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INTRODUCTION

Spline.funcﬁon.s are generally believed to have been introduced by I.J.
Schoenberg in 1946, In the last decade, spline functions have attracted wide
attention and the literature in this area has increased ropidly’(opprokir;k:fely 350
known journal articles, books or dissertations in the period 1961-1970). Unfor-
tunately, many of the recent developments are not in a form which is convenient
and accessible for dpplicaf‘ion - oriented wvsers,

Spline functions, especially the cubic spline, have been a »valﬁable addition
to the fields of approximation theory and interpolation theory. Generally, they
are much better than approximations which pass exactly through data points because -
they simultaneously approximate the function, its derivative and its integral .

Actually, spline functions have been known for more than two hundred years
and were first introduced in attempts to mathematically model the elastic curve.
Shoenberg did, however, introduce the name "§pline functions" and was probably
the first to systematically study the cubic spline and its generalizations and applicat-
ions. There have been many generolizdtions of the cubic spline. But, for the most
- part, these generalizations had one common feature. They were generalizations of
the cubic spline in terms of its properties, but not in terms of the original physical
motivation. _ | |
| Oﬁe mathematical basis for the development of.s'pline functions is the Euler-
Lagrange differential ‘equation whiéh arises by applying the techniques of variat-

ional calculus to the pfbblem of minimizing the integral

b
: =f v/ +y?)Y
a

This integral represents the total strain energy in a relaxed, thin, elastic beam con-
strained to pass, without buckling, through a prescribed set of points. Because of the
complexety and non-linear nature of the fourth order Euler-Lagrange differential

equdtion which results from minimizing J, the exact problem has rarely been considered.




~

Génemlly, there are a variety of ways to approach the study of splvihe
functions. One approach is to g{ossly estimate the integrand in J and exactly
solve the resulting problem. If the integrand in J is approximated by y"a,_ the
rest;olfing problem lends itself to exact solution - the familiar cubic spline.
Another approach is to investigate various approximations to the integrand in J
-ohd,of_terﬁbt to solve the resulting problems. This is the approach taken by the
outhori. The resu‘fé are described in the following pages.

This report is a summary report on the progress of the author at the
conclusion of approximately one half of fhe proposed project. Many questions
remain unresolved. Most of the unr_esolvéd questions have received little or no
attention - they were to have -been‘considered in the latter stages of the project.
The author does not feel that this report represents the report of a complete study

of spline functions and has no intent of so implying. -




MATHEMATICAL FOUNDATION

Given a set of points ( Xnt Yy ), n=0,1,2,=--, N, where fhe( xn,form '

a partition of the intervalfa,b](i.e. a =Xo<X <... xnzb), we seek a family of
- ‘methods (functions) for fitting a curve exactly through these points.

We desire further to have the functions from class c’ [a,b], to have them
soﬁsfy'o specified slope on curvature constrant at the end poihi"s, and to have
them maintain the general global "shape" described by the specified points.

We will restrict our investigation to a family of methods (functions) which
are, in a sense to be described, approximations to the elastic curve. Assuming
a desirable "shape"'to be that assumed by a thin beam (spline) constrained to
pass through the specified points and meet the end conditions, the resulting funct-
ion is that which minimizes, relative to all admissable functions, the strain energy

_integral
b
J = i y"?/(l +y'n>s/?' dx

Our general method is to seek functions which minimize the integrals which result
from replacing the exact intergrand in J by various approximations. The approx-

imations which we will study are:
1. y"f

2. y"/(1+5y72)

3. ya-5)

4y e Sy Ay

5. y"/0-5y" /8

6. Y"'q/(1+y'g)¢

(the exact integmnd) _

For purposes of our study, we assume that y'p is very small when compared to unity and
certainly that y'<2/5. The procedure will be to replace the intergrand in J by each
approximation and apply methods from the calculus of variations to obtain a different-

ial equation for the desired solution.




THE EULER-LAGRANGE EQUATIONS

It is well known that a necessary condition for a function y to extremize an
integral of the form I=I ¢ (x,y,y',y")dx is that y be a solution of the Euler- -
a

Lagrange differential equation

Cd2fa6\  d [26\ 3 _
\axﬂ(w)- ES (W')+_a_y -0

When viewed with the various integrands that we are studying, it would appear that
little success would be expected. For, in each case, the resulting differential
equation is fourth order _cﬁd non-linear. For example, if ¢>:= y“q /(1 + y'2 )5/'2 the

resulting differential equationvis

| 2ym(l+y'2)2- Sy" [(y" +ay'y) (1+yT) - 7y" Y"?] =0
There is Iittle'iniprovemenf in simplicity by taking ¢ to be one of the other approx-
ima'ting integrands (except ® = y"°, which is rather trivial),
| Fortunately, in each of the cases we are considering, the approximating
integrand does not explicitly contain terms involving y or x. This leads to a general
~ method which permits two integrations of each of the fourth order equations.
. ~ Since,, fn each case, there are no terms invblving y, the Euler-Lagrange

equation can be written

_d e\ d [3e -
°TH\YYT A \3y' a
_d 14 [as) - B¢

~dx dx("«aé?) 3y

So, in any interval where y"' is continuous, there is some constant @ so that




d :
u} - = 24
F("’Y) by =
where we have resorted to the usual subscript notation for partial derivatives.
Now,

d’ [} oM
?)?':‘byy +¢Y|Y +dyny

But =o and = d ) -a. S
v %y 2% -ax—(¢Y> * o

_S'i 4+ a n : 1} _d__ + mo _d_ "
dX Y 4 dx (¢y.> d)YuY dx (Y ¢yu

So, for some constant 8,
¢+ ay' +B = y“ ¢y"

~ So, given the integral I =L ¢ (y', y") dx, where ¢ has continuous first partial
derivatives with respect to y* and y*, the function y which extremizes I relative to

m

all admissable functions (y™ continuous on [a, b] except possibly at finitely many.

pointsa=x, < x, < ... <Xy T bandy € C* E:,b] ) mpsf, in each interval
X P : . . . .
[ n-1, r} ,n=1,2,.. .. N, satisfy the differential equation

Yoy~ o= ay+h |

-For the integrands which we are considering, this result can be simplified

even further, In each of these cases, the integrand ¢ has the property that |
y"¢y.. = 2¢ and the Euler-Lagrange equation becomes ¢ = any' * B,

Consequently, for the six integrands which we are considering, the respective

differential equations are, in each interval [Xn-:l xr;, n=1,2,, .., N: - _
r

1.y =%y +6n




2. y® = (Y By (145,70

3. y""= (@nY'+ Bn)(1-5y%/2)
4, | y"”‘; (on Y'_+‘ Bn) (1+5y )
5. y" = @nY'+ Bn)/(1-5y"/4Y
;. | y"’= (anY'+ Bn)(1+y'2)54‘

For mathematical interest we will add two additional equations:
. . =] ' .?/
2(a) y" =Bn+any +5BnY'/2
and

4 (a) y=Bn+anY +5 Bn)"2/2+5om)"/2 +25 BnY“/IéA

| Note' that the.right hand members of 4, 4(a), 2, 2(a) and 1 are polynoniials in y* such
' that each is obtained from the previous by eliminating th= highest degree term.
Simildr!y, the denominators of the right hand members of 5, 3 and l.ore polynominals -
iny' such that each fs obtained from the previous by'eliminofing the highest degree

term.
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SOLUTIONS

Our attention is then focused to solving these eight non-linear, second

~ order, differential equations. For convenience in notation during the discussion

of solutions, we will assume that we are working in a specific interval [xn_1 xn] :
Rl 4

and will delete the subscripts from the constants@n and Bn. -

The Equation x"a =0y'+8

By differentiation of each side of this equation, ‘we obtain, where
Y",’! 0, 2y"=q. Or, y(lv)= 0. Consequently, every solution is a third degree
polynomial. Conversely, every third degree polyhomial y= ax +bx +cx +d

satisfies an equation of this type withq = 12a and g = 45" - 12ac,

This equation is then an alternate approach to the well known cubic spline.
Results relative to the cubic spline are extensive and well known and will not be

reproduced here,

T'h.e Ecjuation y* = (ay'+ B)(1 +5y72)

For purposes of the general discussion, we assume thate # o and change

variables by letting

y = (2/5%) (40 -58x/6)
The resulting equation is

¥ =40’ "e ) -e )(o'-e,)
where

,/ _
e =-5p/12, e,=58/24 +i(5+7/32) %, e = e



This equation is the well known equation of the Weierstrass elliptic function.

So, we have
w' = E)(X"‘ﬁ)
where the invariants of & are
; =—4(e e te e te e )-12(5p/24 4(50“732)
'g,=4e,eﬂe,=-8(5a/24) [(59/24)"+5~2/32]

and A=g:'279: <90

We now introduce the Weierstross ¢ - function (£'(z)= ’?(z)) integrate the equahon
o = % (x+8), and change to our original variables. From fhls we obtain

y=AE (x+8;g, g )+Cx+D

where g_ and g, are defined above, A=-8/5cand C = - #/3x. Direct substitution

verifies that this is indeed a solution to the original equation.

There is an interesting alternate approach to this particular equarion in
terms of Jacobi elliptic functions. Since y"= dy'/dx =y' dy"/dy, we can write the

equation in the equivallent integral form

x = S(2/5)1/? j [(rx. u+ B+ 2/5)]4/?'du .

and

ay+ Bx = 5(2/5)1/°j [(n,u +8 )/(uﬁ+ 2/55]1/" du

where s.= + ] = sg,n(y"). By ‘effing u= . V/‘”‘ |, we obfoin

x = Xs [(v-a)_(vq+'bn] -1/ dv



and
‘ oy +Pfx=1nal )\5 [(v—c)/(v3+b?)]1/p'd.v'

w;\ere \ = s(2/5)1/3 .cx. in |‘/'°, a=- B/lia. fand b = (2/5)1/’-

~ Now, we let A =(o“’+b")?/?-,- k = [(A-o)/(ZA)] %

v=A [(1-cn(u)/(]+cn(u)] +-a, where cn(u) has parameter k. After some manipulation, we

obtain : A
o =)A ’/‘Sdu

and

Ny +8x = xAl/: 1nl j[(l-cn(u)/(Hc_n(u)] du
Each of these integrals are known, and we have

X*‘.{*=1A—’/cu

and

Cay+ Bx + 8*=1al )A1/2 [u ~-2E(v) +25n(u) dn(u)/(] +cn(u))] |
Here, ¥ ond 8* are constants of integration and E(u) is the fundomentol elliptic
|ntegro| of the second kind. We now let v =tu where t =sa/1 x| =41, Then,
since t E(u) = E(v), t sn(u) = sn(v), dn(u) = dn(;/), cﬁd cn(u) = en(v), we have

x+ vy =[?/(5Al-q f31/?v

and

ay + By +6* = [2A | a |/5J‘/’ [v~2E(v)+ 2 sn(v)dn(v)/( T+ cﬁ(v) )J

With ¢'= [2/(5A 1a1)] V2 and a7 = (28 1o 1/5)7 (s0 cd = (5/2)1/3)
we obtain
ex+Y =v
and
ady + (Ad-c) x+ 6 = -2 {E(v) -sn(v) dn(v)/(1+ cn(v))]
This provides é functional relation between x and y.

9



" The Equation y"g=~|8 +ay'+5 EL'?/Q

First, we let A=(5 9/21/9 (which may be cor;nplex) and change dependent
vdriables by letting y =ax+bu, where ar-a/2 Xand Ab=(2/5 _.d—z-)z/a. This leads

to the equation
TR )\pp,'1=)\4

whose general solution isp' =1 sinh 3 (x+c). Consequently, 1= cosh (x+c)+c™

and the desired solution is
)I/=6x-+bcos|ﬂ(x +c)+d

. 2
" In ezucfly the same manner, if we let A= 53/2)’/2' a=n/2) and
lb (0 = 2/5) we obtain _ , .

y=ox+bcos A (x+c)+d |

as the general solution. These are of course equivallent solutions in the context of -

complex constants,

The Equation y" = (ay'+8)/(1-5y'7/2)

We assume that & 8 7 0 and y*°< 2/5. Consequently, ay'+ 8> 0. Now,
we change variables by letting y' = « a m', where a = (5019/2)-'1 e, and obtain the

equation

o' = (" -b)/@” -m7)

10



where b = -B/(C‘? ap). From thé restrictions y'°< 2/5and ay'+ B> 0', we obtain the
corresponding restrictions w' -b> 0 and o -w s 0, Also, ab#0.
Then, there are three cases that must be considered. They are:

) (l) bc-a<w'ca, (ii)-a< b<w'<a, and (ii)b=-a<p'<a.

Case (i) b<-a<wn'<a

In this case we assume that y" (and hence ") has no zeroes in the interval being
considered and let s=+ 1 be a factor to indicate the sign of " in the interval .

The differential equation is then

' sdw' = [(b_,,,u)/(m.-"_o?)]1,/9dx :
or, .

swdot = [(b -0/ - a7 g
So, we can write the two integrals as o |
x= S[(a;-u)(u+a)/(u-b)]1/ndu
and R
o=s {[(a-u)(u +a)/(u -b]ﬂ'/ﬁd.u i
For si‘mplfcify,. we write these as |
| | _x'_—.sS[(a—u)(u+a)/(u—b)]"/gdu

and

= bx=s S[(a -u)(u+a)(u —b)-l’/" du

Now, we change variables of integration by employing Jacobi elliptic functions

and letting

sn(t) = [ (a-v)/2a] v
where the parameter k is given by k = [20/(0 'b)] 1/2'
We then obtain

X = -2sk(2o)3/pj sr- (1) crt (t)dt

1




W= bx=-2sk (20)'3/"5 sng(f)d-ng(t)df '
Now, we simplify notation by taking A= =2 sk(201/20nd U= -2 sk-l(2o)q/2.

Then, we have _
Ix = an"j (f)cn?(f) dt

and

B - bx)-=S sn’ (t) cn’ (f’dn? (t) it

Since dn” (t)=1-k’ ;sn?(t) and cn (t) = 1-sn"(t), we obtain
2\ X =-A?‘ - A4
. and
2 2,
| u(® - bx) = A - (T+k )A4+ k Aa
‘where, again, Am = Ssnm(t) dt.
Now, from well known reduction formulas we know that

51 A" 401+°) A-3A + sn’(t) en(t) dn(t)

Consequently .

AX= Ap- A4
and

Su(m ~bx) = 24 =(1+K) A + sn’(t)en(t)dn(t)

Again, from known reduction formulas,

3k~ A = 214K7)A - A+ sn(f) en(t) dn(t)

12




Then, we have
3K x =Ag - (1+ ") A_ - sn(t) en(t) dn(f)
and R |
150 (0 =bx) = - (1+K7) A_ -20-K*+ 1) A
. | ~sn(t) en(t) dn?r)[l K- 3K sn f)]

Thls result can ‘be simplified further by wrmng it as

3 K x = - (l+2k VA - sn(f) cn(f) dn(t)

and
15Uk’(,., -bx)-3X Kk (1+K) x = -2(l+k9‘)‘Ao -(k'-1) A_+ 3k”sﬁ“(f) en(t) dnlt)
Now,‘k"A?:Ao - E(t) =t - E(t) where E(t) i§ theA fundamental elliptic integral
of the second kind. Thus, we have
30 Kx = (1+20) E() - (1+K) t = K sn(t) en(t) dn(t)
bnd _ |
150k (0= bx) + 31+ K ) x = (1K) E) = (265 317 =1 1-3K sn(h) en(t) dn(t)

2. =

Now, ®=(aa ) y, and constants of integration have not yet been added. So, we

have the parametric solution
Ay +Bx + C =(1-K") E(t) - (2K'+ 3=t = 3K sn*(t) cn(t) dn(t)

~ and

Dx +F = (1+ 2%) E(t) - (11Kt = Kk sn(t) en(t) dn (1)
where o, §, C and F ore integration constants, A = -15 ud(va?), B=3) i (1+13)
+15 ubk4 , D=31 K, K = 2a/(a-b), 2 l= -2k (20)9/’,

R R e --p/(a &), a=(50/D  and's = £1 (= sgnu).

13
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* Perhaps the more useful form of this solution .is

AX = Isn’(t) énp(t) dt

and v
(X +ub) x = um=1k"f sn'(t) cn (1) dt
T Case (i) a<b<w'<q
As in the previous case, we arrive at the infegrclls'
| X =S5 S‘[(a -u)(u_+o)/(u -b)] ]/ﬁdu
and ' ' | |

= bx = SS [(a-u)(u+o)(u—b)] ! /gdu
Now, we change variables by taking
sn(t) =[(a -u)/(o-b)]_’/ ¢

where the parameter k is given by k =[(a-b)/2d] 1/2. With this procedure we
obtain ~ .

x = -2sk*(2a)" % _[ sn- (f) dn” (t) dt
and »

,.,-_bx=.2s|<‘(za)“/Q f sn*cn”dn” dt
: o—r, with A= -Zskz(Za)a/Qand 0= -_25l<4(20)5/e= 2ak® -,

AX = Isna(t) dn” (t) dt
and -

1w =bx) =fsn” (+) dn () en” (1) dt

14




Since dn (t) = 1-K sn (1) and en (t) =1- sn?(t), we obtain

2

wx =A,-k A

2 4
and
u(m-bx)=A2—(] +k )A4+k A6
:where ,
Am = snm(f) dt
Now, from well known reduction formulas, we know that
57 A = 4(1+K) A 4= 3A+sn(H) en(t) dn(t)
Consequently,
’ - A - 12
Ax = A2- k A4
and
5u(w - bx) = 2A~(1+ K)A , +sn'(t) cn(t)dn(t)

Again, from known reduction formulas,

3 A =200+ K%) A~ A+ sn(t) en(t) dn(t)

0

Then, we have

Ix=Ay+(1- 21°%) A, = sn(t) en(t) dn(t)

and

150K (w-bx) = (1+k JAg - 21 -k'°+|<“)A2-
= (14K ) sn(t) en(t) dn(t)

| +3K7sn’ (t) en(t) dn(t)
This result can be simplified further by writing it as

3x= A+ (1- 2K7) A - sn(t) en(t) dn(t)

and

150k’ (@ -bx) -3X(1+k )x =-3(1-k") A2+3k"" sn” (t) en(t) dn(t)

15



. ’ ?.
Now, k -A2 -Ao

-E(t) where E(t) is the fundamental elliptic integral of the gecond
kind. Thus, we have ' '

B 3k x=(1-k) Ay (1- 2KV E@) -k sn(t) en(t) dn(t).
and - . .
VK (14K )x =5uk® (0 -bx) = (1-k7) A+ -K7) E(1) -k" sn’ (1) enf(t) dn (1)

This result can be inbroved further by subtracfing the first equation from the second -
to obtain |
Ik x =(1 -k")Ao- (1- 2K ) E(t) -k~ sn(t) en(t) dn(t)
and .
K (- 2)x-5uk’ (-bx) =(2-3K ) E(H) +k” sn(t) en(t)dn (1)

Now | -

Ao=t,- and we have not yet added constants of intergration. Also, @ =(""<:l2 )_-Iy.'
So, we have the parametric solution - -

Ay +Bx +C=(3k - 2)E(t) -k sn(t)cn(t)dn” (t)
and | ‘ o

Dx+F = (2K - 1) E(t)+(1-K7) t =K sn(t) cn(t) dn(t) -

2,=1
wherea, B, C and F are constants to be determined, A = 5u k‘(ﬂ a’)

== bk -2 (7-2), D = 3K, k= 20/(a-b), A~ =- 267(20)77, 1 =25k (20)7",

b =-p/(7*a"), a = (52 ?/2)-,/8 and s = *1 (=sgnm").

Perhaps the more useful form of this solution is

Ax=AFK A, = s (1dn’ ()

“uw+(UbHA)x= A, K’ A6=~§sn4(f)dn2(t)di- n

16
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VCose (ii7) b=-a<w'<a

In this case, the differential equation becomes " (a=a') =1, which is
satisfied whenever -

» o =a - [4— 3 (X -)-'Y)/2] 2/'!

That is, whenever

(cr 02)_1_y=ox+ 5 - 2[+ 3(k+ v)/2]q/~/5

‘ _ . o1/ =3
where &, ¥ and & are constants of integration, a=(5« /2) 7 ondl 8 =a a

Normally, these degenerate situations will not occur since there must be,
in general, four undetermined constants in each solution interval, If the boundary

condifions dictate the degenerate case, then the general case will in fact reduce

to this case naturally,

The Equation y" =(a y' -+ )(1 + 5y /4)

This equation is one of the more interesting of the equations we are

studying. The general approach will be to obtain parametric representations

for x and y and then eliminate the parameter to determine the functional reloffonship

between x and y.

We assume that o # o and note that ~ y'+p> o with equality only at

points where y" =o. First of all, we change variables by the substitution

m=ay+px. Thisleads to the equation

WP P, T NN
w Th wt (o - 2P“) +k)

17




where, for si-nipluici'ry', we have let 1 =5/4a and k = (8" + 4 0. ,/5)1/' . We note
that the quadratic equation - 2P+ K= 0 has no real roots. ~ Consequently,
w' -2 Ro + 1 has constant sign throughout the interval of consideration.. We

make the further assumption that o" (and hence y") has no zeroes in the interval of

consideration.
s1 dm'/dx = (m')"/""’(m'”_ 2pw' + k")

shm' d“"/d“) = (“")14 (“)'9_ 2P '+ k4)

From these two forms; we conclude that

F(”‘p_ 2 pu, + k4)

and .

e f \t du
m = ~ T
(n

where the parometer u is actually’®'. Now, we change variables of integration by

. 1' 3 3
letting v=(u) " “and obtain

' -1
x .= 2\s I (v*- 2(3v"+k4) dv
and

. -1
'w:2)\sj v”(v4-2f1vq+|<4) dv
1/~

In this representation, the parameter v is actually (m‘).l/.“= (vy'+p)" .

Fortunately, - each of these integrals can be integrated in closed form in terms of

- well known functions. After considerable effort, we arrive at the result that

18



AS 1 V2+ 2%V cos (9/2)'*“: ‘ 2kvsin((t/2
+e!' = . . : o ) )
xre 2k™ | 2 cos(9/2) (V°- 2kv cos (a/2) +K] sin(q/2)mn k== v7 )

ond_

iy - "+ 2k cos (/2 v | kv.si
+dt= )8 . v v cos )+ 1 fq"']/z vsin(6/2)
? "2k | 2 cos {a/2) (VQ- 2kv cos (A/2)+ k7 ' sin(6/2) ) \ k? -y2 .

. ) 1‘ |
where cos = p/‘( , o<p <M, v=(0")", and c' and d' are constants of integration.
- Consequent, we obtain

w+d' +K (x+c') = (m/k sin (g/z))mn"(z kvs:n(g/z)/(k"-v"))

and

o s . "= 2kvcos(P/2) +k”
w +d' =k (xrct) = (3 /2 cos (0/2) [:*+2kvcos(9/2)+‘<a ]

Now, for breuity, we write

F(n, %) =exp [F(»,%)]

and o G (w, x) =tan {g (ﬂﬂ x)]

where flw,x) = [chos(H/Z)] [w+d'-k2(x+c')]. /s
and

g(w,x) = [ksin(7/2)] [u,+d'+k°(‘x+c:)] /rs
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Then,> we have

V- 2kveos(a/2) +k” = (v+ 2k veos(8/2)+ k) F(n, x)

and

2kv’sin(0/2)

" By simplifying each, we obtain

= (v ) G, N

v+ 2k cos(8/2) coth(fv + K°= 0 (*)

and

v + 2k sin(Q/Z) cotlg)v -k = 0 (**)

If >we add (*) and (**), we obtain

V"4 vk [cos(0/2) coth () +sin (7/2) cot (@)] =0

so (since v =0 is not a solution)

v = —k‘ [cos (8/2) coth (f) +sin (B/2) cot (g)j _

If we subtract (*) from (**) we obtain

v = -k/ [cos(R/2) coth (f) - sin (9/2) cot (g)]

‘Since v/k >0 and cos (f/2)> o,

we conclude that coth (F) <o (and hence f<o). .

-Equating the latter two expressions, we eliminate v and see that

[cos(8/2) coth (A} - [sin(8/2) cot @ "=1

Consequently (since coth (f) < o and cos (9/2)> o) a necessary condition is

- cos (0/2) coth (f) =

s sn(o/2)cats?] 4
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~ where |
f=2kcos(e/2) [ay+(p-k)x+c] As,
g=ksin(a/2) [ay+(p+k™)x+d] As,
sin(9/2)+ [(K'-a /2T,
cos(0/2) =[(K"+p)/2" ]V,
k=(f+4n"/5 ) '
2=40/5, and s=sgn(y")=+¢ 1

The constants n., B, ¢, and d are arbitrary constants to be determined By boundry
conditions.
We note that the above result gives a necessary condition. For

' sufficiency, assume that x and y are reloted as above. Define a functionu (x,y) -
by

Then, sinh it-=sin (@ /2)/tan g and cosh L = - cos (B /2)/tankf.

. -u
Now, we let v=ke > o and determine that
tang =2kvsin(0/2)/(k - v")
. and

tanh f = - 2|<vcos(g/2)/(ké +v’)

Now, we solve for f and g and differentiate with respect to v. The result is.

ty+(B+k7) x=2xs(v + kv -2k7 cos o v +k")
ond |

n 3 (k) X = 20 s (v k(v - 2k cos Ov )
Then, ’

n,;/+[-'(;< = 2}sv°/(v4— 2R v2+k4')
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and

x = 2As/(v4- 2Bv2+i<4)
Then, we have
ﬂ.y' +e = v'q )
and

' Y" =(dy'/dV)/): =V(V4". 2F\lp+‘<4)/q‘)_s- |

So,
@ B0+ 5y ) 5204 ) /e
Since a)=4a/5,
Sy"=5v(v4-2fa G+ )43

Consequently,

y"=s(yt+ E'.)’/g(l'+ 5y*/4)

The Equation y"3= 2 + ay' +58y"2+50y"™ /2425 ay4/6

As in other cases, we assume ¢ 8 0 and let s = sgn(y") =*1. Since

y" =dy'/dx = y'dy'/dy, we obtain the integrals

4 a » -1/
x=sf(aou +4a v +6a U +4a u+a ) “2du
1 2 a 4
“and

4 a » -1 />
‘y—sj‘u(cou +4°1U +602u +4°3U+°4) du
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where o, = 258/16, a =5q /8, a_ =58/12, a, =o/4and o, =B
The parameter v is, in fact, y'. Now, we assume that y" =0 whén y' =bg

. . oy T -1, ‘.
(i.e. by is a root of the qurmc); and let u =by + ®™ ' in the integrals. After

considerable algebraic manipulation, we obtain
X = _SS (4A14 W + 6A‘? w + 4A, m + A4)-1/?du- .
- a 2
y - bQX =-s S n 1(A,A1 m oy 6A.1 m + A4) I/Qdu

where y" = f(y') and
' ) ) _ f .
A =a,b +3a by +3a by ta = f'(by)/4
A, =a,by +20 by ta = f“(bo)/lz
A_=ag by + a’ = F'"(bo)/24

a

A =a = &~ (b )/24

. -1 -
Now, we again change variables in the integral by taking ®=A (f-.A‘/2).
The result is
e § ) o

‘ond

()"‘bcx)/A1 = -5 S (f—Ar:/ 2)—1, (4{‘—,9;—9’:)-1/ ~ dt

where

4 . o .
9,=3A, - 4A A.-x = agq, —4«:1 a +3a
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and

' 3 2 . ‘a S
g =2A AA -A -A A =a,a0a a0 +20,0a a -a ~a_a -a_a
2 1 2 2 2 T4 2 4 1 2 a O n 1.4

Note that g_ond g, are, in fact, the fundamental invariants of the original qucrﬁc

f(y"). Intermsnfnand 8,
and - N g;; = (256”“/12)- (5+7 /8)
g, = (58/6)" - (58/6)(5~7/8)(11/16)
4 Once more we change variables by introducing the Weierstrass Pe fu:;ction
L@ (z quga) = g(?) and letting t = g](z). _This leads to the integrals

x = sSdz
and _ .
(y-boX)/A = s§(§2)- Az/2) " dz

The second integral is the Weierstrass elliptic integral of the second kind. With b

chosen so that A, = 2% (b), we have

X+Y =52

and

b+ y-b/a, =[F®)] 7 {an [0 (z-b)/ntasb)] +2:7 ()}
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Here 7 and { are, respectively, the sigma and zeta functions of Weierstrass, Because
the sigma furiction is an odd function (i.e. 7 ) = = 7(4) ) we obtain, for either

value of s,

5+ (y-bx)/A S b) T { tn [O(x+y-b)/ar x+Y+b)] +2 f(b)(x+v)}
ond y has been expressed as a function of x and four constants (., B, ¥, and 8) of |
infegmfion, »The sigma and zeta functions are formed using the invariants g, and g,
The appearance of the numbers b and bo"in the solution will present great difficulty
in fitting boundary conditions as will the dependence of g?' _an.d g, on the boundary
q_onditionsu | | | | o

For sufficiency, we note that

(v"=bo) A, /80 BI]{ [ 7 "+ b}/ +v ~5)] = [0l + v +6)/ ¥ +b)] + 206/ ()

A/ [$(rv)-F0) ] =A /[8x+v) - A /2
So,

y"=-A QY [0+ v)»- A /2] )

Consequently, we have

= bl Ky’ /]
But,
[¢ x+ v)] =4 B2+ ¥) -9 F (x+¥) -9,




y° :A::(y' - bo) [4 8 (x+vy) - 9, % (x+v) - g]

However,

Bl v)=(A /2) + A /ly'-bo)

and we substitute to obtain

-t

Y =ATly'bol{ 4[A /ly'bo)] "+ 6A_ [A Ay-bo] }

(A% g)[A Ay'-bol) + 4(A /2 ~(g A /2) - g

<

Now, 3A"-g =4 A A_and 4(A /2)"-(g_ A /2)-g, = Al A,

So, we have

Y= A (y'-bof' + 4A_(y'bo) F6A_(y'-bo) + 4A (5'-bo)

- Expansion and simplification gives the original differential equation (since f (by) = 0).

The Equation y” = (. y'+8)/(1 -5y"ﬂ/4)'ﬂ

This equation lends itself well to a parametric solution. However, no
method has been found to eliminate the parameter and finda functional relation

between y and x.

As in previous cases, we assume a.g # o and that y" has no zeroes in

the interval of consideration.




Then, - :
o v =s(oy' +a) 2/ (1-5y ")

where s =+ 1 =sgn(y")

~ We now change variables by letting w =nY +Bx. Then,

o= 40”5 () 2/ (4" -5F+1080" - 50')

Then, we can write _
| “(s.7+ 10 2 5¢)] L Ve
x ==~ (4a"s) j[Su 10 py - (407 - 5F )] w34y

and, since do'/dx = (d®'/dw)w',

© = - (4075)" j [51°- 108, - (477 - 5% w2 dy

where i js actually o'

. Now, we change variables in the integrals by taking t = ulé, and -

integrate, to obtain the parametric solution.

‘ -1 - T4 n. S
x+y=-(2079) [17-10% /3 - @)l
and '

wtao = - (2”ff‘as)-1 f5f /7 - 2Bt E-(4'1"!-55"2)t %)]

1/2
where the pdrameter t is actually (ay' +§a) ~

We note that, regardless of any knowledge of the significance of

2]

the parameter t ,+ x=g¢ . From this relationship we can easily verify that these
parametric solutions are indeed sufficient to satisfy the original differential
equation (assuming that t is positive). The significance of this parameter will be
‘of considerable interest when we consider the boundary conditions und the

problems of joining solutions over adjacent intervals.
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The Equation y"p =(cy'+8)(1+ y'ﬁ)m/"

In this case we assume that, .in the interval under consideration,

- nR¥o. We effect a rotation of coordinates by making the change of variables

A

b= (=)o +g)
v= (Rxamy)/(n” +8) %
Then, &t =du/dv= (q-ﬁy')/(@y' +R). Infgrestingly, this giveﬁ
y' =(n"pW/i+f). So,

y = (g it ),

ayt = (TG 8 o,
and |
1+ y"ﬂ = (n‘ﬂ+ g7 (1 4-;’1,—',')/(“.:'1. + g)ﬁ
Hence, the differen.ticl eqﬁotion bec§mes
Y ARSI S
Now, we let |

w = 2 m/(ﬁ.'ﬁ + 5)1/4

v = 2T/(r1"' +ﬁa)1/‘

Then, = dw/dT =dn/dv andii=d p/dv’ = (dnm/dT ) (',Y'ﬁ'*f‘qf/‘/? and we have

the differential equation
i = a1
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By direct substitution, we discover that the equation is satisfied if

o 4
n =(w+y) =1

where Y is a constant of integration.
Now, we again change vonables by introducing the Ja¢:ob| elliptic

functions and letting

(w + y)"" = cn?(S,k); k= 24/9'

WeA then obfciﬁ the differential equation

dT/ds) = K'en" (5,k)
So,

Tk [enls ds - exf(20n 6,010
Hence, " T+Y_=+‘<(2E(5,‘<)'S)"

where E (s,k) is the fundamental elliptic integral of the second kind.

| By writing a = “/2((7,?+fln)-1ﬁond b= 9/2(«?+ ﬁ}?)"/‘ we can write this solution in

the form

(bx+ay+y)” = k”(zs(s)—s)"
s

where E(s) = jdn (t,k)dt, cn (s k)=(ax- by+a)ondk 2

To defermlne sufficiency, we note that d (2E (s) -s)/ds=cn’ (s k) so that

(b+ay") (bx +ay+s) =k (2E (s) - 5) cn” (s, k) (ds/dx)

But, -cn (s, k)sn(s,k)dn (s, k) (ds/dx) =(ax - by +y)(a-by').
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So, o . _ _ )
(b+ay'V =ken® (s,x) (ax ~by +¥) (@ =by) "/en” (s, k) sn” (s,k) dn (5, k)

| =k "en* (s,x) (a =by")"/(1-cn” (5, k) V(1=K sn” (s,k)

:E'n(s,x) (@ -by")’/(1-en (5,k))

4 Or,

(a-by")’/(b+ay") =L 7" -1
where' L=ax-by+y . From this equation, wel obtain algebraically
@ +b%) (1 4y =L (b +ay")”
and by differentiation
(@ +b7)y"=2L7 (b+ay")"
Consequenﬂ‘y ,
R BT ‘(ay'-+b)= ay'+8
Several remarkable results can be observed by rewriting the above solutfon as:

ax -by +y = f(t) = t en(t, k)
t

bx +ay +Y = kg(t) =k S cna(ulk) du
o

o= a/2(2+ f’a)’ﬁ and b= 8/2(s "+ B ) Y .

-1/2

where, g;Fz( t), k=2

We again checkto verify solution of the differential equation by observing that:
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.'F.+
X

=(af+bkf)/(a"+b? |

y=(-bfrakf )/a’+b)
ry' +R =KF (ra+Bb)/(bk ra
bk +af>0 |
y"=kf(a"+b")7 (bkf +af) "
sgn (f) =sgn (y")

14y*" = k"(a™+b") (bkf+af)”

We note especially that the curvature  is given by » = y"/(] + 'Yi'é;) ¥a =

‘ 2(aa+ b?)‘l/2 f= 2(an+ l)")“/.2 (ax-by+y). Of more inferesf,. and .of,conéidemble
importance, is the significance of the parameter t. If s is arc ‘Ienng, then

V=x" 4 ;'ﬂ= (f.:+ ke )/(02+ bn) =k'ﬂ/(op+ b”). That is, the parameter ¥ is, in
“each interval, a constant multiple of arc length. We have then derived a

parametric representation of the true elastic curve with arc length as the parameter.




MINIMIZATION OF lNTEGRALS OF POWERS OF CURVATURE

The solution procéss for the previousAequofiqn, which arises from minimizing { K ds
(where k is curvature as a function of s), suggests a method of approaching a much more
general problem. Though not directly a part of the present study, this generalization

wi.H be presented. | |
" Suppose that we wish to find a function y €C” [a,b] which extremize the integral .
!knd‘s. where k is curvature, n is a positive integer and n #1. From our earlier work,

we see that the Euler-Lagrange equation is

. . _ (3n=1)/2
(") =(n=1) " (Xy'+B) (T+y")

Now, we change variables by making the substitution

au=0x=-fRy

cv‘—'ﬁX:‘zY .,(n—l)/2n
_o=(n-'|) (n‘?+ﬁ )

~With 0 =du/dv, we obtain
' ) (3n-1)/2

©" = (1" (1+87)

By direct .substitufion, we find that this equation is satisfied whenever

42= [(n-l)p/n+y*] 2n/(l-n)—]

Now, we put k = 27/ and

. '4 J(n-1)/n
[(n—l)u/n+‘(*]” = '[cn (t, k)

S (3n-2)/n
(dv/dt)? = 45 [cn’(f,k)]

Then, we obtain

For sufficiency, we write

, ~ (n=1)/n
ax-Ry +Y = An/(n—])[f(f)]

and

t (3n-2)/2n
Ax+ay+s = 2k BS[f(f)] dt
o
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;o . (n-1)/2 4
where f(t) = cn(t,k), k=277, A"=(a-1)(?+87)  andB=7 A

We observe that

k-8 =t/
(3n-2)/2n

 Bx+ay = 2kBf

7= A f(1-F)

oy +f = 2kB(n" + P”)f’/‘"/(«Ahzkaaf’/v-)
:l/?)f’,

4(«°+ﬂ?>B”k""f/(’*Af““ﬁBF

3n+2)/2n .
y" = (2k)’ AB(rx +PPrF /(H‘AF+2kan_“/’)’
(3n-1)/2

1+ y'z =

Direct substitution shows thar indeed; (n—l)(y“)n=(a,y' +R)(1+y' )
L

Alternately, we can write

ax-fy+y =[An/(n-l)] [f(f)](n—t)/?n

and
Bxtay+h =A S [:f( )](n /e

where F(t) = cos’t and A =(n-1)(2" +87) ( °(n=1)/2

We observe that

o - =1/2Af("”)/2"€

RRta ; =AF(n-—l)/Z‘n
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£7= 4501 -)

f=2(1-2
(n+1)/2n .
f (T4 8Nk =q/2p At RAE
(n+1)/2n ' .
f (24 A7)y =-(1/2RAf+n AF

‘”.,y'+ B=("4 ") FA 1./2)n,l.:+ Rf)

V4y™ = (o + pOWAV /20 § 4R E
(3n+1)/2n

Ay“:(m,n+ Fl;,)—J f /((I/Z)m;'.;ﬂf)s
Direct substifL&ion shows that indeed

. . . (3n-1)/2
(y") =(n=1) ("y'+a)1+y")

FO.I.‘ the special case n = 2, the parameter t is related to curvatm"e k by the relation

k'=cost. Arc length s is related to the parameter t by the relation § "= (cos ),

and strain energy E(t) at any point is rglated to curvature by the relation E =‘K.
Each >of the previous cases is a special case of a more general approach. In -

general, we can let

ax=By +y= [An/(n-1)]F(t)
and

Rx+ ay+ s =[An/(n-1)]G(t) |
LU L LYo D, BRSPS\ L

" where F(t) is arbitrary, G




We observe then that

a;-a;=[A5/(n-1)]i: |
ax+ny =[An/(n-1)] G
(7" + f2)%  =[An/(n-1)) _(ﬁmé)
("‘A*”+ A)y =[An/(h;1)] (-RF+7 G)

vy +f = (T4 f) G Fep )

oo e e ., (3n=1)/(1-n)

GF-FE = [n/n-1)]G"F '
1+ y'p= ("7 + ﬁ:")(l?+ C'B?)/(m [.=+ Eé)o

n e (3n-1)/(1-n) . .
y' = ~(+F)y G _/A(‘TF+BG)

. F:“.{.éﬁ =épFrA n/(]-n)
(3n-1)/2

and direct substitution verifies that (y")n= (n-l')—1 (ny'+ B)Y1 +y'?
This permits an infinite variety of parametric representations. We need only

choose F arbitrarily and let G be given b.y

G=t s =y |
(]_F2n/(nf1))1ﬁ
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BOUNDARY CONDITIONS

The problem of matching the solutions of the foregoing differential équotions
was to have been the major emphagis of the second phase of this project. Con-
sequently, as of the writing of fhis summary report, véry little attention has been
devoted to the boundary condition problem.
| Basicq“y, the problem is as follows: in each of the intervals (xn_l, x,n.)

n= 1,2, ---, Nwe have a solution of the form f (x, y, ", Bns Yhs 5n) =0.
Consequently, we have 4N constants of integration to be determined. With these
constants, we have the con&iﬁons that the soit;tions pass through the specifieci
points (2N conditions), ﬂ';af y' be continuous at each joint (N-1 conditions) and
that ;" be continuous at each joint (N-1 conditions). In addition,.we impose
additional coﬁdiﬁon at each end (at X and at x ). Conseqﬁenfly,' we .have 4N
specified conditions to determine the 4N constants of integration. While, in theory,
this is sufficient, the practical situation is that this is a formidable problem indeed.
For example, in several of the situations the sol'ufi’ons involve elliptic functions
whose invariants are dependent upon the constants of integration. In these cases,
functional values cannot be determined except as t_ronscendeﬁtol functions of the
constants of éntegrarion. So, in general, the problem reduces to one of solving 4N
non-linear equations in 4N unknowns. Detailed study of individual cases might

well result in effecient individual procedures for attacking this problem. But, as of

this report, no such detailed study has been attempted.
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It is observed that, in each case, the differenticl. equation ;;rovidés an
odaitional route{ for investigation of half the constont.s of integration >(fhe dn and Bn).
In this process, however( one must temporarily introduce additional unknown
. quantities (fhé Q_nknéwn values éf the slope and the second'deriyqtiv.e u-t each joint).
The follc‘uwing very general approach may indicate a possible brocess fof defer'mining
the constants of integration. Of the eight differential equations ;Ne h-ove considered,

the six which result from approximate integrands are of the form
ll“._. ] ] - - —
Y _<an+Bn)F(Y) xe(’(n_ql xn) ¢ N 1121 + N

If we assume that y" has no zeroes, except possibly at the joints, and introduce the

quantities
mp = Y'(Xn) n=0,1,2, "'"., N
and
Ma =" (x ) n=0, 1,2 - N
we obtain the "parametric solutions" (forn =1,2, ---, N)
Y
: -:/.—zd
X=X = s ("n u+ B, )f(v) v
- 7 "=y n
mv L : ]
. . n-1 . .
and
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- yl ' . _
. . =1/a
YT T i“l:( Tp vt Bn-)f(U)] / dy
- Thet ' '
where sn = + 1 is the sign of y" in (xn X ). Forthe determination of the
_ - n ~

constants we have

mn ’
. -/
*n a1 Cn I [(”n ut Bn)f(u)] “duv n=12 -, N
m
n-1
m L ]
n .
- f _1/-: . .
yn-yna=s | u (a, u+ B, (u)( du n=1,2, --, N
m.
n-1
an-l - (an M+ Bn-)f(Mn_l) n=1,2, --, N
Mo = (g, M RIM) n=1,2, -, N

and two end conditions. This'., in theory, would permit one to determine the 4N+é
unknown quéntities if the values of s, were supplied in advance. Some obvious
simplificotipns are possible but it is not presenfly possible to stéte whether or not
this general process would be either effecient or fruitful. We can only conclude
that the boundary condition problem must be given considerable attention before
it is possible to make a valid conclusion as to the utility of our solutions for

applications oriented users.
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APPENDIX A: SPECIAL CASES

In our discussion of the eight differential equations given on page 5, we have
generally excluded the cases where Bi= 0. The purpose for ;this exclusion was that,
generally, four arbitrary constants were required in each interval in order to satisfy
_‘the imposed boundary conditions. In the' case that a particular consto‘nf is zero by
vitt;re of boundary conditions, then the solution will appropriately reducé to fit
the boundary conditions. In many physical applications, continuity of y" at the
joints is essential (e.g. in automative or ship design .problems‘, the mathematical
curves are reproduced by mechanical means. 1"he milling (or drafting) machine -
will nét operate in such a way as to allow the se.cond derivative (and hence the
currvature) to vary in a discontinuous manner. Such variance would requ}re
mqqhinéry to achieve instantaneous acceleration.) However, in many curve fitting
applications, continuity of second derivatives may not be an essential feature. This
fact has led us to briefly examine the results of sefriﬁg a =0 in the differential

.equations in question.
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The Spécial Cases a=0 -

The cases which arise by putting =0 in the differential equct-iqns' have a
~ special interest since they can also be interpreted as the results of rﬁinimizafion
of the stfﬁin enérgy integral when éonﬁnuity of y" is ignbred We saw eérlier
thct the EulerLagrange equahons for extremlzmg the integral Sb w«y',y! )dx. when
y"_cpyn =20, was® = oy'+p. If we put y'=z uin the integral, we seek to extremlze
S % (u,u")dx. The Euler-Lagrange equation is then p=u' Py - 5_ But u' P u'=2¢, So, -
"we have @ =B as the dnfferenhai equation, This is the same result that i fs ovbtcuhed by

putting @ =0 in orlgmal case.

In this co§e~, the equations from the six integrands given on page 3 become, -
respectively, _
- Loy,

2. y®=p (1+57/2)
3. y7=p /-5y /2)
4. y7=p (1 +5y° /8y
5.y =B /(1- 5y /4)
6. y"= B (1+y®y /2

we note that, in each cdse, pn > 0. For simplicity of notahon, we delete fhe sub-

o

script n'and change fhe notation of the arbitrary constant by, respecflvely, fakmg

p= B, B, =255, B, =5672, B, =(4p/5)" B, = (5p/4) , and p, =f". This
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gives the six equations

-

1. oy =g |
2. y"=8"(@+y'"); a=2/5
3.y = R/ -y) ;s o=
4. y"= PG +yTY ;o =4/5
5. yT= ATy oT=4/5

6 = By

As in previous studies, we assume that y" has no zeroes in the interval in question,

Conséquently, we may assume that § and u" have the same sign and f £ 0.

-

The gquaﬁon y"2= RS

With our cssumpt'ions, this gives y" = f and y is a second degree polynomioi inx.

Note that there are three arbitrary constants to be determined

The equation 'y"'r: =f @ +y"™)
In this case we have y" = R (a"+ y'ﬂ) ll/:whose solution
is Fy + f=acosh (Bx +vy) (whére a> 0).

The equation Ay":= Ba/(oz‘ Y'i);.

In this case we have y"(oa-yi? )1 /?= f. Now, since y" =dy'/dx and y" =y'dy'/dy,
we have
Axh = § (o) du
and

A

By +y =4 (a™-v)  vdv
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where & and Y are constants of integration and the parameteryy is, in fact,'y'.'

Now; in each integral we chunge variables by letting 11 = a sin ® (where

. r/2< © <1r/2).' We obtain then

fi

“Bx+ b a”§cos @ dO
and

By+ v

caScose 0 sin 6 dO
We ‘can readily integrate these equations to obtain

Bx + & = (05/2)(9fl-sin‘6cose)

and

Bx+ Y= -(a"/3)cos ©

It is easily verified that this parametric solution does indeed satisfy the differential
equation, It is also possible to eliminate the parameter to obtain a functional relation

between y and x. Since a> 0 and cos 8 > 0, we must have (By + ¥)< 0. Then

acos0 =-[3(By +v)] /",

0=5scos [(-3/03)(6 y+ Y)] 1/’.,
and asin@ =s { ap-[3(3y4-y)]2/3}1/?
where s = = 1 =sgn(y'). Consequently,

25(Bx+ B) = a cos | [ (-3/a”)( By + y)] 1/

- [3ey + n]¥ {c°-@(ﬁy+ y')]“”/3 }‘/2
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The Equofidn y"?'= B7(a + y'? )

" In this case, we have y" =4 (a “+y"). Again, since y" =dy"/dx

and y" =y' dy'/dx, we have

Ax + A= S (a F'FUQ)_.de - (1/a) tan™ (u/c)
‘and ‘
Ry I y*= .(a? 1+ u?)“1 vdu = (1/2) ¢n (02+ u")

where 5 and v* are constants of integration and the parametery is, in fact, y'. We -

note that these equations can be written

| u/a = ton'[o(9x+ F)ﬂ
and

(1/2) 2n W +0/a7) = Bx +y
-TAhus,

By +y= (1/2) tn [secﬂ of Px + &)]
or,

By +Y=-2ncosa(Rx+HA)

The Equdfion vy"p’ = Bﬁ/(oq - y"')p'

In this case, we have y"(aﬁ— y”) = B. Again, since y" =dy'/dx and y" = y'

dy'/dx, we have

Rx+ 6 =§(a"-u)du=al -u/a
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(;Jnd

Py +Y = (oe— ue) - du = (a?ua/e) --U‘i'/'4

where &and yare constants of integration and the parameter u is, in fact, y'.

' . - n 49
Now, from the second equation, we find that u” =a 4 [0 -4 (By +V)] 1/ .

1/2

However, Ua_aa <0 so that u?z a - |:°4‘ 4(5), + y)] . No§v, we find by combinihg'the
original two equations that u(f‘x +y)/2-(Ry+Y) = lf/12.’ But,

4

¢ =2 -4(By+y) -2 [a-4(Ry+ Y) e So, we have

U2=02-_[04-4(ﬁy+ Y)]' 1o

- and
30 (Px+8) =+ 4(py + ¥ - o[- 4Ry + )]/

If the second equation is squared, and then o s replaced by the first expression,

we obtain a functional relation between x and y.

The Equation y" = B'(1 +y" )'“/‘"

ne/a

In this case we have y" = B(1 +y") By inspection, we see that equation

is satisfied when ever

Yl»” - [(-ﬁ Y/2) + 'V] -4_]
We may assume, with no loss of generality that 0 < (- p_y/2)+y <. Now, we put .

(-8y/2) + y=cn (s,k) where k = 2~1/2 . With this substitution we obtain

(ﬂ dx/ds)c = 2 cn4(s)

so that
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Ax + 5 =+ 21/2‘5cnq(s) ds

So,

i

Ax + A

v g/ [E6s) - 5/2]

where E(s) is the fundamental éllipfic integral of the second kind.
There does not appear to be a method of eliminating the parameter s so

as to achieve a functional relation between x and y.
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BOUNDARY CONDITIONS

In the preceeding isipeciol cases, the boundary condition problem is quite '
different from that of the general case. In these cases, there are three constants
per interval, Generally, two of the constants (say 5 and v) can be eliminated
by requiring the solution to fit through the prescribed joints. This leaves, for
N + 1 intervals, N + 1 fi's to be determined. The requirement of continuous
first derivatives at the joints will provide N conditions on these N + 1 constants
and there remains only one additional condition that can be imposed. In this
case then, we cannot provide th:a usual two énd conditions. Since the approx-
imated integral can be integrated and expressed in terms of the R's one possible
approach is to take a fixed value for the (approximated) total strain energy as
the final condition. This might be of particular interest in computer graphics
where one could generate, and compare, an infinite Fomily of curves by varying

this one variable.

As mentioned earlier, there is every indication that the boundary condition
problem will be a formidable problem. As of the writing of this report, very little

attention has been devoted to this aspect of the general problem.
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