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Lewis Research Center

ABSTRACT

A combined experimental and theoretical investigation was per-
c-

formed in order to: (1) demonstrate that high quality angleplied laminates

can be made from HT-S/PMR-PI (PMR in situ polymerization of mono-

meric reactants), (2) characterize the PMR-PI material and to determine

the HT-S unidirectional composite properties required for composite micro

and macromechanics and laminate analyses, (3) select HT-S/PMR lami-

nate configurations to meet the general design requirements for high-tip-

speed compressor blades , The results of the investigation showed that:

HT-S/PMR laminate configurations can be fabricated which satisfy the

high -tip -speed compressor blade design requirements when operating

within the temperature capability of the polyimide matrix.

*Aerospace Engineer, NASA Lewis Research Center, Cleveland,

Ohio.



INTRODUCTION

Advanced aircraft engines designed with high-speed axial-flow com-

pressor stages, will require high performance composites with high

strength retention at elevated temperatures. Preliminary investigation

of HT-S/PMR-PI composites (ref. 1) showed that these composites have

the potential for meeting the requirements for advanced engine compres-

sors which operate within the temperature capability of the PMR-PI

resin. . , ; ; : ; , ; .;

In order to establish the suitability of HT-S/PMR-PI composites

for advanced aircraft engine applications a combines experimental and

theoretical investigation was performed. The objectives of the investi-

gation were: (1) to demonstrate that high quality angleplied laminates

can be made from HT-S/PMR-PI (PMR in situ polymerization of mono-

meric reactants) composites, (2) to characterize the PMR-PI material

and to determine the HT-S unidirectional composite properties required

for composite micro and macromechanics and laminate analyses, (3) to

select HT-S/PMR-PI laminate configurations to meet the design re-

quirements for high-tip-speed compressor blades.

The combined experimental and theoretical investigation was per-

formed in the following manner. Test specimens were made from the

PMR neat resign and from HT-S/PMR-PI unidirectional composites.

HT-S/PMR-PI laminates were made with ply configurations simulating

those considered for high-tip-speed compressor blade applications.

The coefficients of thermal expansion and mechanical properties; i.e.,

izod impact, tensile and flexural strengths, and stiffness of the PMR-PI

resin and HT-S fiber composites were evaluated and used in the laminate

analysis and composite macro and micromechanics. The simulated



blade laminates were tested to fracture in tension and flexure. Lami-

nate analysis and composite macro and micromechanics were used to

calculate the stresses in the plies due to: lamination residual stresses,

applied load to fracture, and the combination of the two. Available com-

bined-stress strength criteria were used to determine the margin of

safety or failure of the plies under applied load. The properties of

blade-type laminates were compared with the general design require-

ments for ultra high-tip-speed composite compressor blades.

EXPERIMENTAL PROGRAM

The experimental program was undertaken to determine mechanical

properites as related to the application of graphite-fiber/poly imide

resins to advanced aircraft engine applications. The results are used

to verify quantitatively the theoretical considerations and concepts de-

scribed in the Theoretical Investigation. Materials evaluated were of

the neat resin and graphite/resin composites in various ply orientations.

MATERIALS AND SPECIMEN FABRICATION

Neat Resin

The monomer solution was formulated from the monomeric reac-

tants (1) 4,4'-methylenedianiline (MDA), (2) monomethylester of 5-

norbornene-2, 3-dicarboxylic acid (NE) and dimethylester of 3, 3', 4,

4' benzophenonetetracarboxylic acid (BTDE) with methyl alcohol as the

solvent. The solution was prepared according to the procedure reported

in ref. 1 (sample 1).

Molded neat resin was prepared by drying the solution and grinding

to a powder. The powder was then imidized at 204°C (400°F) for 2

hours. The powder was placed in a cold mold and compacted under
2

345 N/cm (500 psi) pressure. With the pressure released, the mold



was heated to 274C (525°F). At this point a mold pressure of 345N/cm

(500 psi) was applied and the temperature increased to 316C (600°F) =

After 1 hour the resin was cured.

Laminate Fabrication

The HT-S fiber was drum wound and impregnated with the PMR-PI

resin. The resin was in a solvent solution having a solids content of 50

percent by weight. A predetermined quantity of resin solution was applied

to the fiber so that the final cured laminate would have a fiber volume

content of 55 percent. Heat lamps were used to reduce the solvent content

to approximately 10 percent before removing the prepreg from the drum,

The prepared prepreg had a thickness of 0 20 mm (0.008 inch), Unidi-

rectional and various angleplied were cut to mold size 7 62 x 25.4 cm

(3 x 10 inch) to fabricate the laminates listed in Table 2.

The plies were stacked between porpous TFE-coated glass-cloth,

placed in a mold sized tray and compacted with a 4, 53 K (10 pound)
O

weight. The preform was imidized in an air-circulating oven at 204 C

(400°F) for 2 hours. The TFE-coated glass-cloth was removed and

the preform was placed between aluminum caulplates and placed in the

preheated 204C (400 F) mold. The cure cylce is shown graphically in

figure 1. Since the laminate exhibits a thermoplastic behavior in the

"as cured" condition, all laminates were post cured as noted in figure 1»

Specimen Fabrication

Neat-resin tensile specimens were machined from 3.2 mm (0.125-

inch) thick material in accordance with ASTM standard method D638-

type 1. Compression specimens were machined from coupons 12. 7 x 38 mm

(0. 5x1 .5 inch) to provide a test section 6. 3 mm (0, 25 inch) wide by

19.1 mm (0.75 inch) long.



Longtitudinal tensile specimens of the HT-S/PMR-PI were machined

having dimensions of 1. 27 x 25. 4 cm (0, 5 x 10 in.) from the 7 62 x

25.4 cm (3 x 10 inch) laminates with the 0° fiber plies in the 25,4 cm

(10 inch) direction. The specimens had parallel sides with 6- 3 cm

(2- 5 inch) long reinforcing tabs adhesively bonded to the ends. Trans-

verse tensile specimens were machined from 12. 7 mm (0, 5 inch) wide

by 7. 6 cm (3 inch) long coupons The finished specimen had a reduced

test section 6. 3 mm (0.25 inch) wide by 38 mm (1. 5 inch) long. 6, 3 mm

(0.25 inch) reinforced holes on the ends were provided for load application.

Miniature Izod specimens were machined from 0° ply composites

5. 1 mm (0.20 inch) thick. The finished specimen dimensions were 5, 1 x

5,1 x 37,6 mm (0.2 x 0*2 x 1.48 inch).

TEST APPARATUS AND PROCEDURE

Tensile, flexure and interlaminar shear tests were performed in a

universal testing machine with a selected constant-speed crosshead.

Tensile tests of the neat resin were performed in accordance with

ASTM method D638 at a crosshead speed of 2. 5 mm (0.1 inch) per

minute. The various composite tensile specimens were tested at 1,3 mm

(0.05 inch) per minute. Strain to fracture was measured with a clamp-

on extensometer.

The flexure specimens were tested using the ASTM standard method

D709-71- Method I. Teste were made on a three point loading fixture

having a span of 5. 1 cm (2.0 inch). The short-beam interlaminar shear

specimens were tested using a three-point loading fixture having a span

to thickness ratio of 5"1.

Izod impact specimens were tested in a modified Bell Telephone

Laboratory pendulum type machine. The striking velocity of the pendulum



was 345 centimeters (136 inches) per second. The Izod specimens were

struck at their free end, 22 mm (0. 87 inch) from the edge of the canti-

lever grip.

The coefficients of thermal expansion were determined for the neat

resin and longitudinal and transverse uniaxial composite material-,

Coupons of resin and composite were heated from 38C (75°F) to 316C

(600°F) and the change in dimension was measured using imbedded thermo-

couples.

EXPERIMENTAL RESULTS AND DISCUSSION

The results obtained from the experimental investigation of neat

resin and composite material consist of stress/strain diagrams, and

mechanical and physical properties.

The stress/strain diagram of the PMR-PI neat resin is shown in

figure 2. As can be seen the relation is essentially linear to fracture.
fi 0 fi

The modulus of the neat resin 0. 33 x 10 N/cm (0,47 x 10 psi) is a

typical value of PI resin systems- The stress/strain diagrams of the

various angleplied composites are shown in figure 3. It can be seen that
R 0 fi

the modulus of 15.0 x 10 N/cm (21. 7 x 10 psi) is typical of uniaxial

HT-S composites with 55 percent fiber volume. It is also noted that the

two composites with 10° plies have moduli similar to the uniaxial com-

posite (14. 6 x 106 and 13. 1 x 106 N/cm2) (21.1 x 106 and 19, 0 x 106 psi).

The + 40 and 0 ply laminate shows a lower modulus than would be

expected with the predominance of 0° plies. Possible causes for this

behavior will be discussed in the Theoretical Program section

Tables 1 and 2 summarize the strength properties of the neat resin

and composite materials< The data are an average of three or more tests



of the particular property. Although most of the strength properties are

comparable to that reported of neat resins and HT-S composite materials

the tensile strength reported of the neat resin may be lower than the

actual value due to inherent limitation of the molding qualities of the

resin. Also the low compressive strength of the composite material

may not be a realistic value because the inherent limitations of the

test method.

THEORETICAL PROGRAM

The theoretical program consisted of two parts; (1) selection of

the correlation coefficients required in the Computer Code (ref. 2) to

carry out the composite micro and macromechanics and (2) laminate

analysis of the various laminates tested. These parts are essential

in assessing both the potential of the HT-S/PMR-PI composite for

high-tip-speed compressor blade applications and the in situ PMR-PI

matrix performance. The notation used herein is defined when it first

appears and it is summerized under symbols at the end of the text for

convenience.

SELECTION OF CORRELATION COEFFICIENTS

Two sets of correlation coefficients are needed in the Computer Code

(ref. 2). The first set is required for the prediction of unidirectional

composite thermal and elastic properties from corresponding constit-

uent properties. The second set is required for the prediction of

unidirectional composite strength properites.

Correlation Coefficients for Thermal and Elastic Properties

The constituent material properties required to predict composite

properties from constituent properties using composite micromechanics
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are summarized in Table 3, The correlation coefficients for thermal

and elastic properties were the same as those for type II-fiber/resin

matrix composites. See reference 2, Table XI, This is consistent

with previous experience (ref •> 3) where it was found that the correla-

tion coefficients for elastic and thermal properites appear to be insen-

sitive to fiber-re sin types.

Correlation Coefficients for Unidirection Composite Strengths

Five unidirectional composite strengths are required to character-

ize a unidirectional composite from the strength viewpoint, These

strengths are: longitudinal tension (S_.,.,T), longitudinal compression

^7llC^' transverse tension (s 22T^' transverse compression (S.^rO

and intralaminar shear (S 190)• These strengths can be predicted from

corresponding constituent properties using composite micromechanics.

The main advantage for relating composite strength to constituent

properties is that the micromechanics in the computer code provides
i

for in sity ply strength, The constituent material properties required

for predicting the aforementioned strengths via micromechanics are

summarized in Table 4,. The values of the correlation coefficients used

in the computer code are listed in Table 5,

Two important points can be made from the values of the strength

correlation coefficients in Table 5. These are'

lc The value of ^T = 0. 94 which is close to unity. This indicates a

relatively high matrix efficiency in translating fiber strength to compos-

ite.

2. The values of the strength correlation coefficients /SOOT' ^22C anc*

are unity or higher, These indicate that the in situ PMR-PI



matrix strength is equal to or better than its bulk state strength, This

latter point attains additional importance since the values of these

strength correlation coefficients are about (h 5 for other fiber/resin

composites.

The important conclusion from the preceding discussion is: in situ

polymerization appears to enhance the fiber/matrix interfacial bond and

the in situ matrix strength resulting in improved intralaminar shear

and transverse tensile strengths for the unidirectional composite.

Measured and predicted unidirectional composite properties are

summarized in Table 6 for comparison purposes. Some items in

Table 6 need additional explanation-

1, No measured data are available for the thermal heat conductivities

for the composite or the PMR-PI matrix. The predicted values shown

in Table 6 are based on the estimated matrix data shown in Table 3,

They are included here as indications. Also, no measured data are

available for composite shear modulus or Poisson's ration

2, The limiting value of the transverse compressive stress (87920^

was taken to be about 80% of the corresponding fracture stress. This

was done because in general transverse compression stress/strain

curves exhibit excessive nonlinear ities beyond the 80% fracture stress

value .

3 The intralaminar shear strength (S ) was taken to be about 50%
I

of the short-beam-shear fracture stress value. This was done for two

reasons: (a) In house results of angleplied laminate analyses has in-

dicated that in predominatly shear-failed laminates the intralaminar

shear stress was about one-half of the short-beam-shear fracture stress.
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(b) S-glass fiber/resin unidirectional thin tubes subjected to torsion

fracture at a shear stress which is about 50 to 60% of the corresponding

short-beam-shear fracture stress.

By examining the measured and predicted property values in Table 6

it can be seen that the correlation coefficients selected yield predicted

values which are in good agreement with the measured data.

The afore discussion leads to the following tentative recommenda-

tion. The intralaminar shear strength to be taken at one-half the short-

beam-shear (inter laminar) fracture stress.

LAMINATE ANALYSIS OF ANGLE PIED LAMINATES

The laminate analysis capability available in the Computer Code

(refo 2) was used to analyze the laminates tested. The laminate analysis

performed yielded the following laminate properties; (1) thermal and

elastic constants, (2) plate-type bending stiffnesses, and (3) the ply

stresses and mar gin-of-safety due to cure temperature, axial fracture

load, bending fracture moment, and combinations. This type of infor-

mation serves two purposes:

1. To assess the application of linear laminate theory to HT-S/PMR-PI

composites.

2. To establish whether any or all of the laminates investigated meet

the general design requirements of the high-tip-speed compressor blade =

Laminate Elastic Constants and Thermal Coefficients of Expansion

The elastic constant and thermal coefficients of ecpansion of the

laminate were calculated using the unidirectional composite properties

in Table 6. The results are summarized in Table 7. The information

in Table 7 can be used to select ply arrangement for the blade core and
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the blade shell. Based on composite blade general design requirements to

be described later the laminates 6[0], 4[+ 10, + 10], and 8[0, +10, 0, -10,

-10, 0, +10, 0] are suitable for the blade core while the laminate 4[+ 40

+ 40] is suitable for the blade shell. The laminate 13[+ 40, 9 (0), + 40]

is representative of the blade at its maximum thickness point, This

laminate has a negative thermal coefficient of expansion along the x-

direction (a- v) > This is an added advantage because it counteracts
{sXX

the radial growth of the blade due to centrfugal loads.

Three other points need to be mentioned with regard to Table 7.

1, The laminate properties in Table 7 are based on 0; 55 fiber volume

ratio. This value was selected because laminates from HT-S/PMR-PI

under well controlled fabrication conditions are expected to have a

fiber volume ratio of about 0.55.

2. Some laminates tested in this investigation could have had fiber

volume ratios different than 0,. 55.

3 The predicted laminate moduli (E ) (Table 7) differ from the
\sXXX.

measured values in Table 2. This difference could be caused by any

or combinations of the following factors: difference in fiber volume

ratio, deviations in the ply orientation angle, deviations between actual

and predicted shear modulus, bending due to testing load eccentricity

and ply relative rotation.

The important point to be noted from the afore discussion is that

HT-S/PMR-PI laminate configurations can be selected which appear

to be suitable for compressor blade application from the thermo and

elastic constants considerations. It should also be noted that the

8[0, +10, 0, -10, -10, 0, +10, 0] laminate has greater tensile strength
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then the 6(0) laminate (Table 2). This indicates that the notch sensi-

tivity of unidirectional composite with high interlaminar shear strength

can be alleviated by orienting some of the plies at relatively low angles

(10° of less) to the load direction.

Laminate Plate Type Bending Stiffnesses

The plate-type bending stiffnesses are a good measure on how a fiber-

composite compressor blade will perform when subjected to combined

loadings and how they will resist vibrations and flutter. The plate -

type bending stiffness of interest herein are the coefficients in the matrix

equation:

i cxx i en cxx

cyy/ =

; Mcxy.

i c2l

DC31

D
C22

D ' K.

DC32

C23 '.. °yy

Dc33J ! K cxy

)
(1)

The notation in the last equation is as follows: M denotes moment; D,

bending stiffness and K, curvature. The subscript c denotes composite

property. The subscripts xx, etc., represent structural axes directions.

The subscripts 11 etc., represent positions in the array. The D array

is symmetric that is D = D , D = D , and D = D . Theci2 C2i Cgi cj3 Cg2 C23
physical meaning of the various D's is as follows: D is the bending

cil
stiffness along the x-direction; D is the bending stiffness along the

£ &

V-direction; D is the torsional stiffness; D represents the bending3 C33 c12

resistance along the x-direction due to a moment in the y-direction;

D represents the bending resistance along the x-direction due to a
C13

torsional moment; D represents the bending resistance along the
C23

y-direction due to a torsional moment. The symmetric coefficients
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D , D , and D have analogous physical meaning.C21 C31 C32
In fiber composite compressor blade design the bending stiffnesses

are used to assess the following responses.

D controls the tip deflection and the uncoupled span-wise vibra-cll
tion bending modes.

D controls the uncambering and the uncoupled cord-wise vebra-
£t£i

tion bending modes.

D controls the untwist and the uncoupled twisting vibrationC33
modes*

The coefficients D . D,, , and D control coupled responses indi-C12 C13
cated by the numerical subscripts^

In selecting laminate configurations for compressor blades,

the procedure usually is as follows:

1. Select a laminate with a high value for Den

2. Adjust the ply orientations until the values for D and D are
£ifi OO

within a priori estimated ratios of D . The a priori estimated

ratios depend on the span-to-cord ratio of the blade and could

vary between 10 and 100 percent at the maximum blade thickness,

3. Retain ply orientations which yield relatively low values for the

coupled coefficients D n ^ n and D^ ->C13 c23
It was mentioned in the last section that the laminate 13[+ 40, 9(0),

+ 40] was a good candidate for the high-tip-speed compressor blade ,

The bending stiffnesses of this laminate are summarized in Table 8.

Note that the values of D and D are relatively small compared to

D . Note also that the values of Dn and D are about 25 to 30%C22 c33

of D_.. . These values are consistant with the guidelines discussed
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previously for selecting laminate configurations for compressor blade

applications.

The laminate bending modulus can be obtained from the bending

stiffness via the following equation;

- v v )/t3

cxy cyx" c

where

cxx

(3)

"cxy = Dc12
/Dc22

"cyx = D /DC12 cll

t = the laminate thickness.
{s

Using values for D , D and D from Table 8 and t = . 27 cmcll C12 C22 c

(0. 106 in) in the equation for En yields 6, 69 x 106 N/cm2 (9. 7 x 106 psi).
fi 9

The corresponding measured value from Table 2 is 6.41 x 10 N/cm
r*

(9. 3 x 10 psi) which is in good agreement with the predicted value.

Bending moduli were also computed for the other laminates tested.

The predicted values for these laminates were about the same as the

values for the E in Table 7. These values differ from the measuredcxx.
data. This difference could be caused by the factors causing the dif-

ference in the tensile moduli as mentioned in the last section. Additional

factors which could cause difference between measured and predicted

bending moduli are: relatively small numbers of plies (less than 10)

which could violate the linear laminate theory assumptions, strong

coupling between bending and twisting, and local indentation of the speci-

men at the support and bending points.
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Two important conclusions follow from the previous dicsussion:

1. Laminate configurations for preliminary blade designs can be

readily selected via laminate analysis when a priori estimates on

the bending stiffnesses are available.

2. For angleplied laminates with relatively large numbers of plies

(greater than 10), measured and predicted values of the bending

modulus are in good agreement.

Conclusion number 2 is significant because it proves that linear

laminate theory is applicalbe to angleplied laminates from HT-S/PMR-PI

composites. It also provides confidence in the predicting blade deflections

and frequencies via linear laminate theory.

Ply Stresses

The stresses and the margin-of-safety in the plies of the laminates

investigated were determined using linear laminate theory. The linear

laminate theory used is embedded in the Computer Code (ref. 2). The

application of linear laminate theory for these calculations is valid

because the laminates investigated exhibit linear stress-strain curves

to fracture, figure 3.

Ply stresses and margins-of-safety were determined due to1.

1. Cure temperature (residual stresses)

2. Axial fracture load with no residual stresses

3. Bending fracture moment with no residual stresses

4. Axial fracture load with residual stresses

5. Bending fracture moment with residual stresses.

The inputs for these calculations consisted of:

1. Constituent limit properties, Table 4

2. Strength correlation coefficcients, Table 5
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3. Ply elastic and thermal properties, Table 6

4. Cure temperature difference which equals cure temperature minus

room temperature, 295C (530°F)

5. Specimen axial fracture load

60 Specimen bending fracture moment

7. Laminate configuration

The margin-of-safety was determined using a modified distortion

energy principle for a combines-stress failure criterion (ref. 3).

The prupose of these calculations was to:

1. Assess the applicability of linear laminate theory to failure analysis

of HT-S/PMR-PI anglepied laminates

2. Obtain an indirect assessment of the in situ ply strength

3. Determine whether the residual stresses would cause transply cracks.

The underlying consideration on the ply stress analysis calcula-

tions was the following: Fracture axial loads or bending moments,

either singly or in combination with residual stresses, should produce

ply combined-stress states with negative values for the margin-of-

safety. This is a procedure which is employed to design structural com-

ponents from angleplied laminates to satisfy strength requirements.

The ply stress calculation results are summarized in Table 9 for

the 6[0] laminate; Table 10, for the 4[+ 10, + 10] laminate; Table 11,

for the 8[0, + 10, 0, - 10, - 10, 0, + 10, 0] laminate; and in Table 12,

for the 13[+ 40, 9(0) + 40] laminate. In these tables the type of loading

and the ply at which stresses are listed in the columns headed by

"Thermal Load Due to Cure". The stresses due to mechanical loads

and no residual stress are listed in the columns headed by "Mechanical

Load".
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The combined stresses due to mechanical and thermal loads are listed

in the columns headed by "Combined Loads".

The notation in these tables is as follows: CT, «., denotes ply stress

along the fiber direction, a, go denotes ply stress transverse to the

fiber direction, a, ̂  denotes the in-plane (intralaminar) shear stress,

and MOS denotes margin-of-safety as computed by the modified distor-

tion energy principle mentioned previously. The first line of entry is in

SI units and the second in customary units. The ply stresses due to

axial force are entered in the top part of Tables 9-11, and those due to

bending moment in the lower part. The ply stresses due to axial load

are entered in Table 12a and those due to moment in Table 12b for the

laminate 13[+ 40, 9(0) + 40].

The three important points to be noted from the results shown in

Tables 9-12 are:

1. The margin-of-safety for the residual stresses is positive for all

the laminates. This indicates that the residual stresses do not

cause transply cracks in the laminate configurations investigated

2. The margin-of-safety is negative, or nearly so for one or more

plies in each of the laminates when subjected to mechanical load

only. This indicates that at fracture load or bending moment one

or more of the plies failed.

3. The margin-of-safety is negative for one or more plies in each of

the laminates for the combined load case. The values of the margins-

of-safety for this case are more negative than for the mechanical-

load-only case. This indicated a possible enchancement in the in

situ ply strengths as was previously mentioned. It also indicates
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that the presence of lamination residual stresses tent to decrease the

load carrying capacity of the laminates.

The previous discussion leads to the following important conclu-

sions with regard to HT-S/PMR-PI laminates representative for

compressor blade applications:

1. Laminate failure as predicted by linear laminate theory is con-

servative.

2. There appears to be significant transverse and intralaminar shear

strength enhancement in the in situ plies.

3. The lamination residual stresses do not cause transply

cracks.

The above conclusions become even more significant because

linear theory was used and the laminates investigated exhibited linear

stress-strain curves to fracture.

An additional important conclusion follows from the ply stresses

of the laminate 13[+ 40, 9(0), + 40] in Tables 12a and 12b. As can be

seen in these tables the zero plies have positive margine-of-safety.,

The conclusion, therefore, is that the zero plies are not utilized to

their maximum efficiency„ One way to alleviate this, is to intersperse

a few 0° plies with the shell plies.

APPLICATION OF HT-S/PMR-PI COMPOSITED TO ADVANCED

AIRCRAFT ENGINES

A two phase procedure is used herein to determine the suitability

of HT-S/PMR-PI composites for advanced aircraft engine application.

In the first phase, we examine the general design requirements of the

high-tip-speed compressor blade. In the second phase, we compare
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the laminate properties obtained previously with the blade general

design requirements„ The criterion for establishing suitability is

that one or more of the laminates investigated meet the blade general

design requirements.

General Design Requirements for an Ultra High-Tip-Speed

Compressor Composite Blade

The general design requirements for a high-tip-speed [671 m/sec

(2200 ft/sec)] compressor blade from fiber composite materials are:

1. The core laminate configuration should have a tensile modulus of

12.4 x 106 N/cm2 (18 x 106 psi) or greater.

2. The shell laminate configuration should have a shear modulus of

2. 76 x 106 N/cm2 (4 x 106 psi) or greater.

3. The core laminate configuration should have a tensile strength of
3 262. 1 x 10 N/cm (90 KSI) or greater at room temperature.

4. The blade laminate configuration shouls be free of transply cracks

due to cure temperature.

5. The blade laminate configuration should retain its structural inte-

grity in the temperature range -51C to 260C (-60°F to 500OF).

6. The unidirectional laminate should retain 70% or greater of its

longitudinal tensile properties at about 288C (550°F) for long time

exposures; and it should retain 50% or greater of its other unidirec-

tional properties.

7. The cordwise and torsional stiffnesses of the blade laminate con-

figuration should be about 25 to 30% of the spanwise bending stiffness.

8. The blade laminate configuration should have good resistance to

cyclic load.
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9o The unidirectional laminate should have longitudinal Izod impact

energy resistance of 113.0 cm-N (10 in-lb) or greater.

Comparison of Design Requirements with the Properties of the

HT-S/PMR-PI Angleplied Laminates

Design requirements 1, 2 and 3 - Comparison of the measured or

predicted stiffness/strength properties of the laminates 6[0],, 4[+ 10,

+ 10], 8[0, +10, 0 - 10, - 10, 0, + 10, 0] indicate that these laminates

meet these design requirements for the core. The predicted shear modulus

for the laminate 4[+ 40 + 40] meets the design requirements for the shell,

Design requirements 4 and 7 - The blade laminate configuration

13[+ 40, 9(0), + 40] meets the residual stress requirements and the

plate-type bending stiffness. It is noted that the average tensile strength

of this laminate meets the design requirements of the core,, And also,

the modulus and tensile strength of this laminate are comparable to

titanium alloys which are commonly used for compressor blades > This

is significant since the titanium is three times heavier.

Design requirements 5 and 6 - The elevated temperature strength/stiff-

ness retention of HT-S/PMR-PI unidirectional composites was investi-

gated in reference 1. It was found that these composites retain about 70%

of their room temperature flex stiffness/strength at 316C (600°F) for

long exposure times. The corresponging interlaminar shear strength

retention was 50% or greater.

Design requirement 8 - Graphite fiber/non-metallic matrix compos-

ites have good cyclic load resistance. Unidirectional composites cyclic

loaded at

(ref. 4).

c

loaded at 80% of their static strength exceed 10 cycles in general
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Design requirement 9 - The measured longitudinal Izod impact

resistance for an HT-S/PMR-PI unidirectional laminate is 171. 8 cm-N

(15.2 in-lb), Table 2, which is 1.5 times greater than the design require-

ment.

The afore comparative discussion leads to the following conslusion,

HT-S/PMR-PI laminates can be selected which meet all the general

design requirements for a high-tip-speed composite compressor blade,

Of the laminates investigated, the laminate 8[0, + 10, 0, - 10, - 10, 0,

+ 10, 0] is the best configuration for the blade core., The laminate con-

figuration of + 40° interspersed with a few 0° plies appears to be a

good candidate for the shell.

CONCLUDING REMARKS

HT-S/PMR-PI laminates can be fabricated which meet all the general

design requirements for a high-tip-speed composite compressor blade

operatine within the temperature capability of the PMR-PI resin,

Of the laminates investigated for the 671 m/sec (2200 ft/sec) blade

application, the laminate 8[0. + 10, 0, - 10, - 10, 0, + 10, 0] is the

best configuration for the blade core and + 40° interspersed with a

few 0° -plies for the shell.

A combined experimental/theoretical investigation is the most

direct approach to obtain a broad assessment of the application of new

advanced composites to specific designs.

Laminate failure as predicted by linear laminate theory is conser-

vative. There appears to be a significant transverse and intralaminar

shear strength enhancement in the in situ plies. The lamination re-

sidual stresses do not cause transverse ply cracks in representative

laminate configurations for compressor blade applications.
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The in situ polymerization process enhances the fiber/matrix

interfacial bond and the in situ matrix strength resulting in improved

unidirectional composite transverse tensile and intralaminar shear

strengths.
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APPENDIX - SYMBOLS

a , a unidirectional composite strength correlation coefficients,
1 £

Table 5.

D bending (flexural) stiffness, subscripts define type, Eq. 1

E normal modulus, subscripts define type, Table 6

G shear modulus, subscripts, define type, Table 6

K thermal heat conductivities, subscripts define type, Tables 3

and 6

K, HP coefficient for combined stress

M bending moment, subscripts define direction, Eq<, 1

S unidirectional composite strength, subscripts define type

and sense, Table 6

t laminate (composite) thickness
C/

a thermal coefficients of expansion subscripts define type

and direction, Tables 3, 6 and 7

,3 correlation coefficients defined in Table 5

e strains, subscripts define type and direction

K curvatures, subscripts define type and direction

v Poisson's ratio, subscripts define type and direction Table 3,

6 and 7

p density, subscripts define type, Table 3

a stress, subscripts define type and direction

SUBSCRIPTS

C compression property

c composite property

f fiber property
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I unidirectional composite (ply) property

m matrix property

p limit value

S shear property

T tensile property

x,y, z structural axes coordinate directions

1,2,3 type or material axes coordinate directions
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TABLE 1. - ROOM TEMPERATURE PROPERTIES OF aPMR-PI
NEAT RESIN

n

Tensile strength, N/cm (psi)
2

Tensile modulus, N/cm (psi)
9

Compressive yield strength, N/cm (psi)
2

Compressive strength, N/cm (psi)

Thermal coefficient of expansion,
cm/cm/°C (in./in./°F)

5580 (8100)

0.32X106 (0.47X106)

11400 (16 500)

18 700 (27 200)

50.4X10"6 (28. OxlO"6)

1 NE/MDA/BTDE (ref. 1) (1500 formulated molecular weight).

TABLE 2. - PROPERTIES OF HT-S.'PMR-PI COMPOSITES

[55 Percent fiber volume and tested along the 0°-ply direction. ]

Property

Tensile strength,
N/cm2 (psi)

Tensile modulus,
N/cm2 (psi)

N/cm2 (psi)

Flexural strength,
N/cm2 (psi)

Flexural modulus,
N/cm2 (psi)

N/cm2 (psi)

cm-N (in.-lb)

cm/cm/C (in. /in./°F)

6[0]

124 000
(180 000)

15. OxlO6

(21.7X106)

Q9 nnn

(135 000)

141 900
(206 000)

12-lxlO6

(17. 6xl06)

n n p n

(16 000)

171 8

(15.2)

6[90]

6710
(9740)

0. 79X106

(1. 15X106)

9t A1(\

(34 000)

11 270
(16 350)

0.74X106

(1.07X106)

9fi 1

1.8)

(14.5X10"6)

Ply angles

4[ + 10, + 10]

103 400
(150 000)

14.5xl06

(21.1X106)

158 500
(230 000)

11.6X106

(16.8X106)

deg

8[0, + 10, 0, - 10
- 10, 0, + 10, 0]

131 500
(191 000)

IS.lxlO6

(19. OxlO6)

135 700
(197 000)

IS.lxlO6

(19. OxlO6)

13f+ 40, 9(0),
+ 40]

85, 400
(124 000)

9.6X106

(14. OxlO6)

99 900

(145 000)

6.4X106

(9.3X106)



TABLE 3. - ELASTIC AND THERMAL PROPERTIES OF HT-S FIBER AND PMR-PI MATRIX CONSTITUENTS

USED IN COMPOSITE MICROMECHANICS

Property

Moduli

Poisson's ratio

Thermal coefficients of
expansion

Heat conductivities

Weight density

Symbol

Ef(m)ll
Ef(m)22
Gf(m)12

"f(m)12
o,

"f(m)22
Kf(m)ll
"f(m)22
*f(m)33
pf(m)

Units

SI

106N/cm2

UrN/cnr
fi 9

10 N/cn/

Ratio

10'6cm/cm/C
10"6cm/cm/C

J/m-sec-c
J/m-sec-c
J/m-sec-c

2
g/cm

Customary

10J psi
10 psi
106 psi

Ratio

10"6in./in./°F
,--6 ,. /o^10 in. /in. / F

Btu/hr/ft2/°F/in.
Btu/hr/fr/ F/in.
Btu/hr/ft2/°F/in.

Ib/in. 3

HT-S fiber

SI

26.2
1.4

1.7

.25

-.018
10.1

1.09X109

0

1.09x10°
1.09X108

1.8

Customary

38.0
2.0
2 .5

.25

-.01
5.6

580.
58.
58.

.065

PMR-PI matrix

SI

.32

.32

.12

.36

50.4
50.4

2.35X106

2.35xlOb

2.35xl06

1.2

Customary

.47

.47

.17

.36

28.0
28.0
al ,25
al.25
a1.25

.044

Estimated.

Notation: f(m) denotes fiber or matrix property.

TABLE 4. - CONSTITUENT PROPERTIES FOR MICROMECHANICS
STRENGTH PREDICTIONS

Property

Fiber tensile strength

Matrix compressive strength

Matrix tensile strain

Matrix compressive strain

Matrix shear strain

Matrix torsional strain

Symbol

SfT

SmC
empT

empC
€mpS

empTOR

Units

SI

103N/cm2

103N/cm2

cn>/cm

cm/cm

cm/cm

cm/cm

Customary

ksi

ksi

in. /in.

in. /in.

in. /in.

in. /'in.

Value

SI

242

11.3

.018

.035

.050

.050

Customary

350

16.5

.018

.035

.050

.050



TABLE 5. - MICROMECHANICS STRENGTH

CORRELATION COEFFICIENTS

Coefficient

Longitudinal tensile strength

Longitudinal compressive strength
Matrix compression limited

Intralaminar shear limited

Transverse tensile strength

Transverse compressive strength

Intralaminar shear strength

De lamination

Symbol

%
0mT

%,
^mC

al
a2

^22T

(322C

012S

^EL

Value

.94

1.00

.17

1.00

13.30

31900

1.06

1.60

1.00

16.5

TABLE 6. - HT-S/PMR-PI MEASURED AND PREDICTED UNIDIRECTIONAL COMPOSITE MECHANICAL PROPERTIES
FOR A . 55 FIBER VOLUME RATIO COMPOSITE.

Property

Longitudinal modulus
Transverse modulus
Shear modulus
Poisson's ratio

Longitudinal thermal coef . of exp.
Transverse thermal coef. of exp.

Longitudinal thermal heat conductivity
Transverse thermal heat conductivity
Through-the-thickness thermal heat conductivity

Longitudinal tensile strength
Longitudinal compressive strength
Transverse tensile strength
Transverse compressive strength
Intralaminar shear strength

Coefficient for combines stress

Symbol

EU1
E122
G!.12
"112

»/ 11C 1 1

"122

KZ11
KZ22
KZ33

SU1T
smc
S122T
S122C
sms

KZ12

Unit

SI

106N/cm2

106N/cm2

R n
10bN/cni

Ratio

10"6cm/cm/C

10'6cm/cm/C

J/m-sec-c

J/m-sec-c
J/m-sec-c

103N/cm2
o o

10°N/cm
1 9

10JN/cn/
0 Q

10JN/cm
o o

10JN/crr/

Ratio

Customary

106 psi
106 psi

C

10° psi

Ratio

10"6in. /in. /°F
10'6ln. /in. /°F

Btu/hr/ft2/°F/in.
Btu/hr/ft2/°F/in.
Btu/hr/ft2/°F/in.

ksi
ksi
ksi

ksi

ksi

Ratio

Measured

SI

15.0
.83

~0

25.6

125
94

6.6

23.4
11.0

Customary

21.7
1.2

~0

14.2

182
136

9.6
a34.0
b!6.0

Predicted

SI

14.5
.83

.50

.24

.49

26. 1

6.02X108

8. 27X106

8. 27xl06

126
95

6.2

18.0
5.5

1.09

Customary

21.1
1.2

.72

.24

.27
14.5

320
4.4

4 .4

183

138
9.0

C26.1
d8.0

1.09
aMaximum value with considerable nonliniarity.
Short-beam-shear stress.

cAbout 80% of maximum value was used.
vine-half of short-beam-shear stress was used.



TABLE 7. - LAMINATE ELASTIC CONSTANTS AND THERMAL COEFFICIENTS OF EXPANSION

[HT-S/PMR-PI; fiber volume ratio = . 55; weight density = 1. 6 g/cm3 (. 056 Ib/in. 3)

Laminate

6[0]

4[+ 10, - 10, - 10, + 10]

8[0, + 10, 0, - 10, - 10, 0, + 10, 0]

13[+ 40, - 40, 9(0), - 40, + 40]

4|+ 40, - 40, - 40, + 40]

Moduli: 106N/cm2/(106 psi)

Ecxx

14.5
21.1

13.4
19.4

14.0
20.3

11.0
16.0

2.3
3.4

Ecyy

0.83
1.20

.83
1.20

.83
1.20

1.52
2.20

1.4
• 2.0

Gcxy

0.50
.72

.90
1.30

.69
1.00

1.45
2.1

3.65
5.30

Poisson's ratio

V
cxy

0.24
.24

.68

.68

.46

.46

.73

.73

1.00
1.00

Thermal coefficients of expansion
10"6cm/cm/C (in. /in. /°F)

"cxx

0.49
.27

-.11
-.06

.02

.01

-.13
-.07

-.70
-.39

"cyy

26.1
14.5

25.0
13.9

25.6
14.2

13.0
7.2

6.03
3.35

TABLE 8. - LAMINATE 13[+ 40, 9(0) + 40] AXIAL AND BENDING STIFFNESS.

[HT-S/PMR-PI; fiber volume ratio = . 55; weight density = 1 . 6 g/cm3 (. 056 Ib/in. 3)]

Stiffness (see schematic)

Bending along-x

Bending along-y

Coupled bending x with y

Coupled x-bending with twisting

Coupled y-bending with twisting

Twisting

Symbol

Dcll
Dc22
Dcl2
Dcl3
Dc23
Dc33

Units

SI

CM-N

CM-N

CM-N

CM-N

CM-N

CM-N

Customary

IN. -LB

IN. -LB

IN. -LB

IN. -LB

IN. -LB

IN. -LB

Value

SI

14377

4160

3832

780

565

4318

Customary

1272

368

339

69

50

382

- + 40°-plies

x
--0° - plies

40°

^•-40°-plies

Ply orientation schematic



TABLE 9. - PLY STRESSES IN LAMINATE 6(0).

3 2[HT-S/PMR-PI .55 fiber volume ratio. Ply stress in 10 N/cm first line, ksi second line. ]

Laminate load/ply

N(lb)
42 200 (9500)

All plies

N-cm (Ib-in.)
1030 (91)

Bottom ply

Top ply

Thermal load due to cure
AT = -294. 5C (-530°F)

"ill

0

0

0

0

0
0

CTZ22

0
0

0

0

0
0

°H2

0
0

0

0

0
0

MOS

1.00
1.00

1.0

1.0

1.0
1.0

Mechanical load

°m

128

186

121

175

-121
-175

°122

0
0

0

0

0
0

°112

0
0

0

0

0
0

MOS

-.04
-.04

.09

.09

-1.20
-1.20

Combined loads

ffni

128

186

121

175

-121
-175

°122

0

0

0

0

0

0

a!.12

0
0

0
0

0

0

MOS

-.04
-.04

.09

.09

-1.20
-1.20

TABLE 10. - PLY STRESSES IN LAMINATE 4(+ 10, + 10).

[HT-S/PMR-PI .55 fiber volume ratio. Ply stress in 10 N/cm2 first line, ksi second line. ]

Laminate load/ply

N(lb)
24 910 (5600)

+ 10

- 10

N-cm (Ib-in.)
622 (55)

Bottom + 10

Top + 10

Thermal load due to cure
AT= -294. 5C (-530°F)

°in

-.5
-.7

-.5
-.7

-.5

-.7

-.5

-.7

"m

.5

.7

.5

.7

-.5

-.7

-.5

-.7

°I12

-1.2
-1.8

1.2
1.8

-1.2
-1.8

-1.2
-1.8

MOS

.94

.94

.94

.94

.94

.94

.94

.94

Mechanical load

"m

104

151

104
151

104

153

-104
-153

°122

-2.5

-3.6

-2.5
-3.6

.5

.7

-.5

-.7

°m

-2.1
-3.1

2.1
3.1

-12.6

-18.3

12.6

18.3

MOS

.04

.04

.04

.04

-4.98

-4.98

-5.98
-5.98

Combined loads

CTni

103
150

103
150

105

153

-106
-154

°122

-2.0
-2.9

-2.0
-2.9

.9

1.3

~0
~0

°;.12

-3.4
-4.9

3.4

4.9

-13.8
-20.1

11.4
16.5

MOS

-1.57
-1.57

-1.57
-1.57

-6.07
-6.07

-5.01
-5.01



TABLE 11. - PLY STRESSES IN LAMINATE 8[0, + 10, 0, - 10, - 10, 0, + 10, 0).
o t\

[HT-S/PMR-PI .55 fiber volume ratio. Ply stress in 10 N/cm first line, ksi second line.]

Laminate load/ply

N(lb)

63 500 (14 270)

0

+ 10

- 10

N-cm (Ib-in. )
2113 (187)

Bottom 0

+ 10

Top 0

+ 10

Thermal load due to cure
AT= -294. 5C (-530°F)

"ill

1.4

2.0

-1.9
-2.7

-1.9
-2.7

1.4

2.0

-1.9

-2.7

1.4

2.0

-1.9
-2.7

°122

.1

.2

,3
.5

.3

.5

.1

.2

.3

.5

.1

.2

.3

.5

°112

~0

~0

-1.2
-1.8

1.2

1.8

~0

~0

-1.2

-1.8

~0
~0

-1.2

-1.8

MOS

1.00

1.00

.94

.94

.94

.94

1.0

1.0

.94

.94

1.0

1.0

.94

.94

Mechanical load

°in

135

196

130

188

130

188

128

185

72
104

-128
-185

-72
-104

°122

-1.7

-2.5

-1.4

-2.1

-1.4
-2.1

-.7

-1.0

.3

.5

.7

1.0

.3

.5

°l\2

~0

~0

-2.3

-3.4

2.3
3.4

-4.3

-6.3

-4.3

-6.3

4.3

6.3

4.3
6.3

MOS

-.31

-.25

-.31

-.31

-.31

-.31

-.68

-.68

.64

.64

-2.23

-2.23

-.40

-.40

Combined loads

°i.n

136

198

128
185

128

185

129

187

70

102

-126

-183

-74

-107

°7.22

-1.5

-2.2

-1.1

-1.6

-1.1

-1.6

-.5

-.7

.6

.9

.9

1.3

~0

~0

al.l2

~0

~0

-3.6

-5.2

3.6

5.2

-4.3

-6.3

-5.6

-8.1

4.3

6.3

3.0
4.4

MOS

-.26

-.26

-.51

-.51

-.51

-.51

-.69

-.69

-.33

-.33

-2.22

-2.22

-.14

-.14

TABLE 12a. - PLY STRESSES IN LAMINATE 13[+ 40, - 40, 9(0), - 40, + 40].

[HT-S/PMR-PI .55 fiber volume ratio. Ply stress in 10 N/cm2 first line, ksi second line. ]

Laminate load/ply

'

N (Ib)
57 840 (13 000)

+ 40

- 40

0

Thermal load due to cure

AT= -294. 5C (-530°F)

"ill

-19.4

-28.1

-19.4

-28.1

3.4

5.0

°Z22

4.3

6.2

4.3

6.2

3.2
4.7

°112

-1.9

-2.7

1.9

2.7

~0
~0

MOS

.21

.21

.21

.21

.74

.74

Mechanical load

CTm

31.7

46.0

31.7

46.0

110.2
160.0

^22

.3

.5

.3

.5

-3.1
-4.5

al!2

-6.4
-9.3

6.4

9.3

~0
~0

MOS

-.44

-.44

-.44

-.44

.07

.07

Combined loads

azii

12.3

17.9

12.3
17.9

113.7
165

°122

4.6

6.7

4.6
6.7

.2

.3

°m

-8.3

-12.1

8.3

12.1

~0

~0

MOS

-1.80

-1.80

-1.80
-1.80

.20

.20



TABLE 12b. - PLY STRESSES IN LAMINATE 13[+ 40, - 40, 9(0), - 40, + 40]

[HT-S/PMR-PI .55 fiber volume ratio. Ply stress in 103N/cm2 first line, ksi second line. ]

Laminate load/ply

N-cm (Ib-in.)
1854 (164)

Bottom + 40

-40

0

Top + 40

-40

0

Thermal load due to cure
AT= -294. 5C (-530°F)

"ill

-19.4
-28.1

-19.4
-28.1

3.4
5.0

-19.4
-28.1

-19.4
-28.1

3.4
5.0

°122

4.3
6.2

4.3
6.2

3.2
4.7

4.3
6.2

4.3
6.2

3.2
4.7

°112

-1.9
-2.7

1.9
2.7

~0
~0

-1.9
-2.7

1.9
2.7

~0
~0

MOS

.21

.21

.21
721

.74

.74

.21
.21

.21

.21

.74

.74

Mechanical load

"in

21.9
31.8

25.4
35.5

80.6
117

-21.9
-31.8

25.4
35.5

-80.6
-117

°122

-.3
-.5

-.6
-.8 .

-3.1
-4.5

.3

.5

.6

.8

3.1
4.5

am

7.8
•11.4

6.5
9.4

-.2
-.3

7.8
11.4

-6.5
-9.4

.2 .

.3

MOS

-1.11
-1.11

-.46
-.46

.45

.45

-1.17
-1.17

-.53
-.53

-.68
-.68

Combined loads

"ill

2.6
3.7

5.2
7.5

84.1
122

-41.2
-59.8

-43.8
-63.6

77.2
-112

°122

3.9
5.7

3.7
' 5.4

.1
.2

4.5
6.6

4.8
7.0

6.3
9.2

CH2

-9.8
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POST CURE:
3 HRS AT 204 C (400° F)
16 HRS AT 260 C (500° F)
24 HRS AT 316"C (600° F)
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Figure 1. -Molding cycle for PMR-PI laminate.
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Figure 2. - Stress-strain diagram of PMP-PI neat resin
at room temperature.
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Figure 3. - Stress-strain diagram of various HT-S/PMR-PI
angleplied laminates at room temperature.
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