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INDUCTION PLASMA CALCINING
OF PIGMENT PARTICLES FOR

THERMAL CONTROL COATINGS

E. P. Farley



SUMMARY

Five powders were received for plasma calcining during this report

period. The particles of all five powders were too large to flow through

the plasma facility. The large particle size may be the result of a

reduction in the ball milling time from 24 hours to 1 hour. We therefore

further reduced the particle size using a fluid energy mill, and obtained

pigments that could be plasma calcined.

Pigment susceptibility to degradation can be monitored by observing

the changes in the intensities of the ESR lines. Changes in the ESR spectra

can be correlated with changes in plasma calcining variables, i.e., chamber

pressure, plasma temperature, powder feed rate, and particle size.

Optimum results are obtained in the plasma calcining of zinc ortho-

tltanate when finely dispersed particles are subjected to a calculated

o
plasma temperature of 1670 C (see Equation 1).

Increasing the plasma calcining time by using multiple passes through

the plasma stabilized the pigment to vacuum UV irradiation as evidenced by

the resulting ESR spectra but slightly decreased the whiteness of the

pigment. The observed darkening is apparently associated with the forma-

+3
tion of Ti color centers.
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INTRODUCT ION

Zinc oxide (ZnO) is currently used as a pigment for thermal control

coatings on space vehicles. Zinc orthotitanate (Zn2TiO 4) has inherent

qualities, such as a lower frequency ultraviolet absorption shoulder,

that enhance its potential as a pigment. Both of these materials lose

reflectance during space flights or space flight simulations because of

ultraviolet radiation in vacuum. To decrease susceptibility to damage

from ultraviolet radiation, the zinc oxide is coated with an alkali sili-

cate, then heat treated at low temperature. Zinc orthotitanate is formed

O O

at temperatures between 900 and ii00 C. Unfortunately, both of these

heat treatments cause sintering and particle agglomeration, and a sub-

sequent comminution processing step must be employed. The comminution

results in zinc oxide particles that are not completely coated with alkali

silicate in one case, and zinc orthotitanate that is mechanically damaged,

in the other. Therefore, a heat treatment that does not result in agglo-

meration and sintering, thereby eliminating the need for subsequent com-

mlnution of the pigment particles, should provide materials with greater

resistance to ultraviolet radiation under vacuum conditions.

The plasma technique is an attractive method of calcining fine par-

ticles without producing sintered agglomerates. The objective of this

study is to determine the potential of employing induction plasma heating

techniques for calcining pigment particles used in thermal control coatings.

Fine particles of silicated zinc oxide and zinc orthotitanate were dis-

persed in a carrier gas of argon and oxygen and were heated by hot argon

produced in an induction plasma.

Work during this report period was concerned with the effect of plasma

3



&

calcining time at temperature on an uncoated pigment. Samples of earlier

pigment preparations were also plasma calcined and forwarded to NASA for

flight testing.
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EXPERIMENTAL PROCEDURE

The experimental zinc orthotitanate (Zn2TiO 4) pigments used in this

investigation were PrOduced at IIT Research Institute under NASA Contract

No. NAS8-26791. The original preparation of the Zn2TiO 4 pigments has
1-3

been described in earlier reports.

Powder Preparation

The need for additional treatment of the new material supplied by

IITRI became apparent when samples would not flow through the plasma sys-

tem as before. The samples were passed through a series of screens and

were found to contain a large portion of agglomerated particles. The

powders were then subjected to milling using a fluid energy mill (Trost

Mill) so that the agglomerates could be broken up with a minimum amount

of contamination.

Plasma Calcining

The plasma apparatus used in this study was described in detail in

1
Interim Technical Report No. l, and the present operating conditions

2
were described in Interim Technical Report No. 2. The pigments were

injected downstream from the plasma, and the constant gas flow rate

employed produces a constant residence or heating time of about 1.1

seconds. The gas temperature in excess of ambient (AT) is calculated

from the gas flow rate, the input electrical energy, and the heat capacity

of the argon plasma gas, and is given by Equation (1)

AT = 25 E I J (1)
P P

where J is the total gas flow rate in liters/min at STP, E
P

is plate
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voltage, and I is plate amperage. The constant in this equation accounts
P

for the conversion of units and the plasma efficiency. The plasma con-

sisted entirely of argon, whereas the gases used to transport the pigment

particles into the plasma apparatus contained equal amounts of argon and

oxygen. The total resulting gas composition in the reactor was 80.7% argon

and 19.3% oxygen.

The starting materials and the calcined products were analyzed by

X-ray diffraction, scanning electron microscopy (SEM), Fisher subsieve

analysis, and electron spin resonance (ESR) spectroscopy.

The ESR tests were run in the system described in Interim Technical

4
Report No. 3 with a modification in the sample holder that prevents

5
oxygen contamination as described in Interim Technical Report No. 4.

The ESR measurements were made before and after a vacuum UV irradiation

time of one hour.
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RESULTS AND DISCUSSIONS

Particle Preparation

The catalog of pigment powders (Appendix 1) shows that the common

treatment of IITRI powders included a 24-hour ball milling period. This

ball milling period apparently was decreased to one hour, as evidenced

by the inability of the powders to flow through the plasma system. The

five powders received during this research period were worse than any

previously submitted samples and required fluid-energy milling to reduce

agglomeration of the pigment particles. The mill and the cyclon separator

were provided with rubber and plastic linings to eliminate contamination.

After milling, the product was slightly darkened. A change was also

noted in the ESR spectra, and this change is probably associated with

+3

Ti color centers. The physical effect of the milling on size distri-

bution was the reduction of the agglomerate size from i00 micrometers

to 5-10 micrometers. The material with the finer agglomerates flowed

easily through the plasma system.

Plasma Calcining

Several tests were run on silicate and phosphate coated pigments

(Samples 17 and 20) in order to duplicate earlier results. A test was

also run on a lithium coated pigment at a lower plasma temperature, but

this procedure resulted in a very dark product.

The effect of time at temperature was investigated by passing the

pigment material through the plasma calcining apparatus more than one

time. The pigment was run through the plasma system at the reference

o
temperature (T = 1670 C) and a sample was taken from the small condenser



bank (19-39.3). The remainder of the small condenser bank material was

then recycled at the reference temperature. A sample was again collected

from the small condenser bank (19-40.3) and was submitted for ESR analysis.

Figure 1 shows the ESR spectra resulting from a sample containing

excess ZnO (Sample 19) and from a stoichiometric sample (Sample 6). The

intensity of the ESR line at g = 1.957 is reduced slightly in Sample 19,

but the intensity of the line at g = 1.974 increases strongly with dwell

time. The second pass on Sample 6 resulted in a decrease in the 1.974-1ine,

and hardly any change in the 1.957-1ine.

If one considers the geometry of the plasma reaction chamber system

with the powder inlet nozzle downstream from the plasma and just in front

of the powder exit (see Figure 2), the actual dwell time for a particle

is Influenced by its mass. Agglomerates of any appreciable diameter will

not exit from the reaction chamber but small particles will quickly reach

the gas velocity and exit through the port. Another phenomenon noted in

earlier reports is the coloration surrounding the powder within the flame

at the exit of the inlet nozzle and reaching down to the vicinity of the

exit port. This phenomenon could be due to vaporization and ionization

of the coating or surface contamination of the powders, and would result

in the distribution and redepositing of the volatile material on the

surface of the dispersed powders. The effect of the coating resulting

from this phenomenon may be more important than any other factor in the

passifying of these pigment surfaces. To illustrate, Figures 3, 4, and

5 show the effect of chamber pressure, plasma temperature, and powder

feed rate on the ESR spectra.

X-Ray Diffraction Analysis

The X-ray diffraction analysis of the powders shows no basic changes

in structure as a result of plasma calcining. The only variation in

phase distribution is associated with particle size differences.
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g = 2.003

SRI NO. 12

(as received)

AT = 1670°C

AT 1.3 g/rain.

,_T = 1670°C

AT 5.6 g/rain.

TA-7083-38R

FIGURE 5 EFFECT OF POWDER FEED RATE ON ESR SPECTRA OF K2SiF 6

COATED Zn2TiO 4
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Electron Spin Kesonance

Figure 6 is the ESR spectra of the most stable plasma calcined

zinc orthotitanate pigment powder produced. It was a silicate phosphate

o
coated pigment and was calcined at AT = 1670 C. It withstood 2400 ESH

hours of vacuum irradiation with the least degradation of any pigment

6
powder teste_. The ESR line at a g = 2.056 is probably due to iron

contamination, and the other three g-values are characteristics of

plasma calcined zinc orthotitanate.

Effect of Vacuum UV Irradiation on ESR Spectra

When a comparison is made between changes in ESR resonance peak

heights before and after UV irradiation, a correlation can be drawn

between these changes and solar-simulation-induced changes in reflec-

tance spectra. To illustrate the changes produced by vacuum UV irradia-

tion in the ESR spectra, the peak heights were all adjusted to a gain of

50 and plotted in millimeters of height (Figure 7). A splitting of the

plotted line for a given resonance is a direct reading of the degree

of change produced by one hour of exposure to the mercury arc. Where

the lines converge, there was no apparent effect of UV radiation on that

particular ESR resonance.

Table I shows the effect of vacuum UV irradiation on three charac-

teristic ESR line intensities of plasma calcined Zn2TiO 4. Untreated

stoichiometric (l:l) zinc orthotitanate develops a small 2.003-line and

an increase in the 1.974-line. The reflectance spectra show a drop in

reflectance at both ends of the spectrum (Figure 8). After the second

pass through the plasma, the effect of irradiation becomes negligible.

The first sample of untreated Zn2Ti04, formulated with 0.5% excess ZnO

(Figure 9) was very stable under irradiation. In fact the 1.956-1ine

drops in value. The second sample of untreated Zn TiO with excess ZnO
2 4

required milling. The milling apparently increased the intensities both

13
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of the 1.974- and the 1.956-1ine. The second pass through the plasma

increased the 2.003-line and greatly increased the 1.974-11he but did not

affect the 1.956-1ine. The irradiation effect on the second pass material

again becomes negligible. Sample 10-22.3 of Zn2TiO 4 _ith the silicate

and phosphate coating, which exhibits no appreciable change as the result

of the irradiation, Figure 9, is included in the table to illustrate the

magnitude of the line intensities for a perfectly stable pigment powder.

There is a slight darkening of the second-pass product (19-40.3),

+3
which is probably associated with a Ti color center. The second pass

apparently produces more stability but a lower reflectance value. A

similar increase in the 1974-1ine intensity was found by plasma heating

the K4Si4W12040 coated sample (14-32.3).

18
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V CONCLUSION

Increasing the residence time of the zinc orthotitanate pigment

particles in the plasma during the calcining process increases the

stability of zinc orthotitanate pigments to ultraviolet radiation

damage. However, this increased stability is accompanied by a slight

discoloration of the pigment.
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PART 1I

PASSIVATION OF ZINC ORTHOTITANATE
THERMAL CONTROL COATINGS BY

SURFACE ADDITIVES

K. M. Sancier
S. R. Morrison
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ABSTRACr

Zinc orthotitanate has been successfully stabilized against photo-

damage by application of surface additives consisting of salts of

one-equlvalent redox couples. Electron spin resonance (ESR) techniques

were used in two ways to measure the photoprotection provided by the

additive. First, as a result of photolysis under vacuum, two ESR lines

increase in intensity. These lines are attributed to interstitial zinc

+3
in an excess zinc oxide phase (g = 1.94) and to Ti (g = 1.97). The

surface additives inhibit formation of these point defects in the following

order of increasing effectiveness:

_4/Fe(CN)6 -3 -2 < Ce+3/Ce+4Fe(CN) -3 < IrCl6 /irC16

-2
In addition, an acid wash (10 N) also imparts excellent photoprotection,

presumably because excess zinc oxide is removed from the pigment.

Second, quinoline, an analog of a paint binder, is photooxidized on

the zinc orthotitanate in the presence of oxygen. The photooxidation

results in a stable free radical of quinoline that possesses an ESR

signal at g = 2.003. The photooxidation of the quinoline is inhibited

by the surface additives in the same qualitative order as found for

-2
vacuum photolysis, but not by the acid wash (10 N).

Future research is outlined to provide a reliable pigment for thermal

control coatings.

23



INTRODUCT ION

At the initiation of this program, zinc orthotitanate had been

1,2
identified as a promising candidate pigment for thermal control coatings.

The pigment can be made reasonably stable against damage under vacuum-

ultraviolet conditions provided that the surface is covered with a silicate

coating or heated in a plasma-arc. Zinc orthotltanate that has been treated

with potassium ferro-ferricyanide has also shown some resistance to proton

I
damage. The selection of the iron cyanide redox couple for zinc ortho-

tltanate was based on work performed on ZnO, but it does not necessarily

follow that the redox couple suitable for preventing ultraviolet damage

in ZnO will be the most effective couple for proton or ultraviolet stabiliza-

tion of zinc orthotitanate.

A research program was therefore needed to identify the optimum surface

additive on zinc orthotltanate that will provide stability against both

ultraviolet radiation and proton damage. Stabilization of a pigment material

by the surface additive approach is also dependent on the surface concen-

tration of the additive, and therefore the research program includes a

determination of the effective concentration of the surface additive.

24



SCOPEOFWORK

The objectives of the research program have been (i) to initiate

studies of the passivation of zinc orthotitanate by means of surface

additives with the ultimate goal of providing a pigment that will be

stable under ultraviolet radiation in vacuum; (2) to investigate various

surface additives in order to identify the one most effective in stabili-

zation, and (3) to investigate the effects of concentration of additive

and methods of application to the pigment surface in order to optimize

the surface coating.

25
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BACEI_ ROUND

The surface additive approach, developed for NASA. has been applied

to increase the stability of ZnO against damage under vacuum-ultraviolet

3
conditions and to passivate the pigment against photointeractions with

4
the polymer binder. The approach has also been used in preliminary

work sponsored by SRI to provide increased photostability of polymer

films containing ZnO or TiO
2"

_echanism of Radiation Damage

Before discussing the mechanism of the protective action of surface

additives, we will review the probable mechanism of radiation damage.

In the case of ultraviolet radiation, photodamage to pigments is initiated

by electronic charge carriers, electrons and holes, that are produced when

the semiconductor pigment absorbs photons of energy equal to or greater

than the bandgap. The chemical damage ensues from interactions of the

electrons and holes with the lattice ions. For example, in the case of

ZnO phase the following reactions are believed to occur:

Oxidation

0 + p -- O- (1)

0 + p _ _0 2 (2)

Reduction

++ +

Zn + e _ Zn (3)
l

+

Zn i + e _ Zn i (4)

In reactions (i) and (2), the photoproduced holes p oxidize lattice

oxygen ions 0 = to oxygen, which may leave the solid. In reactions (3)

++
and (4), the photoproduced electrons e reduce the zinc lattice ions Zn

26



+
and result in excess zinc which becomesinterstitial zinc, Zn or Zn .i i
The coloration of the pigment is believed to be caused by the excess

interstitial zinc which has limited solubility in the lattice. This

excess zinc either causes mechanical strain in the lattice or it pre-

cipitates at defects, such as dislocations.

In zinc orthotitanate it is expected that lattice titanium ions

+4
Ti will be reduced by photoproduced electrons according to

+4 +3
Ti + e _ Ti (5)

+3
and give rise to the Ti color centers (or to the electrical equivalent,

oxygen ion vacancies). It is of significance that the photoproduced

+ +3
species Zn and Ti are paramagnetic. Thus it is possible to detect

i

their presence with great sensitivity by the electron spin resonance

technique (ESR).

In the case of proton radiation, the damage in oxide semiconductors

may be divided into two processes: (i) displacement of lattice ions

giving rise to defects which are color centers, and (2) massive produc-

tion of charge carriers, along the proton track, which causes chemical

damage as outlined above.

Mechanism of Surface Additive Protection

Inorganic surface additives increase the photostability of pigments

by serving as recombination centers for the photoproduced charge carriers,

which otherwise would produce chemical damage. The mechanism of the

process of recombinlng electrons and holes can be illustrated by the

ferro/ferricyanide (Fe++/Fe +++) redox couple that has been found effective

in protecting ZnO.

++ +++
Fe + p _ Fe (6)

+++ ++
Fe + e -- Fe (7)
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There is no net change in the amount of the two forms of the additive,

and the photoproduced electrons and holes have been recombined and hence

do not react chemically with lattice ions.

To be an effective recombination center, we have established that

(a) the surface additive must be a one-equivalent redox couple and be

present in both valence states, (b) the oxidized valence state must have

a high capture cross section for electrons, (c) the reduced valence state

must have a high capture cross section for holes. (d) the surface state

energy level of the additive must be in the forbidden gap of the semi-

conductor pigment, and (e) the additive must be chemically and photo-

chemically stable, and nonvolatile.

In the case of ZnO, numerous inorganic surface additives were tested.

It was found that the iron cyanide couple satisfied the above list

of requirements. A correlation was also found between the electron

capture cross section and the standard redox potential of the additive
5

couple. The surface state energies of the various additives on ZnO were

determined, and it was concluded that a favorable energy level for an

effective additive, such as iron cyanide, is 0.1 eV below the bottom of
5

the conduction band.

Very low surface concentrations of a surface additive can provide

protection against photodamage. In the case of ZnO, significant protection

-3 6
was observed at 10 monolayers of the iron cyanide additive. The

effective surface coverage is probably much lower than this value, since

the iron cyanide is probably not completely dispersed but rather exists

as surface agglomerates of much lower dispersion.

The high recombinatien efficiency at such low surface coverages of

additives can be accounted for on the basis that the charge carriers have

long diffusion paths, about one micrometer in ZnO. Since this distance

is the order of magnitude of the diameter of most pigment particles, it
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is evident that large volumes of the crystal can be swept free of charged

carriers. It may be for this reason that protection against proton damage

was observed for the iron cyanide surface additive on zinc orthotitanate;

that is, those electrons and protons produced by ionization tracks of the

protons are swept out of the bulk of the crystal by the additive. Of

course, the damage caused by the displacement of atoms cannot be affected

by the additive.

Pigment-Binder Interactions

The surface additive also serves to decrease the photointeractions

at the pigment surface between the photoexcited pigment and the binder

of a thermal control coating. In particular, the electronic holes pro-

duced by irradiation tend to oxidize strongly some organic components of

4
the binder. In the case of ZnO, we determined the relative oxldizabillty

(hole capture cross section) of several solvents for the Owens-Illinois

650 resin because there was evidence that some impurity in the resin

resulted in poor photostability of the coating. By employing electro-

chemical and ESR techniques, we showed that solvents, such as alcohol

and dloxane, captured holes and enhanced ZnO photodecompositlon, whereas

4
ethyl acetate, acrylonitrile, and pentane were essentially stable.

Moreover, in that study we showed that the iron cyanide surface additive

substantially decreased the damage caused by the presence of alcohol.

In the present program, pigment binder interactions were investigated by

use of quinollne as an analog of the binder.

Degradation Measurement Techniques

The ESR technique is well suited for investigating the influence of

surface additives on photodamage to pigments such as zinc orthotitanate.

This technique permits study of the characteristic photodamage centers

+ +3

(Zm i and Ti ) in the pigment as powders as well as pigmented coatings.
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K..

The ESR technique has also been employed extensively in our labora-

2

tories to follow the effects of plasma-arc treatment on zinc orthotitanate,

7

and charge transfer processes during reaction and chemisorption of gases.

In the case of zinc orthotitanate samples that we have examined, the ESR

spectra contain two principal lines: one at a g value of 1.956, associated

+
with the donors (Zn and/or conduction electrons) usually found in ZnO,

i +3

and the other at a g value of 1.974 probably associated with the Ti species.

One part of the present program is the study of how the intensity of these

lines increases when the pigment is irradiated under vacuum. In a study of

the effects of plasma-arc conditions on the zinc orthotitanate product

quality, the intensity of these two ESR lines upon ultraviolet irradiation

2
correlated well with the reflectance properties of the product.

Another part of the present program is an ESR study of the effects of

surface additives on the passivatlon of the pigments toward quinoline photo-

oxidation. In these experiments, quinoline is an analog of a paint binder,

and the technique provides much faster evaluation of additives than the

vacuum photolysis technique. The quinollne method has been developed on

another program involving the use of futile as a paint pigment.

In this method an oxidizable organic molecule, quinoline (Q), is

applied to the pigment to be tested, and the ESR spectrum is measured

during ultraviolet irradiation at room temperature with a gas flow of

0.4% oxygen in helium. The ultraviolet light produces electrons (e) and

holes (p) in the semiconductor pigment (Zn2TiO4), and the holes can oxidize
+

the quinoline to a stable positive ion radical Q , which is detectable by

ESR at a g value of 2.003,

+
p + Q --,Q (8)

The oxygen reacts with the excess electrons so that a space charge barrier

does not form, i.e.,

,
Industrial multlclient-sponsored program.
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e + 02 _ 02 (9)

If a surface additive on the semiconductor is an efficient electron-hole

recombination center, as it should be for efficient photostabillzatlon

of the pigment, then the steady-state concentration of holes is decreased

and the intensity of the ESR signal due to the quinollne radical (i.e.,

by reaction (8)) will be decreased.
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EXPERImeNTALDETAILS

Pigment Preparation

The zinc orthotitanate pigment used in these studies is IITRI's

o
batch C-219, which had been treated at 925 C to give formulation B-229.

This material was dry-ground for 2.5 hours and screened to obtain the

20-mesh fraction. Unless otherwise specified, this pigment (100 g) was

8
treated in 10% acetic acid (250 ml) for 36 hours to remove excess zinc.

The solid was repeatedly washed with deionized water, and the supernatant

liquid of the settled slurry was removed by suction. The remain±ng solid

o
was dried at 140 C for 15 hours under vacuum.

To apply the surface additives to the pigment, a slurry was made of

the pigment (2 g) with a solution (4 ml) containing a known concentration

of the appropriate inorganic salts. The slurry was centrifuged, the

supernatant liquid poured off, and the solid was dried at 140°C for

15 hours under vacuum. Three additive redox couples were studied:

-4/Fe(CN)6-3, -3 -2, +3 +4Fe(CN) 6 IrCl 6 /IrCl 6 and Ce /Ce . The solution added

-5 -2
to a pigment aliquot contained equal molar concentration (i0 to I0 .%l)

of the salts of two valence states of a given redox couple. The salts

used were K tFe(CN)6, K3Fe(CN)6 , K3IrCls'3H20, K2IrC1G. Ce(ClOt)3"6H O '

(NH4) 2 Ce(NO3) 6, and all were of reagent grade. The solutions of the

-3 -2]
iron cyanide [Fe(CN)6-4/Fe(CN)6-33 and iridium chloride [IrC16 /IrC16

additives were at pH 6 or 7, while that of the cerium additive was at

pH 2 with perchloric acid in order to maintain the solubility of the

cerium ions.

The surface coverage of additive on the pigment was calculated from

the solution concentration, the hold-up of the solution after centrifuging
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(0.35 ml/g pigment), the surface area of the pigment (about lO m2/g),
15 2

and with the assumption of a surface site density of 10 sites/cm

Calculation of the surface coverage @in monolayers of the additive in each

valence state shows it to be equal numerically to twice the molarity of

the additive in each valence state in the solution used to treat the

pigment. This calculation assumes no preferential removal by the pigment

of either valence state.

Vacuum Photolysis

-7
The addltlve-treated pigments were maintained at low pressure (I0

-8
to i0 tort) during ultraviolet irradiation. The pigments were introduced

into a quartz tube (B mm i.d.) in a column about 4 cm high. This tube was

fused to a Vac-Ion pump (Varian, 2 I/sec) and to a roughing pump (oil

diffusion with two traps in liquid nitrogen). The pigment was heated to

125°C for 1.5 hours while pumping to about 10 -5 tort, then the Vac-Ion

pump was started and the sample-Vac-lon assembly was sealed off from the

roughing pump.

Ultraviolet irradiation was carried out with a concentrated mercury

arc (PEK Type 212 with quartz optics of f/0.5) at a distance of 24 inches.

Irradiation was at room temperature, and the sample became only slightly

O

warm to touch ( < 40 C).

Quinoline Photolysis

The pigment was situated in a special quartz tube (3 mm i.d.) which

was held vertically in the ESR cavity. The bottom of the tube was con-

stricted (I mm opening), and a plug of quartz wool at the bottom of the

tube supported the pigment column (4 cm high). The top of the tube was

attached to a gas supply, 0.4 vol% oxygen in helium, which was passed over

the pigment at 50 cc/mln. The ESR spectrum was recorded before, during,

and after ultraviolet irradiation (same PEK lamp as used in vacuum
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photolysis study).

The qulnollne was applied to the additlve-treated pigments in the

following way. After a pigment was placed in the quartz tube, the tube

was immersed in a solution of quinoline in chloroform (0.25 wt% quinoline)

to wet the pigment. The tube was then withdrawn from the solution, and

the oxygen/helium gas was passed through the tube for about 5 minutes to

evaporate the chloroform. Finally, the tube with the qulnollne-treated

pigment was mounted in the ESR cavity.

ESR Equipment

The ESR spectra were measured with an X-band spectrometer (Varian

V-4502) equipped with a dual cavity, 12-inch magnet Fieldial, and a dual

cavity (TEl04) operated from the microwave bridge in the low power mode.

The tube containing the pigment was situated in the cavity with a screen

window through which the ultraviolet light was focused. This cavity

5

was modulated at 10 Hz with an amplitude of 10 Oe. The other cavity

contained a sample of 0.1% carbon in KC1 (Varian) for monitoring cavity

sensitivity and measuring g-value. This cavity was modulated at 400 Hz.

o
For the vacuum photolysis study, ESR measurements were made at 77 K

by use of a quartz dewar with liquid nitrogen into which the sample was

placed. Because of slow temperature equilibration of the pigment at the

low ambient pressure in the tube, it was necessary to precool the sample

in liquid nitrogen for one hour before ESR measurements.

For the quinoline photolysis study, ESR measurements were made at

room temperature by scanning the magnetic field repeatedly once a minute

over a 250-0e range with the center of the range at about g = 2.00.
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RESULTS AND DISCUSSION

Vacuum Photolysis

Iron Cyanide and Iridium Chloride Additives

Before ultraviolet irradiation of zinc orthotitanate, the ESR

spectra exhibit a weak line at g = 2.003 (probably a carbonaceous

impurity) and a broad line at about g = 2.1 (probably due to ferric

ions). Neither of these features was altered significantly by ultra-

violet irradiation.

The two spectral features that result from irradiation are at

g values of 1.97 and 1.94, and typical spectra are shown in Figure i.

It is assumed that these ESR lines correspond to those observed at

2
1.974 and 1 956, respectively, of plasma-annealed zinc orthotltanate

pigments. The intensities of these two ESR lines, presumably due to

+3
the paramagnetic centers Ti and interstitial Zn in the excess ZnO,

i

depend on the time of irradiation, the type of redox couple additive,

and the surface coverage _ of the additive. The ESR line at g = 1.97

has been observed in plasma-annealed zinc orthotitanate pigments and

+3 2
has been ascribed to the Ti damage center. The ESR line at g = 1.957

that is present in the pigment before the treatment with 10% acetic acid

is not observed, evidently because the acid removed the excess ZnO phase

and its interstitial zinc Zn i centers that gave rise to the resonance.

The origin of the ESR line at g = 1.94 is not known, but may be due to

a form of interstitial zinc in a type of excess ZnO phase. Because the

two lines appear to be overlapped, their intensities are measured as

shown in Figure i.

The dependencies of the intensity of these lines upon time of irradia-

tion and as a function of concentration of two additive redox couples
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EFFECT OF IRON CYANIDE AND IRIDIUM CHLORIDE REDOX COUPLE

ADDITIVES AT 0 = 10 -3 ON THE ESR SPECTRA OF Zn2TiO 4 PHOTOLYZED

IN VACUUM FOR 3.5 HOURS
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are shown in Figures 2 and 3. The predominate ESR lines for each

additive are used to record the photodamage.

In general the photodamage increases with time of irradiation, and

the photodamage is decreased by higher concentrations of the surface

additives. For the iron cyanide additive, there appears to be an initial

rapid photodamage followed by a slower one (Figure 2). For the iridium

chloride additive, the photodamage is almost linear with time of irradi-

ation (Figure 3).

tO0
I I 1 1

= 10 "3

A

= 10 -2

I I I I
1 2 3 4 5

VACUUM PHOTOLYSIS TIME -- hrs

TA-7083-41

FIGURE 2 EFFECT OF SURFACE COVERAGE e OF Fe(CN)6-4/Fe(CN)6 -3 ADDITIVES ON

THE ESR OF Zn2TiO 4 DURING VACUUM PHOTOLYSIS
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The comparative photoprotection afforded by these two redox couple

additives as a function of fractional monolayer surface coverage of the

additives is shown in Figure 4. For each additive, the peak intensities

are shown for both the 1.97- and 1.94-1ines. Several general observations

can be made: (i) less photodamage occurs at higher surface concentrations

of the additives; (2) photoprotectlon becomes evident at about 10 -5 mono-

layers; (3) the iridium chloride couple provides slightly more protection

than the iron cyanide couple; (4) over the range of surface coverage

-6 -2

(I0 to I0 ), it appears that the percent change of the intensity of

the 1.94-11ne is greater than that of the 1.97-1ine. Hence, the additive

appears to be more effective in inhibiting the photodamage process giving

rise to the 1.94-1ine, i.e., the Zn i center. This latter point is further

supported in Figure 5, which is a replot of the data of Figure 4. In

Figure 5 the ratio of the ESR intensities, Ii.97/Ii.94 , is shown as a

function of additive coverage. The results indicate that higher surface

concentrations of the iron cyanide couple cause the intensity of the 1.94-

llne to decrease faster than that of the 1.97-11ne. The iridium chloride

additive shows relatively small effect.

The data in Figures 4 and 5 show some scatter, not only in the

intensities of the ESR lines, but also in the ratios of the two lines.

The effect is quite pronounced for the iron cyanide additive at 0 = 10 -3

The blank values were also unaccountably low. These observations show

that uncontrolled factors are altering the photostability of the pigment.

Hence, further work to eliminate this uncertainty is indicated.

Cerium-Acid Additives

When zinc orthotitanate was treated with a cerium redox couple

-2
additive (from 10 N perchloric acid solutions of the cerium salts) at

-6 -2
surface concentrations in the range of 10 to 10 monolayers, no
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detectable ESR lines were observed as a result of photoirradlation,

Similar behavior was observed when the pigment was treated only with

-2
the 10 N perchloric acid. It thus appears that excellent photoprotec-

tion of the pigment can be achieved by using an acid wash. From the

quinoline photolysis work to be discussed later, it will be shown that

the cerium redox additive itself provides some protection.

It was suspected that the acid wash achieved the photostability by

removal of excess zinc from the pigment. To test this hypothesis the

pigment, which had previously been washed with 10% acetic acid, was

slurried with various concentrations of perchloric acid for 10 minutes,

and the supernatant liquid was separated by centrifugation. The acid

solutions were then analyzed by atomic absorption spectroscopy for

dissolved zinc. The results shown in Figure 6 indicate that greater

amounts of zinc are removed from the pigment by higher concentrations

-2
of acid. The 10 N perchlorlc acid solution removed an appreciable

0.6 wt% zinc. It is not certain whether the perchloric acid dissolved

zinc which originated from excess ZnO in the pigment or from the zinc

orthotitanate pigment itself. Incidentally, 2.6 wt% zinc was removed

by the 10% acetic acid.

It does seem significant that the acid removal of zinc inhibited

photodamage to both damage centers. Hence, it appears that there is an

energy transfer mechanism whereby excess zinc promotes photodamage leading

+3
to Ti damage centers.

It should be noted that the zinc orthotltanate pigment prior to

treatment by 10% acetic acid exhibited a very intense resonance at

g = 1.94. Upon ultraviolet irradiation under vacuum for 3.5 hours, the

intensity of this llne increased by a factor of about 2, at which time

its intensity was about 300 times greater than that for the pigment

treated with 10g0 acetic acid and photoirradiated for 3.5 hours.
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Quinoline Photolysis

The results of the qulnollne photolysis study are summarized for

three redox couple additives in Figure 7. The value of I2.003, the peak

intensity of the ESR llne at g = 2.003 was measured after I0 minutes of

ultraviolet irradiation with a gas mixture of 0.4% oxygen in helium

passing over the pigment. The pigments are the same as were studied by

vacuum photolysis.

In general, the results show that: (i) greater passivation of the

pigment (greater photoprotection of the qulnollne) is achieved at higher

surface concentrations of the additives, and (2) passivation of the

pigment by the additives follows the same order of increased effective-

ness of passivation as that for vacuum photolysls.

Fe(CN) 6-4/Fe(CN)6 -3 < IrC16-3/IrC16-2 < Ce+3/Ce+4

-2
It is of interest to note that the 10 N perchloric acid wash did not

provide passivation of the pigment against quinoline photolysis.

Valence State of the Redox Additive on the Pigment

Experiments were initiated by means of a potentiometric titration

technique to determine the amount of each valence state of a redox couple

additive on a pigment. It was the purpose of the measurement to ascertain

whether changes occurred during the pretreatment of the additive on the

pigment. Without knowledge of the relative percentage of each valence

state, the interpretation of the behavior is much less quantitative.

Titanium dioxide pigment was added to the solutions to simulate the zinc

orthotitanate, which is in limited supply. The measurements were carried

out in as dilute solution as possible in order to analyze for low concen-

trations of surface additives on a pigment. Present results suggest that

-2
it may be possible to make an analysis wlth as little as i0 monolayers
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of additive for 1 gram o£ pigment. However, tests have not yet been

made to determine if the presence of excess zinc on the zinc orthotitanate

pigment may cause interference. To increase the sensitivity of detection,

it will be necessary to minimize the polarization effects of the electrodes

and use various titration solutions.
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The surface additive approach for photoprotection of semiconductor

oxides, which was successfully applied in theory and practice to zinc

oxide, has been shown to apply to zinc orthotitanate. With the limited

funds available on this program we have demonstrated feasibility, but

we have not been able to investigate various problem areas in depth.

The evaluation of the additives by the vacuum photolysis studies

is undoubtedly more significant, albeit very time-consuming. Vacuum

photolysis studies show that ultraviolet irradiation produces two types

of damage centers, whose formation is inhibited differently by the

various additives. The increasing order of passivation of the pigment

by the additive is: iron cyanide 4 iridium chloride < acid wash-cerium.

The fact that under some circumstances, not entirely understood, the

two damage centers (1.97- and 1.94-1ines) are differently affected by

the two additives (iron cyanide and iridium chloride) suggests that it

may be beneficial to develop a surface additive consisting of two redox

couples.

The most dramatic protection against development of the damage

centers associated with the 1.94-1ine appears to be imparted by washing

-2
the zinc orthotitanate pigment with i0 N perchloric acid, with or without

a cerium redox couple additive in solution. The acid seems to provide

protection by removing zinc from the pigment. These pigments had been

treated previously with 10% acetic acid to remove excess zinc, but

-2
apparently more zinc can be leached out by stronger acids. If the i0 N

acid removes excess zinc, it is understandable that photodamage leading

to Zn interstitial zinc (l.94-1ine) will not occur. Since the acid
i

+3
treatment also inhibits formation of the Ti damage center (l.97-1ine),
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&

it is supposed that a formation of this center depends upon energy

transfer from the process leading to the Zn center.
i

The quinoline photolysis study qualitatively confirms the results

of t_ vacuum photolysls study; the cerium redox couple does in fact

passivate the pigment. The order of increasing passivation of the

pigment by redox couple additives is the same as that for vacuum

photolysis. The fact that the perchloric acld treatment did not pas-

sivate the pigment against photooxldation of quinoline indicates that

a different mechanism is active in the presence of qulnoline and oxygen

than under vacuum. Therefore, to evaluate pigment-binder interactions

for a thermal protection coating, it will be necessary to determine the

extent of interaction under vacuum conditions between an addltlve-treated

pigment and the binder of choice.
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CONCLUSIONSANDKECO_SW_NDATIONS

The photodegradation of zinc orthotitanate during ultraviolet

irradiation under vacuum conditions can be essentially prevented by

application of surface recombination centers, in particular by cerium.

This conclusion has been tested by ESR measurements on the pigment as

well as in the presence of a "substitute paint vehicle," quinoline.

It is our belief that there is a high probability that by combining

the knowledge and technique developed in this program with empirical

techniques presently known, an exceptionally stable coating could be

formulated with a minimum of development tests. The formulations to be

tested would combine: pigments treated with surface additives; hydrous

oxide coatings on the addltive-treated pigment to preclude additive

vehicle interactions; and state-of-the-art paint vehicle formulations.

Plgment-Additive Systems to be Tested

Results from the present program indicate that pigment composition,

as altered by acid treatment, may be as important as surface additives

to obtain pigment photostability. Thus, we recommend that future studies

include a comparative investigation of the effects of surface additives

on selected zinc orthotitanate pigments of various compositions. For

this study, the three surface additives developed in the present program

should be used at one or two surface concentrations. The pigments of

various compositions and known stabilities should be selected from those

prepared by IIT Research Institute and should include some plasma-annealed

samples.
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Space-Simulated Tests

We recommend that the most photostable pigments identified in the

above study be treated with redox surface additives according to the

information developed in this program and then be evaluated in space-

simulated tests.

These additive-treated pigments would be coated with a hydrous oxide

to increase photostability in the presence of a paint binder and to aid in

the dispersion of the pigment in the paint vehicle. We are presently

applying such technology to additive-treated rutile pigments, which will

,
be used to develop superior chalk-resistant paints. The procedures

necessary to develop the formulations are available; for example, we

would use the quinoline-photolysis technique to evaluate the extent of

coverage of the pigment by the hydrous oxide coating.

Samples of these pigments prepared at SRI could be tested in a

simulated space environment, for example, at IIT Research Institute.

Industrial multiclient-sponsored program.
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