS) to amplification and generation of clectromagnetic radiation
in or near the optical region. With the laser, it became possible to generate
and control coherent light through the use of clectronic transitions in atoms.

Thefirst successful construction of light amplifier (laser) was made by
Maiman in 1960 756:. Since then, numerous modifications and improvements
have been made to the laser, and at present, laser has become one of the
most important sources or generators of radiation.

The main properties of the laser are directionality, high intensity. coher-
ency, and narrow frequency width (monochromaticity). Radiation generated by
laser can either be pulsed or continuous. Because of its properties, the laser
has many applications in numerous scientific fields such as in distance measure-
ments, communication, medical and biological research, and in the general
sciences [60].

In geodetic science, the laser has been used for the construction of precise
electromagnetic distance measuring equipment. Also. laser ranging systems
have been built, for the purpose of satellite tracking and obtaining accurate
ranges to the moon. Today, a few satellite tracking stations have been
equipped with lasers, and there is a lunar lagser ranging station in the United
States, actively engaged in ranging to the corner reflectors on the moon.

In 1965, Alley at al. [ 1 ] proposed the use of a Q-switched ruby lasex% in
conjunction with a corner reflector located on the moon for making accurate range
measurements between the eart’y and the moon. This proposal was independently
advocated by a group of Russian scientists in the same year [48). A group of
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scientists and engineers was subsequently formed with the purpose of investi-
gating and planning the lunar laser ranging experiment (LURE). In 1967, the
National Aeronautics and Space Administration officially endorsed the emplace-
ment of a retroreflector on the moon as part of the surface experiments to be
performed on some of the Apollo lunar landing missions. The first retro-
reflector was placed on the moon two years later by the crew of the first land-

ing mission, and the second retroreflector was deposited on the moon by the

~crew of the Apollo 14 mission. A third retroreflector is expected to be placed

on the moon by the Apollo 15 astronauts.

Shortly afier the first laser ranging retroreflector (LRRR) was placed on the
moon, reflected laser pulses from the LRRR were acquired with the 120-inch
telescope at Lick Observatory of the University of California, located at Mt,
Hamilton, California [26 ]. Subsequently, successful acquisition of reflected
laser signals were also reported by two other observatories, These are the
Lunar Laser Observatory of the Air Force Cambridge Research Laboratories
(AFCRL), located in the Catalina Mountains near Tucson, Arizona, and the
McDonald Observatorv of the University of Texas at Fort Davis, Texas, After
theinitial signal acquisition phasc, only the 107-inch telescope of the McDonald
Observatory is now being used for continuing measurements to both reicore-
flectors on the moon. So far, a range precision of +0.3m has been achieved
[ 4 ], and improvement to +0, 15m or better is expected shortly.

The life expectancy of the retroreflector is in excess of ten years (261,
Long-term precise range measurements to retroreflectors onthe moon could
not only be used to establish aprimary control network onthe moon, but could also
be used for improving our present knowledge of astronomical, geophysical and
lunar parameters. In f£37, Kaula summarized the various geophysical problems
to whose solution lunar laser ranginglmight contribute. These problems include
short- and long-term wobble (of the ear;h's pole) and variations in the earth's
rotation, earth tides, tidal dissipation and plate tectonics. However, for the
successful application of laser ranging to these and other problems, stations

actively engaged in making continuing measurements to retroreflectors
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on the moon need to be established, whilé more retroreflectors should be

placed on the moon.

2.2 Basic Operating Prinéiplcs of 1 aser Ranging Systems.

The general theory of the generation and amplification of light by stim-
ulated emission is a subject that is well treated in books on lasers and in
modern physics textbooks. It is not intended here to give a detailed descrip-
tion of the laser_ theory , ror a complete technical description of laser rang-
ing systems. Rather, in this section, the basic characteristics of any
laser ranging svstem will be treated briefly for completeness, and in order
to make the equations developed in the rest of this chapter clearer.

The main components of a laser ranging system consists of the laser,
transmitting and receiviﬁg telescopes and a correlator.

The laser component serves as a light source, and gencrates a laser beam
which may be either continucus or pulsed. The pulsed beam is used in the
laser ranging systems, Also, all ﬁre sent lunar ranging stations are equipped
with Q-switched ruby lasers consisting of an oscillatcr and three amplifiers.

The laser pulses are transmitted through a telescope which tracks the
corner rcflector on the moon's surface. A. small pért of the reflected light
is collected by the same telescope (or another telescope serving as a receiv-
ing telescope). The same telescope can be used as a transmitter and a
receiver partfy because the light travel time of about 2.5 seconds between
transmitting and receiving allows the mechanical insertion of a mirror
which directs the returning photons collected by the telescope into a photo-
multiplier detector.

The correlator of the ranging system measures the light travel time
to the reflector and back. As the laser pulse is fired, a start signal is
generated to start the travel time counter, and detection of the return

beam generates a stop signal to stop the travel time counter. With current
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laser and timing techniques, an uncertainty of +1nsec in the absolute

measurements of the round trip travel time is possible, This is

equivalent to +15¢m in the one way distance,

Other minor features in some of the laser ranging systems include an
optical offset guider. This feature is used for pointing to the retroreflector
when the retroreflector is on the dark portion of the moon, by optically off-
setting the main telescope from a given identifiable lunar feature. \When the
corner reflector is on the illuminated portion of the moon, the signal-to-noise
ratio of the return laser pulse is cohsiderably lower for smaller telescopes due
to the background light gathered from the surface of the moon,

The laser ranging retroreflectors were designed to serve as reference
points on the funar surface to be used for point-to-point distance measurements.
The two retrorcfiectors already deposited on the moon by (.S, astronauts are
each 46cm-square arrays, consisting of 100 fused silica corner reflectors
(3.3cm in diameter), each recessed by 1.9cm in an aluminium panel. The
corner reflectors are uncoated and use total internal reflection. Each corner
reflector has the unique property that light shining into the cnorner reflector
will.be sequentially reflected from its three faces and will come out in a path
parallel to the incident light, The third retroreflector array which will be
placed on the moonv by the crew of the Apollo 15 mission is similar to the pre-
vious two arrays, but consists of three times as many corner reflectors.

The design of the LRRR is such that the reflectors will perform under
eésentially isothermal conditions throughout lunar nights and most of lunar
days, thereby ensuring adequate return of signais at all times. The array
also allows for the velocity-aberration displacement of up to 1, 6km without
any significant loss of signal. The most important function of the array, how-
ever, is that it eliminates the stretching in time of the return signa‘l which
would otherwise be produced by the curvature and irregularity of the moon's

surface.
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2.3 Earth-Moon Distance Equations.

The primary purpose of this chapter is to investigate how lunar laser
ranges can be used to establish a selenodetic control network on ‘he moon.
The retroreflectors would serve as the "benchmarks"”, whose coordinates
could be determincd using the lunar ranges from lascer stitions on the
earth. Hewever, the relative position of a lunar point such as the retrore-
flector with respect to an carth station depends on a number of physical and

geometric paramecters of the earth, moon and the carth-moon dynamic

system. It is therefore logical to expect a refinement of these parameters
in any adjustment of lunar laser distances for the purpose of establiéhing a
selenodetic control system.

Before one can use lunar laser dist_ances for the purpose mentioned
above, the mathematical relationship between the mcasured distances and

the following list of parameters have to be established:

{a) The selenodetic coordinates of the lunar retroreflector (M)

(b) The geocentric coordinates of. the selenocenter (C)

{c) The geodetic coordinates of the laser station (P)

{d) Parameters of the orientation of a moon;f ixed coordinate _
system with respect to an inertial coordinate system. These
are given by the physical libration angles g, p. T and the mean
orientation angles as defined by the Cassini laws

(e) Parameters d_et’ining the orient_ation of the "éverage" terrestrial
coordinate system with respect to an inertial system. In
Classical Astronomy, these parameters are usually given by
the precessional elements (§0, 8,, 2), the nutational parameters
(A€, &Y), time (represented by Greenwich Apparent Sidereal .
Time (GAST)), and the position of the instantaneous true pole
with respect to the Conventional Internation Origin (CIO pole),
given by x, and v, 169]. '
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From the review of existing literature on this subject, one could find
that a few mathematical formulas have been derived, which express the
earth-moon distance as a function of somc of the parameters listed above,
For example, Alley and Bender treated the problem of using laser distances

to improve our knowledge of geocentric longitude in f 2 ], while Alley et al,

~ offered a simplified model for estimating the expected accuracies with which

some geophysical and lunar parameters can be determined in {3]. A
relatively more detailed mathematical model was developed by Kokurin et al.
for improving certain astronomical parameters in {48] and [49). Their
approach was based on geometric consideration of the earth's and lunar
positions at the epoch of observation. In this section, a different approach
will be used, based on the consideration of the various coordinate systems
involved, which can be transformed to a uniform coordinate system through
the use of rotation matrices {composed of functions of the orientation parameters)
and translations. The main goal will be to express the coordinates of the lunar
point at the observation epoch, in a coordinate system topocentered at the
observing station. The earth-moon distancé can then be deduced as a function
of these topocentric coordinates.

Before going into the development of the laser equaﬁons, the various
coordinate systems involved and the parameters connected with them will be

given brief treatments,

2.31 The "Average" Terrestrial Coordinate System.

The average terrestrial coordinate system is defined by the average ter-
restrial pole of 1900-05 (designated as the Conventional International Origin
(C10)), and an average terrestrial equator f69], Tt is the system to which

absolute geodetic and reduced astronomic coordinates of any physical point on

the earth are referred.
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The average terrestrial Cartesian coordinate system (U,V,W) has its
origin at ihe center of mass of the earth, and its axes are fixed with respect
to the earth's body. The positive W axis is directed toward the CIO pole,

the positive U aiis is directed towards the Greenwich Mean Astronomic

meridian as defined by the Burean International de 1'Heure (BIH), and the 4
- V axis completes a right-handed rectangular system. ;
: In computing geodetic coordinates of points on the earth's surface, a Q

reference figure (the reference ellipsoid) is usually introduced. An absolute f

geodetic coordinate system can be defined, which is geocentered and has its
: axes coincident with the U, V, W axes defined above. If the absolute geodetic 3»;
coordirates of an earth station is given as (, A, h), then the Cartesian
= y
coordinates can be computed from: :
i _ _ ) Q;
2 u | (N+h)cose cosx i
d
! ¥
V| = [(N+h)cosy sin) 4
w (N(1- €% +h) sino i
3
T where f,
IS _ a . i3
N ———-———(1 e sinzgo)%' the transverse radius of curvature, g
X 2 _ . -

e® = 2f-f> the first eccentricity,

and
' a, f are parameters of the earth-ellipsoid, denoting the semi-~
major axis and flattening of the ellipsoid respectively.
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2.32 The Selenodetic Coordinate System.

On the moon, we use spherical coordinates - longitude 4, iatitude b and

radius r - to define the location of a point on the lunar surface. Similar to

o

the geodetic coordinate systefn. thé selenodetic coordinate system is fixed
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with respect to the lunar body.

The selenodetic latitude is measured from the lunar equator, defined as
the plane passing through the center of mass, perpendicular to the axis of
rotation, Latitude is measured in degrees positive toward the north lunar
pole and negative toward the south pole. .

The prime meridian, 4 =0 is a plane which contains the axis of rotation
and the Earth-Moon line when the node and the perigee coincide (i.e. at
zero geometric libration). Thz longitude is measured in degrees, positive
in the direction of rotation (eastwards) from 0° to 180° and westwards from
0° to -180°, ' '

Zz North
Axis of Rotation
M
me
Mdridan
Jr
b
Lunar
Equatqr 7
' Directio
of Rotatj6n

Mean Earth-Moon
Line

South

Figure 2,1 The Selenodetic Coordinate System.
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g i
: The Cartesian selenodetie coordinates of any lunar point (denoted by
X, V. 7) is related to the spherical coordinates of that point by the cquation: i
| x| ‘r cosb  cost | a
¥y { = 1r cosh sint 4
; _-7.‘; | r sinb i
:
r The xyv z system is centered at the moon’s center of mass.  The z axis is
'" coincident with the moon's axis of rotation. the X axis coincides with the §
E mean Farth-Moon line (sometimes referred to as "first radius”™) and the '
y axis is perpendicular to both x and z axes and completes a right-handed t
5 rectangular system, e
E The selenodetic coordinate system is related to the ccliptic system by _
i the three Fulerian angles, which will he treated in more detail in section 2. 34, :
% 2.33 The Geocentric Coordinates of the Selenocenter., i
f In developing the equations for measurcd lunar lager distances, the %
:{ coordinates of the lunar center of mass with respect to the geocenter are
:’. needed. These cvo-dinates are obtainable from ahy lunar ephemeris which
i gives the coordinates of the moon, relative to the carth as a function of time.
3 All ephemerides in presentuse arethe result of a particular lunar theory which !
? attempts to apply the law of gravity to the motion of the moon. ‘
z The lunar theory is a subject that has been discussed and treated by var- ’
: ious scientists from the time of Newton to the present day. Although different s
% authors employ different methods in arriving at their lunar theory, they *
; all start from the differential cquations of a perturbed two-body system. : :
g The main problem is to integrate the cquations of motion of a perturbed 3 ‘
i* two-body system given by ' :

i
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where: .
- -
r is the earth-moon vector
G is the gravitational constant

Mg, My are the earth's and moon's mass respectively

and
' R is the "disturbing function™. If there were no

perturbing bodies, R would he zero and the result-
ing motion would be elliptic, Ii the sun acts as

the only perturbing body, then R is given by

1 P
- 1 r.c”
R = GMO‘p .

-
r

where
pis the moon-sun distance
r’ is the carth-sun distance

Mg is the mass of the sun.

The disturbing function generally used in any of the lunar theories 'is modified
to account for the presence of other perturbing bodies, i.e., the planets.

The analytical integration of the equations of motion for thre« or more
bodies in a closed form is not generally obtainable. Consequently, there are

two basic ways in which the lunar ephemeris is obtained:

In the first method, the elements of the equations of motion are expanded
as Fburiet series, yielding a sequence of terms that are analytically integrated,
and resulting in lengthy analytical expressions for the junar ephemeris. In
the alternate method the original unexpanded equations of mr 2tion are nu.meri-
cally integrated. The analytical method has been used by classical lunar
theorists and its main disadvantage is that the expression for the lunar ephemeris

is truncated. The number of terms in the final expression depends on the number
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of bodies and types of perturbations treated as well as on the accuracy of the
high-order terms required. The present most widely used lunar ephemeris -
which is the resalt of the Hill-Brown theory [ 12] with modifications by
Eckert [ 20] - uses the Fourier sevies development ﬁ\ethod.

The numerically integrated lunar ephemeris, which was initiated by the
Jet Propulsion Laboratory (JPL), is made possible by the advent of digital
computers and is noted for its gravitational consistency. All the planetary
effects are well taken care of and any differences_between the ephemeris and
the true coordinates of the moon are a direct result of inadequacies in the
theory {tself. 'I_‘he numerical ephemeris is also clearly superior to the
analytically obtained ephemeris in terms of accuracy as demonstrated by
the JPL [72]. Consequently, the position of the center of the moon, to
which corrections are to be computed and which should be used in the pre-
diction equations for laser distances, shculd be that from the latest of the
numerical lunar ephemeris - LE16 which is contained in the JPL Develop-
ment Ephemeris Tape 69 (DE-69) '[ 77]}.

2,34 Parameters of the Orientation of the Moon,

The laser distances, like any other earth-moon cbhservziion,is a function
of the varameters that define the orientation of the moon, The orientation
of the moon is related to the moon's rotation on its axis in the samé way as
the lunar ephemeris i3 related to the orbital motion,

The moon's rotation follows, to a high degree of approximation, the
empirical Cassini lavs. The physical deviation of the moon's motion
from the described by the Cagsinl laws is known as the physical libration
of the moon,

The moon's orientation in space is defined by the three Eulerian angles,
which define the orientation of a moon-fixed coordinate system with respect
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to an inertial system. Traditionally, the inertial system chosen is the
mean ecliptic coordinate system of date which is not truly inertial, but

has secular changes due to planetary precession.

.- . " ) Y
X ‘\/ Radius

o .
Nodal Line \

Figure 2.2. The Moon's Eulerian Angles.

Figure 2.2 shows the xyz coordinate system which is fixed to the body of
the moon, and the XYZ system representing the mean ecliptic system of
date. The Eulerian angles are denoted by 8,  and €.

The Eulerian angles are composed of two parts, namely the mean angles
(which are the mathematical expressions of the Cassini laws) and the pertur-
bations (given by the physical libration angles). The angles are given by

the following expressions:

= L+a-Q +7-0
b = Q + 0
6 =1 + 0

22

. T T P I DS TR . o, - . ) . s . .
B it S REE W FONIEA P VPR D NIC SIS R S L 1 LI NIUDINS. A . S 30 PO SR P S SO ISP PSRN SRRPURN 3 PV VRV SIS B /1 S It SRR

PEVRSIT TP NP PN A

A

FTIR VAR JOPR G SO S

T L a
I . 3
Lakﬁ:...z wten



- ;T-_-‘—‘ . - T R PR

~ where
L is the mean longitude of the moon in its orbit

is the longitude of the mean ascending node of the moon's orbit

-

is the mean inclination of the lunar equator to the ecliptic

NI
-3

is the physical libration ia longitude
: o is the physical libration in node
and

p is the physical libration ir inclination.

et ot

The mean angles L and ¢ are obtainable as explicit functions of time from

5 the following expressions taken from {65..

R L = 270°4341639 + 48L,267°8831117T

-0%11333:5 « 10° T + 071888889 x 10° T°

S Q = 25971832750 - 1,93471420083T

&

; + 072077778 » 102 T + (222222221 10° T
‘ where T is the time in Julian centuries of 36525. 0 ephemeris days from Jan-
i uary 0.5 1900 (J.D. = 2415020.0). The mean inclination 1 is given by:
2 I = 552175,

i

A

The physical libration angles are expressed as harmonic series having

fixed coefficients and arguments which are expressed as functions of time:

T = ?A, cos{a,t + b))

with similar expressions for ¢ and p.

T T e e D e e

The Eulerian angles which define the orientation of a set of moon-fixed
axes with respect to an inertial system are obtained through the solution of
the equations of motion for the rotation of ttemoon. Classically, the dif-

ferential equations (represented by the Euler's dvnamical equations) are
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analytically solved by series expansion, and actual observations (usually
heliometric observations) are used to solve for the coefficients of the harmonic
expressions. Recently, the numerical integration of the differential equa-

tions of motion in their original form has been proposed, [78]. Byusingthis
method, the Eulerian angles would be obtained directly by integration without
splitting the angles into two parts - the mean angles and the physical libration

angles, Inaccuracies in the orientation angles obtained by numerical integration
can only result from inadequacies in the lunar rotational theory, and not in

the type of linearization and approximations that are essential for solving

analytically the differential equations of motion.

2.25 The Parameters of Earth's Orientation.

In observations made from an earth point to 2 moon point, the relative

orientation of an earth-fixed coordinate system with respect to a moon-

fixed coordinate system is needed. The coordinates of the earth station

are expressed in :'n earth-fixed system while the moon station coordinates
are in a moon-fixed system. In practice, the problem of determining the
relative orientation of the moon with respect to the earth at any epoch is
solved by finding the orientations of the earth and the moon with fespéct to
an inertial system.

The orientation of the earth in an inertial coordinate system is aiso needed
in geodetic astronomy, where observations are made to celestial objects, whose

positions are given in a celestial coordinate system of a standard epoch. The
precessional eiements ({o 91 and z) define the orientation of the mean celestial

equator and equinox of date with respect tothe mean equator and equinox of an ini-

tialepoch. The orientation of the true equatorial coordinate system to the mean
equatorial system is also defined by the nutaticn in longitude and obliquity (A, & €).
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£ Lastly, the orientation of the average terrestrial coordinate system with respect

tothe true celestial equatorial system is given by the two coordinates of the

\ true pole from the average (CIO) pole, together with the Greenwich hour angle
:‘ of the true vernal equinox (Greenwich Apparent Sidereal Time). -
{( The expressions for precession and nutation elements are obtained from
5 the analytical solution of the differential equations of motion representing the
ft rotation of the earth on its axis, The nutation series that are currently in
; use in astronomical work are those obtained by Woolard {94]. The accuracy
%‘ of the precessional and nutational elements obtained through the use of

] ; current expressions are consistent with the accuracies of present day observa-
7

tional systems. However, in using observations made by future systems

o

Lo

i

1

g which are expected to be more accurate, there‘ is a possibility of improving
i : the accuracies of the elements of precession and nutation. The constants
g for the expressions that give £, 9, and z; as well as those for the nutation
- g series can be regarded as pai ameters to be adjusted in addition to other

3

‘
S

parameters of interest.

‘

Another way in which the orientation of an earth-fixed coordinate system

T

W .WC.

£

can be obtained from the earth's rotational theory is proposed in this

work, Essentially, this method considers the orientation of the terrestrial

iaix coordinate system with respect to afixed mean ecliptic system as made up of three
f‘ Eulerian angles. The three angles and their time derivatives can be obtaired
g“ from the three second order differential equations of motion for the rotation
f”i of the earth in its complete form by numerical integration process. This

4

topic is being given a complete treatment in Chapter 4.

A
&
v

Figure 2, 3 shows the relationship between the average terrestrial

:

+
A

coordinate system (UVW) and a mean ecliptic coordirate system (XYZ) of a

A...
T

standard epoch. The earth's Eulerian angles are denoted by 8¢, ¢, and ®¢.
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Figure 2.3 The Earth's Orientation Angles,

The advantage of the numerical integration method of obtaining the
orientation of the earth over the classical analytic method is the fact that
the angles obtained depend only on the initial conditions represented by six
constants. Consequently, only six parameters need be added to the param-
eters list if the values of precession and nutation elements obtained from

existing expressions are to te taken as variable quantities.

2.36 Computation of Distances between Points on the Earth and on the Moon,

In Figure 2.4, P is a station on the earth making distance measurements
to a moon point M. The geodetic coordinates of P are given by ¢, A and h.

The Cartesian cnordinates of P in the UVW system are given by

26
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Figure 2.4, Laser Station (P) and Retroreflector (M)
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Similarly; we let 4, b, r be the selenodetic coordinates of point M. Then

the Cartesian coordinates of M in the xyz system are given by

Xu rcosb cosi
¥ul = frcosbsin L | . 2.2)
z, r sinb

The geocentric Cartesian coordinates of the lunar center X, Y., and Z; at
the epoch of observation is taken from any lunar ephemeris. In the deriva--
tions to be made here, it will be assumed that the X¢q, Ycq, Zcq coordinates
of the selenocenter is obtained from the latest numerically integrated lunar
ephemeris - the LE16. In this ephemeris, the coordinates are expressedinthe
1950, 0 mean equatorial system. | A

The coordinates of the laser station P can be expressed in the 1950.0
mean ecliptic coordinate system by applying a series of orthogonal trans-

formations [ 69]:

"x," | | U
1 Y, = RyeaP'N's" |V (2.3
LZ’.}fclt 1950.0 » w

where P, N, S are 3 x 3 orthogonal transformation matrices as follows

P = Ra(-2z) Ra(d) Re(-Lo)

N

R, (-€ - D€) Ry (-AY) Ry (¢} 2.9

S

Rz(-X¢) R; (-y») Rs (GAST).

The conventional orthogonal rotation matrices R (), Rg(0) and Ry(a) are
often used (as in this case) to rotate a general system by angle o about the
axes X,Y,Z respectively. These matrices, consistent with a right handed

coordinate system are given by:
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Ri(@ = 0 cosa sino :
LO -sina  cos v | :

[cosa 0 -sina’] o

Ro(n) = 0 1 1]
A

Lsin a 0 cos o !

[ cosa sing 0]

Rz;(0) = |-sina cosa 0 |. "
| o o 1] i

The parameters z,, 8,; and §, are the precession elements for the period between
1950. 0 and the epoch of observation; Ae¢ and &) are nutation in obliquity and
longitude respectively at the epoch of observation; ¢ is the mean obliquity of the

seasel " 40 Iy A v it S e

equator of date; GAST representé the Greenwich Apparent Sidereal Time and

1%

Xqs ¥» are the polar motion parameters. ¢, is the mean obliquity of the equator

at the epoch 1950.0. Equation 2.3 could be «quivalently written as

X, : U

Y, | = Ri(€0)RolCo) Ret-B)Ro(2)Ry - Ra( BB Ry (€ +49 Rot-GAST)R, (v} Rel®e) [ V |

Z, A2 ‘
—'€¢1, 1960, 0 :
2.5)
In a similar manner, the coordinates of lunar retroreflector (M) can
: i
be expressed in the 1950, 0 mean ecliptic system as follows:
3 | K
% .
Yui = Ri€dP RiCQRFYR(OIRt &) | yu | - (2.6)

Zy I Zy

=  ~€cl.1950,0

o R AR R ra i TP B e P ATt Srdiomnaing s v ST
-
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In equation (2. 6), ¢, 8 and & are the Eulerian angles which define the
orientation of the selenodetic (x,y, z) coordinate system with respect to the

mean ecliptic system of date. The three angles have been treated in Section
2. 34,

If

Ty = Ro(d Ri69) Re(¥)

then equation (2. 6) becomes

Xa ' Xn
Y = RiEP'REOT] | yu| - 2.7
Z! zn

€cl, 1960.0

‘ Since: the geocentric mean equatorial (of 1950. 0) coordinates of the lunar

center as obtained from the LE-16 or any other lunar ephemeris are given

- by

Xeq
Y.‘.Q »

Zeq

the geocentric coordinates of the selenocenter, expressed in the mean -

ecliptic 1950. 0 system are given by

Xe Xeq

Ye = Ry(€a | Yeq - (2.8)
Zeq |

where ¢, as defined earlier, is the mean obliquity of the equator at 1950. 0,
Thus, the topocentric coordinates of the lunar reflector (M), with the

£¢1.1960.0 -

laser station (P) at center are obtained,by considering Figure 2.5, a8
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XZI X Xa X,
Ya = |Ye + | Y - |Yel. (2.9)
Zy Ze Zy Z5 {ec1. 1950,

topoce €cl.1880.0 €cl, 1960.0

The topocentric coordinates of the moon point obtained by equation (2. 9) are
expressed in the mean ecliptic coordirate system of 1950, 0. It should be

noted, however, thét since distances between two points are independent of

the coordinate system, the topocentric coordinates could have been expressed

in any coordinate system. The 1950. 0 mean ecliptic coordinate system has

been chosen because it is a near-inertial coordinate system which will alsobeused

in the case of VLBI observations involving directions.

]
i}
x
~ 13-

1=n-
oL
,: |w
ZC ]
; i
' ¥
) ;___ ‘_n'_. - ._l—j’&ﬂl’!
0 ‘I l Y
g¢ 1% Ny
_ - [ /xc
e e X%

X
(1950, 0)

Figure 2.5. Topecentric Mean Ecliptic (1950, 0) Coordinates
of Retroreflector (34).
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Into equation (2.9), we substitute expressions for

to obtain

(=

X v Xeq Xy
Yy = Ry(€o) | Yeq |+ RGP REOT]| yu| - Rule) PN'ST | V (2.103)

Zy Zeq Zy] . w

which is fully expressed as

—

X Xeq Xn
Yol + Ri(€d| Yeq| + RiedRa(Co)RotB) Ra(%) FatQRatIR(B)Rab- B ¥,

Z M & Q ' z.!a
topoc

U

- Ry(ea) Ro(§o) Raf-8) Ro(A) Ry - Ra( &) Ra (e +BQR5¢GAST)Ry () Rofxe) | V | (2. 10b)
B . -W—J

or,
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X ‘ch rxn

e D A i,,',;‘.\,:\‘_

Yu| = Rio)§| Yeq| * Ro(Co)Rel-B)Rs(2)R.¢6) | Rot-DR1UOARED| v

Zy | Zeq : Zy
topoc. L 3

BT T R g
P M A M

ik LSt

L

= Ro(&YRi& +A9Rs¢GAST)Ry (%) Relye) | V T (2.10c)

w

In vector form, equation (2.10) can be expressed as

- - - -
Xy = MyXeq + MaXy - MaX, - (2.11)

LKL Bibr it e St b s I AN i Y e VB0 G e Y 8

A A S P
R B

where E
, -i«;’J -)'( ~ {8 position vector, the subscripts indicating
g T - moon point in a topocentric coordinate system ﬂ
% CQ - geocentric equatorial coordinates of moon's center } :
B ;i of mass “
' f: M - moon poin.t'in selenodetic coordinate system %
”:;a P - earthobserving stationinaverageterrestrial coordinate system 4 '
& g M,, Ma, M, are orthogonal transformation matrices for expressing s

S

each position vector in a coordinate system parallel to that of the
1950, 0 mean ecliptic system.

i

i

,.
SR,

T

The rotation matrices in equation (2.5) were used in order to transform
from the average terrestrial systemto the mean ecliptic system. It Las been
explained in Section 2, 35 that the orientation of the average terrestrial system
to the 1950, 0 mean ecliptic system could be defined by a set of three Eulerian

" angles ~ 6, P, and & . I the f.hfee orientation angles are available, then
equation (2.5) can be written as ’
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Y -1 |V]| = REBIR@REE |V (2.12)
Zo w_ ' w
" €cl, 1950,0
"
Ta = Ro(d) Rat-86) Rs (¥e) (2.13)

v In a similar manner, the numerically obtained Eulerian angles for the
moon's orientation (see Section 2. 34) could define the orientation of the
selencdetic coordinate system to an inertial system such as the mean

ecliptic system of 1950, 0. " Therefore equation (2. 7) could also be written

as .
X! X o
‘ |
Ya! = T{ |¥u| = Rot) Ri(B)Rot-%) | ym (2.1
Z!j ‘ 2y 2
€¢1.19€0.0 _

where ¥, 8., ¥, are the numerically integrs_.ted moon's Eulerian angles
defining the orienfation of the selenodetic system with respect to an inertial
system (in this case, the 1850.0 mean ecllptic'system).

As an alternate ekpresaion to equations (2. 10), equation (2. 9) could be
expressed as follows : |

_ - -
Xal _ l‘xco , Xy |
Y"‘. = Ry I Yeq | + R¥ RiBD Rt | e
i i
Z"‘Low:.' LZCQ—' 3 L % |
. -
- Rt RiBeRet-%) | V |- (2.15)
“'
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Equations (2,10) express the topocentric coordinates of a moon point
_ at any epoch in terms of astronomical parameters in current usage in most
astronomical work, On the other hand, equation (2.15) gives the same

topocentric coordinates of the moon, but expressed in terms of Eulerian

Lan

LRI NS

e

angles defining the orientation of the earth-fixed and the moon-fixed coor-

L UL TR 2 o T A S Oy i “'-'-”i&‘:,r
o LI R

dinate systems with respect to the 1950, 0 mean ecliptic coordinate system,

-’ The distance from the earth point to the moon point is a function of

¥ the topocentric coordinates of the moon point as follows: s
D = (X3 + Y3 + 23" (2. 16)

il

& where D {s the distance ard the Xy, Ym. Z,y are topocentric coordinates of

6‘ the lunar point at the epoch of observation given by any of equations (2.10) :

or equivalently, equation 2.15).

2.4 Formulation of Obse_rvation Equations for Earth-Moon Digtances

In Section (2. 36) a set of equations have been derived, by which the dis-

tance between anr point on the earth and another point on the moon cap be
predicted for any epoch of observation. In general, the predicted and the

RO P

observed values of the distance will not be identical due to many factors.
These include the fact that some or all of the parameters used in predicting
the distance may be inaccurately known, and the fact that the observed

i bk i

distances themselves may suffer from gystematic errors, in addition to the 3

common accidental observational errors.

In this section, the effect of small variations in the parameters on the

calculated distance will be derived, which together with the differences in

observed and calculated values, could be used to correct initial values of

the parameters. It is asstmed here that the measured distances have been
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corrected for all instrumental and other systematic errors (such as {

atmospheric refraction). Consequently, no systematic error models are
introduced into the observation equations. Rather, the equations can serve
as a general model which can be used to adjust any type of distance observa-

SURR ORISR

tions from an earth point to a moon point if such observed ranges are freed

from systematic errors.

From equation (2. 16), the distance equation can be written as
D = i (X ' ' 2.17)

where D is distance and (X, ] is column vector of topocentric coordinates
of the lunar point, .
Also, from equation (2.10), if GAST = ©

P ko A Al B oL 4ty 08 g SVt R COTOLY S (e

R T T T Y H R TN R U CHiy s o T VI P LD AR ety evehs e

[x1] = fB(GO! G-co-ehzu Mn A(u e.r xo.&'p.l{)ﬁ,@. U,V,W,

EL e T

g (2.18) I

Xs Yous Zms Xeqr Yeqr Zco)

¢ ' §

[ and if the parameters listed in equation (2. 18) are represented by a column i

" g vector [»], then ' , : ¥ ’

§ [x,1= 0. _ (2.19)

% The mathematical structure represented by equation (2.17) with equation i

: i

g (2.19) is of the type ‘ : . i

3 : i

E L, = FX) : (2.20)

v ’ where L, is a vector of the adjusted values of observed quantities, and X, : 1
) ; is the vector of adjusted values of parameters The Taylor sertes Iineari- j :

) g: zation of (2. 20) leads to the observation eauatxons [94] ;

T H

R : i

. g V=AX+L (2.21) 1

- ¥ ""i

: % where 4

. 3L,

o A= —2 o

ﬁ’é 3 Xa !

- g

§ :‘T ‘{;
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X, - Xo
L=L-L
Lo= F(Xo)

X, is the vector of initial values of parameters
L, is the vector of observed values

V is the vector of residuals,

In thig case, the design matrix [(A] is given by:

where D, %, X, are all column vectors. For each measured distance d,,

3D _ 3D 3%,
In X,axn

tke ith row of mutrix A is given by

Therefore

24 _ 3y Xy
an X, ar

“rom equations (2. 16) and (2.17),

hx) = @3 + ¥2 + z5)%= b

Ha

S B
dl[X,’:Y..,:Z,."]

1r ]
PR SO

X, |
l.ﬁx;
d.

1] r,
Yo,  Za,

where n is the number of observations.
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In order to find %‘ , it can be seen that the function f; in equation (2. 18)
includes rotation matrices, Awhich also have to be differentiated. Differ-
entials of rotation matrices are easily obtained through the use of special
skew matrices (hereafter referred to as Lucas matrices), whose properties
are such that when the skew matrix is either pre-multiplied or post-multi-
plied by a rotation inatrix, the resulting matrix is the partial derivative of
the original rotation matrix [587.

Define:

0 -1 o]

Le = |-1 0 o

Y 0 0

Then as an example, if R,(o) represents a 3 « 3 rotation matrix, (n=1,2,3),

Bl - L R@ - R L,

(2.27)
3
a2 - p.re
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Also, if
M = R;(@) R«(8) R,(¥),
then

A - LRORAR = LM

M
> 8 R.(0) L. Ru(6) R,(¥)

and

2 - RERER ML = ML, (2.28)

The partials g-—):‘ will now be derived from equation (2.10), for each

element of the » vector individually:

(1) For the mean obliquity of the equator at the epoch 1950. 0, (€o):

X / ‘
3] Ya - | Keq | Xu | U

d€o 2. LLRIQFO) Yeq |+ P'T] |y |- PINS |V

Zeq Zu w
or
S . e
K- oLx =1L Y. - [z, . (2.29)

A€o
. Z.. . LY.Q
: . 0poc

" (2) For the mean obliquity of the equator of date (¢):
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aX
= Ryed)-P'Ly {RtOT] |y | -N'S |V J -P'N'LST| Vi . 30)

| Zy w
L —

(3) For the precessional elemerts o, 9;, and z;:

i

i

| -
s = ReJIoP | REOT Lyu | -Ns" | v (2.31)

alo -

el
] “uw\

g—’;: = “Ry(€dRolCo) Ly Ry €61)Ra(z;) RiE€)T] | yu| -N'ST |V ]’<2~32)
2 W /
\ .
/ ~]  [vu \ ‘
= R P'la REAT] (| -N'ST|V } (2. 33)

i
\

(4) For the nutation in obliquity and longitude, A and A¥:

U
3X
a—& = -Rikd)P'N"1,ST| V (2.29)
“‘-—
“and _ U
BX. _ 1 \4
3o~ "“Ri(PREOLR(BYRE+BOS |V |, (2.35)
“7
40

P

PPN




S e S 2 3mSR S MERALIY T e
S ETRTY g e RIS RRTRRED,
\ ? ST TSRS P Lt 13 PR - LS ERERL U 18 Capd Zafa Jemnai ot it A I S 1 - CrOrRN SVRACRASE AR S A  ad

I T I N

PR RN
¢

VR e

AN T

Py

fdees *y

(5) For the moon's Eulerian angles, 6, §, and &:

Xu
%’ = Ry(€) PTRiCOR Y LR (O)RotH) | v (2. 36)

Za

Xu

Q/

X
=2 = -Ry(€x)PTRyf€) 1y T)

" Yo (2.37)

|
|
5
Lz

Q

and

3%

= RGP REOTI Ls | yu |. (2.38)
Z"—

{6) For the coordinates of the true pole x;, y, and the Greenwich Apparent
Sidereal Time ©:

U

§x§’ = -R(€)P'N'S"Ly | V (2. 39)
14 R

w

U

2%,

sy ~Ry(€)PTN"R; E) Lo Ri(yo)RA(x,) | V (2.40)

‘W
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b R ;;- Fm el el
U

?é‘ = R(edP'N"I,8" |V | (2.41)
w |

(T) 1n order to find the partials with respect to the coordinates (of earth

point, moon point and moon's center), let the column vectors Xeqr Xaand

X, be given as (see equation (2.10)):

0

e dead e el

F;" ."‘;.“.‘o. ;'."'.. .

om:
g
3

el i~ S P AU -~ UL NP NP M R S S S 20 ST wir S N AL S S

{-Xco X 4]
i Yeol Xa = Iyup » X =1 V |.
! Zeq Zgy W

1 0 0

= {dentity matrix = 0 1 0

X - Ri(e) - T = Ry(€o)- (2.42)

%%: = Ru(eP'Rit€) TY (2.43)

A%,

= - P'N'S'. 2.44
ox, | H(edPR | (2. 44)
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Each of equations (2. 42) to (2. 44) is a 2 x 3 matrix, with the three columns
representing the three coordinates (of selenocenter, lunar point and earth
station), while the rows represent the three topocentric coordinates of the

lunar point,

In using measured laser distances as observed quantities it will be
impracticable to use some of the parameters' that have so far been used in
finding the partials represented by equations (2.29) to (2. 44) due to one
main reason. Some parameters, in their present form, chahge from epoch

to epdch and the total number of parameters to be solved for will always be

ik et DA PR R D L TN T s e

larger than the number of observations. Such parameters that vary with time

include the precessional elements, the mean obliquity of the equator of date,
nutation in obiiquity and longitude, the Greenwich Apparent Sidereal Time," ‘*
the Eulerfan angles of the moon and the geocentric coordinates of the seleno- 2
center, It is therefore necessary to expreqs'these variable parametérs as \3
funqtionq of time or like arguments, and to regard the coefficients of these j-':; "
arguments as the parameters. . é :
Suppuse a variable parameter, q can be expressed as afunction of time: f§
73
q = Gotmttgt®r.. gt ’% B
q = (G,t) ;% ﬂ
where % "-.}
G is a column vector of coefficients go, g ---
and t is.some time unit, or similar argument,
Then

SXr _ 23Xy 34q .
oG aq oG

Each variable parameter will now be considered.
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§ The Mean Obliquity of the Equator of Date.
§ An expression for the mean obliquity of the equator of date (¢) is given
by [ 65]:
i ' )
€ = 2304522944 - 0701301250t - 071638889 « 10 1% + 025027778 x 10%¢°
|
«; or |
5 €= atat+atdtat?
¢ where t is in tropical centuries from 1900. 0 _‘
2 3% __2de 1
: a[ao'...aa] ac 'arao’.o.%] :
! : !
L ’ and :
2 E
rrera A SRS b o .

_If the variable parameter ¢ is then replaced by the coefficients a,, 2,, 2, 2,
then equation (2. 30) is replaced by ' SO

3% 3X 2 RN .
' ) —_—r o 2A2r t £ . !
; aMag -2}’ 2de 1 t ] : (?'45), . !
: RN |
' where -g-}f" is a column vector given by equation (2. 30). The right hand side of

equation (2.45) is a 5 x 3 matrix which will have to be pre-mulitiplied by equa~-
tion (2. 25) so as to obtain a row vector that represents the partials of the

it che e
Bl e dn Rl il st e b 22 1hlT D vt D Tk B o ks Tem e s T

lunar distance with respect to the coefficient ay,- -+ 85, i.e.,

o 3 __de -

3fag,---3,)" Xy d€ dMag,--al" |, (2.46) e

The Precessional Elements. ‘ ; .
AR 2

oy Sorems

The expressions for the precessional elements are given"a.; {65]: .

"y

PR o
AT o
HEUR- X JE SO P S RO AV e
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s

23047951665t + 0.302165t> + 0.018¢

1}

Lo
12004258257t - 0426885t - 0.0418¢

NG K R T iy

91 =

z, = 2304/951615¢ + 1.095195¢ + 0.01832¢ :
where 't represents the elapsed time since the reference epoch of ‘
- 1950, 0, in tropical centuries. The above equations can be written, in

matrix form as

I

to - BT |
6, = BLT* : | :

2, = ByT*

where B,, Ba, B, are column vectors of coefficients and

T = [ ).

_ Thus, ;

%%’; =TIt t* ] =T (ie. 'f*_transposed) ‘

:? and , _ _
Similarly,

-2.S SR>, C QRN

B T B T (2. 48)
X X

22l = DT, el

B 32, T (2.49)
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. ‘I-‘rom equations (2 47), 2. 48) 2. 49‘ and (2 25) the partials of t.he distance with
respect to Bx. B. and B, can be obtained in'a manner similar to equation
L (2 46) ; S

c .The Nutational Parameters.

When consldering the nutational parameters A( and Aib, the situatlon

',.is more complicated The series normally used in calcnlating Ae and DY
“for each epoch contain some 40 terms for Ae of which 24 terms are of
short period and 69 terms for Ap mcluding 46 short penodic terms [65].
To include al! the 109 coeiﬁcients as parameters in a general adjustment
: model not confined to solving for. only the earth's precessional and nutational
' terms would necessitate a large number of observations as well as increase

' _ greatly the dimensions of the resulting normal matrix Moreover, the

argument in each of the terms of the nutation series is a combination of

: trlgonometric functions of the ﬁve so—called "mean longitudes" (of the sun'
‘perigee, the mcon's perigee. sun, moon's node and the moon) The “mean
A _ longitudes" are also calculated as fnnctions of time’ (see (657). The coefficients

- of the terms in the expressions for the mean angles could therefore be also

treated as variables. = - R 5 fvE G :-?. ‘;3;“' ol
' There are two possible ways in which the problem of the large number

of parameters can be avoided ‘In the first alternative, the mean longitudes
can be regarded as constants, while only a few of the coefflcients of the argu-

ments in the nutation series are ‘included as parameters. ,The other coeffi-

" cients will have to be held fixed. - The choice of the coefficients to be included

a3 parameters is more or less arbitrary, but should include coefficients of

both short and long periodic terms. The second way is to replace the orienta-
“fon of the eart.h-ﬁxed coordinate system with 1espect to an inertial system
by the three Eulerian angles mentloned earlier, thereby combining the effects

" of luni-solar precession, nutation and planetary precession. In this case, the

angles can be integrated numerically and the number of parameters is reduced '
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to only the six initial conditions for the three second order equations of motion ‘
(see Chapter 4). Expressions for both methods will be given here,
Let the series expressions for Ac and Ad be given as :
i
i bde = Jy Gy )
1=1 :

[
[

-
n
-

where

e Lt b e bl b 45

Jdy» Ky are numerical coefficients
G, Q; are arguments (functions of the "mean angles").

Also, suppose only n and m coefficients are to be regarded as parameters

from A¢ and Ay respectively, such that the reduced expressiors are

ELETE AR ST S PR PR A

E8
EREANIOL

n
Ac¢* = T I G

Ao

I
>
<

*

[}
M [ ]
ke
o

24

-
n

-

PRI

Then

"
I

T
[+ %)
>
~m

[}
Q,

Qs
S

> 3N

By |
K 9

i
1
{
b
i
4
4
i
i

where

J, K are column vectors of dimension n and m respectively

and G, Q are column vectors of dimension n and m: respectively.

47

Prrdon ded sttt teh ke oetiin basee i 52 L S s Bt i 5 s

B R LI N A T ST PYO SO, RN S PRI A T C I AR WP S0 T



E:;.:;..i.

SOl B LN A AL R Ly ST s

e b i or s o b L SR e e R e

I S S~ -V D AIUUIES | -2 PO PRI/ Y - e A e

Thus
AN X
Loy _ C8x ot .5
J D¢ G (2-50)
oX = X . Q' 51
3K 3bY Q- (.50

Equations (2.50) and (2. 51) can be used together with equations (2. 34),
(2. 35) and equation (2. 25) to find *he partials of the measured distance d,
with respect to the nutation parameters. The eqﬁations for the partials,

when Eulerian angles are used will be considered later in this chapter.

The Mocn's Eulerian Angles,

The moon's Eulerian angles 8, { and ¢ are conventionally computed
through the equations given in Section 2. 34. Here, the mean angles L, §
and I can be regarded as exact while the libration angles 7, o and p are
variable parameters. Hence, from the expressions for 6,  and &

K, | Ky 2%
3T o BT

95

_ 3k a0, 3%, 2@
20 3¢ 3@ a0 (2.52)

3
i

Q/

X, _ oX; o8
ap 36 3¥p°

However, since T, ¢ and p are calculated through series expressions, the
partials of X, with respect to the parameters in the series expressions are

the required partials. The situation here is similar to that of nutation

elements. The expressions for ¥, o and p contain 18, 11 and 11 terms respec-
tively [65]. Some or all of the 40 fixed coefficients can be regarded as param-
_«ters if the arguments are regarded as known, or if numerically integrated Eulerlan
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. angles are used, the six initial values of the integration are the only param- 3

) eters that need be considered.

The physical libration in node, inclination and longitude have the respective

n i

4 forms:

i i
3 p U .

e = ;

n %

p =L FH i

=1 ‘;

18 : {

T=T GU, 1

1=1 §

Y

whkere E,, F,; and G, are constants, S,, H, and U, are sine functions of com-

SR S B TR O
P T2 R - . e .

binations of the Delauny variables and I is the mean inclination. Thus, {f E, '
F, and G represent the column vector of parameters (related to physical ifbration
%
g angles ) to be adjusted, then
I :
g 30 _ 1 & ;
= 3E 10
R 3p ' 7
s - = 2.5 .
g oF B (2.53) :
L 26 Y
& !
§:r‘ where ;
S S, H, U are the column vector matrices of arguments. ;
g ¢
B d

Farthermore, the mean inclination T can be regarded as a parameter, hence

R

|
5

i
: o _
; %— = E-S (2.54)
R and from Section 2. 34
£ _
£5 *
bd -g-?— = L {2.55)
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= *":}f'}a‘_'-';-’:‘f'.\'" TR - = - T
s":;_r '
Thus,
3X, _ X 3% 2T
aG 3¢ 23T G
%, _ X, 2 3¢, X 3¢ 23g
3E 3y 39 AE 3¢ 230 JE
X, _ 22X 28 3p
oF 38 8p OF
and

o
chN
‘ow
=D
+
o

3X; 3 g, 3K ¥ 30
@ 2 ol ot 93¢ 1°

Noting from the expressions for the moon's Eulerian angles given in Section

2. 34 that

.28 _
Y 1,

and

the above equations can be written as:

X, of

X _ .
3¢ "3G

2G

% _ X % 3 .
dE 3¢ JE

=% 2
38 aF

and

s bt Rbstab o 4 s S e B n dd

(2.56)

(2.57)

(2.58)

(2.59)
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‘ Equations (2. 56) to (2.59) can be evaluated because expressions for the
w partials appearing on the right hand side of the equations have already been

given., The size of the matrix obtained from equations (2.56), (2.57) and
(2.58) remain 3 xn, 3 xm and 3 x { where n, m and 4 are the number of
parameters represented by the row vectors E, F and G respectively, Simi-
larly, the result of equation (2.59) is a 3 = 1 matrix. These equations are
to be used together with equation (2. 25) to find the partials of the measured
distance d; with respect to these physical libration parameters,

T

)

The GAST '
The Greenwich Apparent Sidereal Time (6) is given by (see [€9)):

© = UT + 638452836 + 8,640, 1845542¢, + 020928t + AP cose (2.60)

where t, is the number of Julian centuries of 36525 mean solar days since
1800 Jan. 0.5UT. UT (Universal Time) is the UT1 epoch of observation,
the next three terms gives the Mean Sidereal Time (MST) at O*UT, and
the last term is generally referred to as the equation of the equinox. Ay is
the nutation in longitude end ¢ is the true obliquity of the equator of date,

Each UT1 time of observatic.: cannot be taken as a parameter, since
this will always {ntroduce one more parameter to the system each time an
obgervation is made, However, general time corrections (clock offset error)
cah be found for fairly shert spans of time, ¥ UT1% is the chronometer
thrze of ebservation, and AT 1s the "regional" correctipn to UT1* in order to
obtain the correct UT1, then

A O R T R Py v TRU AR S e TN T 3 1V,

",
]

kA

UT1 = UT1® + AT.

G

e

gt

Together with equation (2. 60)
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If equation (2. 60) is rewritten as
© = UT1 +BT +Aj cos e,

then

20
B

1 [ Bo
T = t‘ » and B = B‘
ta B;

it follows therefore, that

= ""[“r

o

where

X, _ K, € _ KX (2.61)
3BT ~ 23® ' T 230

o/

20

K | % )
B

X
3B 30

(2.62)

o

oX . 3d,
94y
26 i. given by equation (2, 41), and 3AT,3B can be obtained using equation
(2. 25) as demonstrated earlier.

Since the "variable" parameters A anc ¢ are also used in computing
the value of ©, equations (2.51) and (2. 46) can be modified by adding

respectively the expressions:

oX X, 30 3
= - L S L= =
5K + 30 (2.63)

(2.64)
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The first part of equations (2.63) and (2. 64) are given by equations (2. 51)
and (2.46). From equation (2. 60)

30 | se
DY

30 _ _

Se AY sin €.

In practice, since Ay cos ¢ is a small quantity, the equation of the equinox
contribution to € can be regarded as errorless and if this is so, it is not
necessary to use equations (2.63) and (2. 64) in place of eguations (2.51)
and (2. 46) respectiv :ly.

Coordinates of the True Pole

.The coordinates x,, y, of the true celestial pole (with reference to the CIO
pole) are traditionally determined from the analysis of continucus latitude
'and/ or longitude observations at permanent observatories. Two agencies —
the International Polar Motion Service (IPMS) and the Bureau Internationa!
de 1'Heure (BIH) - use the variation of latitude and/or longitude values at these
chservatories in determining the motion of the pole, The IPMS uses primarily
five ctations located nfaar a single parallel of latitude, while the other stations
participate primarily in the BIH program,

The coordinates of the true pole are published by both the IPMS and the
BIH., The final coordinates are given by IPMS at intervals of 0. 05 year
(18. 25 days) but published two years in arreas. The BIH final coordinates
are given at intervais of five days and are generally available one pronth
in arrears.

To date, the theory of polar motion i3 only approximately known,

There are no exist'ng mathematical functions which can be used to calculate
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the position of the true pole at any epoch such as those that have already
been given for other parameters. However, coordinates of the true pole —
Xp, Yo — cannot be regarded directly as parameters as was noted above,
Hence, corrections to known values of x,, y, will have to be assumed con-
stant for a short length of time (such as five days), or alternatively, the
corrections can be obtained in another way. A

Recently, polar motion have been obtained from residuals of Daoppler

satellite observations by J. Anderle and Beuglass of the U.S. Naval Weapons

Laboratory { 8 ]. In a similar manner, corrections to the values of x,,y,

used in predicting laser distances can be obtained by analysing the residuals

of the measured distances after adjustments.

The Geocentric Position of the Selenocenter

The position of the moon's center of mass given by Xeq, Yeq, Zeq are,
like other variable parameters considered above, computed for each epoch.
For this purpose, a lunar ephemeris, analytical or numerical, has to be
used. The lunar ephemeris with the smallest estimated uncertainties is
the JPL LE16 which is estimated to have uncertainties of 100-150 meters
in position and 50 meters in range. The laser ranges are expected to be
at least one or two orders of magnitude better in precision than the best
ephemeris. It is therefore improper to use any of the existing lunar
ephemerides in the preciction equation without allowing for the systematic
errors in the ephemeris used.

In order to take care of the systematic errors in the existing lunar
ephemeris, such as the numerically integrat : LE16, an empirical model
can be used in the observation equations, whos: sole purpose would be to
absorb the systematic errors in the ephemeris. Thia will not necessarily

lead to an "improved" lunar ephemeris, but will prevent the distortion of
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the adjustment due to systematic errors of the ephemeris. Such an
empirical model can be a harmonic series, with fixed coefficients and
arguments which are linear functions of time, or a general polynominal,
the degree of which will depend on some pre-set conditions on the analysis
of variance obtained in the adjustment.

Such a harmonic series can be of the form:
T pycos(3t + by).
1
Thus, the "true" geocentric coordinates of the selenocenter that will be

used in the distance prediction equation as well as in the adjustment model

can be of the form:
XQ:I T p cos (Bt + b
i
Yoof + |2 ' cos(B 't + b)|.
i

Zg T pf cos(B{t + b})
. i

If a polynomial {s used to model the systematic errors in the ephemeris,

the "true" geocentric coordinates of the moon wili become

X Cd + Cf't + CI + ...

Ye| + Ce + Ot + CI2 + o0
Zo| Lcé +Cit+ cit -

Depending on which model is used, the coefficients u,, 8;, b, or C; become
part of the parameters to be solved for in the adjustment.

The Geodetic Coordinates

‘Equation (2. 44) gives the partials of the topocentric coordinates of the
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moon poin* with respect to the U, V,W (geodetic) Cartesian coordinates of

the laser station. The U, V,W coordinates are functions of the geadetic
coordinates o, A, h) of the éarth point and the parameters of ‘he ellipsold

(a, f) (see equation (2.1)). Optionally, if the position of the earth point is

defined in an absolute geodetic system, one can regard o, A, h, a, f as param-
eters in place of the Cartesian coordinates. Consequently, equation (2.44) will be
replaced by the following equations:

- -
-(M + h) sin© cos
2—3;-' = -Ri(egP'N'S' | -(M +h) sin© sin) (2. 65)
L_(M +h)coso |
-(N +h) cos® sin\]
Xr = _R(edP'N'S' | (N+h
S 1{€x) P'N'S { ) c08© cos ) (2. 66)
| 0
cos o cos )
.aﬁx - TNTQT
3h = ‘Rl(fo)P N'S cos ¢ sin ) (2. 67)
sing _J
F::osg cos ﬂ
“l
X, _ 1.r.r | cos©sin
S?’ = «Ry(€)P'N'S’ |—=2"= 5 (2.68)
(l-eﬁ sin ©
| W

and
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Ca(1-f)sin% ga coso cos ).—1

3X 1-f)sin% cos® sin)
& - RPN | 2D 2‘&\‘,’ (2.69)

(M sin®p-2N)(1-f)sing |

where

M = agl-eﬁ

= W

it

W = (1-e?sin?p)

and a, e, f are respestively the semimajor axis, eccentricity and flattening
of the ellipsoid.

The above equations (2. 65) to (2. 69) are valid only when the U,V,W
coordinates are expressed in the "absolute" geodetic (average" terrestrial)
coordinate system. In many instances, coordinates of earth stations are
expressed in a "relative" geodetic coordinate system, using any of the
conventional reference ellipsoids as the reference figure for the earth, The
reference ellipsoid used may not be centered at the geocenter, and the
Cartesian axes of such a "relative" system may not be oriented parallel to
the axes of the "average' terrestrial cocrdinate system, If the relative geodetic
{curvillinear) coordinates of the earth station is ¢, X, and b, and the param-
eters of the reference ellipsoid are 3 and f, then the "relative" Cartesian
coordinates u, v, w are also given by equation (2. 1) provided O, A\ b, Nande
are substituted for ¢, A, h N and e respectively. A general relationship
between the "average" terrestrial and the '"'relative" geodetic ccordinates of
a point are given by (see [68]):
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U u-l (600 5 Ao Au
v]=1lvls alore + Bloco|+ s|av 2.70) | ‘
w wJ LA ho b Aw {

where:
Au u-ug 3 :
Av = |v=-vol »
{_é \-;_J W= W

sindo cos X, s8inlp -cos@o cOS Yo‘l 1 ;
A = isingo sinly -cosXp =-cos®g sindg| i
-cos @o 0 -sin@o :

8ingo Av ~ cos@, sindo AW ' cos @p Aw : ~COS oAV - SN, 5in AAW

-— -— d — ' _— L —
B =|-sin¢gAu+cosepcosi, Aw ! sin Ao AW " | oSy Bu + singg cos AW ]

COS@o SiN Ao Al - COSACOS Ao AV cOSAodu+ sinlo Av' 8in®p sinioAu - sinaocosfoAv )

=

2!
g & 8

6 0o
6| =
5 ho b, -

8 Ao is the error in azimuth of the relative system
8 £o is the error in tilt of the system in the meridian plane
6 no is the error in tilt in the prime vertical plane

and

8 is a scale factor.

It should also be noted that 6oy and §), should be expressed in linear units,
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All the variables with zero subscripts denote the values of these variables
at the origin of the relative geodetic system, _
If equation (2. 70) is now substituted in any of the equations (2. 10},

-3
the topocentric coordinates of the moon point (X;) will be obtained. Also,

in equation (2.70), seven transformation parameters (5¢,, 6)o, Gko, 6A0, 680,
éno and s) have veen introduced in addition to the "relative" geodetic coordi-
nates and the parameters of the reference ellipsoid, The partials of -)’(, with
respect to@, X, B, 2 andT are given by equations (2. 65) to (2. 59), provided
the relative quantities (with bar) are substituted for their a_.bsolute counter-

parts. Taking the partiais of X, with respect to the seven transformation

parameters we obtain:

%

-R)(¢) P'N'S'A 2.71)

lL;:

= = -Ry(¢P'N'S'B (2.72)

Bu
-R,(GQ)P'N'S' Av . (2.73)
bAw '

F

The above three equations cau be used with equation (2, 65) to (2, 69)
instead of equation (2.44) f it is desired to oltain corrections to the relative
geodetic coordinates of the carth station, the parameters of the (reiative) -

reference ellipsoia as well a3 the seven transformation parameters.
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The Selenodetic Coordinates
-.g in the case of the geodetic coordinates, the Cartesian coordinates of

the moon point (xx, . Zs) ar: functions of the spherical coordinates (£, b, r) :
of the lunar point (see equation (2.2)). Equations for obtaining partials :
for the xu, y4, Zu coordinates have been given in equation (2, 43). If, however,
the spherical coordinates b, £, r replace x., y; and z, as parameters, then

the foliowing equationa replace equation (2. 43):

. Pineay

-rsinb cos?

%% = Ru€)P'R¢€)T] |-rsinbsint 2.74)

r cosh i
-r cosb sind

SLXLY = Ry(eP'Ri¢€)Ti | rcosbcost (2.75)
o
L R
cosb cosd &
’ I
%)'(Er = Ry(€dP Ry€)T] [cosb sini (2.76) *:2
sinb J

‘ 2,5 Observation Equaticns when Orientation Angles
' are Obtained t' rough Numerical Integration Process

The idea 61' obtaining the moon's Eulerian angies through numerical

integration of the equations of motion have been discussed in Section 2, 34,

Also, it has been suggested in Section 2. 35 that the conventional precession,
nutatior and the Greenwich hour angle of the vernal equinox can be replaced
by three (Eulerian) angles, which can also be obtained by numerical inte-
gration. The numerical integration procedure for obtaining these earth

N e )
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3
] =3
Eulerian angles is outlined in Chapter 4 of this work . B
Ee = [6e : ¥ : &
2 and :
: En=[6s : ¥ - &,

respectively represent the orientation angles of the earth's UVW and the
moon's xyz axes (fixed to the bodies) with respect to an inertial system (such
as the mean ecliptic coordinate system of 1950, 0), then the topocentric
coordinates of the moon point is given by equation (2, 15):

*a % {m]  Tu] .3
Yl = R(ed Yo' *Palyva| - BV 2.77 :
Z"Jtowc. : &QJ ii-z". i w-i ;

ULVRRVEIN

where P, P; are 3 x 3 orthogonal matrices given by:

T T T TN R Ty L R R F o SR ing l
s T T e L K S AN s M B kb N e e B LT A

» .. ’ S - e SN AV PT
Y T A A PO ST X R TR T T

Py = Rot¥wRi(B)RoCPy)

Rat-{e) Ra{Be) Rot-Ps) -

he o 9 ALY e wah e s onc

P

BLRidisaandd

The predicted distance from an earth station to a moon point is computed from
equation (2. 16):

oot

’3@‘{(;3‘3«,. BRI s

i 3;-33‘."55 'f

D= G+ Yh+ZhE

The matrix of partials (design matrix A) will be different from those
already derived in Section 2. 4, since the parameters are different from
those listed in equation (2.18). In analogy to equation (2.18)

QYRR
A

SIS

ey
N

[XY] = f3(€01 ¢‘m em th ib:-ee' @tn Uo V.W. Koty Yms Zy XCQ- Yco- ZCQ) (2' ?8)

> In addition, since the Eulerian angles are obtained from integration,
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Bn
ba | = £, @3 83, ¥3 83, 93, &%) = £ (ED : EI) (2.79)
®n

R TS

and

B¢

be| = 200, v3. @2, 88,95, €9) = felE] ¢ EP) (2.80)

TR AR ey

e

where superscript o denotes that the quantities are the values of the
orientation angles, and their time derivatives at a starting epoch (initial
conditions). By differentiating equsation (2. 77), the following partial differen-
tials are obtained:

]

= LiR(ed (Yeq (2.81)
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£

g P ¥ (2-8'2) :

: ™

Xu

B X - 8 ; |

. 5 = RtddLRGIRtEd |y (2.83)
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The variable parameters (B, - - -, &¢) will have to be replaced by the 12
initial conditions in equations (2. 79) and (2.80). If

rES  ES) = M9 ¢S 22 83 43 $31

Then
3X 3%, _ BE
L = Xy 3B 2.90
S[EC @ B0 OEw STES: E91 (2.90)

where g—}é‘ is a 3 x 3 matrix of partials whose columns are given by equations
]

(2.82) to (2.84). Similarly for [E? ¢ ED,

X 3X, JE
——f ey = T, ke .91
arE( H Eg] bEg E‘[Eg M E[] (2 9 )
Also, %}é’ is a 3 x 3 matrix of partials, whose columns are given by equations
€
(2. 86) to (2.88). Each of the expressions TE:%&EQ] and a[E?? 5 isa

3 ': 6 matrix which forms part of a matrix, usually referred to as the state
transition matrix [ 9 J. This matrix describes the transition of a differential
variation of the initial epoch conditions from the initial epoch to, to time t.
The matrix can be obtained along with the integrated orientation angles by
methods which are described in Chapter 4.

The partials of the laser distances with respect to each of the parameters
considered in this section can be obtained in the same way as was done in
Section 2.4 through the relationship given by equation (2.23)

3D _ 3D 3K,

¥ X, an

where D represent the distances, X; moon point topocentric coordinates and

» the parameters.
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2.6 Summary

In this chapter, ore of the new observatioral systems which could be used
to improve selenodetic control has been considered. A brief description of
the laser ranging systems was given and equations relating ranges between
an earth point and a moon point to astronomical, geodetic and selenodetic
parameters were derived. The range equations are valid for laser ranges
ag well as any other kind of ranges made between a station on the earth and
a moocn point. '

_ The range equations were differentiated for the formation of observation
equations which can be used with lunar range measurements in an adjustment
model to obtain corrections to approximate values of the; parameters involved.

In deriving the observation equations, observed ranges are assumed to
be corrected for atmospheric, instrumental and other systematic errors,

In Appendix B, the effect of the atmosphere on observed lacer ranges is
briefly discussed.

The range equations can be used in predicting laser lunar ranges for
real observations, and can also be used to simulate observaticra! data for
experimental adjustments as was done in Chapter 5 of this work.
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3 APPLICATION OF THE VLBI TO SELENODETIC CONTROL

ek bt g & B0

P

3.1 Introduction.

!
¢ Razdio Interferometry hegan in 1346, when McCready et al., used an inter- ;
ferometer for solar obsecrvation [17]. Later in the same year, the ’
; ~ two-element interferometer also came into use at Cambridge. Radio {

interferometry rapidly developed thereafter with longer baseline obser-
vations, but the maximum length of baseline was limited. The conventional
interferometry used superheterodyne receivers at each terminal. A |
common local oscillator signal had to be transported across the baseline
by means of a cable connecting the two terminals, Over longer distances, . !
the operations were managed across the baseline by using a radio link
centaining two repeater stations, The length of baselines for conventional
interferometry hardly exceeded 130km.

The development of atomic frequency and time standards found a i

.

useful application in radio interferometry. Using independent atomic _ §
standard oscillators, all real-time interconnections between the two inter-
ferometer stations could be eliminated. The interferemeter signals from
each telescope are independently recorded on a magnetic tape along with
time, and the tapes are later brought together for processing. This tech-
nique of "atomic-clock" interferometry or "independent clock” interferometry

b ) AR e ha s vt s e o e D ea i = pans A

(with local freqency standards and tape recorders replacing microwave links
or cable intercouuections) is now known as Very. Long Baseline Interferometry
{VLBI).
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With the VLBI, resolution of distant radio sources with angular K
& diameter of 0. 0006 has been achieved. This compares with a resolution ;
3
2 of 4 minute of arc achievable by the largest veflectors, which is roughly the
same as the limit for the unaided human eye [16]. The angular resolving power 1;
I
L of a radio interferometer system is given by BB
4 3
e §
- A 3
E @ = 3 (3.1) ;
N where 3
a i3 the angular resolution in radians ;
3
A s the wavelength at which the antennas operate ,%t
3
and E]
d is the length of the baseline. ;
It is therefore necessary to know the length of the interferometer baseline } ;3
- in order to determine the size or position of the radio sources. 3 :
The inverse problem is of more importance to geodesists, If the ‘é

coordinates of point radio sources are available, then the baseline param-

e

eters of the interferometer system can be determined.

Many possible applications of the VLBI in geodesy and geophysics have

AN S B
b B et S e

been suggested by various scientists in recent years., Such areas of appli-

cation include geodetic ties between continents, continental drift, deter-

SRR WY

IR P e s T P o D P e b QY i e ks e A

N
NPV

e

earth station and the lunar station respectively, Consequently an updated

mination of precession, nutation and the earth's rotation rate, satellite -'»';%‘
3 tracking, navigation and time synchronization. In this chapter, the ;‘g :
g possibility of using the VLBI for determining station positions on the earth :§
, g and on the moon will be investigated. The relative position of a lunar . ;’%
: é,:,t station to an earth station at any instant is a mathematical function of other :.é
:g?f parameters apart from the geocentric and selenocentric positions of the :?a !
i

knowledge of these parameters can be expected when the VLBI {s used

for earth and moon position determination.
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1t is envisaged that the establishment of radio antennas on the moon
in the future is a possibility, notwithstaading present technological limita-
tions. Consequently, the studies in this chapter include interferometric

systems made up of earth-to-earth, moon-to-moon and earth-to-moon
baselines,

In the next section, the basic operating principles of an interferometer
system will be given. An attempt has leen made to make this brief descrlp-

tion as non-technical as possible. Its presentation in this chapter should
point out the type of observations to be expected from the VLBI, thereby
making the rest of this chapter more easily understood.

3.2 Basic Operating Principles of the VLBI.

An interferometer i{s an apparatus for measuring the phase difference
between simultaneously received electromagnetic radiation at two stations
from a distant source. Alternatively, the elapsed time between
the arrival of any particular wave front at each of the two stations (time

delay) can be measured. The phase differeace Ap and the time delay 7
are related by the equation

r = 2p (3.2) .
w

where
w is the nominal frequency of the radiation,
The necessary equipment at each of the interferometer stations include
a radio antenna dish, a local oscillator and an atomic clock (both controlled

by a highly stable frequency standard such as a hydrogen maser frequency
standard generator), Also there should be at each station a mixer, a video
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converter, clipper, sampler and a tape recorder. These pieces of equip- i
ment are schematically shown in Figure 3.1. -
Terminal A Terminal B :

antenna anrenna 3
Polarizer Polarizer 3
Ammnplifier Amplifier b
Mixer Local ({\{ drog l-l{'drog. Local @ :

ser aser i
x Oscillator] T STD. Oscillato i

IF IF LS

Video Video i
Converter Converter 3
}.-'l' .

VF VF g

Clipper | Clipper % :

Sampler ' Sampler 2
Interface Clock Clock Interface E

Tape Drive Loran C loran C Tape Drive

Tape Recorder Receiven Receiver Tape Recorder

Figure 3.1

Equipment for a VLBI Obserﬁng System
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The look-angle of the radio source (such as the quasar) at the desired
time of observation is pre-computed at each station and each radio antenna
is steered to point toward the direction of the radio source. The receiver
is also tuned to the desired operating frequency. A synchronizing circuit
starts the recording of radio signals received and time, at a2 pre-set
epoch, -

The received signal, whose éentral frequency is w, is mixed with a
local-oscillator produced frequency that is phase-locked. The resulting
frequency out of the mixer, known as the intermediate frequency (IF) is
passed on to a video converter. The video converter's job is to convert the
output signal into a low-frequency =ignal, suitable for 1-bit digital sampling
and recording., The IF signal is amplified, filtered and phase-ccherently
converted in frequency o obtain a single sideband output signal whose
carrier frequency is zero. This ocutput video band signal (limited to 480kHz by
available digital recorders) is then passed on to be clipped, samopled and
recorded.

Clipping,
The received signal now converted to video band frequency is com-

pletely random, a characteristic of the emitting natural radio sources such 2s the

quasars, This signal is clipped "infinitely", thereby retaiaing the sign of
the voltage received and dispensing with the magnitude (see Figure 3.2),

A correction can 'ater be applied to the correlator output to compensate for
the error introduced by clipping the origina! wave form. The correction
to the correlation output according to the Van Vleck clipping theorem
is computed as, [84):

=z

Re(t) = sin[z R,(t)] (3.3)

s Zh e P e S R AR fean Uit et

alti Bt Wi s, e

A AR Zial

Py forst i L £ M et e Ao A, et Trarsdn



R R T PR SR R m - PRVIEROYSURA IR
where

R, (t) is the corrected signal

R, (t) ie the raw output of the correlator

yit) = 1, x(t) >0
y@) =-1, x(t) <o

voltage\/ : ; | . ‘
1 “‘HWMWM ' [

L 4

o

-> time — t
received signal clipped signal
3} ‘ G/

Figure 3.2
Clipped Signal in Relation to the Received Signal

Sampling. v
For the purpose of recording the clipped signal on a magnetic tape,

the sign of the signal is identified at a regular, spaced (ntefval of time.

The sampling rate _s, in accordance wita the Nyquist theorem, equal to

twice the recording bandwith, Thus as an example, the National Radio
Astronomy Observatory (NRAO), which uses a bandwidth of 360 kHz, records
the data at 720 Kbits/sec. In addition to the clippea and sampled signal,
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time is also recorded at intervals of 0.2 sec. The rerording of signals
and time can be done either on a video tape or on a digital tape. Itig
more convenient to record on the video tape when sources are be ag ob-
served since a video tape can last many hours of observations, whereas

a digital tape can only record three to four minutes of data. If video tape
is used, it is necessary to re-record the data on a digital tape afterwards,

for digital computer use.

Data Processing.
The data now on the digital tape consists of the clipped and sampled

signal with time, one tape for each of the two interferometer stations. The

processing of the tapes is done in two phases, namely:
(a) correlating the tapes
(b) obtaining the true delay.

The correlation of the tapes is done by a digital computer., For each record,
the bit streams are shifted relative to one another by an amount that corre-
sponds to the theoretically predicted geometric time delay. The predicted
time delay is a function of the baseline length d, and the angle 8 which the
baseline makes with the direction of the observed radio source,

y, = dcosB (3.4)

[

where c is the velocity of light. The theoretical correlation function is
given by

R(T) = 'l_l.n; ;-; L’ x(t) - x(t + T)dt (3.5)
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Figure 3.3 Basic Geometrical Relationships in Interferometry. . :

T y®+natt) o

y(t) + m (1) |
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S SN |
Clipped =ignal received at B, "
Note the shift of %

Clipped signal received at A
as function of time, starting starting at L.
signalat Bw. r. o A

att,.

Figure 3.4 Clipped Signal Received at Two Stations and Time Delay.
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In practice because of finite record length the function is given by numerically

integrating over N records, i.e.
Ny
R'(MN = LT x(to+nidt) y(to+t ndt+ 7 (3.9
=1

using a number of values for T centered around the predicted geometric
delay 7,, and N; (number of records over which integration is to be carried

out). N, depends on many factors such as

(1) source strength

(2) antenna size

{3) system noise of receiver )

(4) clock stability, i.e. phase stability of the frequency standard,

The first three items put a ‘ower limit on the desgirable integration time since
weaker sources deniand more integration time, and so also do small antennas,
and receivers with high system noise. On the other hand, stability of the
clock used places a higher limit on the integration time because phase stability
must be m.aintained to high accuracy (1 part in 10'! or better) within the inte~
gration interval.

The correlation function obtained is corrected for finite record length Sy
multiplying R‘(7) by a weighting function w (T) which is chosen to satisfy the
following criteria:

w(0) = 1 (noumality)
w(-T) = W(r) (symmetry)
W(Trar, = 0
4 .
where T, is the total length of the record. The last conditinn ensures that the

corrected function R"{r) is defined for all 7. An example of such a weighting
function used in practice is given by the "Hanning" function I 84];
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w(7) %‘(1+cos 7’;{) if |7] <T»

w (1) 0 L, i T > Ts.

The weighted correlation function is plotted sgainst time delays and a
sharp peak in the graph is an indication of good fringes.

In the plot of the correlation function versus time delays, the central

pezak of the plot denotes the approximate position of the true delay on the
ahscissa (see Figure 3.5). The exact peak is determined by fitting a
theoretical function to the plot of the correlation function. In a perfect
situation, the observed true delay (r;) should be the same as the predicted
geometric delay (7). Any difference between these two time delays (T, -~ %)

is due to errors in apriori knowledge of baseline parameters and other effects

such as clock offset error, differential refraction and instrumental delays.

— corrclation function plot
- = =curve fit
7, ~ caleuiated delay

-

% - vhserved delay,

T, AT Te T, T, AT

Figure 3.5 Fringe Amplitude Plotted Arainst Time Delays.

The accuracy with which the time délay is measured depends on the recefver
bandwidth, among other factors. When a receiver is tuned to a central frequency w,
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it receives a broad range of frequencies centered about w. The width of
this range depend_s on the recéiver characteristics and if this bandwidth is
Aw, then the accuracy of the delay measurement depends on the correlation
interval AT given by '

At = L . 3.7

2:Aw

Tiur the accuracy can be {ncreased by narrowing the correlation interval,
i.e, increasing the bandwidth, Although there are practical limitations on
the bandwidth attainable with a receiver, the effective bandwidth can be
made larger by sampling narrow band video signals from many widely

separated windows, This method i8 described in detail by Hinteregger [34].

3.3 Equations for the VLHEI Measured Time Delays.

It has been shown in the last section how the VLBI operates and that the
observed quantities of interest to geodesists is the difference in the time of
arrival at two separated antennas of a particular wavefront from a given
point source of radio radiation, This relative time delay {or phage delay)
is a function of the source direction, the antenna locations, the relative
clock error between the two sites and any other influences such as the
differential atmospheric refraction, By expressing the measured time delay
as a function of the varlous parameters involved, and with sufficiently large
number of observations for each of the observed celestial radto sources, the
"best fit" values of the parameters can be estimated by weighted least-
gquares analyéis.

In this section, expressions relating VLBI measured time delays to |
parameters which influence the measurements wil! be derived for different

)
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configurations of interferometer stations. The three basic configurations
egnvisaged are those VLBI ohservations involving: :

(1) two stations on the earth (earth-earth VLBI)
(2) two stations on the moon (moon~-mooa VLBI)
{3) one station each on the earth and on the moon (earth-moon VLBI).

Although the primary interest in this study is the investigation of applica-
tion of VLBI to selenodetic control, other parameters indirectly connected with
the deherxﬁinatlon of coordinates of points on the moon will also be considered.
Thus, the case of the earth-earth VLBI will be treated even though selenodetic
control cannot be derived directly from the cbservations except in the case of

the earth stations observing an artificial radio source on the moon,

3.31 Earth-Earth VLBI Equations,

Figure 3.8 Earth~Earth VLBI Observation,
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Two radio antennas A and B situated on the earth have position vectors 3
- i
B, and py respectively. The inter-site vector 5 is given by 3
- - - ;
D=p-p- 3.8) ;
The position vectors of 3‘ and 39 can be obtained from the geodetic coordinates - f;; ;
4 of A, Aa, hy) and By, Xg, bo) a8 )
-» > - - g
: P = Upi + Vuj + Wik ;
3 (3.9) )
: - > - o .
’ P = Ul + Vpj + Wek , T
i where H
r (U, | (N, + hy) cos @, cos X, |
j; M X i’
;. N
Va = (N, + 1_1*) cos O, gin Aa {3.10) !
| Wi | L(N. (1-¢? +h,) sing, . 4
i
(U ] (36 + be) cos @ cos Ag |
‘va = | (M +ha) cosa sin X . (3.11) ]
{ W | | (N (1-ed+h) siny | R :
N = a ‘:
(1-¢€° gin® a,)é : "
3
-> b b o . g
Also, 1, j,k are unit vectors along the U, V, W earth-fixed coordinate system. . § -
Thus the vector D expressed in the U, V, W coordinate system is given by C
- s - . . o o
D = 41 + d) + d,k - (3.12) , 5
where ' ‘
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Let ; represent the unit vector from the radio source to the geocenter
Natural radio sources such as quasars are at extragalactic distances away,
so that the geocentric parallax can be neglected. Thus; ; also reprcsents
the vector from the source to any point on the earth, The vector ; is -
obtainable from the catalog of radio scurces which gives the celestial posi-
tions of the scurces in a celesttal coordinate system (usually the 1950,0
mean equatoi-lal gystem), If the cataloged source position is ¢y, §c, then the
components of the unit vector ;o expressed in the 1950, 0 mean equatorial
Cartesian coordinate system is given by the direction numbers as

'--cos 5¢ cos o,
8 = [-~cos8psinog | . (3.14)
~-gin B,

The true equatorial Cartesian coordinates of the scurce at the observation
eppch is obtained from 5:, by applying precession and nutation.

- &
8,°
/"//*\\\

T - \\
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A D B
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The delay T is a function of the baseline length d and the source direction
with respect to the baseiine as
T = d—zﬁ ., ¢ — light velocity.
Thus, if the vectors D and s are expressed in the same system, then since

s is a unit vector,

T = -‘1-:-(5-?.). . (3.15)

The above equation would give the difference between the two times of
arrival {t,, t,) of the wavefront at B and A if station B remained stationary
during the interval (t;-t)). 'However, duc to the change in the position of
B in the interval (tz-t|), thc true delay is

i - . -+ )
T = -i— D-3) l} ’ E"—L—i_l (3. 16)

wheregg is the velocity of site B in the same coordinate system in which
; and D are cxpressed. _

The vectors 6 and ; are two vectors in space, and their scalar (dot)
product would remain the same irrespective of the coordinate system in
which the components of the two vectors arc expressed, 1t is only lmpor-A
tant that the components of vectors be expressed in the same coordinate
system. For convenience, as well as for the desire to work in an inertial
coordinate system, the 1950, 0 mean equatorial coordinate system can be
chosen. Thus, if g{, and 60 arc the vectors 6 and 3 whose components are

cxpressed in the 1950. 0 mean equatorial coordinate system. then

-

D, - 'T1D (3.17)

80

. . -A‘,:,‘J‘.»A-,-N‘.’_ Lo
O I RT3 N1 s SN AR AR DI WA S IOt ST I,

S S 2 -SR-S RSP She ST I S S PO

B T T S L T

RV RY
Dapiaded

[P IPONIY Y

DA

D mtate b s o

4.

\




|
._:
1
4
]
i
.
!
i
g
L]
i
t
|
:
g
1
N
}
|
i
]
j
!

'y

pryes
"

vy
L

Ls 0 p
il A
PR “ I.%.A". [ UL P S

4
i 3R
b
- 4
and s, is given by equation (3.14), [T] is a transformation matrix necessary f :
- 3
to transform the B vector expressed in the UVW coordinate system to Dg 3‘ :
vector expressed in the 1950. 0 mean equatorial system (XYZ). Thus "
fT] = P'N's! i g
where P, N, S are 3 * 3 orthogonal transformation matrices, whose full express- j
ions have been givea earlier in Chapter 2, Equation (3. 17) can now be written as
) ., %
Do = [P'N'S'}D. (3.18) B
In a similar manner, the vector 33 (in equation (3. 9) can be expressed s
]
in the 1950. 0 mean equatorial coordinate system: i
Pog = TP'N'S") py., | (3.19)
In equation (3. 16), the rate of change of the vector 390 with respect to L‘
_time i8 required. Rewriting equation (3. 19) by substituting expressions 3
for ', N' and P', . o 3
- - -
Po, = (Ra(Co)Rat-0 ) Ra(2)) Ry E-€)Ra(AYR 1 + A€)Rat-C) R, (¥r)Ra(xr) ] po. (3. 20) )
Differentiating equation (3.20) with respect to time: ' V
d - ' . S 3
at P T o = TRLP'N'S') - BRod Lo Ry (6)Rs(z))N'S) + 7
+ (2,P'LoN'S") - € P" L N' §) + (¢P'N'L,S) + ?
éf * (B3 P'RIE) LaRa( B R + ¢)S") + (BEPTN'LST) +
l‘:'.;-’ .
N . e
. - - @P'N' Ly §') + FP N R LiRu(ys) Ralxe) +
boex + (i, P'N'S'L)] . (3.2
i,:i:; - . TS to
%’f In the expression for Po,, the subscripted L matrices are the 1acas matrices
b g

gl
3%

defined in Chapter 2. The dotted guantities are the rate of change of thoéé -
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quantities which can be obtained by differentiating the expression for each
quantity with respect to time., Analytical expressions as functions of time
do extst for each of the dotted quantities except for X, and y,, whose values,
though .small, can be calculated from tabulated x, andy, values.

The ;e vector, expressed in a geodetic UVW coordinate system, is invariant
with time.

If the vectors Bo. :':o and &o have been evaluated from their equations

given above, let

e - - -
Do = D;i + D3j + Dk
-+ - - -
B = 81 + 53} + gk (8. 22)
&o = vl?+ Va?"‘ .Va-l:

where
< 5 = -
i, j, k now represent unit vectors along the X,Y,Z axes that

define the 1950, 0 mean equatorial Cartesian coordinate
system.

Then equation (3.16) can be written as

oot = (Dys, + Dusy + Dusg|1 + L2 VeSt vegd] (g g

Equation (3. 23) represents the prediction equation for the measured
time delay for VLBI observations involving two stations which are located
on the earth's surface. The predicted values are compared with the
observed values and the differences can be used in an adjustment process -

to correct the parameters which implicitly appear on the right hand side of

" equation (3.23).

Alternate expressions for the equations for the two vectors Bo and
B, canbederivedby consideriag that the orientation of the UVW coordinate

system with respect to an inertial system is equivalent to three Eulerian
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(orientation) angles at observation epoch, This concept, and how to obtain
the oricntation angles and their time rates i< given in Chapter 4 of this work.
Let 8, ¢ and ¢ define the orientation of the VW coordinate system

with respect to the mean ccliptic coordinate system of 1950.0. Then, the

-
vector D, is given by

B = fRueenT 1D = MRIREIR(IRLD 1D (3.24)
where
T = Ry(MREDR( L)
€ i8 the mean obliquity of the cquator at 1950. 0,

Similarly,

s, = REREIARLD 10 = TR(AT 1A (3.20)
Differentiating cquation (3. 25) with respect to time
590 = [“(*;”Rx("t'o)LaT')"‘(‘;Rx(fo)Rs('&)Lx“n(‘-’“‘a(’%)’(‘éax(‘oyﬂLs)]zr, (3->2G)

Since §, 8 and ¢ are obtained from numcrical integration as well as 8, ¢ and
- — .
&, the equations for D, vector and By, vector can be cvaluated. The predicted

time delay can then be evaluated from cquation (. 23).

Obsgervation Equations for Earth-Earth VLBI.

In order to use the differences between the predicted and the observed
time delays in improving the present knowledge ¢f the parameters involved in
VLBI observations, it is necessary to derive the partial derivatives of the
time delay with respect to the parameters. The paramet 5 involved are
the station coordinates, the positions of the sources. U precessional ele-
ments, nutation and polar motion parameters and the +vich apparent
sidereal time. Alternatively, the Eulerian angles 9. ¢ an be regar
48 paramecters, in addition to the positions of the statici. and radi  sources.

The cquation for the predicted time delay (equation (3. 23)) can be written,
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in matrix notation, as [
oo
1 1 . P
= - \ = \{ T .27 i 4
T S cv|'(D s)+»cz(D.sv 8) (3.27) ;
. B
A
where 4
_ B
D, | :
DO =D = l)2 B k
. -Dg_ g 4
-31 -
‘ 8 = 8 = =2
’ 1
. L i
4 and
i
v=|val.
Va
The partiéls of T in equation (3.27) are given hy ’
3T 1, 4,. 1 ., f
’ oL N ¢ + T
:_ 3D - . 81t 2ls vs.]. (.28
ar 1 1 L ' TR A
35 - o'+ RlD'sv) *+(v'sDY)! (329 o
: AT 1 g g .
:, > - oF s Ds']. S (3.30)
: B . 8a
g&" :- B S UL WD S AT S S _...;;;7...»_-;‘..;;,,;\.?‘.}..’.:w e - b
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Each of the above equations for partiais results in a 1 x 3 row matrix.

elements of the matrices D, s, v are functions of parameters, and the

matrices will have to be differentiated with respect to these parameters. i

Hence if the parameter list is represeunted by vector x, i.e,

The

-

D = i
s = f(0) i
vo= fg ()() . (
Then :
!
oT AT aD 3T  ns AT BV :
2L s =Ly X2 == (3.31) :
an oD ax 98 oX av. o ox i
<y, 0D as v . . -~ - :
where the partials -_;;, -)Z and S; are obtained by differentiating cxpressions !
- o) ! H
for D, s, and v. {
From equation (3. 14) z
- _I z
-c0s Ay Ccos Og :
s = |-cos by singy |-
-sin 6o
Hence
™ sin 50 cos ao_
38 . . ] |
—_ = sin 5y sinap . (3. 32) '3
f)&l) 1'
~COS 60 3
E
{
3
4
b
A
85




mell o _ . {
!
‘ ;
. |
cos 8y sindo !
3s : '
Eo = | -cos 5, CcOS O, {3.33) :
0 i
aT 3T . . . |
so that —, — are obtained using equation (3. 31). H 3
0'50 an H
i P
From equations (3.18) and (3.13), i
4
D = (R(C)RA-6,) Ra(z IRV RABD R e + D)RESIR(Yp)RAX:)) | 3y |- 4
v 4
dy z
i
§
Hence i
- i
d;
2D PN | g | (3. 34) i
alo E
d
4 3
aD . ANt - ~
8, “Ra(fc) Lz Rz (8))R(2))N'S dy (3. 35)
dd ki
5
d; bt
oD . 1
—_— = p NY 1 . 3
pey LaN'S dy (3.36)
dy | 3
:
- i
| d d |
: —d? = -P'LN's" | d | + P'N'LS | d, (3. 37) g
d. _da__ ’ {
i
3 ;
{
86 ‘ v




dd,;)u')_ = P‘Rx(-G)L_;R.,(Aw)R!(( +A€)S’ a,

d,—
4D TNTL.ST
dbe P'N'L,S d,

d4,
dD T Te o
@ T TPNLS jdo

o

ala
e

= P N'Ry(-©) Ly Ry(yr) Ra(X;) dv
dy

Since
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(3. 38)

(3. 39)

(3. 40)

(3.41)

(3. 42)
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-P'N'§ (3.43a)

2D _

3 |Us
Ve
We

0d

P'N'S : © (3.43b)

As can be <xpected, both t_): and Bg vectors cannot be solved for togcther and
either of the vectors have to be fixed. Also, all the parameters whose

partials are given by equations (3. 35) to (3. 42) are "variable" parameters,

and their values vary from instant to instant. However, each of the parameters
can be expressed as functions of another set of '"non-varying" parameters,

It is desirable to replace the "variable" parameters with the "non-varying" set,
and this can be done with the same equations given in Section 2. 4 of this

work.

The alternate expression for D, from equation (3. 24} is given by:

dl-} 4]
D = RE€IREVIRGRED | dv | = Rie)TT | d,
o .
so that
d;
2D .
<2 = oLy RteT | d, (3.44)
Y€o
d.
88
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4
%wg =-Ritedlo T' | d (3.45)
dy

4,
22 = REORAILROREY | & (3.46)
du

Cq,
3D

3¢ - RETL | & (3.47)

= = -RteT’ (3. 48)

and

3D ., .. :
qua- = Ryt-€x)T . (3.49)
Ve

k

The "variable" parameters 6, § and ¢ can be zeplaced by the initial conditions

(B0, Yow Fo, B0, Lo and &'o) and the partials of 7 with respect to these "non-
varying" parameters can be obtained by uging the state transition matrix
(see Chapter 4), equations (3. 45) to (3. 47) and equation (3. 31).
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The expression for B, given by equation (3.21) should also be differ-
entiated with respect to the parameters in order to define all the terms
. >
aprearing in equation (3. 31) (the v matrix is represented by the vector pso).

The largest of the terms in equation (3. 21) is that dependent on the sidereal

S LI SRR e

rate, {.e.,

Us |
ad o
B, = V=~ -O(FNLS) |Val . (3.50)
' ' We

PR AL ¢ it

e o
i

Partials of equation (3. 50) are given by:

R A R

Vs |
v Tty b 1
38 ~ -(PNLsS) Ve (3.51)
W,

Ao

Us
3V

oA A T
Yol ~O(L,P'N'LsS") | Vs (3.52)
Weg

Us
'?;:3'-‘ ~ O(Rs(lo) L, Ry ¢6)Re(z)N Ly 8Y) | Ve (3.53)

% = ~O(P'LoN'LeS) | Vo (3.54)

i
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Y L &P LN'LeS) - SP'NL, LS) | v (3.55)

shp = CPREOLREUR(E B LaS) | Ve - (3.56)

Ug
~-O(P'N'L Ly S" | v, - (3.57)
Wg

dv
Y.Y3

131
3V

<o ~ OGN L L 8 |v, ._ (3.58)
Ws

ov
3[Us
Va
Wy

= -§(P'N' L,S") . (3.59

bad
If the alternate expression for py, is used (equation (3. 26)). then the largest
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term is the 3 dependent term, so that

Us
v ~ ¢ (Ry¢-€0)T" Ly) Ve
Weg

In this case, the partials of v are

Us
2~ ~RFQT Ly | Ve

Wg

—g—:—o ~ $(L: Ry )T 'La) |V

%Tb! s PREDLT Ly |V,

Ug
LY HREIRAVLREREDLD | Vs
Wa
U |
% ~ R LoLa)| Vo
Ws
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(3.60)

(3.61)

(3.62)

(3. 63)

(3.64)

(3. 685)
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¥ e, & (Ri€aT Lo). (3. 66)
3 {Us

Ve

W

As in the case of the partials of (D], the "variable" parameters in the
above expressions for the partials of Mv] should be replaced by another set
of "non-varying" parameters. ’Then,’ equation (3. 31) can be evaluated for
the partials of the time delay with respect to the parameters {denoted hy
vector x).

The time delay equation, if the small DaL — dependent correction term

is neglected, and the error in time synchronization is added, is:

1 = -
T~ o (Dos s + AL 3.6

where b t. is the clock synchronization error. The Bo vector can be

~ expressed as

d cos §, cosa,
Do = |dcos§, sina, (3.68)

d sin §,

where
d is the length of the Bo vector

o, 6§, are the angular coordinates of the vector f)’o

in the inertial coordinate system.
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The changing direction Bo in space due to the rotation of the earth changes
the angular coordinate ¢v,. The vector ;:, is given by equation (3, 14).

Thus equation (3. 67) gives

T = %‘ lsin 5, sin 6o + cos &, cos b cos(a, ~ag)] + 6t . (3. 69)

If the transformation parameters involving precession, nutation,
polar motion and earth's rotation rate are assumed known, then the number of
unknowns are three for the intersite vector, two for the source vector in
space of each observed radio source anc one for the error in initial clock
synchronization, Hence the total number of parameters for n observed
souarces for a baseline is 2n + 4, However, by assuming the knowledge of
the rotation axis direction and rotation rate, the origin of longitude is still
not defined. By fixing one more parameter for the definition of longitude
origin, the number of inde;;endent unknowns reduces to 2n+3. Any
number of observations made to one source from a baseline can only resolve
three quantities which are the components of Bo ;o along the earth’s axis of
rotation plus §t., and the coefficients of the sinusoidally changing components
of ]52,- ;o along two orthogonal directions in the earth's equatorial plane. In
order to determine B, at least three observations must be made of at least

n sources where n is the smallest integer that satisfies the equation

3n 2 2n+3 (3.70)

which gives n to be 3.
The absolute accuracy of the velocity of light in vacuum is about 1 ppm,
which is much less accurate than the measurement of time delay. However,

whatever value of ¢ is used in the computations merely provides a scale for
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the whole system of measurement,

3.32 Moon-Moon VLBI Equations,

The equations in this section are derived for the case in which there
are two or more radio antennas located on the moon, These stations, if
located at sufficiently large distances, provide a network of selenodetic
control, whose positions can be determined by the VLBI method. The
observing procedure would remain basically the same as the earth-located
VLBI stations although slight modifications may be necessary for practical
purposes. It is assumed that the measured quantities would be time delays
as in the case of earth-earth VLBIL.

Let VLBI observations be made at two stations A, B on the lunar
surface, whose position vector from the lunar center in the selenodetic

-> -
coordinate system (see Section 2, 32) are r,, 1y respectively.

Figure 3.7 Moon-Moon VLBI Cbservations.

The components of the two vectors, in the xyz selenodetic system are
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x4 | (r, cos b, cos {ﬂ

Ya = A cos b, sin i, (3. 71a)
| 2| L ry sin b i
ES ry cos by cos Lg |

) = re cos by sindg | . (3.71b)
| Ze | | T "gin by i

-
If the vector from A to B is r then

- - -
r = r, - Tg (3. 72a)
and in matrix notation
Ty X3 QxA
r = Ty = Ye| ~ | Ya}- {3.72b)
rz_j Zg Z,

The vector ; is a unit vector from the lunar center to the radio source.
Because of the small diameter of the moon compared to the distances of
the radio sources, the vector ; also represents the unit vector from the
radio source in the direction of any point on the lunar surface.

As was pointed out in Section 3. 31, the VLBI time delay (7) can be

calculated approximately by

1 - -
T = -c; (ro * So) (3.73)

- - ~> -
where r, and sy are the vectors r, s whose components are expressed in

the same coordinate system. The most convenient coordinate system for
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P

space orientation on the moon is the ecliptic coordinate system. Conse-

- -
quently, the r and s vectors can be expressed in an inertial coordinate

S

H system représented by the 1950, 0 mean ecliptic system.

t If the 1950. 0 geocentric mean equatorial coordinates of the source

; is given as @, 6o, the geocentric mean ecliptic coordinates are obtained
} by a positive R, rotation through an angle equal to the mean obliquity of

i; the equator of 1950, 0 (€o). Thus the mean ecliptic coordinates Ao, S are

obtained from

cos 8y cos Xo -¢cos 5, cos g
3 cos B sin Ao | = R(€0)]|-cos bp sinag . (3. 74)
- sin 8 -sin 9¢

2k

The "lunar monthly parallax of the moon" as defined by Kolaczek 501 is

very small for the radio sources and the effect of this parallax on

EREASERL S &

S translation of the center of the ecliptic coordinate system from the geocenter

AT

to the selenocenter can be neglected. Therefore, the selenocentric mean

ecliptic coordinates of the source is also given by equation (3. 74).

TR

_’ .
The r vector defined in equation (3. 72b) has its components r,, r,, I,
along the selenodetic Cartesian coordinate system. This coordinate

system is related to the mean ecliptic system of date by the three Eulerian

Iy

) -

3 angles 8, ¥ and &, as defined in Section 2,34. The ry vector, with com- .

’: ponents along the 1950. 0 mean ecliptic Cartesian coordinate axes is given

3 by - : 4

2 T 0ol ‘

“ Yo = (T2 = Ri(€q)P’ Rx(-C)T‘ ry (3.75)

»;: ' Ta r, ’

’:5? gcl, 1950.0 s
E

‘; i

E 97 ;
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where

P is the precession matrix

and

T = Re(®)Ra0Ra(¥) -

In analogy with equaticn (3. 16), the exact equation for the time delay T,
taking into account the motion of one of the two VLBI stations between the

interval T expressed by equation (3. 73) is
- -
- .
T = }(:_(l.o,;())[l +£§0.(.:_._&. . (3.76)

where
1?20 is the velocity of site B in the same coordinate system in

> - .
which ro and sc are defined.

3>
The vector i‘ao is obtained by differentiating with respect to time, the vector

>
Tep, Which is

T, = Rui(€o)P'Ry(-aT T (3.77a)
or
(e, Xs~
rgg = ra, = Ru€)PRy(-OT'| yg | . (3.77)
Ts, Zg
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Since €p and 1-'; do not vary with time,
ar—)
- .
o Rl(ca)[io (LoP'Ry(-9T") - 61 (Ra(G) Le Ro(-9)
R3(Z)Ry(-8T") + Zy(P'Lti(-9T") - €(P' LR, (-)T")

- YPRy(-9La T') - B(P'Ri(-dRa-Y LR (O)Rs(- H)

- ->
- (&(pTRl(‘E)TTLg)] Ta. (3.78)
Thus if
-> - -> -
g = ni + raj + l'sk
P . - R > g -
Tgy, = Tayl + Tgyj + rggk = vyl + va + vak
- - - -
So = sii + saj + s3k
where
-3 >

i, j, k are unit vector along the X,Y,Z axes defind the 1950.0

mean ecliptic system,

then equation fors*he time delay (from equation 3.76) is

T = '(1? (ry8, + 28 + 1‘353)[1 y 5t Vgcsz ’ Vasa] - (3.79)
As in the case of the earch-based VLBI, any differences between time delays
observed and predicted using equation (3.79) can be used in an adjustment
process to correct the assumed values of the parameters which appear in
the prediction equation. In order to do this, the partials of T with respect

to the parameters are needed.
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To form the partials, equation (3.79) is rewritten in matrix notation

T = %[(t’s) + %a(r'sv' s)] (3.80)

where the matrices r, s and v are

8;

8 ¥ S ~ 82

|59 ]

and

.

vy Tey

v &= Vs = i‘gz .
Va Taa

The partials of T with respect to r, s and v are given by equations (3. 28),

(3.29) and (3. 30) respectively if the matrix r is substituted for the matrix D

in those equations, Similarly, since the elements of .he matrices r, s and v
are functions of parameters (represented by the vector x), the partials of T with

respect to the parameters xare given by equation (3,31), replacing D with r.

The partials -g—!' , _E;_s_ and -%l will be obtained by differentizting express-
” x 3

ions for r, s and v,

Since
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[

&
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GO LA e Pt -

Ay o e .
RS A e el

. -2

8 [-cos &, cos ap

8 = |se| = Rile)|-cos & sinao | »
83 -sin oo

[ -cos fi, cos op

s .

’g}: = LiRy(€,) | -cos A, sin g (3.81)

' ' | -sind,

[ sin §, cos o:;

08 _ . .
—a—go = Ru(€) | sinb, sina, 3.82)

-cos &,

S

cos 6, sin o

= Ri(€) | -cos § COS & (3.83)
0

98
o,

3T '
2L 2T 37 can be obtained by substituting these equations and

660’ aao, A€y

equation (3.29) into equation (3. 31).

and

Also, from equation (3.75)

T |
r = Ri(e,)Ra(C,)R2t61)Ra(z1) Ry (-€)R3(- IR (O)Ra(-B) | Ty |©
rl
Hence, taking partials:
r:'
L LRi(e)P'Ry(-0)T" | T (3.84)
3¢, 1 y
r,
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Sr . R (€5) Lo PRy (-€)TT | 1, {3.85)
1o i

r

- :

r, :

-2;5 = Ri(eg)RaCo) LeRatB)Ra )Ry ET'| Ty (3.86)
1 s
r :

z .

;

'y

22 = RUPLACOT | T (3.87)

T,

ry 1

2L = Ry)P LIRi-OT | Ty (3.88)

X3

"
"
|
TN DI NIRRT R T L

2% = RQPRCOLT | n (3.89)

Yy

25 - Ru)PRy-OR-ULRI OB | Ty (3.90)

T,

r, |

l

Qs
"

l

. 3.91)

Q
s
—-5,",, !:“'iwm'ﬁ"&&& Chisd o il 27 (12 e el it al 1

r

= -Ri(e,)PRi(-€)T 1y r,

AT 2V AR ek o demames s 8 Lo v e e e ik e e .
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Since
t
. Ty xe“ X, :
ry = Yal = | ¥a = g = Ty .
T, za_' Z, %
3r  _ .
i = ~(Ri(€)FRy(-€)T") 3.92)
i 3 r, 3
i RL = Ry(e)PRy-0)T" (3.93) {
E ar, 1{E) PR (-e)T" « .
H
As in the case of the earth based VLBI, the coordinates of the two stations ¥
“ cannot hé solved for simultanecusly. However, the differences in coordinates :
: can be solved for, or alternatively, one station coordinates can be solved if 7}
: the coordinates of the other station are held fized. ;
The partials of time delay T with respect to the parameters that appear
5 in the expression for i:'eo can be obtained in the same way us was in the case O
of the earth-earth VLBI. In equation (3.78), the most significant term is 1.
§ the ¢ -~dependentterm. By neglecting other terms, the equation for v can be Z ;
5 - approximated by %
. i ¥
‘£ v & S RUGIFREOTL,] | ve . (3.94) O
L 2| ' i
1
. i Partials of equation (3.94) are: %
E
L e
3 % 4
i’ 2L & BLR(HPR-OT L] |vo (3.95) g |
o I
L Zg o
3 Ll

b
ik
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| ZEj
Xg |
T~ SRRy L Ry -8R @Re-0T Lal | 5
1 e
XB-i
-?,i s “B{Rule) P LR (- T Lyl |y |
. | 2o
.
.%% ~ S[Ri()P'Ly Ry (-€) T'L,) Yo
[ 2s |
e
—‘:’-3 ~ S[RiIPR(-0OL T'Ly] | ye
2 .
o

_a% ~ =B [Ry(€) PRy (~€)Ra () LA Ry (B)Rs(~$) Ly ]

Xp

ﬁ ~ S RUQPRI-OT L, Ly ] Yo

Zg

-frl ~ -$[Ry(e) PRy -€)T L]
8
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The partials of v, with the exception of _aaclo and _EQ;V;’ are partials with
respect to parameters varying from instant to instant. Both in this case

and in the case of the partials of r, the 'variable" parameters can be replaced
by "non-varying' ones by expressing each parameter as a function of time or
gimilar "independent" variable. This procedure has been demonstrated

in Chapter 2 for the variables involved in this section.

An alternate set of equations for the moon-moon VLBI can be developed
if we consider the case in which the orientation of a moon-fixed coordinate
system with respect to an inertial svstem (such as the 1950.0 mean ecliptic
system) is obtained directly by numerical integration of the moon's equations
of motion. If 9, ¥, ? represent the orientation (Eulerian) angles
defining the orientation of the selenodetic coordinate system with respect to
the 1950.0 mean ecliptic system, then equations (3.75) and (3.77b) for ro
and rg, become respectively:

!“ rx i
ra = T |r, (3.104)
Iy r,.

and
ra l Xej
To, = T | ye (3.105)
LY: 7Y Zg

where the transformation matrix T' is

T = R ()R, (%) Ra(-4).

g -
Also, Ty, can be obtained by differentiating equation (3.105) for rao- Thus
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v, (xa |

I}

foy | = |Va |= -B(LaT") + BRAALRORED) ST LY) | e |-
Ty, ' | Zg

(3.106)

Since the term dependent on ¢ is the dominating term in this equation for-
=

i‘Bo'
v, | I Xg
Va |~ =~(@T'Ly) | yel (3.107)
.Va_ Zq '

With these expressions for x-':) and ;.';0, the time delay can be computed using
equation (3.79). The number of parameters involved in computing time
delay using this method decreases considerably, with only the six initial
conditions for the numerical integration of ¢, ¥, 8, g, ¢ and 8 replacing
the precessional elements, mean obliquity of date and the orientation
angles of the moon with respect to the mean ecliptic system of date.

The partials of ;o and ;'Zo are now taken as before:

-
2_;,9‘ = -LT' | , (3.108)
T: ]
o
o - RPLRARED [, (3.109)
L
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(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)
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An approximate time delay equation for moon-moon VLBI similar to
equation (3.69) for the earth-earth VLBI can be derived from equation (3. 73)

as:
T = % [sin BL sin B, + cos B‘_ cos Bo cos(h-xo)] + Bt. (3.118)

where
->
B., A, are the ecliptic coordinates of the baseline vector ry

r {is the length of the baseline.

The changing direction of the vector ?o in space due to the rotation of the
moon, changes the angular coordinate A, but the rate of change is approxi-
mately 27, 3 times smaller than the earth-earth VLBI baseline vector,

If the unknowns to be determined fn the moon-moon VLBI observations
are limited to the radio sources' positions, baseline vectors and time
synchronization error, then for each baseline observing n sources, the
total number of parameters are 2n + 3 as in the case of the earth-earth
VLBI obsgervations. Also, equatioa (3.70) is valid for the minimum
number of sources (three) thz;xt should be observed in order to be able to

solve for the sources' positions and baseline parameters.

For a good determination of the baseline parameters, the three minimum

obgervations to each observed source should be spaced in time as to allow for

large variation in the direction of the source with respect to the baseline.

The main factor that accounts for the motion of the source relative to the

baseline is the moon's rotation, the sidereal period of which is approximately

27.3 mean solar days. Hence, for a strong golution, observations to sources

should be made over this period. This requirement is one of the envisaged
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main difficulties of establishing selenodetic control on the moon with
moon-moon VLBI observations.

Another technical difficulty in VLBI observations on the moon is the
use of accurate time standards and frequency generators, necessary in
any VLBI observation, While it is required in VLBI measurements that

the generated local oscillator frequency be highly stable, and time accurate

" to at least one part in 10, it is also essential that the VLBI equipment

for use on the moon be as compact and light as possible, for easy trans-
portation. Synchronization of the clocks used at moon's VLBI stations
also presents another technical difficulty.

One major advantage the moon VLBI staticns have over the earth VLBI
stations is the fact that the moon has no atmosphere. Hence, if VLBI
observations on the moon become a reality, the ever-present problem of

refraction, which affects almost all types of observations made on the
earth, will be absent.

3.33 Earth-Moon VLBI Equations.

In this section, VLBI equations will be derived for the case when the
two ends of the baseline are located on the earth and moon. As noted earlier
in this chapter, this form of observation is non-existent at present, but it
is a future possibility. It is assumed that observations will be made to
natural radio sources by the two end stations in 2 manner similar to the
existing earth-earth VLBI observafions. The observed quantities are aiso
assumed to be relative time delays. The derivation of the equations in this

section essentially follows the methods used in the last twe sections.
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Figure 3.8 Earth-Moon VLBI Observations.

From Figure 3, 8,

P is the VLBI station on earth with geodetic coordinate @, A, h

M is the VLBI station on moon with selenodetic coordinates b, ¢, r
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A O is the geocenter

i C is the selenocenter

e -+

b s is the unit vector in the direction from the source to the origin (geocenter)
¢ -

i p is the vector from O to the earth VLBI stution (P)

1 -

; r is the vec:cr from lunar center (C) io the moon VLBI station (M)
£ -

::i D is the ve.ctor irom the earth station to the moon station

v -»>

A M is the ve._tor {rrom geocenter to the moon station

e

ok end

i >

5 C is the vector from geocentar to the selenocenter,.

e

G

‘The following vector relationships hold:

)

Foin

SRS

-

M=2¢C:r (3.119)

R

- e
L D=C+r-p. (3.120)

ey if the wave [rcnt of the observed radio source reaches the station M at time t,

and reaches tl:.e station P at t,, T seconds later, then the time delay T is:

gt B R T
mf‘:ﬁ T

R

1ol RS \
T = c[D's]l:l+ . J {2.12))

This equation for time delay is valid provided all the vectors are exprcssed
in the same coordinate system. The coordinate system chosen is the mean
ecliptic coordinate system of 1950, 0.

The vector 5 is given by equation (3, 120) as

, b
AT STy L ograae .
I RS R

-
r

- -» -
D =C+ -pP.

YL
S

> - -+
Expressing the vectors C, r and pin the 1950, 0 mean ecliptic coordinate
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g - 3.122a)
& = Ry C (
or
{Cx ch]
Ca|= Ry€d) |Yeo ! » (3.122b)
[Ca Zcq
- . 7 2
Yo = Ry(€q)P R\(~€)Tyu (3.123a)
or
r X
ra | Ry(€P'Ry(-€)Th | Y| » (3. 123b)
ra 2
and
-» ' T Y-.
O = Ri(cg) P N' S p (3.1243)
or
N U
fz| = RyeP'N'ST |V (3.124b)
I wil
where
€o is mean obliquity of equator at 1950, 0,

Xeqs Yeqr Zeq are the geocentric coordinates of the lunar center in
the mean equatorial system of 1950, 0 (obtainable from
the JPL's DE-69 development ephemeris),

X, Yo 2 are the Cartesian cuordinates of the moon's VLBI
station in the selenodetic coordinate system.
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U, V, W  are the coordinates of the earth VLBI station in
the average terrestrial coordinate system,

P is the precession matrix,

N is the nutation matrix,

5 is the matrix necessary to transform coordinates in
the true celestial system into the average terrestrial
coordinate system,

Tw is the matrix which transformé coordinates in th¢ mean

ecliptic system of date into the selenodetic coordinate

system.,

Tu = Ra(EJRi(-8R) Ra@a)«

. In matrix notation, the vector matrix [D] is

D, C, ry
D] = D3 = C} *+ |ra
D, G Lra

-

(3.125)
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The vector s, from the source to the origin (geocenter) whose components

-
are expressed in the 1950, 0 mean ecliptic system (sg) can be obtained from

the cataloged position of the sources. If 65, 0 are the cataloged declination

and right ascension of a source (given in 1950, 0 mean equatorial system),

then

- -
So = Ry{ed)s

or
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8, -co8 §p cos 0o
s2| = Ry(eQ) |-cos 6o sinao |. (3. 126b)
Sy -sin 8o

id
For the M, vector, from equation (3.119)

- - -
My = Co + Yo
so that
> o2 =
MO = Cot+ Ig . (3. 127)

From equation (3.122a) and (3. 122b),

& = Ruea & (3.1282)
or
¢ e
Cz| = Ri€d) | Yeq |- (3.128b)
& Zeq |

The numerically integrated lunar ephemeris (such as the JPL's LE-16)
gives both the position vector ¢ as well as the velocity vector 6 in the mean
equatorial coordinate system of 1950.0, Alternatively, (‘? can be obtained
by differentiating the analytical expressions for the position of the moon as
given by any analytical lunar ephemeris. The other component of ﬁo in
equation (3. 127), i.e. z'.':,,can be obtained by differentiating either equation
(3.123a) or (3.123b) with respect to time. Thus, similar to equation (3. 78),
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fo = -a—tn = Ry(€dCo(LaP Ri(~€)TH - 8,(Ra(Co)La Ra(-91)
Re(Z)Ry(-€) T + 2y(P"LoR,(-€)TH) ~ €(P'Ly Ry(-€)Th)
- Ou(P'Ry(-€)Ls TH) + Bu(P"R,(-€) Ro(~$n) LiRy(B) Ro(~4w)
. 0 T ->
. - @4(P'Ry(-€)Tulo) Ir. (3.129)
In this equation for the i-':,, the dominant term is the term dependent on 43...
? Therefore, i'-:, is approximately given by
" o : -
3 To ~ Ry(e)/-Bu(P'R,(-€)TiLa) ] 1. (3.130)
Hence, from equations (3. 127), (3.128b) and (3.130),
;| Xeq x
(Mol = | Mz |~ Riad|{Yeq| -€u(P'Ri(-6)TILs) |y |!. (3.131)
b .Ma ch z
:
The time delay can now be calculated from equation (3.121) as
L 1 . . .
; T = = (D8, * Dysa * Dysy) [ R M“*“] (3.132)
f.e., in matrix notation
P 1 T 1 7 T
T = 'c—[(D s) + Y (D'sv's)] (3.133)
¢
where
v Vi M,
,, Tv} = {val = | M|,
l Va M,
:;:_.
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It has been mentioned in Chapter 2 that the orientation of both the earth
and the moon with respect to an inertial system (for example, the 1950.0
mean ecliptic coordinate system) can be numerically integrated (see also

Chapter 4 and [78]). In this case, if

B¢, Y&, P& represent the orientation (Eulerian) angles of the
earth-fixed coordinate system (UVW) with respect to
the 1950.0 mean ecliptic system

and
Ou, Yu, €u are the moon's orientation (Eulerian) angles of the

moon-fixed (xyz) coordinate system with respect to

the 1950.0 mean ecliptic system,

- ->
then the vectors Py and ro are respectively:

—Pn-“ Ul
Pl o= Te |V . {3.134)
3 A
- A ©
W R
2] = Taly (3.135)
| s | Lz
where
Te = Ra(Pe)Ri(-6c) Rofe)
Tu = Ra@w)Ri(-6u)Raw).
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Consequently,
-D‘-i Xeq | X | U]
}
Da: = Ri(€) |Yeq| + Tn yl - T {v|. (3.136)
I)SJ Zcq_ Z_l W

Also,
o= ~Pa(loT]) + BuRa(¥u)LiRiGwRs(-S)) - (T T~  (3.137)

Since the <i>.. term is the dominant term,

fo e ~Bu(TILy £ (3.138)
Hence,
M, | Xeq [ x|
Mai ~ R;(eo) Yeo| - ®u(TAL,) yl. (3.139)
Ms Zq z

The time delay is still computed from equation (3. 13 2) or equation (3.133).
The number of parameters that go into the computation of T is greatly reduced
if the numerical integration method is used to cbtain the earth’s and moon's
orientation angles.

As noted above differencec between predicted and observed values of
the time delay are used to correct the assumed values of parameters used
in predicting the time delay. The partials of time delay T are found by taking
the partials of equation {3.133) as in the other VLBI cases (Sections 3. 31 and
3. 32). Thué. the partials of 7 with respect to D, s and v are given by equations
(3.28) (3.29) and (3. 30) respectively. Also, equ'atidn (3.31) gives the expres-
sion for the partials of 7 with respect to the parameters, The partials of
[D], s8] and Tv] with respect to the parameters will now be formed.
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From equation (3.129),

D, | [Xeq ! l‘x-! {_ U
Da| = Ri(€o) ‘ Ye + P' RiE€)Th Y ' - N's". !v .
| P
Dy L Ze | Lz] ',“'

- -
This equation for the D vector is identical to the equation for X, vector (for
laser observations) which is given by equation (2.10) of Chapter 2. Hence

-’

the partial derivatives of B are equivalent to the partial derivatives of X,
in Chapter 2 and are given by equations (2.29) through (2.44). The expression

for the ;0 vector as given by equation (3.126b) is also identical to equation
. . ->
(3. 74) in Section 3.32, The partial derivatives of s, with respect to €, 65

" and oy are therefore given by equations (3. 81), (3.82) and (3. 83) respectively.

Partials for matrix v is obtained from equation (3.131) as follows:

[ —

v _ z
e, = Li|va (3.140)
Va_!
o8 _
ST Ry (€0) (3.141)
Yeql
Zeq
X
a..v = -Ry(€)P'Ry(-€)Thls) |y (3.142)
D,
Z
X
2 = BRUCILPR-OTH |y (3.143)
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20, - PHRUCIRCA Ly Ry (DR (z)R-OTiLsl | v | (3.144)
2L - BRIPLR(-OTIL | ¥ @.145)

d .
a—: = ®u[Ry(€)P" L, R, (-€)TiLJ y 3. 146)

- x)
dv

a_lb; = q'E’n[m(fo)P'm(-e)la Ty Lo} y J (3.147)
L z

X

'aig% = ~BuR 1(€0) P Ry (-€)Rs(~Pu) L R 1 (9s)Ro (~2u) L5 (y (3. 148)
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> ;- = ~ R, (€) P'R,(~€) TALo] . (3.150)
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The partials of D and 3 are slightly different if the alternate expressions
for them are used (equations (3. 136) and (3.129)). Those expressions which

differ from the ones given earlier are:

3D

% = Ra(-Uw)L iR 1(3u)R3(-Pn)
"

with similar expressiung for -—;, 5—9:, 3%, an

Also,

2D _
ax‘|
y;
.

oD

-TiLa

J-)))
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dv. _ = T .
o - Pl TiLy) |y 3.156) -
(] -
z -
X .
L = SR WILRIGIR-TLa) | ¥ @.157) ;
]
2 - Tl LeLy) |y 3. 158)
2P
z
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As it was in the case of laser cbservation equations, most of the .
parameters that appear in the derived partials of time delay in their present
form are 'variable" parameters, varying from epoch to epoch. However,
these "variable" parameters can be replaced by another set of parameters
which do not vary with time. For example, the integrated Eulerian angles
(both for the earth and the moon)' are functions of the initial conditions and a

few physical parameters. These Eulerian angles, which vary with time, can

therefore by replaced by the initial conditions and the physical parameters
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in an adjustment program. This principle has been explained in more detail
in Chapter 2.,

In the earth-moon VLBI observations involving only one station on the
earth and another on the moon, if the only unknowns are limited to the inter-
site vector between the earth station and the moon station and the vector
to the observed sources, then there are 2n+3 unknowns, where n is the
number of observed sources. As in the other two VLBI cases, three simul-
taneous observations each on three radio sources would uniquely solve
the resulting nine unknowns.

3.4 Summary.

In the preceeding sections of this chapter, another new observational
system - the VLBI - which could be used for selenodetic control determination
has been treated. The basic operating principles of the VLBI were given, and
equations relating the geometric time delay to geodetic, selenodetic and
astronomical parameters were derived. These equations were then differ-
entiated so as to obtain the observation equations for measured time delays, :
Equations developed in this chapter pertain to earth-earth, moon-moon and
earth-moon baselines, and are valid only for observations of natural radio
sources,

In deriving the observation equations, the observed time delays are

assumed to bave been corrected for atmospheric, instrumental and other

systematic errors which may affect the measured delays. However, the

I N S

influence of the earth's atmosphere on VLBI measurements is discussed
briefly in Appendix B. Also, modified equations for earth-earth VLBI with
artificial radio sources are derived in Appendix A,

122




S AR an

PEPEN

1

LTI S L SR

RIS

L BadiER S L T Ry e

Ty
LI

4

X TR U
A

AR

SRR
R Il

X

P TR P AT PRV st P XSAYT > ARG e

. -~ ’ e . ot
- A AN LA

e Lt 2 /s e~ Lo e L S

4. NUMERICAL INTEGRATION OF THE ORIENTATION OF AN EARTH-
FIXED COORDINATE SYSTEM WITH RESPECT TO AN INERTIAL SYSTEM

4.1 Introduction

The rotation of the earth on its axis and its orbital revolution around the
barycenter are of fundamental importance ir astronomy. While the circles that
these motions describe on the celestial sphere serve as fundamental reference
circles, the apparent motion of celestial bodies produced by the earth's motions
is the basis of time reckoning.

The two motions of the earth are complex and irregular. The rotation of the
earth on its axis is continually disturbed by the gravitational attractions of the
sun, moon and the nearer planets. Furthermore, variations in this motion
occur due to the fact that the axis of rotation does not coincide with a principal
axis of inertia and because of tidal deformations of the earth. Also, mass
distribution of the earth is not symmetric, and this distribution changes through
transfers of mass upon and within the earth from the operation of geophysical
and atmospheric processes. '

The variation of the direction of the earth's instantaneous axis of rotation

PAPT P AL

causes a continuous motion of the celestial poles and the equator among the
stars, thereby causing variations in the coordinates of celestial objects with

respect to time. These variations can be divided into two parts, namely the

[ERTR R O T

secular part (precession), and the periodic part (nutation), Also, there isa
variation of the position of the instantaneous axis within the earth (polar motion),
causing a continual, but small variation of latitudes and longitudes

1
i
1

of points on earth. In addition to the variations in the position of the axis of

123




rotation, there are also variations in the angular rate of rotation, which
affect the measurement and determination of time.

In geodetic astronomy, one customarily reduces the cataloged position
of an observed star to its position at the epoch of observation using thé tabu-
lated values of precessional elements and nutation in longitude and obliquity
together with the values of the star's proper motion. The tabulated values of
nutation in longitude and obliquity are calculated from. the nutation series
developed by E.\W, Woolard in {947,

The present accuracy to v.hich values of precession and nutation elements
are known is consistent with the ‘evel of accuracy expected from present instru-
mentation and ohservations. Furthermore, if the constant of precession is
in error, the error is absorbed into the stars' proper mction values due to
the method by .hich these proper motioné are obtained. Thus, as far as pre-
sent geodetic astronomy is concerned it would not matter one way or the other,
whether the value of the preccséicn constant is revised. However, if
new observational methods of position determination become feasible
(such as the Very Long Baseliﬁe Interferometry applied to geodesy) then the
need of knowing precession and nutation to better accuracy is of prime impor-
tance. -

The more precise future observations can be useful in the process of
finding more accurate values of precession and nutation.” By using a mathema-~
tica! model in which precession and nutation quantities are parameters in addi~
tion to other desired parameters, correction to existing coefficients in the
expressions for precession and series for nutatioa can be obtained. The large
number of the parameters involved (109 for nutation and 9 for precession)
necessitates a -arge number of observations over an extended period of time.
In order to avoid having to solve for such a large number of parameters, one
can do either of two things. The first alternative is to cut down on the number

of parameters by fixing some of the coefficients while solving for the r-mainder.
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The second alternative is to devise another way in which the effect of precession

and nutation could be computed without resorting to series development, and

in such a way as to drastically reduce the number of the parameters invoived.
The motion of the earth around its center of mass can be represented math-

ematically by the equations for the motion of arigidbody. While the earth can-

not be regarded as perfectly rigid, the effects of departure from rigidity could

‘be expected to be included in the solution for the equations of motion of a rigid

body obtained by fitting real observations to the mathematical model.

The three, seconu order differential equations of motion of a rigid body
have aiways served as a starting point for finding effects of precession and
nutation. Understandably in the past, analytical solutions to these equations
have been derived involving large series expressions. The availability of com-
puters in the last decade have now made another approach to the solution of
the differential equations of motion possible, The original equations of motion
can be integrated numerically without resorting to the various techniques neces-
sary for finding analytic solutions to the equations of motion. The number of -
parameters involved «ill reduce to the six tnitial conditions, which could be
solved for in a more convenient way than the present coefficients of nutation
series and precession expressions would allow, By using the numerical inte-
gratfon technique, the orientation of any earth-fixed coordinate system (for
example the "Average" Terreétrial Coordinate System - UVW) with respect
to an inertial system (for example the Mean Ecliptic Coordinate System of
1950.0 - XYZ) could be obtained directly. Thus, the coordinates of an observed
celestial object desired in the true equatorial coordinate system could be ob-
tained by first transforming its catalogued position to the UVW coordinate
system, and using polar motion values and the GAST to transform to the trﬁe
equatorial coordinate system.

The equations of motion of the earth derived in the following subsections
is generalized, without simplifications other than the agsumption of perfect

rigidity of the body.
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4.2 The Equations of Motion of a Rigid Body.

The motion of any rigid body under the influence qf external forces can be
represented as the resultant of a translation, with the velocity of the center of
mass, and a rotation about an axis through the center of mass, The two com~
ponents of motion are dynamically independent of each other. The center of
mass moves as though it were a particle of mass, equal to the total mass of the
rigid body, and upon which all external forces were directly exerted. The rota-
tional motion, relative to the moving center of inass, takes place as if thé center
of mass was at rest. This motion, which will be further investigated here, is
determined by the moments of the external forces about the center of mass. Parts
of the equations presented below are derived in more detail in text bookz of celes-
tial and analytical ‘mechanics such as 221, 7857 and 79].

Let a rigid body be composed of a system of particles m;, mg, ,... My e
whose position vectors from a selected origin of a fixed reference system are
respectively ?,, ?3, e 'z"(, «ee o. I external forces i“.l, —I".-;, . _I-!,. vesy and
internal forces (due to mutual interactions of the particles), ﬁl. ﬁe. cee ﬁ,. ‘e
are the two systems of forces acting upon the system of particles, then the

force equation for the ith particle is given by

- - &r
F. + Ry = ml_(i?" (4.1)

For the entire system, the force equation is given by

TF +2ﬁ'=zmda? (4.2)

2 ! a ! ri EF‘ ‘ ¢

The second term on the left hend side of equation (4. 2) vanishes since forces due

to mutual interactions occur in paiis of equal and oppositely directed forces.
The forces acting on the {th particle is converted to force moments by

multiplying each term in equation (4. 1) by ;", x, which then gives:
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Since
r & i;xﬁft)
T at T &

equation (4. 3) gives:

- - - d d*
BxF+ R R = mg o). (4.49)

For the entire system, the force-moment equation becomes

2.7 = 4 2~ 45
En r‘ x Fl - znml dt (“l x dt) (4'5)
by taking ‘}5‘, x:: x I-’:, to be zers,
z, R
G T
i
-
P
6) > Y

X
Figure 4.1. Rigid Bedy and a Fixed System.

Considering Figure 4.1 above,XYZ {3 2 fixed reference system with origin at
O,and G is the center of mass of the rigid bedy. If;r)‘ is the velocity of the
particle m, referred to G, then

> » o
vi = p + T,

If the origin O coincides with the center of mass G, then

. dr.
we=R=3

and equation (4.5) becomes
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IrxFy = 'a[znm,r, x V) (4.6)
or -
nd dH
= = 4.7
L= & | 4.7
where
L = E;, x a = force moment
H = Em,?, X ;/', = rotational momentum (moment of momentumy).
) .

For any particular rigid body the force moment i is obtained through the
force function while H can be expressed in terms of the inertial constants of
the body and its angular velocity. In the section that follows, the principles
of rigid body motion will be applied to the case of the earth.

4.3 The Rotation of the Earth About its Center of Mass,

4.31 The Dynamical Equations of Motion,
- In Figure 4.2 let the XYZ axes represent an inertial coordinate system centered

at O (for example the mean eeliptic system of 1950, 0). Also let the UVW axes
represent a coordinate system, fixed to the earth’s body and also centered at
O (for example, the average terrestrial coordinate system). The instantanecus
axis of rotation OP also passes through the earth's center but does not coincide
with either the W axis, or the Z axis.

From equations (4. 6) and (4.7)
-+ - »>
H = 'L:'ma Iy * vy (4.8)

Replacing the summation sign by an integration sign and writing dm for'the

element of mass; m,, equation {4.8) cauld be written as
i.{ = I (;l X ;‘)dln
[

where
2, is the position vector of dm from origin O
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P — Instantanecus Pole
w — Earth's Rotational Velocity
XYZ — Mean Ecliptic (1950, 0) Coordinate System

UVW — Average Terrestial Coordinate System
6 ¥ — Eulerian Angles

: Figure 4.2 The Fundamental Coordinate Systems and the Eulerian Angles,
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and '\’ri is the velocity of dm referred to the origin.

Also, wT, could be expressed as

- e

-»
if @ represents the angular velocity of the earth, Hence

H = f (£ x (@ * T,))dm
or -4 : - -» > - -
H = [« 1) - 5y - @)l (4.9)

L
If the coordinates of the n.ass element dm is u,v,w in the UVW coordinate

- o -

system, and i, j, k are unit vectors along the U, V,W axes respectively, then
T, o= ul+vi+wz

and - » -
W= al towd rwe

Subtituting for ?, and @ in (4.9) and carrying out the scalar products we obtain:
H o= [l + o+ @k + v+ wi-l + vj + wi)(uay +vay + ww) Jam,
Expanding“the above equation further and simplifying we obtain:
H = (A~ Py~ Eodi + (Buoy- D~ Fur)] + (Cue Doy - Euo) B

or (4.10)
H = Hi+ Hj + BE

where A, B,C,D,E,F are the moments of inertial of the earth defined as:

A = [(F+wIdm D = [vwdnm
B = }(uaﬂvz)dm E = }wudm
C = }(ua+v°)dm F = }uvdm.
Equation (4. 10) c:n be rewritten, in matrix notatio: as
(1] = M]{w] (4.11)
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+
where -‘
] A -F -E w 3
H=|H|, M=I|-F B -D|, w=]|wl. (4.12) ’
H, -E -D C w

In order to differentiate H with respect to time, one also has to consgider the
> 5
fact that the directions of the unit vectors i, j, k in space dochange with respecttotime.

PN NIRRT RTINS A AR DT B

Thus since
- - > e R
H = Hyi+Hyj+ Hwk: %%
-»> - -’ ey
dH _-dH, di _1 dHN i
— = —— s— i)
t - lar g T vy H“dt 3
3
From the above expression we obtzin d
-l ‘:é}
. - . - . - : %
O = (-, + BT+ (B + wlH - HIT + (L + by - o)k (4. 13)
% :
3

4

il

which can also be written as

g —_—s »
%!ti = M@+ wx H, (4.14)

This is the right hand side of equations (4. 6) and (4.7). To obtain the left hand

L3 Ny g Sen g o .-“
AL SRR,
et a s e+ W aie o e o

gide, i.e. L, we have

1= T(tak)

Ty

% S T P P SR T T S

as earlier defined.

The external forces acting on the earth are mainly due to the gravitational
attractions of the sun and the moon, and in a much lesser way, to the attractions
’ of the planets. Woolard in [94] considered the moon and the sun agthe only external

_ bodies whose gravitational effects cause precession and nutation. Although the ef(ects
S of the other planets are thought to be negligibly smail, the equations to be derived
here will include their effects so as to make the equations general. Besides the
generality of the equations, however, it ig possible that long-term effects of
the planets on the rotation of the earth around its center of mass are of such
magritude that can be detected with future cbservational systems, |
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If U is force function and ? is potential then

F = dU = -dV
. - - -
.o L = dv x r,

The potential of the earth of mass M at a distant point P is given approximately
by the MacCullagh's formula [41] as

ou

vV = R-_,(A+B+C 3n (4.15)

where G is the gravitational constant, A, B,C are the principal moments of
inertia of the earth with center of mass at O, Ris thedistance OPand1isthe moment
inertia of the earth about OP, Equation (4. 15) neglects terms depending on
1/R* and on, since these quantities are negligible in
astronomical problems because of
the great distances involved.
If we now consider, as R
in the case of the earth, a
system of n bodies of finite

. O
dimensions, the total potential Earth
energy of the system i3 given by (Mass M)
MM, M(A;+B; +C, -3, vy M(AYB+C,-31
R, 2R3 2R;
M M.\ 3 M M M,I*\1
+ (A+R+ dooed S (2 R
(A+B C)(\znl 283”2\ Rf Rg ©TRY /) (4.16)
where
R°°°R, are distances from earth's mass center to the
center of mass of external bodies 1, ...n respectively
Mye--M, are masses of external bodies 1, ...n respectively
A, B, C,, I, are the inertia quantities that pertain to the body i,
i=1¢-+n in the same way as A, B,C, I were defined above,
M is the total mass of the earth
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and ' is the moment of inertia of the earth about the line join-
ing the earth's center to the center of body i, i =1,...n. \:
Since V depends on the orientation of the earth only through I*, only 5
the last term of (4. 16) need be considered. Thus differentiating (4. 16) 3
3G (BLdE | Madl® M,dI® 3
dV = -== =25 + doeoe t —k—]. 4.17 3
2 [“R,, R3 R (4.17) :
However,
1
I = R xIM X,] (4.18)

where X, gives the coordinates of the body i from the earth's center in the UVW
coordinate system,
M, has been defined previously.

SR U PP A KT TPe: KW SO o VRl

R S

Hence

drt = M, X;)

2
R?

s S———

and

- -G TPbxg oo T .10

SRR e aE B BN A s & SR,

or in vector notation ]

->
; av (4.19b)

e

2
&
+
2

Since

AP ST PR L

. s

] then
- —- -> =» - -» -»
L=dVyrX, +dVagx Xg +-°-+dV,x X,

A

; = 3GM 2 3GM, -
3 L= [ e % P M Ko B R 020

From equations (4. 7) and (4. 14)’

- - -+ -
L—(:;tl =M|‘b+wlﬂc

o1 eyt Y g S i S e
ey 41? (.‘::,‘4‘.,\ ﬂ.@'f] f:fg '.w.flr‘ 2

e " ye
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. A - - .
Therefore, since H = M,w .

- ' M.+ =
MG +@0xMw = -fﬁ?"nﬁxl&‘ Feerd %M,xnxxnj. (4.21)

The above equation (4. 21) is the dynamical equation of motion for the earth,
assuming rigidity. If itis further assumed that the products of inertia (D, E, F) are

zero, the equation reduces to the well-known Euler's equations of motion [79).

4.32 Euler's Geometric Equations.

In the last sub-section, the motion of the earth about its center of mass

has been dynamically represented as a rotation about an axis which constantly

SRR S

passes through the center of mass, but whose position within the earth and direc-

tion in space varies from instant to instant. The orientation of the earth-fixed

R

T

UVW coordinate system with respect to the fixed (inertial) coordinate system

4

(XYZ) also varies from instant to instant. This orientation at any instant can !

ST A
i T

R

be defined by 2 set of three angles - known as the Euler angles - 8, ), @.

These angles are presented in figure 4.2 and are defined as follows:

S gy

8 — the inclination of the average terrestrial equator (moving equator of

figire) to the plane of the fixed exliptic (of 1950. 0) reckoned positive

L NI G e € Bkt 1 i A N ke g

from the plane of the fixed exliptic to the plane of the moving equator, |
such that 8<90°
¥ — the longitude of descending node of the equator of figure reckoned 3.

Foar o e
LB

RN

BN
3

from the fixed equinox

e

@ — the ungle in the plane of the equator of figure, between the moving

P

nodal line and the U-axis, reckoned positive eastwards from the

&

ip
i
¥ -
b2
e
-
ey
AR
N

- descending node to the positive U-axis.

e v sl il

Thus the relationship between the inertial XYZ coordinate system and the mov-
ing UVW axes fixed in the earth's body is given by:

oo 1 .
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V| = R(@R(-®Re(P|Y (4.22)
w zZ

where R;(®), Ry (-6) and Ra(¢) are 3 » 3 orthogonal transformation matrices.

The rate of change of the three Eulerian angles ~ 4, w.e can algo be used
to represent the motion of the earth about its center of mass. In the figure 4.2,
¢ is a rotation about the W-axis, ) a rotation about the Z-axis and 8 a rotation
about the line of nodes. The relationship between the components of the angular
veloctiy w along the U,V,W axes — wy, wy, wy ~ and ®, §, § can be obtained,
by geometrical considerations, from figure 4.2 to be

wy '-.Ocosg- ) 8in8 sing
Wy Osing - P sinb cosd (4.23a)
Wy = &»cos@ +&

which could also be written as:

Wy 8
wl| = S|{d (4.23b)
Wy 4’
or
3 -».
w = 5E (4.23¢)
where
~cos® -ginfsin® 0 8- Gy

S, = | sin® -sinBcos® 0|, E =|dj, w=]|wy]|.
0 cosé 1 - -7} Wy
Differentiating equation (4. 23c) with respect to time,

nd D . Do

@ = SE+S5E = SE+ gk (4.24)
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where
-cosBsin® sind® -sinfcos ¢
S; = | -cosfcosd cosd sindsind
-8in8 0 0
and
6
E: = |0 ¢
b &

From the equations (4.23) and (4. 24), the relationship between the _u’) and (:.)’
vector and the E and ﬁ vector is established. These equations, usually referred
toas Euler'sgeometric (or kinematic) equations, could now be used in conjunction
with the dynamical equation (4.21) to obtain three second order differential equations
of motion, whose solution would give the orientation of the earth-fixed coordinate

system,with respect to the coordinate system fixed in space,at any particular instant,

4.33 Differential Equations of Motion of the Earth.

From the earth's dynamical equations of motion given by (4. 21), expressions

for c:; and (:; given by (4.23) and (4. 24) could be substituted. This gives:

M3E + M\SE,+ SEM3E = rzglMlM Xy % Ky 4o 3§M MX, s X J
(4.25)
Retaining only E on the left hand side,
£ = s --3(;[1;‘51\1x1nx1 +-5M X nan—M \S,E.+ M, S.E 4 &EJ
(4. 26)

Equation (4. 26) is a system of three second-order differential equations of mo-
-5

tion, and the solution for E gives the motion of the axis of figure - UVW, or

equivalently, the orientation of the earth in space. The position of the Earth

relative to the instantaneous axis of rotation at any instant can algo be obtained
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through the angles that this axis makes with the three body-fixed axes - UVW,

[}

PR

since the direction cosines of these angles are given by:

v
’

: = &
t S =
: cos & w
] cos 0p = L (4.27)
P w
: w
= Yy
cos ng "

wy, Wy, w, could be obtained from the Euler's geometric equations given by (4.23).

[P LY "I

4.4 Numerical Integration of the Earth's Orientation Angles

The simplified form of equation (4.26) has always been the starting

equation for the development of the existing solutions of the earth's

A

-precession and nutation, The differential equations have been derived with

PR

only one agssumption — that the earth is a rigid body. 1n previous solutions,

-t

further simplifications are made by assuming that the M. (moment of inertia)
matrix is a diagonal matrix (putting D= E = F = 0). It is also usually

assumed that the earth possesses rotational symmetry about the W axis

R S

(i.e., A = B). Furthermore, the external bodies whose attractions influence

e
v

the earth's motion are limited to the moon and the sun, hence the term

"luni-solar" precession and nutation.

LI X Y

The simplified differential equations of motion a1e, prior to this time.

1o,

analytically solved by the well-known method of variation of parameters.

Ty

involving successive approximations. First, the motion that would occur,

e s

if all external forces were to vanish is solved for, and this solution is there-

after modified to obtain a solution under actual conditions., The motion of

v

the axis of rotation is generally calculated in two parts. The secular part

v

N N R

Ty

of the motion is referred to as "luni-solar precession” and the periodic

part is called "nutation". A very good example of the classical method of

P
e g

5

obtaining expressions for precession and nutation can be found in the work

A
MO

gt
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of Woolard [94], which at present serves as tha basis for the calculation of
nutation tabulated in the various astronomical almanacs.

In this section, an alternate method of using the differential equations
of motion (equation (4. 26)) to obtain the orientation of the earth with respect
to an inertial coordinate system will be giver. The method involves the

use of digital computers to numerically integrate the earth's equations of

motion,
The threce second order differential equations (4. 26) are transformed

into a form suitable for numerical integration by setting

such that

or

TS N
Y = EJ = [f(E, L] . (4.28)

where f(E, f::) is represented by the righthand side of equation (4.26). This
is a system of six first order equations, of which the first three are linear
and the last three are non-linear.

. These sixfirst order equations can be numerically integrated by any
standard method, Two methods were used in these studies, The first
method is the modified Hamming fourth-order predictor-corrector method.
This is an integration procedure that is considered stable and which uses a
special Runge-Kutta procedure to obtain starting values. Provisions for
controlling local truncation error by changing the step size at each step
are included. The detailed algorithm is described by Ralston in [86].

The second method used is the variable order Adams predictor-corrector
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R method, developed and used by JPL in their Orbital Determination Programs.
In addition to being a variable order method, provision is made for making
_-‘ either absolute or relative error tests for the control of local truncation
errors for cach of the integrated quantities individually. Stepsizes are easily
halved or doubled at each step. A description of the integration algorithm
~is given by Krogh 755]. _
The variab!e order Adams method was preferred to the Hamming's

method due to its special features. Although the investigations presented

nEd

in this chapter were started with the Hamming's integration subroutine,

D

5" it was later replaced by the variable order subroutines. Consequently,
Li results presented later in this chapter were obtained by using the variable
:& order integration subroutines. '
iﬂ‘
F
% 4.41 Calculation of Initial Values,
i Any numerical integration procedure is formulated for initial-value
:
1 problems. It is therefore necessary to obtain the starting values:
& (8"
B
§ =
: Yo
3
E :
4 Y, = . = | %], (4.29)
to E t
il 8, :
L’:‘o :
[ %o ]

The starting values were computed in the following w'ay. In Figure 4. 3,

XYZ — ts the mean ecliptic coordinate system of 1950. 0

ﬂ??ﬂﬁfﬁlwﬂ’?&"ﬁﬂmm‘w_uw. AR

UVW — is the "average" terrestrial coordinate system

§ 8, {, & — are the Eulerian angles (orientation angles). :
§ Then let '
&
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i, j, k represent unit vectors along XYZ axes respectively

—)I -:’l —’I

i’, i, k' represent unit vectors along the axes UVW respectively,

>
n represeats the unit vector along the line of nodes, positive

toward the descending node of the equator.
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Figure 4.3 Caiculation of Eulerian Angles and Their Rates
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The transformation from the XYZ coordinate system to the UVW

coordinate system is given by

o x
v = SNPR, (-€d |Y (4. 30)
W ke pocn Z hgso.0
or
fu " x
v =T |y
Wi 2 heso,0
where
T = SNPR,(-€)

and S, N, P and ¢, have been defined previously.

Since the 3 x 3 matrix T

transforms a set of coordinates expressed in the 1950, 0 mean ecliptic gystem

to the average terrestial system, it follows that

-5

i’ r'ru Tya
2,

il = |Tar Taa
-’I

k| Tsy  Taa

From Figure 4. 3 and equation 4. 31, 0 {s given by

cos9d = K'. i!

Hence
e =

Similarly, if

Y = 360°-9
cosy’ = 1.1
141

cos® (Ts3)

31
Tis .
-
Tas jl- (4. 31)
I
T"’?_ k_]
= Taa
(4. 32)
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i.e.

Hence

For the third angle @,

cos &

cosd =

- " sin®

(4. 33)

-
{'+n

1.

i (An Asa - Aafe))

@& = cos? [énAza.;_&a_Aaﬁ ] (4.34)

sin @ ”

For the initial epoch, the T matrix is calculated. Then the initial values

of the three Eulerian angles 9; P ‘and $ are obtained using equations (4. 32),

(4.33) and (4. 34).

The time derivatives of the angles are obtained by numerical differenti-

ation, The angles are calculated for an epoch t, + 4t and the time rates

are obtainea from

et e iz e T e

O

L X

[RZET T O

€ipen =8y
At

A ‘ (4. 35)
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At is a small increment, whose choice is rather arbitrary. However, the
increment must be small enough to make the calculated 8, v and & close to
their true values. From trial runs, it could be concluded that a value of

1/16384 of a day (approximately 5 seconds) is sufficiently small for this

hdn Bt ¢ A i et 1

purpose,

eain e

4.42 Parameters of Integration,

: In numerically integrating the system of equation (4.28), the function E
i . " i
: for calculating £ has to be evaluated. This function, (equation (4.26)) is ’%
. > » 3 .
; given in terms of ¥, E and some other parameters. These other parameters %
¢ o
include the moment of inertia matrix of the earth M,, the masses of the 3
3 3
L moon, sun and the nearer planets as well as their geocentric positions, %

The earth's moment of inertia matrix is given by k|
: A -F -E F-
4 o4 ;
‘- M, = |-F B -D|. % ,;
] -E <D C R
2 Tie elements of the M, matrix are related to the second degree spherical é
j-’ “harmonic coefficients as follows (see [68]) 2% 3
. CE
. Cao = KTC-4(A+B) L
Ca = K- E §
K & 3
':." a B _A "‘2 ‘ 3
; G2 = KoY (4.35) 4
S = K-D 3
¢ . e -3
: F S
r. = . - 3 "
{ we KUY
J
4 where 3
E K = ——51 :
k" Maj
a,, M are the earth's semi-major axis and mass respectively.
3
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From equation (4. 36), there are five quantities which explicitly give the
six elements of the M, matrix. Consequently, an additional equation must
i be defined in order to find the moments of inertia from the spherical
harmonic coefficients. From equation (4. 36),
i
1 i
A=C+ 'E (Cao ~ 2Caz) ¢
] 1
t B =C + 'I_(‘ {(Cao t 2Ca2) !
3
3 1 i
D = X 82y
‘ (4. 37)
: 1
; E=+%Ca
!
> 2
E F = X Saz -
- fg By putting
y C
& !z em—— = .
g K Ma2 C-K
_ K’
C=x
& .
i and equations (4. 37) bezome

A

1
X K’ + Cz0 - 2Czd

B

)
"‘Z(K + Cao + 2C3a)

and expressions for D, E, F remain the same, If by some other means the
value of K’ can be found, then the "scaled"” moinent of inertia matrix cun be

calculated without using the value of K. It turns out that the scaling of the

1
M, matrix by X does not affect the validity of equation (4. 26).
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In the integration program, the value used for K’ is taken from

Kaula (44}

K’ = ﬁ% = 0.33076.

Also, the coefficients of spherical harmonics used were taken from

Rapp [81}. Thus,

0. 52967 -0.1692 x 10> 0
M, = -}(- -0.1692 x 16° 0, 32968 o .
L 0 0 0.33076 |

In addition to the sun and the moon, four other planets were used in
equation (4.26). These are Mercury, Venus, Mars and Jupiter. The
position of these planets as well as the sun and the moon are obtained in
the integration program by reading these values from the JPL Development
Ephemeris 62 (DE-69) tape., The DE-~69 is the latest of JPL's ephemeris
tapes, and contains the position of all the planets, the moon as well as
nutation in obliquity and longitude. The positions in the DE~69 were obtained
by numerical integration process, and the ephemeris is said to be gravita-
tionally consistent. The planetary masses used are from the JPL system
of planetary masses [62]. Table 4.1 gives the gravitational constant for

each astronomical body.
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LN . a
Body Gravitational Constants
(Km®/day 2)
Earth 0.2975542 x 10
Moon 0. 3659906 x 10**
Sun 0. 9906936 x 10%!
Mercury 0.1655848 x 10'°
Venus 0.2425068 x 10*®
Mars 0. 3197127 x 10'®
Jupiter 0.9458682 x 10'®
Table 4.1

Gravitational Constants

4.5 Adjustment of Initial Conditions

In order to obtain the earth's orientation angles at epoch t, the six first-
order differential equations of motion (equation (4. 28)) are numerically
intégrated from a starting epoch t,. The values obtaine; or the angles and
their rates at the desired epoch t depends to a large extent on the starting
values of these quantities at the initial epoch, and on the parameters that -
are treated in Section 4,42, The method through which the starting values (at to)
can be calculated has been given in Section 4, 41 and it necessarily
involves the current expressions for precession, nutation and Greenwich
Apparent Sidereal Time, as well 2s a form of numerical differentiation.
Small errors in the calculation of the fnitial values at the starting epoch are
propagated through the iﬂtegration from time t4 to t, and become exaggerated

over a long period of time. Consequently, it is important to provide a means
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by which initial values and parameters can be corrected in an adjustment

process.involving some form of observations.
Suppose Z i3 a get of data which can be computed as a function of the

earth's orientétion angles together with some other parameters, i.e,

Z = Z(Y, %) (4.37)

_|E

i H

and x i3 a set of parameters also needed in (4. 37).
Z s obtained through the linearization of equation (4. 37) by a Taylor series

where

Then the variation in

expansion truncated at the first degree:

BZ = A,BY + Ay b6n (4. 38)

where
3z

A s
3z |

Ax = ox

However, the variation §Y in the Eulerian angles and their rates is further
related to the variations in the initial conditions Y, and other parameters «

through the solution of the differential equations

Y = Y(Yo.0) (4. 39)

where

The variation in Y obtained in a manner similar to equation (4. 38),is given
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by:
6Y = Ub6Y, + Vda. (4. 40)

The matrix of partial derivatives

. [ - ZE
U U dEq dEp
U = = (4. 41)
Us U, BE JE
- an aEO

is known as the state transition matrix, which describes the transition of a
differential variation of the initial epcch conditions from time ty to time t.

Also, the matrix of partials:

. 3E |
\'A ' o |
vV = = | (4.42)
vaJ 3E
3

is called the parameter sensitivity matrix. It describes the effect of a .
differential variation in &e parameters a on the integrated quantities E, E.

When equation (4.40) is subs*tuted in equation (4. 38), the variation in Z
is obtained as:

6Z = A,-U-B6Y% + A,- V-6 + Aybn. (4.43)

The matrices of partials A, and A; can be evaluated from the formulas
obtained by forming the partials of the various parameters which are functions
of the observables. Such expressions for the laser distances were given in
Section 2.4 and for VLBI, inSections 3,31, 3.32 and 3.33, However, the solution of
the differential equations (equation (4.39)) cannot be written in a closed form.
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Consequently, approximate expressions for the U and V matrices have
' to be found which can be evaluated by numerical differentiation or inte- :
gration, i
X
4

4,51 Evaluationof the State Transition and the Parameter Sensitivity Matrices.

g

One way by which the U and V matrices can be evaluated is by numerical
differentiction (also called numerical variant) method. In this method, the

.

desired partial derivatives are obtained by incrementing each of the initial
conditions, and integrating the differential equations of motion to the
i required time t. Then the nominal values of the angles (obtained using
the original initial conditions) are subtracted from the values obtained
when each initial condition is incremented and the result is divided by the
increment.

Thus a set of forty-two differential equations of motion can be integrated

together, six for the nominal initial conditions (Yq) and six for each of
the six initial values varied. If, for example the first initial condition Yg

is varied from Y4, to Y4, then

_.
e i 2

o
P

Yeb,) = Y(rg)
1
Yy, - Yo

i

~

Uy = (4. 42)

R AN TR A
SR

R T LY gy e S L T T 4 e
S A A ST R

i NI A AL N 50, W 305 O AL S0 00 2 Vo 0wt 0L A il 10 o 50

and similarly f01" other values varied.

‘ In these studies, the numerical differentiation method was used to
obtain the U matrix. The choice of increment is rather arbitt;ary,. although
it must be such as to give as closc approximations to the z;artials ag is
possible, A number of increments is tried, until by trial and error, the
U matrix can be considered stable. The stability of the U matrix is ensured

s

&)

when a sinall change in the increment does not sffect the U matrix appreciably.
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The V matrix can be obtained in the same way as described for the

U matrix. The parameters of interest are varied one by one and the

equations of motion integrated't,o the desired time t. Then the nominal

values of the angles are subtracted from the values obtained by varying

any of the parameters and the result divided by the increment.

An alternative way of evaluating U and V is by numerical integration rel.

The equations of motion (4.28) can be written in the form
Y = Y(Y,0)
and the vartation in Y {s given by
§Y = B5Y + Héa. (4.43)
Substitute equation (4.40) iuto equation (4. 43) to ol;ztain the equation:

6Y = BeU:§Yo+ (3-V + H)bax. (4. 44a)

However, equation (4. 442a) can also be obtained by differentiating equation:

(4. 490) with respect to time:
6Y = U6Y, + Véa. (4. 44b)
It follows from equations (4. 44a) and (4, 44b) that
U = BU (4. 45)
and

V = B'V + H. (4.46)

Equations (4. 45) and (4. 46) are differential equations whose integration
will result in the state transition matrix U and the parameter sensitivity
matrix V. The solution to equation (4. 45) depends on the solution to the
equations of motion because the matrix B is a function of the integrated

values of Y. Once expressions for B and H have been derived, the differ-
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ential equations (4. 45) and (4, 46) can be integrated along with the six

equations of motion (4.28). The matrices B and H are given by

3E  J3E.

) JE  IE

B = % = = ===~ (4‘47)
3E dE_

*
o/
R

= 2L _ = . 4.48
H o 2 ( )

== Ha_

FLI Ay e
Q/

o

Expressions for By,, B.,, and H; can be obtained by differentiating the

second order differential equations represented by equation (4. 26).. This

ki
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differentiation was not carried out in this work since another method was

chosen for the evaluation of the state transition matrix.

4.52 Numerical Fit of the Numerically Iniegrated Angles to the Calculated Angles.

In order to investigate the feasibility of numerically integrating the
earth's orientation angles, the differential equations of motion (4. 26) '
were integrated for a limited period of time. The results are presented
in Section 4.6 of this work. As would be expected however, the numerically
integrated angles differed from the calculated angles. Also, the differences
grew larger as the epoch of integration moved away from the initial epoch.
The differences fn values of the integrated angles and the calculated angles
are due, at least in part, to the inaccurate values of the initial conditions,
Better initial conditions can be obtained through adiustment processes involv-
fng real observations together with the use of the state transition matrix and

the parameter sensitivity matrix already treated in Sections 4.5 and 4.51,
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Without available real observations, it is still possible to obtain
corrections to the initial values. (n this case, the calculated angles could
serve as pseudo-observations, while the integrated angles are "approxi-
mate" values. This idea originated from the work of JPL in the develop-
ment of their numerical cphemeris. The lunar ephemeris obtained by
numerical integration was fitted to the Brown~Eckert ephemeris in order
to adjust the initial conditions for their integration [29]. It is important
to note that such a numerical fit of integrated quantities to their correspord-
ing values obtained through other means does not distort the numerical
integration process, It merely seeks to relate the integrated values to the
values obtained through other proven means. This is clearly permissible
in this case because classical methods of calculating the earth's orientation

are known to yield results very close to tne actual orientation of the earth.

Let

be the earth's Eulerian angles obtained through precession, nutation and

GAST. Also, let

be the corresponding values from numerical integration with initial condi-

tions:
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In a perfect situation, it is expected that

e‘ 9] Jo!
E-E =|o! - |y o|.
ol Lol Lo

In general, however, there are differences between E. and E,, i.e.

® -

26 |
AE = E.-E, = ap !, (4. 49)
Ad

Since E. is a function of Y,, it follows that
8 |

Ae ‘DO
®o

AE

il
Y

AY | = (Yo . (4.50)
I %

Yo

®o
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Using the principles of least squares, the weighted sum of squares of AE
is minimized. Thus, using the notations of Uotila {93l, the corrections, X, to

the approximate values of the initial conditions Yg is given by

X = ~(ATPA)'(A'PL) (4.51)
where

A = M (4.52)

L= | - & (4.53)

& - & |

and P is a weight matrix. In obtaining the design matrix A, the state

transition matrix is also needed.

MAE) _ 3(AE)  BE

A= 39 T RE  3(Yo) (4.54)
However,
AAE .
=== = 1 (identity matrix)
oE
and

SE AE SE
——— = i |l =T
3(Yo) [ax-:o aEUJ U Ul

Hence the A matrix can be evaluated along with the integration of Y, if the

U,. Uz submatrices are obtained through one of the methods in Section 4.51.
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The I. matrix is easily obtained by caiculating the Eulerian angles at each :

epoch of comparison (using precessics, etc)and subtracting these values from the

IORY

integrated angles. In general, the size of the A matrix is 3n x 6 and that

{
of L is 3n x 1 where n {s the number of discrete epochs over wh'ich the : '
adjustment is to be made. | :

The choice of the function to be minimized in a case like this must be
made carefully. Ii the A& ¢uantities are large, it may be necessary to
find other functions to minimize. The s.: uof squares of the AE quantities K
bhave been minimized in these studies because they are quite small, Numeri-
cal results from the adjustment and the improvement it made to the inte-
gration made with ¢he unadjusted initial conditions are presented in

Section 4. 6,

4,6 Numerical Experiments and Results.

PRIy

In the previcus sections of this chapter. a method by which the orientation

P W A

of the average terrestrial coordinate system with respect to a fixed celestial 3
coordinat: system (such as the mean ecliptic system of 1950. 0) can be obtained ;

by direct numerical integration of the earth's equations of motion has been

outlined. The earth's dynamical (rotational) equations of motion were derived

FONRP VPO PN JUUN

in a more complete form, without assumptions as to the mass distribution
and dynamic shape of the earth, Since the integrated angles and. their time
rates at any epoch depend on the initial conditions and physical parameters
used in integrating the equations cf motion, an outline of a method thréugh

which corrections to the initial conditions and the physical parameters can be

obtained was also given, Such a new theoretical approach to an old problem

i e L L s AL o AT R
v . :

LT SN WP O RE ST PP

as this needs some confirmation as to the validity of the method numerically.

It is therefore the purpose of this section to provide such needed numerical
support for the theoretical parts of the chapter,
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An extensive numerical experiment on this subject is well
beyond the scope of the present study. Consequently, the expeciinents
reported in this section are limited to those necessary to verify the correct-
ness of the equations derived and the computer programs developed for the
numerical integration of the Eulerian angles and their time rates, Also,
the ability to adjust the initial conditions with the adjustment computer
programs based on the method presented in Section 4.5 was verified. _

An important aid in verifying the computer programs developed in con-

nection with this study was the Simulated Earth-Moon Environment data
(hereafter referred to in this section as the simulated data) which was
developed by Papo [78). The generated simulated data are based ona
moderately complex model of the earth-moon dyn~mic system consisting
of a rotationally symetric rigid earth and a perfectly rigid moon whose
dynamical shape is that of a triaxial ellipsoid. Details of the model and
the mathematical formulation of the equations of motion of this simplified
earth-moon system ar: contained in [78].

A simulated ephemeris of the earth and the moon was created for a
period of one year beginning at 2440222,5 JD (1969, 0). The ephemeris
consists of numerically integrated geocéntric position and veloctity of the
moon, the Eulerian angles and their time rates for the earth and the moon
recorded at ha'f daily intervals, In addition, a fifth-order modified Everett
interpolation formula [ 771 was available for use in interpolating the 18
quantities at epochs which fall between tabulated values,

The following two numerical experiments are reported in this section,

(1) Fitting the numerically integrated earth's Eulerian angles to
those obtained from the simulated data.

(2) Comparing the numerically integrated Eulerian angles to their
counterparts obtained through classical method (using
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precession, nutation and polar metion as ocutlined in

Section 4. 41).

4,61 Fitting the Numerically Integrated Eulerian Angles to the Simulated :
Angles. ,% _'_'._
; As previously mentioned, the availability of the simulated data enables E !
r one to independently check the equations of motion of the earth as developed ; :
» in this charter and the computer programs written on the basis of the é
equations. Therefore, the first task that was performed was to compare the § !

numerically integrated angles to the cimulated angles, In order to make the %
two sets of angles coempatible, the numerical integration program &
written Jor the real case had to be slightly medified to accomodate the 3
r following restrictions imposed by the simulated environment model: s .
(1) For the elements of the moment of inertial matrix, A = B and ;'
: D=E=F=0, E R
i (2) Only the moon is the externai celestial body whose potential § .

affects the rotation of the earth.
(3) The geocentric position of the moon at any epoch is that given
by the simulated data rather than the one obtainable from a real

R

T AT

B D AR T

A lunar ephemeris.
It turned out that these modifications to the real integration program were
easilj; achieveable through the alteraticn of a few statements in the program
4 and data cards.

The integrating subreutine used to integrate the equations of motion is
the DVDQ subroutine, a variable step, varizble order Adams integrator f558],
A comparison of angles integrated and their counterparts from the simulated
data shows residuals which were less than 0.°0001 for 8 and 0.001 for 3
and © over the one year interval, These results indicate perfect agreement

~evv )
ot SR A

Y

TRy

B

NIRRT

between the two numerical integration programs which are results of equatiors
derived independently, using different methods and expressed in different forms.
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The next step was to test the adjustment program and the ability of the
adjustment method to recover the initial conditions. For this purpose, the
theoretical initial conditions (values of the integrated guantities at the initial
epoch of 2440222.5 JD), read from the simulated data were varied. Three
test runs were made in which

(1) only the initial angles were varied
(2) both the initial angles and their time rates were varied

(3) only the time rates of the angles were varied.

The adjustment was performed over an interval of forty days beginning at -
2440222.5 JD and ending at 2440262.5 JD. Values of the angles integrated

with wrong initial conditions were compared with the "true'' values at half

daily intervals, Table 4.2 shows the "correct” initial conditions, and the

initial conditions used in each of the three cases mentioned above.

Symbol Correct Initial Values | Initial Values | Initial Values
Initial Values for Case 1 for Case 2 for Case 3
] 0.4091596226 | 0.4091693189 | 0.4091644707 | 0. 4091596226
v |--0.131898*16%] -0.110152x10*} -0. 616711x10%| -0, 131898 115°
¢ 48950936587 | 4.8951033498 | 4.8950985068 | 4.8950936587
6 0.659363x107 | 0.659363x10° | 0.725299:18° | 0.725299 213’
b -0. 300932 x10° | -0. 30003 x10° | -0. 303942x10° | -0. 203942 «13®
¢ 6.3003883741 | 6.3003883741 | 6.3003943826 | 6.3003943826

R Ty DL SO S-S0

Table 4.2 Starting Initial Conditions for Three Test Cages.

A, ¥, d in radians, 4, %, $ in rad/day)
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Correct ‘Recovered Recovered Recovered

Symbol Initial Values Initial Values | Initial Values | Initial Values
for Casge 1 for Case 2 for Case 3

] 0.4091596226 | 0.4091596227 | 0.4091596227 | 0.4091596226

) -0.131898 x10° | -0. 131869 x13° | -0. 131880 x10° | -0. 131860 x10°

¢ 4, 8950936587 | 4.8230936584 | 4.8950936585 | 4. 8950926584

6 0.659363x107 | 0.652045x10” | 0.654780x10° | 0.649609 x187

b -0. 360932 x10° | -0, 298465 x10° | -0. 299432 x16° | -0. 300307 x10°

-3 6.3003883741 | 6.3003883718 | 6.3003883727 | 6. 3003883735

Table 4.3 Recovered Initial Conditiong for Three Test Cases after Two Iterations,
®. ¢, @ in radians, 8,9, $ in rad/day)

Table 4. 3 presents the adjusted values of the initial conditions for the
three cases after two iterations. Comparison of the recovered parameters with
their correct values shows agreement up to the ninth decimal figure (equivalent to
0.0002 for the angles, and 0.0002/day for their time rates). The residuals
o_btalned from the comparison of the integrated angles and those from the simu-
lated data were, for all three angles and in all three cases, less than 070001
throughout the adjustment interva}. Since Case 2 is the most general case, the
residuals before and after adjustments are presented {n Figure 4.4 for 8 and 3
and in Figure 4.5 for ®.

From the adjustment results, it appears as if some of the parameters in
the solution have poor separation from other parameters. This can be seen in
Table 4. 4 which presents the correlation matrix obtained from the adjustment.
The correlation matrix for all three test cases 18 identical up to the first two
sigaificant digits. Also, the inverted normal matrix (weight coefficient matrix)
for all three cases is very similar, and Teble 4.5 shows the weight coefficient
matrix for Case 2. In spite of the high correlation between certain parameters
(especially between g and € the results of these experiments show that the
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solutions for all the parameters do actually converge to their true values.
The adjustment performed over a 40-day interval with two iterations takes

approximately five minutes to run on an IBM 360/75 computer,

9 b ® 8 b d

1.00

~0.17  1.00

0.10 -0.35 1,00

0.22 -0.76 0.46  1.00

0.41 -0.41 0.25 0.54 1.00
-0.41  0.41 -0,26 -0.54 -0.89 1,00

P €& D H & @

Table 4.4

Correlation Matrix for Adjusted Initial Values
fn the Simulated Case.

6 v ¢ 6 ¥ é
1.5x1073 '
-3.5x10™ 2.9x1072
3.0x107-1,5x1072 6.2x 10
8.6X10™-4,2x107% 3.8x10™® 1.1x107}
3.9x107%-5,6x 1072 4,9x10™® 1.4x107! 6.3x 107"
15.3%107" 5,1x107° _4,6x107° -1, 3x10™ -5, 7x10™ 5,3x107}

G S D G S D

Table 4.5

Weight Coefficient Matrix for Adjusted Initial Valueg
in the Simulated Case,
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4,62 Comparison of Numerically Integrated Eulerian Angles to those
Obtained through Classical Method.

o

The experiments performed in Section 4. 61 have demonstrated that the

B e e e T IE P
s T

method and equations developed in the previous sections of this chapter can

. T

be used to accurately integrate earth's Eulerian angles and, if necessary, to

R [ R

adjust initial conditions in a simulated model. Nevertheless, the ultimate

e vty

1 nrw

test of this method as to its applicability to the real world rests on how
such numerically integrated angles compare with their counterparts using '

existing methods., The purpose of this section is to evaluate, through

PR

numerical experiments, whether or not the equations ant methods presented

' ) - .- )
e T L W, F e E A SN A
T 4 T e TR A TR AT T A S S

~earlier can be used in a real situation. In this case, there is no known

BTl o ARV LRV

"true" solution, and only good estimates of the solution can be obtained,
usually through an adjustment process. Consequently, the experiments
reported in this section show:

(1) How close the values of the angles integrated are, compared to

.

corresponding angles obtained through classical methods

(%) Results obtained, if the initial conditions are adjusted.

In Section 4. 41, a method has been outlined through which the three
Eulerian angles 8, ¥, 2 can be obtained at any epoch (using values of pre-~
cessional and nutational elements, and the GAST). The initial values of the

Pl

angles for the numerical integration as well as the angles compared with the
integrated angles at selected epochs were computed using thismethod. The
time rates of the initial angles were obtained by dividing the difference between
computed angles at the initizl epoch and at 1/65536 day later by the time
interval.

Lihelakts oo Tin: 2ats e b i B B e et e s i b o

The integration waé performed over an interval of approximately one

year between 2437610, 5 JD and 2437970.5JD. The earth's equations of

motion were integrated by the DVDQ subroutine. The geocentric position
of the sun, the moon and the plancts (see Section 4. 42) at the epoch of

) ey . - o P
I P I AR

.

RE

163

i il an she w i it e vt A Yamaem e st we e e’ me e T me mae e wnh Temd el b b s dn b b e Ity e b A e A Abarin AL 2as s -



o 2 et

I G A e e e ey

s
RO

TR

TeOm
LETRLE R AR T :‘9‘ K]

UROEGIRA SO TR

'

ar
iy

~

Lt

S
o

4]
»

integration were read off the JPL's latest numerical development
ephemeris — DE69. The constants of integration were those given in
Section 4,42. The integration over the one-year period took approximately
five minutes on the IBM 360/75 computer.

Instead of the Cowell type of integration performed in the simulated
case, the Encke type of integration was used in thig case. This can be
done by modifying the original equations of motion from Cowell's to Encke's
type, i.e. defining a reference case of motion for which analytical expreé-
sions can be given, and obtaining the difference between Cowell's equations
of motion and the equations of motion of the reference case. Thus, the
equations integrated are "perturbations" of the reference case. In addition
to this modification. it was decided to integrate perturbations of the quantitieé
8, ¥, Y+ & and their time rates instead of 8, ¥, ¢ and their time rates. The
main reason for doing this was to find out whether or not the strong correla-
tion between & and & can be removed. As it turns out, this affected, very
little, the high correlation between the two parameters.

The quantities integrated (in the Encke mode) were:

(6, | 9 - & 7]
62 -

8] _ |®+d-Ko- Kt
6o é

6s é

6s é+ - K,

where
| 9. = 0.409170 rad.
de = 6.280350 rad.
Ko = & +ix = 7.082407
K,; = 6.30038810 rad/day (sidereal rate)
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and

t = time in JD from the initial epoch.

Also, the quantities compared at each epoch with the computed values were

08,9 and @+ . The initial values of the integrated quantities were

6, = 7.00084121x10""rad. 6, = -1.85309594 x10™ rad/day
6, = 4.42734527 x10""rad. 65 = -3. 32660736 x 10~ rad/day
65 = 1.30133957 X10 °rad. 6, = -6, 40369792 10" rad/day.

All quantities integrated refer to the mean ecliptic system of 1950. 0.

The residuals in 8, ) and ®+ ) are presented in Figures 4.6 and 4.7.
Tt can be seen from these figures that residuals in A and { exhibit a semi-
monthly period while residuals in ¢ +) have a dominant seculartrend. However,
the residuals were very small, not exceeding 0.02 in 8, 0,05 in{ and 0.3 in
8+ over the period of one year.

An attempt was also made at adjusting the initial conditions by fitting
the numerically integrated angles over the computed ones, For this purpose,
a relatively short interval of forty days beginning at 2437610,5 JD was
chosen. The initial values of the integrated quantities (5, to §g) were those
given above, After a single iteration, the corrections to the starting values
of the initial conditions were less than 0.01 and the adjusted values of these
quantities were:

6, = 7.23518822x 10~7 6, = -1.96953572 x10~"
62 = 4.99809019x10™" 6s = -3. 21460406 x10™"
6; = 1.30475169% 107° 6 = -6. 36575208 x10™"

This single solution took approximately three minutes on the IBM 360/75
cbmputer.

The correlation matrix as shown by Table 4, 6 shows in general less

correlation between pérameters compared to the simulated case (Table 4. 4).
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However, the high correlction between §g and 0 is almost the same as

that between $ and @ in the simulated case. Table 4.7 also presents lhe

‘weight coefficient matrix for the adjusted initial conditions.

5 1 63 63 64 65 65

5, 1.00

62| -0.13  1.00

6, | 0.04 -0.08 1. 00

6, 0.15 -0.80 0.01 1.00

6| 0.33 -0.44 0.14 0.48 1.00

6| 0.33 -0.40 0.00 0.44 0.98 1.00

Table 4.6

Correlation Matrix for Adjusted Initial Conditions
in the Real Case.

6, 62 63 be 6s 8s

6, | 6.2x10™

62 | -1.6x10™> 2.2x1072

62 ] 5.1x107°-1.7x10"% 2.2x10™2

6y | 3.vx107°-4.1x107% 4,1x10™ 1.0x 1072

6s | 1.2x1072-2.9x10~2 2.0x 10~ 6.9x10™ 1,9x107!

e | 8.8x107*-2.0x107°-4.4x10"5 4.8x10™° 1,5x107% 1,2x107

. Table 4.7

Weight Coefficient Matrix for Adjusted Initial Conditions
in the Real Case.
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The residuals in 8, $ and 8 + 3 before and after the adjustment are shown

in Figures 4.8 and 4.9. 1t can be seen from these two figures that the

bagic form of the residuals remained after adjustment, but the residuals
were more or less centered around the zero line. The semi-monthly period
present before the adjustment remained after the adjustment,

One basic conclusion that could be made on the basis of tests performed
in this section is that it is possible to obtain, by the numerical integration
method, the orientation of the average terrestrial coordinate syetem with
respect to a coordinate system fixed in space (such as the mean eclipttc
system of 1950.0). It has been demonstrated that over a period of one yesr,
the integrated angles compare well with the angles computed by clagsical
means to within 0.2, Also, it is possible to adjust the initial conditions
through the method given in this chapter in order to obtaln a better fit of the
integreted angles with computed ones using the classical method, Neverthe-
lers, it {s important to note that the most desiresble goal is to adjust the
fnitial conditions, using real observations. '
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5 ADJUSTMENT MODEL FOR LASER AND VLBI OBSERVATIONS.

5.1 Introduction.

In the previous chapters, we have treated two basic types of new
observations which can be used to obtain more accurate position determination
on the moon. In both Chapters 2 and 3, the prediction equations for the observables
have been developed as functions of certainphysical and asfronomical parameters.
Also partial derivatives esseutial to the formation of observation equationshave
been derived, In general, the cbserved values of the observables and their com-
puted values will be different, the differences resulting from errors in the
observations as well as errors in the agsumed values of parameters used in the
prediction equations. These assumed values of parameters can then be

Ycorrected using the deviations cf the cbserved values from their predicted

counterparts through an adjustment procedure. Much more ¢&en than not,

there are more equations available than unknowns (due to large number of

observations), and a unique solution is usually cbtained through the use of

the principles of least squares. This technique involves the minimizaticn of

a quadratic form, which is the total weighted sum of squares of the residuals.
In this study, the two chservation types we are concerned with are the

laser distances and the VLBI time delays. Furthermore, VLB] observations

have been classified under three types namely

earth~ earth VLBI observations
a_rth-MOon VLBI observations
moon-moon VLBI observations.
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Although the earth- earth VLBI observations cannot be used directly to

obtain coordinates of points on the moon (except in the case of observations

R 2o matid

made to artificial radio sources located on the lunar surface), they can be
used to determine more accurately the orientation of the earth-fixed axes

{n space. In turn, the knowledge of the earth’s orientation {n space is

T L i e Lo dailab ity oy

A o emn oy - =

essential to the determination of selenodetic control through earth-based
observations, Therefore; the adjustment equations developed in this chapter 3

will be applicable to the four types of observation as follows:

(i) lasers ;
(if) earth-earth VLBI A !
: (iif) earth-moon VLBI ;

(iv) moon-moon VLBI. 1

.
PICARRN
P

wo

e e o 4o

In developing the adjustment model, consideration is given to the fact :
that values for most of the parametefs to be solved for are avatlable through ~l

f'j?-:}?';

R

P

some sort of previous determinations. Therefore, since these "approximate" T
values of parameters have somé variances associated with them, they could '
also be considered as "observations" with corresponding residuals and weights,
It {8 also recognized that laser cbservations are currently under way, while . g

the other cbservation types are only a future possibility, Therefore, a ]
seguential golution of the normal equations is decirable, whereby the laser
observations could be adjusted first, and the result later combired directly

RS AR S O MR e

S NSRS DY

recognized that there are many parameters involved {n the adjustment of this
kird, some of which are either undesirable (nuisance parameters) or known
more accurately through other means than can be obtained using tas cbservation

S
C e .

.

‘with other observation types whenever they are available, Lastly, it is ' %
%
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types considered in this study. For example, parameters related to
refraction models and clock synchronization errors are nuisance parémeters
while geocentric Cartesian coordinates of earth stations may be obtained more
accurately through other means, such as artificial satellite ¢ata analysis.
In summary, the adjustment model to be developed will be a generalized

model in which parameters will be regarded as ""observations' associated

with their corresponding weights. The solution of the normal equations will

be of a sequential nature, and parameters whose solutions are not required
will be eliminated from the normal equations while their contribution to the
solution of the other desired parameters will be accounted for. The derivation
of the normal equations and their solution follow, in most part, the method
used by Uotila in {93].

5.2 Classification of Parameters in the Solution.

it has been noted in Section 5.1 that all parameters in the general ad-
justment model will be regarded as observations with corresponding weights,
In addition to these quasi-observations, we also have observations made with
either laser or VLBI instrumentation. These observations are divided into

fcur groups as follows:

{a} laser ~ (F - group)

(®) earth-earth VLBI ~ (G - group)
(¢} earth-moon VLEI ~ (H - group)
(d) moon-moor VLBI ~ (J - group).

The parameters (or quasi-observationc) are also in two categories.
The firat class of parameters are of direct interest, and their solution is
the main geal of thesa studies. Parameters in the second class can be
described as transient. They are nceded for the mathematical modeling of
the chservation groups, but they are eiﬁ_zer of no direct interest (nujsance [
parameters) or they are not as sensitive to the observation types being con-

-
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sidered here as other known types of observaticns.

In this work, parameters are classified iato four groups - X,, X,
Xa, X¢ - tarough the consideration of the above defined classes of desired
and non-desired parameters as well as other factors.

....r;.:.am.v:waa_‘.“ua'%l-..,:)}«‘.‘-”.’&')fl\.'m’t;u‘iwzf} s

el AT

Parameters X;
This group includes the Cartesian (x, y, z) coordinates of the lunar g

stations in the selenodetic coordinate system. These are the main set of

parameters in which we are interested. Transformation into polar coordinates

can be done easily (since the lunar figure approximates a sphere).

T ET Ty 3

Also in the X, parameter group are the lunar orientation parameters.
In this chapter, the orientation of the moon with respect to an inertial system
will be assumed to be defined by the three Eulerian angles obtained through the

numerical integration of the moon's equations of motion, Consequently, the

3 };L‘!}fc".’i

G
{i

ey

orientation parameters consist of the initial values of the Eulerian angles and
their time rates at a standard epoch. This set of parameters which is non~
variant, is related to the moon's orientation angle at each epoch through

a 6 » 6 partial derivatives matrix known as the state transition matrix, The
partials of the mathematical functicns with respect to this set of parameters ‘
are obtained by using the state transition matrix together with the partials of
the functions with respect to the orientation angles at each epoch of
cbservation. Thus, the mooa's orientation parameters to be solved remain i

%

ramt e o e

i Ll

B b (TR e L S L L

8ix, irrespective of the mmber of epochs at which observutions are made.
The last set of parameters in this group relate to the dynamic figure
of the moon. These are the moon's principal moments of inertia, orthe

lower degree and order harmonic coefficients of the moon. These constants
appear explicitly In the mooa's equations of motion which are integrated in

S
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order to obtain the moon's oricntation angles (see {78]).

All the three sets of parameters in this group are desirable parameters.
In addition to this, they also appear in the mathematical functions for the
three observation types F, H and J.

Parameters

The parameters in this group are the geocentric Cartesian coordinates
of the observing stations on the earth and the earth's orientation with respect
to an inertial system. They feature in the mathematical functions for F, G
and H-type observations, since these observations require at least one station
on the earth.

The orientation parameters are defined in the same way as the moon's
orientation parameters above. In Chapter 4, the numerical integration of the
earth's orientation (Eulerian) angles and their time rates have been suggested.
In this way, the number of parameters reduce to the six initial conditions
which are related to the Eulerian angles and their time rates at any cbserving
epoch by the 6 x 6 state transition matrix.

Also included in this group are the parameters of polar motion (coordi~

nates of the true (instantaneous) pole from the average pole). For easy

parametisation, it {8 reasonable to regard these coordinates as constant over

short intervals of time.

The X, group of parameteré may or may not be regarded as desirable
depending on the purpose of adjustment. In this work we shall treat them as
desirable parameters. However, it 18 clear that the coordinates of stations
determined from the types of obserations considered in these studies will be
less accurate than those obtainable with current methods of station position

determination on the earth.
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Parameters X, }

- This group of parameters consists of the undesirable (nuisance) param- ?;
. eters which are necessary for modeling observation types F, G and H only, 3 :
The group includes parameters necessary for modeling the systematic errors ‘% 3

in the existing lunar ephemeris. Also, included in this group of parameters 5

L are the corrections to the error models used in computing corrections to the _ g

observed quantities, for systematic observational errors such as atmospheric “E
refraction and earth tides (see Appendix B). The parameters will not be ui ;

solved explicitly, but thefr contributicns will be included in the solution for §

’ “ the desired parameters. - g
{ ? Parameters X, , ;%
3 This group of parameters is also undesirablie, but does appear in the % (
g mathematical functions for the G, H and J cbservation types (VLBI). The param- “f
;i:i eters include the radio source positions and clock synchronization errors. Alco, :E ,
f» g; residual fnstrumental errors (which are systematic in nature) can be included l% Jj
_ Z‘ in this group. The X, groap of parameters can be trested in the same way as , % B
- %; the X, parameters. % !
b Summary ]
L F In summary, the following tables present the ciassification of cbservations ‘%1
,, ,‘i in the general adfustment model. & 3
g ]
% Type (Symbol) - Description ., i
gi F Earth to Mocn laser observations " :
3 %" G Earth to Barth VLBI observations 3
l éf H Earthto Moon VLBI observations :

L J Moon to Moon VLBI observations,
Table 5.1
Types of Cbservations e
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Symbol Parameter Types Coinments i

§

Xy (i) Cartesian coordinates of

moon stations

(if) Orientation parameters of Desired parameters
the moon at initial epoch

(iii) Principal moments of

. inertia of the moon

¥ .

3 Xa () Cartesian coordinates of

: the earth station

1 (if) - Earth's orientation Desired parameters
g parameters at an initial .

4 epoch

e AT R e e b b i s Simias -‘
PNPTITRN TR SRSt P B DR S U R AR SR L bl ittt

(iti) Polar motion parameters

o Xa (i) Lunar ephemeris system-
: atic error model

(ii) Residual refraction errors Undesired parameters

4
L ) (iii) Residual earth-tidal errors ' g
X, (I) Radio scurce positions j |
P (i) Clock offset errors Undesired parameters , g '
‘ (iii) Residual instrumental error f}
¥ .:;1 .

Table 5.2

Types of Parameters (Pseudo Cbservations)

5.3 Generalized Adjustment Model.

Seam ey e e

5.31 Formation of Normal Equations.

The mathematical structure for the adjustment can be written, using
Uotila's notations [93} as:

B T o R S
e .

- R N . . .
‘ (0 : ' 178 o ' 4
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\ R o W@M{M&W@f‘?‘? ¢ 3
F(L§, L%, L, Lty = 0 5.1) j
i G(LS, Ly Ligs L3) = O (5.2) |
; H(I-:h all’ nxat :st 1‘) =0 (5' 3)
v a t1a ey - n
s J(Ly, Lgs Ly) 0 (5.4) i
. |
. where ;
; F,G,H, and J are mathematical functions of observations E
' ‘ L¢  i8 a set of laser observations A
z L, is a set of Earth-Earth VLBI cbservations Af;
L Lw is a set of Earth-Moon VLBI observations.
N i
T L, is a set of Moon-Moon VLBI observations 4
S ke
&:° <
C Lyys Lugy Lxg, Lz, are "observation" groups defined in Section 5.2. J
: ! ;%é The superscripts denote the following: ;
¥
P 1 . a = adjusted value A
"'_:“ b = observed value ,?g
e lé o = estimated value. %
& Lipearization of equations (5.1) to (5.4) through Taylor series ylelds the g
& A
tg’ following correspording equations: %
:13: BV + B xlvx‘ + By xavxg + Bvxavxa +Wr = 0 (5.5)
“ BY *BogVag* BxgVag * BVt W = 0 (5.6)
£ BV + BuxVay + BuaVag + BuaVag #+ BugVa +Wu = 0 (5.7)
E» -
%‘? BJVJ + BJ llvll + B, x°vl‘ +W, = 0 (5.8)
PR »
e where

i
e

Vs Vg Vg Vi are corrections to the estimated values of parameters

Vr. Vi, Vy and V, are observation residuals
Pe 179

i

‘:\3... wr - f A L A et Gaaavs S adce 0T Ll iswnesn.

LT SOt WPV ~SUrr A oY U DU S-S JL N S




S L.

friime ey s

o
(R

»

.
TR T ki e

ST ST AR T, Yy

P L Y
B e

-

()

?'7"'-":"’:".»"7 ARt ey, g
ARMET

_3F o _3F o _ Loy ro
B = 14" Bl‘l‘ _aL,‘ \Vr - F(LVQ Lx)

Qs

and similar expressions for B;, Bu, Bgx,s Buxs Wg and We. In addition, let P,

P,, Py, P,and P,,1 represent weight matrices correspondingto I, L, L, and L,l.
assuming that these groups of observations are not correlated to one another.
The determination of the corrections (V's) through least squares

require the minimization of the quadratic form vV'pv. Introducing a

function I" and Lagrange multipliers K¢, K; and K., it is desired to minimize:

4
T= WPV + VPV, + WPV, + z (V3 Py Vi)
£

-2Ké (BrVe + Bex Vi + BryViy* By Vo + W)
-2Ké(B$vG + &xavla+ B,;l:;vla + &;l4vlg + wc)

-ZKJ(B‘V.‘ + Bixlvil + B.%V,a + Buav'ga + B'l‘vl‘ + Wu)
-2KY(B,V, + B, o Vor, * By Vi) 5.9)

Differentiating equation (5.9) with respect to ¢, V;, Vi, V, and Vs setting
the result to zero and taking equations (5.5) to (5. 8) into account, the system

of equation (5.10) iscbtained in matrix form. This is a system of normal

equations of the form

NX + U =0

and the solution
X = -N‘y

usually requires the inversion of the N (normal) matri~
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[o o o P
&

2R

-pl‘

Bry,

Bﬂl
BJ‘l

B oo o offw] [of

o B 0 o]lv 0

0 0 B, 0]]|Vs 0

0 0 0 BV, 0

By -0 Bl Byl |Vy 0

-Pyy By Bl By, 0} |Vy 0

-Py, By B, By O |vy]| |0

=Py, 0 B, Buy Biy||Vy 0

Brx, Bey, 0 0 0 )] 0|k ~We
By, Bcl; By 0 o0 0 0K -We
Bug Bug Buag 0 0 0 0 ]lKi| |-W.
0 0 B, O 0 0 0K, |-W]

5.32 Solution of Normal Equations.

. . . _—
= P e AR NSNS M)

Vr. VG and Vu as:

The solutior of equation (5.10) using matrix algebra canbe cbtained;
however the dimensions of the normal matrix are large and it is desirable
to eliminnte some of the parameters from the system. From the first three
sets of equations, ekﬁressions can be obtainred for the observdt".on residuals

Vi = BBK

Vo = PIBIK, - 6.1
V. = PIBIK |
V, = P;BJK,.

By inserting the expressions for V's above into the last three sets of equations
of equation (5.10) and re~arranging, the system of equations reduces to: A
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m —~— -
SN, . - : : {
e et et St b P . L WS s
_ - _
6 M, 0 0 0 By, Byy Bigy || Ke -We
0 0 My Y Buxl Bkrg Bux:, Bug Ky -Wu
0 6 0 My By 0 0 B || K -W,
Bix, 0 Bl Bx -Py, 0 0 0 {|Vy}l =10 (5.12)
T T ' oxr
Bfry Biy By, 0 0 -pP, 0 0 Vi, 0
Bix, Bly Biy, 0 0 0 =-P, 0 ||Vy 0
_._0 By, B’T‘% Big, 0 0 0 =Py |_v"4u l_o -
where
My = B BYE/
M, = B,S B!
Mu = BuPiB
M, = B,T}B]. E
The equation set (5.12) can be re-written as: {«
M  B.|[K ~W
= » (5.13) :
B: -P,| |V, 0
where M
M ¢ 0 0 By, Bry, By O] E
o M 0 0 0 By, Boy By
hi = » B = . ;-.
0 0 M“ 0} g B“l anz Buxs B“h ;1
0 0 0 M, By, 0 0 By, 5
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From the first equation of (5. 13),

K = -MY{(B,V, + W)
and from the second equation,
Vy, = -(BiM'B, + P)*'BiM'W, (5.14)
Then,
Ly = L+ V,.

Equation (5. 14) above gives the combined solution for the residuals

of all parameters ("observations") using all the four types of observations.

The weight coefficient matrix of Li(adjusted values of parameters ("observa-

tions")) is given by:
Q.3 = (P, + BIM’B,]*. (5. 1B)

It was already noted above that there are two classes of parameters,
the first class containing parameters we wish to solve explicitly, while
the solution to the other class of parameters is not needed. Therefore

let the V, matrix be divided into two groups namely:
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Vi, - desired parameters

Vy, - undesired parameters

6]

where, according to the parameter classification of Section 5.2,

) v, ] * P, 01
Vip = .V‘a,; Py, = [0 Py
V., P, o

Vi, = Lv“_; p"u - L.O p" '

Furthermore, since laser observations will most probably be available
before the VLBI observations, the solution of V, ° using only F-type
(laser) observations can first be found followed by the sequential solution
of Vy, with the addition of the other observation types.

For the first case (using only F-type observations) the normal equations

can be written as

M B, B[k ] -Wy
B, -P, ¢ | Vio| = 0l. (5. 16)
By, 0 -PllVy, 0

Eliminating both K, and V,(u from the system, the expression for V,, i

Viy = <[Py, + Bix (Mr + Meg ) Br, 1 B (M + My )W (5.17)
where
Me, = (Bre,Pi Br: )
Also,

V., = PiB K 5. 18)
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and
Ke = =[My +M,, 1P TR,V + Wo ). (5.19)
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The weight coefficient matrix for the adjusted parameters ~ L‘:D is i
23

Q%= P:, -P?bB%,v(M, N Mno)"ﬂ.o P+ P};B:'.Q(M, # Moo ) Mo, (R ‘Rb-,)"Bn,P:, : B ”
(5. 20) :

where g
Mry, = Bry Py By, ; ]

The last part of the above cquation is the contribution to the weight coef-
ficient matrix, of the "folded-in" (unsoived) parameter set Ly, : i
Intreducing the G, H and J-types of observations (VLBI), the rormal "
cquations can be written as: i
3 :

4 4

0 M By ByliKe) . W (6.21) H 2

i 3

By Bo, -Py 0 |1V, 0

B, By, 0 -Byf|V, 0 §
M, 0 0 Bu, j ‘:
Mo = |0 M 0f; By = (Bl § .
0 0 M, By, -.2 i"j
5 .
5 g
W, K. % ¢
we = lwel, K ={K.l. 3 z
3 5
L0 N R . §
& 5
.é 3
2
i
3
“

The solution of V, from equatlon (5.21) is

Vi, = Py B (Mo Moy ) Bry, 1 TR (0 +Mey ) W+ (B (34 +By DS~ B 0.
(.22)
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where
St'.l = E" pi' &‘Mo

Comparison of equations (5.17) and (5.22) shows that the latter equation
cculd be written as

L ]
V;: = v$ + 6\,'b
where

L ]
V,, isgiven by cquation (5.17)

BV, = [Py T (3 Moy ) By T 1(BE - By (B + Moy )52 e V.

The term BV.) gives the contribution of the G-, H- and J-sets of observations
if these sets are sequettially used to find V, after an inftial adjustment with
the F-get of observations.

An alternative way of carrying out this s.quential adjustment is to use
the system of equatjons (5, 16) where thc F-set matrices are replaced by
the C-set, However, the "cbserved" L3 should in this case be the adjusted
L‘}a. chtained from the z2djustment of the F-set of cbservations, Algso, the
weight matrix P, should be changed accordingly to the inverse of the variance-

covariance matrix resulting from the adjustment of the F-set of observations.

5.4 Numerical Experimecnig.

In this study, a few numerical experiments were performed for the
purpose of investigating the expected accuracies of position determinations,
using lunar laser distances as observations. The adjustment system (s
based on the laser observation equations derived in Chapter 2, and the
adjustment cquations presented in the previous sections of this chapter,
Since. no real data were available, laser distances were simulated for

the purpose of these experiments. No strong conclusions can be drawn

186

P A N SN

N e = e

R R

o obi b e Ve AT

3 I PCRIEPRY GOy TR P

ey




i 2 SR B C e s

~e . * :

S T TR O NP TR N S WS BN TR O ST R AE

from the results of adjustments performed with simulated data ceacerning
the results one would obtain {xsmg real data. Nevertheless, in the absence
of real cbscrvations, simulated data are often used in evaluating a pro-
posed moricl, as wcll as investigating the relative accuracics of the
varicus parameiers in the model.

In an carlier report [25], cigit lupar control puims, arbitrarily, bw
wiformly located over the lumar near-side were used to repregent positicas
of lunar retroreflectors, to which cight laser stations, located on earth,
ohserve lunar ranges. The design of the numerical experiments to be
reported in this section reflects the existing configuration of lunar ranging
staticas and retroreflectors. The three retroreflectors deposited oa ths
moon by U. 8. astronauts scrve as the moon stations to distances which
are measured from laser stations on the carth. A set of cumerical
experiments were performed for the case when the oaly actively observing
laser statica - the McDomald Observatory at Rt. Davis, Tcxas - ranges
to the three himar reflectors. Similar experimens were also performed
for the case when three laser stations cbserve laser ranges to the lunar
reilectors in order to determine any improvement in expected nccuracies
of parameters in the adjustment medel as a result of obsémtiom from
inulliplc lager stations on carth. For this purpose, two laser staticas
were chosen, in addition to the Mcbonald Observatory, such that the
stations are located as distant as possible from the AcDonald Observatory.
The two stations arc located at the Crimean Observatory, USSR and the
M. Stromlo Observatory in Canberra, Australia. The cstablishkment of
permancnt lascr chserving station at these two observatories has also
boen proposed. Tables 5.3 and 5.4 presemt the coordinates of the three
laser stations and the three lunar retroreflectors. The location of the
Junar retroflectors is also shown in Figure 5.1.

For the limited objectives of the cxperiments performed, oaly the
following parameters were included in the adjust:ﬁeut model as urzkmwns
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Point No. Ukm) V(km) Wkm) Location
1 ~1330.81462 | -5328, 78935 3235.69752 | Ft. Davis, Tecxas
2 -4466. 54546 2683.24104 | -3667.44266 | Mt. Stromlo, Australia
3 3784.28692 2552.21344 4440.46175 | Crimean, USSR
Table 5.3

The Geocentric Cartesian Coordinates of 1hree lLaser Stations

Point No. x{km) y(km) z(kam) Remarks
1 1591.42945 691.97322 19.26380 | Apollo 11 Mission
2 1652. 86823 i-s_zo.usss -110.54128 | Apollo 14 Mission
3 1554.85951 | 99.26753 762.35841 | Apollo 15 Mission
i
Table 5.4

Retroreflectors

Seclenodetic_Cartesian _Coordimites of Three Lubpar

188

AL bl © S opb Y N e

Ve X b in avne s g e Sasest

[,

T a dvas o n vy i e e 4

- )




v

TP

4]

2

3

4

Figure 5.1

Location of the Three Lunar Retroreflectors

The geoteniric Cartesian (U, V, W) coordinates of the
laser stations on the earth.

The parameters of the orientation of the U, V, W coor-
dinate system with respect to the mean ecliptic coordinate
system of a standard epoch, which was chosen to be
1969.0 (2440222.5JD). These parameters are represented
by the three Eulerian asgles and their time rates for

the epoch of 1969.0, ‘

The sclenodetic Cartesian (x,y,z) coordinates of the

lunar retroreflectors, to which laser distances were
simulated.

The parameters of the oriemtation of the x,y,z coordinate
system with respact to the mean ecliptic system of 1969.0,
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represented by the physical libration parameters -7,0,0 -
and their time derivatives at the epoch of 1969.0,

) Three physical parameters of the moon, represented by
the gpherical harmodic coeflicients Cyp, Cx and the

C-A
momert of inertia ratio 8 = B

The simulated data were assumed to be completely free from systematic

errors, and the geocentric coordimates of the moon's center of mass were

assumed to be known.
The mathematical model used to simulate the lager distances was that

presented in Section 2.5, whereby the topocentric coordinates of the lunar

retroreflector is expressed as (seec equation 2.77):

"X.., A Xy . U |
L Yoo = Ye! + Puilya| - P {V], (5.23)

LZ! 1 Zc - Zn \V

where .
Xe, Yo, Ze are the geacentric coordinates of the center of mass of

) the moon in the 1969. 0 mean ecliptic coordinate system.
The orientation matrices P, P, are obtained from integrated Eulerian .ngles

of the earth and the moon respectively.
The two cases of experiments reported in this section are as follows:
(1) Obtaining the weight coefficient matrix of the adjusted values

of parameters, using simulated laser distances obtained from
the Simulated Earth-Moon Environment Data,

(2) Investigating how well the parameters in the adjustment model
can be recovered if their "true” values are altered. This
investigation was also performed with the simulated environ-~

ment data
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Simulation of laser distances.

The flow of computation for the simulation of laser distances are as follows:

@)

®)
(©)

@

The rotational equations of motiou of the earth are numerically
integrated so as to find the earth’s Eulerian angles and their

time rates at regular half day intervals, over a one-year period.
All the integrated quantities refer to the initial epoch of

1969.0. An additional output of this step is the 6 x 6 state
fransition matrix. The state transition matrix, the Eulerian
angles and their time rates, and the epoch of computation are -
then stored on a temporary 'storage device for later use.
Step (a) is repeated for the moon.
The U, V,W coordinates of the laser stations, and the x,y,2
coordinates of the moon points are read as input into a program
which generates laser distances.
At each half-day interval, all the "observable" laser distances
are computed, using information from steps (a), (b), (c) and
a lunar ephemeris. These distances are then punched out on
cards for later screening,
A laser distance is deemed "observable" if the observing
conditfong are such that
(i) The altitude of the moon point is between 30° and 70°
(i) The observed moon point is on the front side of the
moon's disc (with respect to the laser station) and is

at least 10° off the lunar limb,

Integration of the Eulerian angles.

The numerical integration of the earth's Eulerian angles follow the method

outlined in Chapter 4. The Encke-type integration was used, in which the

quantities integrated are given as
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54 6
5g ¥

Lda_ |_‘i’+'l’“K1

where 6, Yo, Ky and K, are constants. The expression for the state transi-

tion matrix U, which was obtained by numerical differentiation is given as
U = — (5. 25)

where
6 = rbl 62 53 64 65 65‘,“

and
Ao is the value of § at the initial epoch of 1969. 0.

For the moon's Eulerian angles, the eqdations developed by Papo 78 1, for
the integration of the physical libration quantities (1, 7, 9, T, & and 0) and the
state transition matrix (U*), were used. The Eulerianangles are then obtained
from the physical libration quantities and the expressions for the Cassini laws:

(o] (L + - 0] (7 -0]
h Q o

= + (5 . 26)

& L - & T-7
] Q a
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Apart from the physical libration quantities and the state transition matrix,
the integration program also computes tiie 3 x 6 parameter sensitivity
matrix, S, which is given by:

afroprap)
37 C228C20Y

S =

A similar expression for the U* matrix is

3lrepropl

U+ . ey I
5<T¢%p073%po]

Weighting,

The adjustment method used regards all the parameters, in addition to the
simulated distances, as observations with associated weights. The relative
weight of each of the parameters was computed as the inverse of its estimated
variance, thereby éhoosing the variance of unit weight to be 1.

The values of the variances of parameters were selected to conform with
the level of uncertainties in the present knowledge of these quantities. The
standard deviation of the parameters are as follows:

U,V,W coordinates, m = 25 meters

X,Y.z coordinates, m 1 kilometer

6,, 02 5, m = 1.0sec
6, 84, 5s m = 0.5 sec /day
T,0.C _ m = 20.0 sec
1, 0,0 m = 10.0 sec/day
Caz m = 0.5 sec
3 | m = 2.0 sec
Czs m = 0.01 sec.

The standard deviation of each "observed" distance was assumed’
to be 15 cm,which is the precision currently expected fromn lunar

laser .
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Experiment (1).

The purpose of this experiment is to investigate the internal precisicn
of the adjustment system. An idea about the internal precision of the
adjustment system can be obtained through the inspection of the variance-
covariance matrix, particularly the diagonal clements (variance.;, and
the associated matrix of correlation coefficients.

The simulated distances used in this experiment were computed using
the Simulated Environment Data [78}. From laser distances simulated
according to the procedure already outlined above, a number of them are
chosen over a certain period of time, for adjustment. There were three
cases of experimental computer runs:

(1) In the first case, laser distances were simulated between

one laser statioa (at the McDonald Observatory), and the
three lunar retroreflectors. Different numbers of obscr-
vations over differing periods of time were chosen for
the formation of the normal matrix. These were as
follows: 50 observations over a three-month period,
100 obsecrvations over a six-month period, 150 obser-
vations over a nine-month period, and 200 observations
over one year,

2) In order to have an idea about how the parameter vari-
ances improve with increase in the period of time over
which observations are made, the second case consists
of computer runs where the number of observations was
held fixed, while the period of observations was varied.

(3} . In the third case, the simulated distances used, com-
prised of distances between all the three laser stations
alreadv mentioned above and the three lunar retro-
reflectors. The total numbers of observations and the

. observation periods chosen were the same as in case (1).
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The partials of distances with respect to the parameters were evaluated

using the cquations devcloped in Section 2.5. Since the orientation param-

eters (of both the earth and the moon) defined in Section 2.5 are slightly

different for those in this adjustment model, a simple transformation

‘had to be made as follows:

%7;; : g’%ﬁ ) 2—? - % for the earth's orientation angles
and
:—?; = ':_g"’ :;“ Z—E; for the moon's orientation angles
where |
§ = Ay 6285 55 55 5V
Ef = T8¢ ¢ % "Sc b &1’
E=Trco+d o7
EY = "6 Do de G dn G’
and

D is the distance.

It follows form equations (3.24) and (5.26) that

1 0o 0'0 0 O
]
0 1 0 : o 0 O
1
iﬁ ) 0o -1 1 -.-0--0.-?'
3% 0o o0 0 : 1 0 O
'
o0 0 0,0 1 0
]
0 0 0.0 -1 1 |
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and

[0 o 1'0 o0 0
0 1 o%o o o
sgr (1 1 00 0 0
3t 1o o o0'o o0 1]
6 0 ¢.,0 1 0
0 0 0.1 -1 o]

The expressions for the partials of distances with respect to the orientation

parameters can thus be evaluated.

Table 5.5 gives the diagonal elements of the variance-covariance matrix
of case (1), where the only laser station observing is located at the McDonald
Observatory., The general pattern shows, as can be expected, that the param-
cter variances decrease as more observations are made over longer periods
of time. It can also be seen from the table that, in addition to a general
improvement in lunar position determination through the use of laser raunges,
we can also expect an improvement in the determination of geocentric
positions of stations on the earth's surface. A general improvement in
the accuracy of determining the orientation parameters of both the earth
and the moon, angd: the moon's lower order spherical harmonic coefficients
can also be expected by using lunar laser ranges. The exception to this is
the variances obtained for the moon's physical libration in the node and its
time derivative (g and &). Even with 200 observations over a one year
period, the variance obtained for ¢ and G ace 2507 and 29.5 sec?/day®
respectively, compared to the a priori values of 400" and 100 sec®/day®.

A good explanation for this poor determination of ¢ and G cannot be found,
especially since the dominant term of libration in node has a period of
about one month. On the other hand, it should be realized that the node
itself is defined by the intersection of two planes at an angle of only 125.
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Variances of Parameters for Case (1),

50 Observations | 100 Observations | 150 Observations | 200 Observations | A Priori
Parameters{ 3 Months 6 Months 9 Months 12 Months Variance
meter? meter® meter? meter® meter?
U 312.7 1.0 0.3 . 0.08 625
A 19.6 0.07 0.02 0.01 625
w 36.0 8.9 1.8 1.4 625
X 16.3 2.9 1.2 0.5 1 x 10°
¥a 57.1 10.1 4.2 1.9 1 x 10°
z, 646.3 220.9 85.8 57.7 1x 10°
X, 10.5 2.3 1.1 0.4 1 x 10°
¥a 138.7 27.6 10.6 4.4 1 x 10°
2, 627.4 191.9 66.6 50.1 1x 10°
Xy 17.5 4.4 10.1 6.0 1x 10°
¥ 113.2 26.7 9.8 6.3 1 x 10°
zy 539.6 171.5 63.2 44.6 1 x 10°
second? second” second® second” second”
5y 0.6 x 107° 0.1x107° 0.2 x 107¢ 0.1x107% | 1.0
&y 0.3 x 1072 0.2 x 1072 0.8 x10™ 0.6x107™* | 1.0
8s 0.5 0.1 x 1672 0.3 x 107 0.1x 107 1.0
T 1.5 0.3 0.1 0.04 400
o 397.8 382.0 318.7 250.7 400
I 1.4 1.2 0.8 0.4 400
Caa 0.3 x107° 0.2 x107° 0.5 x10™ 0.2 x10™* | 0.25
8 0.4x 107 0.3 x 107™* 0.8 x10"" 0.3 x10°% | 4.0
Co 0.1x 107 0.1x10"° 0.1x1073 0.1 x1v * | 0,1x1679
sec®/day? sec?/day” sec’/day? sec® /day? sec?/day®
5 0.2x 1072 0.2x 10=° 0.1 x 107 0.8 x107* | 0.25
6., 0.6 x107! 0.7x 1072 0.6 x 107 0.3 %107 | o.25
bg 0.4x107° 0.5 x107* 0.4 x 1078 0.2x10°% | 0,25
T 0.8 x 1073 0.6 x10™* 0.1x 10™* 0.6 x107% | 100
c 98.2 81.3 55.1 29.5 100
] 0.02 0.015 0.011 0. 009 100
Table 5.5

With One Lase: Station Cbserving
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Another trend that could be noticed in Table 5.5 is that, in general,
the x coordinates of the lunar reflectors are better determined than the
y and z coordinates. The z-coordinates are the ones with the poorest
determination. This phenomena can be explained through the fact that the
fanges are likely to be more sensitive to changes in the X coordinates
of lunar stations since the X-axis is always oriented approximately toward
the earth. This same conclusion cannot be made for the geocentric
coordinates of points on the earth which are likely to depend more on the
geometry of the simulated distances chosen for adjustment.

Table 5.6 displays the variances of parameters for case (2), where
the number of observations are held fixed and the periods of observation
are varied. All the parameters show sensitivity to the length of the
period of observations as can be seen from decreases in the variances
of parameters when the period of observation is increased. The sharpest
change in the variances occurs when the period of observation is increased
from three months to six months. A further increase in the period to
nine months shows further decrease in the variances, but to a lesser
degree.

In Table 5.7, the diagonal elements of the variance-covariance matrix
(variances of parameters) for case (3) are tabulated. In this case, there
are three observing laser stations on the earth. The characteristics of
this table are similar to those of Table 5.5 for case (1), where only .one
laser station is ranging to the lunar retroreflectors. From both tables,
i: can be seen that the accuracy of determining the pa‘ra.meters increase
with increase in the number of observations and the period of observations.
The largest degree of improvement is obtained when the number and
period of observations are increased from 50 and three months to 100
and six months respectively. Also, the least sensitive parameter in the
adjustment model remains the moon's physical libration in node and its

time derivative (g and &).
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Variances of Parameters tor Case (2),

Period of Observation Varied

199

50 Observations| 50 Observations| 50 Observations | 100 Observations |} 100 Observations
Parameters 3 Morths 6 Months 9 Months 6 Months 9 Months
meter” meter- meters meters meter”
U 312 3.03 1.2 1.0 0.43
v 18.6 0.2 0.1 0.07 0,03
w 36.0 30.0 10.7 8.9 2,88
x 16.3 5.4 4.9 2.9 2.0
v 57.1 16.9 13.4 10.1 7.1
2z 615.3 563.1 241.7 220.9 117.4
. % 10.5 3.7 3.1 2.3 1.6
¥a 138.7 48.0 35.4 27.6 16.8
Za 627.4 531.2 211.5 191.9 92.2
X3 17.5 16.3 4.4 14.4 12.3
Ya 113.2 45.1 28,0 26.7 19.8
Za 539.6 437.2 168.0 171.5 85.5
second’ secm_}_d2 second second® second”
5, 0.6 x 107 0.3 x 107 0.7 x 10~% 0.1x107° 0.2 x107
8a 6.3 x 1072 0.5 x107° 0.7 x107° 0.2 x 1072 0.1 x107
8s 0.5 0.4 X1072 0.2 x107? 0.1 x 1072 0.6 x 107
T 1.5 0.48 0.4 0.3 0.2
e 397.8 392.4 372.2 382, 0 348.5
p 1.4 1.38 1.2 1.2 1.0
Ca 0.3 x1072 0.4 x107° 0.2 x107° 0.2 x 1073 0.9 x 107
8 0.4 x107°3 0.4 Xx10°% 0.3 x10™* 0.3 x 107* 0.2 x 10°*
Cx 0.1 x10° 0.1 x107° 0.1 x107° 0.1 x107° 0.1 x 1072
sec®/day® i_sec®/day® sec’/day? sec®/day® sec” /day”
& 0.2 %1072 0.5 x107° 0.1 x1072 0.2 x 107 0.2 x10™°
&s 0.6 x107! 0.2 x107* 0.6 x1072 0.7 X 107° 0.8 x107°
& 0.4 X107 0.1 x107° 0.4 x107* 0.5 X107 0.6 x10™°
T 0.8 x10°3 0.1 x10° 0.5 x107* 0.6 x10™* 0.2 x107*
0 98,2 94,5 80.9 81.3 68.9
o 0,02 0.015 0.014 0.015 0.013
Table 5.6
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50 Observations | 100 Observations {150 Observations |200 Observations | A Priori
Parameters 3 Months 6 Months 9 Months 12 Months Variances
meter” mder’ meter: mcter” meter”
Uy 169,43 1.17 0.1 0,04 625
Vi 10.61 0.08 0.02 0.01 625
W, 9.69 2.49 1.26 0.75 625
Uy 43.04 0.34 0.04 0,02 625
Va 119,04 0.81 0.08 0.03 625
Wa 8.08 2.14 1.05 0.62 625
U, 38,88 0.25 0.03 0.01 625
Vs 85.47 0.59 0.06 0.03 625
W, 9.83 2.51 1.26 0,76 625
X 10.50 2.51 0.97 0.47 1% 10°
N 43.26 6.92 3.09 . 1.61 1x10°
z 243.70 131.25 82.21 49.60 1x10°
X5 6.71 2.08 0.87 0.46 1x10°
Y2 81,66 22.11 8.23 3.96 1x 10°
Za 207.30 96.73 62.80 42,57 1 x 10°
Xs 17.05 13.90 9,62 6.25 1 x 10°
¥a 67.06 17.71 8.21 3.83 1x10°
zy 197.62 98.69 64.18 40,77 Lx x 10°
second” gsecond” second” ; second” ‘second®
SR ST
8, 0.14 X107 0.38 x107¢ 0.21 x 107" 0,35 x30°° 1.0
62 0,11x 1072 0.39 x10™* 0.23 x 107 0,14 x107* 1.0
by b0.25 0.17 x1072 0.15x107 | 0.63x107" 1.0
T 0.94 0.23 0.83 x10°' | 0,39 x107} 400
o 397.58 378.84 335.64 i 247,27 400
p i 144 1.14 0.76 0.4¢ 400
Cx ' 0.17x 1072 0.20 x 107 0.38 x 107* 0.14 x 307* 0.25
8 L 0.48x 107 0.25 x10™* 0.80 x 10°% 0.33 x 107° 4.0
Co | 0.1 x107 6.1 x10° ;0.1 x20° 1 o1 x107 | 01,10
!sec? /day” sec”/day® sec’/day? g’ cc’/day’ igne /day?
ML
ba { 0.50 x10™° 0.18 x10™ 0.12 x 1072 0.63 x10°* | 0.25
bs | 0.99 x107° 0.18 x107 ' 0.8 x10™ |  0.23 r107 0.25
ts 0.67 x 107 0.12 x107* { 0.46 x10" ¢ 0,16 x107° | 0.25
; :
T L 0.55 x107 0.55 x10™* | 0.13x207 | 0.53 x16°° | 100
o ' 97,37 78.40 ‘ 51.74 30.10 ' 100
p | 0.16 x 107 0.15 x10™¢ | 0.13x 107! 0.93 x1072 { 100
Table 5.7

Variances of Paramcters for Case (3),

With Three Laser Statfons Observing
200
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The correlation coefficient matrix preserted in Table §.& is that of
Case (3) with 200 observations over a one year period. Tke correlation
matrix obtained for the other cases are similir to the one presented
here, but, in general, correlation between parammeters are higher for
cages involving less observations performed cver less periods of time.

The first striking feature of the correlition matrix (Té.ble 5.8) is the
high correlation that exists betwecen the U and V coordinates of the same
lzser station on the one hand, as well as the h:gh correlation between the
x and ¥ coordinates of the retroreflectcrs co the other. ‘Also. the U
crordinates are correlated among one ancther, and the same applies to
P the U, W, X, ¥y, 2 coordinates. These phenomena may be due to the fact
i that the orientation of both the earth and the wroon, as well as the geo-

' cemer are part of the parameters in the soluticn, R can also be noticed - o

in Tabie 5.8 that thcre is a'high correlation tedween s and b3, as well

Y g a

as between &3 and & . Tuis was also the care in Chapter 4 (see Tables

e,

4.4 ard 4.6). For the moon's orientation parameters, high correlation:

;:‘ exists between @ and b, and o and G. The coordinates of laser stations
- were peither correlated with the selenodetic coordinates of the reflectors,
por with ihe oriemtaticn parameters of the moon.

T
A

PR

Ao

’;'¢ Experiment ]2[. %

E This experiment was performed in order to investigate how well the f;

t ‘parameters in the adjustmer model can be recovered, if known shifts are :

, . imtroduced into the starting paraineters (as approximate values of the %

parameters). The computational methods in this experiment are similar “j

~ to that of Experiment (1), except that arbitrary shifts were introduced ,%

5 : into the "known” values of parameters. The experiment was performed ;E— '
for the case when three stations are observing to the three retroreflectors, %

:
i

€
3%

with only 50 cbaervaticne over a three momh psriod.
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Correlation Matrix for Case (3),
200 Observations Over A One Year Period
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Table 5.9 presents the shifts introduced into the various parameters,
and the corrections obtained from the solution. The coordinates of the
laser stations were recovered to within 10 meters in almost all the cases
while the coordinates of retroreficctors were recovered to within 70 meters
for most of them. The earth's Eulerian angles are well recovered
although their time rates (except 6z) are not. Except for T and b, the
physical libration parameters are poorly recovered, especially O and c.
The moon's physical parametérs Cz=, B and Cx were all well recovered.

The degree of recovery of parameters for this experiment, especiall){
for the coordinates of the laser stations and retroreflectors are some-
what lower than mightlbe expected. Neverthelesgs, it is not utterly sur-
prising because of the high correlation that exists between some of the
parameters. Moreover, only one adjustment cycle was performed for the
case presented here, and two or more iterations on this solution might

have brought the magnitudes of the corrections closer to the respective
shifts introduced.
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6. SUMMARY AND CONCLUSIONS,

The main purpose of this study has been that of deriving the observation
equations necessary to utilize the lunar laser ranging and the VLBI measure-
ments for the establishment of a primary control network on the moon. The
control network consists of coordinates of moon points in the selenodetic

Cartesian coordinate system, which is fixed to the’lunar body, centered at
the moon's center of mass and has its axes coincident with the three principal
axes of the moon. The control points are those moon points to which range
measurements have been made from terrestrial stations, or those points
which have been used in conjunction with terrestrial or other lunar stations
for VLBI observations of natural radio sources.

The problem of determining coordinates of points on the moon in the above-
defined selenodetic Cartesian coordinate system using earth-based observa-
tions is rigorously tied to the knowledge of the following dynamic behavior
of the earth and the moon: the orbital motion of the moon about the bary-

‘center, the rotational motion of the moon on its axis and the motion of the

earth about its center of mass. In addition, the knowledge of the geocentric

positions of the terrestrial stations is essential. Therefore, it can be expected

that our knowledge of the parameters related to the above phenomena of the.
earth-moon dynahic system as well as the geocentric positions of earth
stations can be imprbved simultaneously with the determination of coordinates
of lunar poihts. For this reason, the derived observation equétions for the
laser ranges and the VLBI time delays were based on a general model, in

which the following groups of unknown parameters were included:

1. The selenodetic Cartesian coordinates of lunar points.
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2. The geocentric Cartesian coordinates of earth stations.

3. The parameters of the orientation of the selenodetic coordinate
system with respect to a celestial coordinate system fixed in
space. These may be given by three Eulerian angles, obtainable
either through the nuiaerical integration of the moon's equations
of motion, or through the Cassini laws and the physical libration

angles determined through the classical methed.

4. The parameters of the orientation of the average terrestrial coor-
dinate system (U, V,W) with respect to a fixed celestial coordinate
system. Traditionally, these have usually been given in terms
of the precessional elements, the nutations in obliquity and in longi-
tude, the Greenwich Apparent Sidereal Time and the motion of the

true pole with respect to the CIO pole. It has been shown in this

' study that the orientation of an earth-fixed coordinate system with

respect to a fixed celestial system can be represented by three

Eulerian angles, which can be obtained through numerical integration

of three second-order differential equations.

e Rt

5. The geocentric coordinates of the center of mass of the moon as

given by a lunar ephemeris.

The laser and the VLBI equations were developed in Chapters 2 and 3. In
Chapter 4, some effort was devoted to the derivation of the carth's ¢5:ziions
of motion (rotational) and an outline of how these differential equa:ions can be
numerically integrated was presented. The justification for the extensive |
treatment of this subject in this study lies in the fact that the knowledge of the
i earth's orientation in space is an important factor for accurate determination
of selenodetic coordinates of points on the moon. Moreover, the number of
parameters defining the earth's orientation is greatly reduced when the angles

are obtained through numerical integration process. This eases up the impor-~

tant practical problem of computer storage in handling the solution of a huge
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system of normal equations, which would have resulted from the inclusion
of precessional and nutational parameters in the adjustment model. A
general adjustment model, based on the theory of adjustment computations

using matrix algebra, was developed for the analysis of laser and VLBI

- observations in Chapter 5.

A few numerical experiments were performed in this study, basically for
the purpose of checking the models and equations developed in parts of this
work. The first group of experiments are limited to the numerical verifi-
cation of the equations and methods developed for the numerical integration
of the earth's orientation angles, and the computef programs based on these
eguations. From the results obtained, it was demonstrated that, over a
period of one year, the numerically integrated angles compare very well to
the classically computed ones, to within 022 in the worst case. It was also
shown that the solutions for the initial conditions of the integration do con-
verge inspite of high correlations between some of the parameters.

Another group of experiments was performed for the purpose of
investigating the accuracics of determining geodetic and selenodetic
coordinates as well as the orientation parameters of the earth and the
moon, when laser ranges are used. For this purpose, the three retro-
reflectors on the moon deposited by U. S. astronauts served as the
lunar bench marks and simulated ranges were obtained to their reflec...s
from three laser stations located on the earth's surface. Results of the
experiments indicate significant improvement in the accuracy of deter-
mining station positions (both on the earth and on the moon). Also, the
results indicate that the orientation of the earth and the moon, represented
by 6 parameters each, can be more accurately solved for with the use
of lasér ranges, However, it was clear from the results that a good
number of the parameters in the solution were highly correlated. This
fact seems to have affected the degree to which parameters could be

recovered, if their known values are arbitrarily altered.
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One logical cxtension of the study performed here is the numerical verifica-
tion of the observation equations for the VLBI, and the improvement that might
be expected in the adjustment system if VLBI observations are combined with

laser ranges. Another problem area is the investigation of the possibility of
conbirning the types of observations treated in this work with other types such
as earth-based optical observations, satellite-borne photography, lunar
laser altimetry and range/range-rate observations to lunar satellites,

In deriving the observation equations for the laser and the VLBI, as weli

as the equations of motion of the earth, both the earth and the moon were
assumed to be rigid bodies. The effects of non-rigidity of the earth and

the moon on these equations still remain to be investigated.

Finally, the ultimate goal in the application of the findings contained in
this study to Geodetic Science and other related academic disciplines would
be reached when the equations presented here are successfully applied to

actual laser and/or VLBI observations.

210

RIS A

b

s

ety

s e A I o AN s v A AT 1 R b il

F’.‘. . “‘“z

| NP

[



. ; . \
L e e o e e e S
.
=
A
.
i
APPENDIX A

Equations for Earth-Based VLBI Observations of an Artificial Source

The use of a radio beacon, deposited on the moon, as an artificial
source for an independent clock interferometric system was one of the . i
recommendations of the Lunar Science and Exploration Cohference of }
1967 751, The radio source could be a transponder, whose transmitted

signals are observed by two or more radio telescopes widely separated on

b AL g e By e

the earth. The main advantage of using an artificial radio source is the
stronger signal recéption expected because of the proximity of the artificial
source. The differences tn the arrival times of the radio signal at the two ‘
interferometer stations (time delay) are obtained through the usual VLBI j:
technique of delay mapping (described in Section 3.2). The difference between :
the observed and the predicted‘time delays can be used to obtain corrections ;
to approximate or assumed values of parameters used in the prediction ;
equation, %
Since the source is at a finite distance from the earth, the equations ?‘;
for the earth-based VLBI observations of natural sources derived in 3

DGR

Section 3. 31 is no longer valid, and a corrected equation will be derived
in this appendix.

.

= “.;'.,_.

In Figure A.1,

AT ek s
R T PN

x

O is the geocenter

s

4

C is the selenocenter

A, B are the VLBI stations on earth
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M is the position of the radio source on the moon

8 is the vector from geocenter to selenocenter

h_#’l is the vector from geocenter to the radio source
x—{.. I-{a are vectors from geocenter to A and B respectively
é‘.. §; are vectors from A, B to the radio source

—’
D is the vector from Ato B,

Figure A.1 Earth-Based VLBI with Artificial Source.

From the figure,
S
MF = MB = |S].

Hence, the delay distance (d) is given by AF, If c is the velocity of light,

the time delay T, is given by
: d
T = P (A. 1)
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Howevér,
d = AG+GM - MB
or
- - -
d = ID[cosG+ |Sa|cos'y- ‘Sal (A.2)
and since

IS, | siny = |D| sin®,

it follows that

d = |3| cos f - ‘6| sinf (1;5-(;2-?, . (A. 3)
Therefore,
- B [cosd - sin® (_1;@5_«_/)1 (A.4)
c b sinvy /.J ‘

represents the corrected equation for the time delay, which is the dif-
ference in the arrival times (t,, t,) of the radio signal at stations B and
A respeciively.

If the various vectors in Figure A.1 are expressed in the same coor-
dinatg system (for example, the mean ecliptic system of a standard epoch),
then the following vector relationships hold:

Ny 0y O
)

Also,

cosf = 2—— ' (A.5)
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and
-

= %——f‘- . (A.6)
s, s

In matrix form equatfons (A.5) and (A.6) can be written as

cosy

D'Ss,
(0'DSIS)2

cos 8

S Sa
S s stsat

cos Yy

where D, S,, S; are column matrices of vectors 6, é: and é; respectively,

The equation for the time delay (equation (A. 4)) can be evaluated for
any epoch through vectors 6, ST. and §: As noted earlier, the components
of these vectors must be expressed in the same coordinate system, gsuch as
the mean ecliptic system of any standard epoch,

The vector 3 which is the inter-site vector, is a function of the geo-
centric position vectors of the two chserving stations and a transformation
matrix which varies with time, Both S, and § depend on the geocentric
position of the lunar center of mass, the selenocentric position of the radio

source and transformation matrices that vary with time.
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APPENDIX B

Systematic Errors Affecting Farth-Based Lunar Observations

Most of the systematic errors which have effects upon all observations
made to points or objccts on or near the moon can be classified under the
following two main groups:

A. Instrumental errors
B, Errors due to physical effects,
In the development of nbservation equations for the two types of observations

considered i{n the main chapters of this work (i. e. the laser and the VLBD,

it was assumed that these observations have been corrected for all systematic

errors. This assumption is a reasonable one, in view of the fact that most
observers go to a great deal of effort to correct their observations for known
instrumental and other systematic errors. Nevertheless, it often happens

that inadequacy in the theoretical knowledge of the physical phenomena

" tavolved and incomplete tdentification of all sources of instrumental errors

may result in incomplete systematic error modelling and the treatment of
observations, thereby leaving residual errors in the corrected observations
presumed to be frce from all systematic errors. Consequently, the correct
procedure in adjusting auy' gset of observations should include provisions for
the inclusion of mathematical models capable of absorbing all or most of
the residual systematic errors. While the development of such models for
laser and VLBI observations is beyond the scope of this precent study,
the purpose of this appendix i3 to identify and discuss possible sources of
systematic errors {n the types of cbservations already mentioned above.
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A. Instrumental Errcrs,

Instrumental errors are those errors which are inherent in the
measuring systems. Their sources are not easily identifiable in new and
complex observational systems. Full identification of all the sources of
errors comes with experience in the usage of such new measuring sy stems,
and through the analyses of measured quantities, However, once the scurces
have been identified, instrumental errors can be controlled or corrected very
accurately.

Since both the lagser and the VLBl are new observational systema, all their
sources of errors have not yet been identified. Nevertheless, a few gources
of errors can be mentioned for each system.

For the laser, these sources include errors in the time interval measur-
ing circuitry, and in the determination of the physical point in the transmitting/
receiving telescope, to which the measured distances are referred. Anotiher
gource of instrumental error in the laser is in the determination of total
instrumental delay of the signal, due to the optical path length of the telescope
and the delay through the photomultiplier.

The main source of instrumental error for the VLBI is in the possible
arift of the generated local frequency standard, and the limited phase stability
of the locally generated signal. This results in a clock offset error which
can be easily incorporated into the mathematical adjustment model as one of
the parameters to be solved. Also, inaccurate determination of the "system
zero bias" is one of the sources of VLBI instrumental errors. The "system
zero bias" is dependent on the determination of the focal point of the telescope,
and on the instrumental delays of the observed radio signal.

Most of the instrumental errors are expected to be eliminated (rom the
observations, leaving only residual errors whic;h. if l1arge encugh, can be
determined by the incorporation of suitable mnthematica} models into the
adjustment model.
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B. Errors Due to Physical Effects.
Systematic errors in this group are caused by the fact that earth-bound

observations to moon points are made through the earth's atmosphere, and

that certain geophysical phenomena (such as earth-tides) do change the

positions of earth stations relative to the geocenter. Therefore, errors

in this group can be treated under the following headings:
(1) Atmospheric refraction errors ,
(2) Earth tidal effects
(3) Continental drift

1, Atmospheric refraction errors.

Atmospheric effects on radio or optical signals can be classified under

[

the two following headings:

I L L I
-

(8} Tropospheric effects

{b) Ionospheric effects.
The lower part of the atmosphere ( the tropospheret contains both dry air and
water vapor, while the ionosphere (the upper part of the atmosphere) is made

e

up of layers of free, electrically charged particles (iong). The electron
densities of the ionospheric layers vary considerably with solar activity, geo-

B

graphy and the time of the day.
The refractive index in both the troposphere and the fonosphere departs

s
e i Loob TN SRS s TSI 0 et £ il T 0 £ A

from unity, thereby causing both a deviation of the ray from the straight line

path, and a change in the phase velocity of the signal {rom its velocity in ‘
vacuum. Thus:

g v == (B.1)

i: where 4.
J v, {5 the phase velocity in the atmogphere 3: _
g ¢ 18 the velocity of electromagnetic radiation in vacuum ,z i
and | 4
% n is the refractive index of the medium, 3

roy
an

e
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The departure of the ray path from a straight line is usually very small for
normal observing conditions, and it is non-existent in the zenith direction.
Neglecting this deviation, the difference between the path in free space and

the actual path is given by:

.
5a = [an- " adh.

or
5d = [(1-mdh (B.2)

where the integration is to be performed over the entire path.

The above equation (B. 2) is exact for &.n electromagnetic signal observa-
tion in the direction of the zenith, and corrections for observations made at
other elevations are functions of the correction in the zenith direction, pro-
vided no horizontal gradient is present at the time of observation.

Tropospheric effects.

In the troposphere, the refractive index (n) is greater than unity. The
correct evaluation of equation (B. 2) requires the knowledge of the refractive
indices along the entire ray path at the time of observation. Since this is
practically impossible, numerous methods have been proposed for the
prediction of the value of the integral equation. These methods include radio-
optical dispersion techniques, range measurements at two optical wavelengths,

and prediction from surface weather data. Hopfield in{357] shows how, with

the use of surface weather data, the dry air component of the range correction

for laser and radio observations, in the zenith direction can be predicted with
a root mean square error of few millimeters (out of a total correction of
about 2. 3 meters). However, the range error prediction for the more vari-
able Sut smaller wet part of the troposphere is not as accurate as that for the
dry part. The residual tropospheric refraction error is larger for the VLBI

observations, than for laser ranges because of the increased influence of

water vapor in the radio spectral region. At optical frequencies, the effect of .
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water vapor is <o much decreased as to be almost negligible.

lonospheric effects.

Unlike the troposphere, the ionospheric medium is such that its refractive
index is less than unity. Consequently, the two effects (tropospheric and
fonospheric) tend to cancel eachother. For a microwave radio path which
traverses both the troposphere and the ionosphere, the overall effect is a
negative differential phase path length,

The calculation of the ionospheric refraction error, which depends on
the frequency of the wave, the clectron density, the carth's magnetic field
and the collision frequency can be done using ionospheric models and the
ray-tracing technique f61]. In gencral, the ionospheric correction is
inversely proportional to the square of the <ignal. From [45], an approxi-

mate equation for the average day-time ionospheric correction for the

observed range is given by:

164 ~ 32—},1—‘-’?-1 cm (B.3) |
where

5d is range error
and

f is propagation frequency.

The observations made at radio frequencies are much more affected by
the ionosphere than those at optical frequency. Consequently, it is desirable
that VLBI observations be made at high frequencics, subject to other limiting
conditions.

" From the above discussion, it is evident that corrections due to atmo-
spheric effects are usually calculated from theoretical models. Residual
refraction errors are almost certainly bound to remain in the corrected
observations, the magnitudes of which depend on the departure of the actual

atmospheric conditions from the model used in calculating the corrections.
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VLBI observations involve two stations, and the residual refraction error in
the corrected time delay depends on the residual refraction errors at both
stations. The determination of the residual errors, if large enough can be
done by introducing suitable mathematical models into the adjustment
model, and regarding these residual errors as unknowns in the adjustment.

2. Farth tidal effects,

The tidal phenomenon, which is a result of the varying attractive forces
of the moon and the sun, produces periodic deformations of the geoid known
as carth tides. These deformations cause small variations in the intensity
of gravity, in the direction of the vertical, and in geoidal heights, On an
absolutely rigid crust, the periodic vaciations in the magnitude and direction
of the gravity vector can be calculated from the potential of the bodies which
causes these variations. Theorectically, the magnitudes of the variations
are 0,04 and 0.2 milligals for the deflection of the vertical and the intensity
of gravity respectively. However, the globe as a whole cannot be truly regarded
as rigid, since the earth is somewhat elastic and viscous. Conscquently, the
theoretical deformations of the carth due to luni-solar attractions and their
phases are altered by the earth's elasticity and viscosity. Furthermore, the
non-rigidity of the carth gives rise to tensions and cubic expansions which
would not be present with a rigid globe.

In lunar laser ranging and earth-based VLBI, the observations are made

with instruments rigidly attached to the earth's crust. The periodic variations

of the radial d_istanceé of ubserving stations introduce systematic errors into
both the laser and the VLBI observations, which should be eiliminated hefore

adjusting the observations,

From the static theory of tides. the theorctical height of the observed

tide (£) at a point is given by " 63™:

£ = — (B.4)
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where

W, is the potential (to the second degree) of the force-producing bodies
(sun and moon) at the point

g is the value of gravity.

For the moon, if z is the geocentric altitude, the height of the theoretical
tide is
£, = 26,7 (cos 2z + 1/3) em. ©(B.5)

The geoidal height therefore increases by a maximum of 35. 6 ¢m and decreases

by a maximum of 17, 8cm, giving a total range of 53, 4cm. For the sun,

£a= 12.3(cos 2z ¢ 1/2) em (B. 6)

which is equivalent to an oscillation from 16.4¢m to -8, 2cin or a total range
of 24.6 cm. Thus the combined luni-solar effect would give an oscillation of
of 78 ¢m for the geoid, if the earth were a perfect liquid.

From observations of tides, the actual responsec of the earth to the tidal
generating forces results in a rise and fall of the clevation of the earth's
surface oh the order of 25 to 30 cm in the midlatitudes and of 50 cm near the
cquator. The projected precision of both the laser and the VLBI measurements
shows that for both instruments, the svstematic errors due to carth tides can-
not be ignored, and observations made by both instruments must be corrected
for tidal cffects. '

In the classical method of determining tides, earth tides are broadly ;

classified under three types namely: - ' 3
(i) long periodic é’

S

(ii) diurnal 4

(iii) semi-diurnal, ;

Within cach type, there are several tidal waves of differing amplitudes and
frequencies. The instruments used in earth tide observations include hori-

zontal pendulums, tidal gravimeters and extensometers. From a continuous

-~
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record of ohscrvations made with these instruments, the amplituc: and
phase of ciach wave is determined, using methods of harmonic analysis
which are based on the theory of the combiation of ordinates 7631, The
laser and the VLBI can play important roles in the determination of earth~
tides in future provided measurements made by them are of a continuous
nature. '

It is relevant to mention here that solid tides on the surface of the moon
do exist, and that tidal cffects on the moon are relatively targer, at least
theoretically 7637, Sofar, very [ittle is known about the moon's internal
constitution, and no obscrvations have been made on the surface of the moon
for the purpose of determining lunar tides. Consequently, lunar tides for
the present, can only be considered theoreticatly,

3. Continental drift.

During the past few years, some geodetic evidence has becn accumulatéd,,
which shows that the earth's surface is mobile. l.arge blocks of the cacth's
outer layer appear to be moving with respect to one another at varying rates -
from 1 cm/year to as high as 15em/year "451.  This "drifting of the conti-
nents' causes changes in the geocentric positions of earth stations, to which
laser and VLBI instruments are rigidly fixed. However, the average rate
of motion is small enough to have no appreciable effects on lunar laser rang-
ing and VLBI measurements, if the observations cover a relatively short
span of time. For ohservations taken over a long peribd, the effect of
crustal motion may hecome appreciable, and the observations should there-

fore be corrected before they are used for adjustment purposes,
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