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INTRODUCTION

Spline functions are generally believed to have been introduced by I. J.

Schoenberg in 1946. In the last decade, spline functions have attracted wide

attention and the literature in this area has increased rapidly (approximately 350

known journal articles, books or dissertations in the period 1961-1970). Unfor-

tunately, many of the recent developments are not in a form which is convenient

and accessible for application - oriented users.

Spline functions, especially the cubic spline, have been a valuable addition

to the fields of approximation theory and interpolation theory. Generally, they

are much better than approximations which pass exactly through data points because

they simultaneously approximate the function, its derivative and its integral.

Actually, spline functions have been known for more than two hundred years

and were first introduced in attempts to mathematically model the elastic curve.

Shoenberg did, however, introduce the name "spline functions" and was probably

the first to systematically study the cubic spline and its generalizations and applicat-

ions. There have been many generalizations of the cubic spline. But, for the most

part, these generalizations had one common feature. They were generalizations of

the cubic spline in terms of its properties, but not in terms of the original physical

motivation.

One mathematical basis for the development of spline functions is the Euler-

Lagrange differential equation which arises by applying the techniques of variat-

ional calculus to the problem of minimizing the integral

J = I y"V(l+y'?)*/Sdx=/,-,
Jn

This integral represents the total strain energy in a relaxed, thin, elastic beam con-

strained to pass, without buckling, through a prescribed set of points. Because of the

complexety and non-linear nature of the fourth order Euler-Lagrange differential

equation which results from minimizing J, the exact problem has rarely been considered.
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Generally, there are a variety of ways to approach the study of spline

functions. One approach is to grossly estimate the integrand in J and exactly
M

solve the resulting problem. If the integrand in J is approximated by y" , the

resulting problem lends itself to exact solution - the familiar cubic spline.

Another approach is to investigate various approximations to the integrand in J

and attempt to solve the resulting problems. This is the approach taken by the

author. The results are described in the following pages.

This report is a summary report on the progress of the author at the

conclusion of approximately one half of the proposed project. Many questions

remain unresolved. Most of the unresolved questions have received little or no

attention - they were to have been considered in the latter stages of the project.

The author does not feel that this report represents the report of a complete study

of spline functions and has no intent of so implying.



MATHEMATICAL FOUNDATION

Given a set of points ( x / y )/ n=o, 1,2,- — , N, where the x ,form
i"i n n

a partition of the interval (a,b] (i.e. a=x o <x<. . . x =b), we seek a family of
i n

'methods (functions) for fitting a curve exactly through these points.

We desire further to have the functions from class C [a,b] , to have them

satisfy a specified slope on curvature constrant at the end points, and to have

them maintain the general global "shape" described by the specified points.

We will restrict our investigation to a family of methods (functions) which

are, in a sense to be described, approximations to the elastic curve. Assuming

a desirable "shape" to be that assumed by a thin beam (spline) constrained to

pass through the specified points and meet the end conditions, the resulting funct-

ion is that which minimizes, relative to all admissable functions, the strain energy

integral

J =

Our general method is to seek functions which minimize the integrals which result

from replacing the exact intergrand in J by various approximations. The approx-

imations which we will study are:

1. y"'
v

2. y"7(l+5;

3. y"V5y'3/2)

4. y

5. y"V(l-5y'74?

6. y'"7(l + y|!V (the exact integrand)

p

For purposes of our study, we assume that y1 is very small when compared to unity and

certainly that y'"< 2/5. The procedure will be to replace the intergrand in J by each

approximation and apply methods from the calculus of variations to obtain a different-

ial equation for the desired solution.



THE EULER-LAGRANGE EQUATIONS

It is well known that a necessary condition for a function y to extremize an

/

b
4> (XfV/y'fy") 'dx is that y be a solution of the Euler-

a
Lag range differential equation

4»>

= o

When viewed with the various integrands that we are study ingy it would appear that

little success would be expected. For, in each case, the resulting differential
• o * o ts / o

equation is fourth order and non-linear. For example, if <t> = y" /(I + y1 ) " the

resulting differential equation is

2yTZ(l+y l2f-5y"[(y"+4y'y1")(l+y l3)-7yry"S] = o

There is little improvement in simplicity by taking 4> to be one of the other approx-

imating integrands (except4> = y"Z, which is rather trivial).

Fortunately, in each of the cases we are considering, the approximating

integrand does not explicitly contain terms involving y or x. This leads to a general

method which permits two integrations of each of the fourth order equations.

Since, in each case, there are no terms involving y, the Euler-Lagrange

equation can be written

o =

d_
dx

So, in any interval where y"' is continuous, there is some constant O so that



where we have resorted to the usual subscript notation for partial derivatives.

Now,

But «=o and 0, = -, -" : So,

^ + a v" = v"
dx + y X dx

So, for some constant 0,

' "ay + / = y

rb
So, given the integral 1 = 1 <t> (y1, y") dx, where <t> has continuous first partial

derivatives with respect to y1 and y", the function y which extremizes I relative to

all admissable functions (y1" continuous on (0,6] except possibly at finitely many

points a = XQ < x, < . . . <XN = b and y € C*" p,bj ) must, in each interval

[ n-l, nj , n= 1,2, . . . N, satisfy the differential equation

y" * y n- * = «ny' + *n
For the integrands which we are considering, this result can be simplified

even further. In each of these cases, the integrand <t> has the property that

y" <f> „ =20 and the Euler-Lagrange equation becomes 0 = a y1 + 0 .

Consequently, for the six integrands which we are considering, the respective

differential equations are, in each interval Fx x 1 , n = 1,2,



2. "yu

3. y«*'

4. yH*

5. y»*

6. y»*

For mathematical interest we will add two additional equations:

2 (a) y'

and

4(q) y-

Note that the.right hand members of 4, 4(a), 2, 2(a) and 1 a re polynomials in y1 such

that each is obtained from the previous by eliminating the highest degree term.

Similar!// the denominators of the right hand members of 5, 3 and 1 are polynominals

in y1 such that each is obtained from the previous by eliminating the highest degree

term.



SOLUTIONS

Our attention is then focused to solving these eight non-linear, second

order, differential equations. For convenience in notation during the discussion

of solutions, we will assume that we are working in a specific interval fx x ]
I n-i, nj

and will delete the subscripts from the constantsan and Pn.

The Equation y" = ay*.+ [3

By differentiation of each side of this equation, we obtain, where

X 0, 2y'"=a. Or, y =0. Consequently, every solution is a third degree
M «3

polynomial. Conversely, every third degree polynomial y = ax + bx + ex +d

satisfies an equation of this type with a = 12a and p = 4b - 12ac.

This equation is then an alternate approach to the well known cubic spline.

Results relative to the cubic spline are extensive and well known and will not be

reproduced here.

The Equation y"a= (a.y'+ p)(1 +5y!?2)

For purposes of the general discussion, we assume that# ^ o and change

variables by letting

y = (2/5tv)(4a,-5px/6)

The resulting equation is

where

\i
, e, =5 p/24+i (50^/32) *,



This equation is the well known equation of the Weierstrass elliptic function.

So, we have

U)

where the invariants of I? ore

g =-4(e e +e e +e e ) =
.3 IP 1 .T a 3

[(5p/24f

and A =g* - 27g < 0

We now introduce the WeierstrossS -function (£*(z )= -$(z)); integrate the equation

a/ = Jj> (x+fl), and change to our original variables. From this we obtain

where g and g are defined above, A= -8/5a and C = - P/H • Direct substitution
S 3

verifies that this is indeed a solution to the original equation.

There is an interesting alternate approach to this particular equanon .in

terms of JacoW elliptic functions. Since y"= dy'/dx = y1 dy'/dy, we can write the

equation in the equivallent integral form

and

a y + P x = s(2/5)1/r> f [(a. u + p )/(u"+ 2/5)] T//r> du

where s =± 1 = sgn(y"). By tetting u = « v/l^l, we obtain

x= XJ [(v-a)(v%



and

a y 4 px = I a I X I £(v-a)/(v34b")J d\

where X = MS?/* a. | a. {*'*, a ~ - B/1 a land b = (2/5)1/*

Now, we let A = (a?+b?)1'/R, k = [(A-a)/(2A)J V

v = A [(1-cn(u)/(l+cn(u)l 4 a, where cn(u) has parameter k. After some manipulation, we

obtain ,

and

rr.y 4 flx = XA I "• I j [(l-cn(u)/(l4cn(u)] du

Each of these integrals are known, and we have

and

• t

. • < x y 4 8 x 4 6 * = |«.l> A [u-2E(u) +2sn(u) dn(u)/(1 +cn(u))j

Here, Y*and £* are constants of integration and E(u) is the fundamental elliptic

integral of the second kind. We now let v = tu where t = s a/1 a| =~±\. Then,

since t E(u) = E(v), t sn(u) = sn(v), dn(u) = dn(v), and cn(u) = cn(v), we have

and

av + Px + 5 * = [2A I a I/5J^ [v-2E(v)+ 2 sn(v)dn(v)/( 1 + Cn(v) )J

With c"^ [2/(5A I a I)] X/" and d"1 = (2A I a I/S)1^ (so cd = (5/2)'/=)

we obtain

ex + Y - v

and

Ctdy + (pd-c) x+ 6 = -2 ,[E(V) -sn(v) dn(v)/(l + cn(v))J

This provides a functional relation between x and y.



The Equation y"3 = ,8 + a y'-l-5 Py'~/2

First, we let X=(5P/2 (which may be complex) and change dependent

variables by letting y =a x + bM, where a n-a/2 ^ and Ab=(2/5-a ) . This leads

to the equation

-> r, .2 4a " -V n ' = > .

whose general solution is M*'= A s inh^(x+c) . Consequently, |j, = cosh ^ (x + c) + c*

and the desired solution is

y =a x + b cosh > (x + c) + d

In exactly the same manner, if we let ^=(-5^/2) t a=ry/2l and

lb= (a8- 2/5) :/^we obtairnn

y =a x + b cos > (x + c) + d

as the general solution. These are of course equivallent solutions in the context of

complex constants.

The Equation y"' = (« y' + p )/(l - 5y'

We assume that a p / 0 and y'"< 2/5. Consequently, a y1 + p "> 0. Now,

we change variables by letting y1 = « a m', where a = (5a /2) , and obtain the

equation

u,"n=(""-b)/(a*-m'P)

10



where b = -p/(ot a' ). From the restrictions y'°< 2/5 and ay1 + P "> 0', we obtain the

corresponding restrictions m1 -b> 0 and a -tu ' >0, Also, ab/0.

Then, there are three cases that must be considered. They are:

(i) b< -a<"(u '<a, (ii) -a < b <«>' <a, and (iii) b - -a <,» '< a.

Case (i) b<-a<'o'<q

In this case we assume that y" (and hence to") has no zeroes in the interval being

considered and let s = i 1 be a factor to indicate the sign of m" <n the interval.

The differential equation is then

o r / ' ' - > - ' / '
sro 'dm' = [(b -«»')/(«>'"- a^J d-

So, we can write the two integrals as

x= s ^[(a-uKu+a^u-bJI^du

and

c r" "* \fa
m = s I |(a -u)(u +a)/(u -bj " du t

For simplicity, we write these as

x=s[[(a-u)(u+a)/(u-b)]1/5du

and

'» - bx = s

Now, we change variables of integration by employing Jacobi elliptic functions

arid letting

sn(t) = [(a-u)/2a] ^

where the parameter k is given by k - [2a/(a -b)j 1/P.

We then obtain

x = -2sk(2a)3//?'J>sn2(t)cnK(t)dt

11



and

") - bx = - 2 sk"1 (2c$/* J snp(t) dn*(t) dt

Now, we simplify notation by taking \ l= -2 sk(2a andtl T= -2sk~T(2a)

Then, we have

and

}4 (<« - bx) •= J sn? (t) en" (t) dn' (t) dt

Since dn'(t)= 1 -k sn (t) and en (t) = 1 -sn"(t), we obtain

X x = A - A
?. 4

and

u("> - bx) = A?- (Uk*) A + kp A^

where, again, Am = fsn (t) dt.

Now, from well known reduction formulas we know that

5k" A =4(l + kP) A - 3A + sn3(t) cn(t) dn(t)
6 * 2

Consequently

and

5u(m -bx) = 2A -(1 + k") A Hsn3(t)cn(t)dn(t)
\ p 4

Again, from known reduction formulas,

" |As-Ao + sn(t) cn(t) dn(t)

12



Then, we have

3> k?x ='A0 - (1 + 2^) A - sn(t) cn(t) dn(t)
o

and

-sn(t) cn(t) dnft)[l-i k^-Sk" snS(t)]

This result can be simplified further by writing it as

3X k*x = A0 - (l + 2kS) A - sn(t) cn(t) dn(t)

and

9 • "i ^y m
\ \ A /I ' 1 \ A . Ol ™i15uk(m-bx)-3X k (1 + k") x = -2(l + k ) AO -(k -1) A^+ 3k sn(t) cn(t) dn(t)

Now, k A^= AQ - E(t) = t - E(t) where E(t) is the fundamental elliptic integral

of the second kind. Thus, we have

• 3X k% = (l-i-2k") E(r) - (Uk") t - k%n(t) cn(t) dn(t)

and

-15uk*('"-bx) +3>k4(l-hk°)x = (1 -M E(t) - (2k*+ 3k8*-1) t-3k* sn"(t) cn(t) dnft)

Now, '" = (ft a ) y, and constants of integration have not yet been added. So, we

have the parametric solution

Ay+ Bx 4 C = (1-k") E(t) - (2k4+ 3k°-l)t - 3k4 sn8(t) cn(t) dn(t)

and

Dx + F = (1 + 2k?) E(t) - (11 kS)t - kP sn(t) cn(t) dn (t)

where a/ p, C and F are integration constants, A = -15 uk (^ a ) , B = 3^ k (1 + k")

+ 15 ubk4 , D= 3Xk4 , k? = 2a/(a-b), >'*= -2sk(2a)S/s
/

u"'= -2sk"l(2af//2f b=-(Vf(aJ'ar')/ a=(5aV2)"1/<! , and s = ±1 (= sgn,,)").

13



Perhaps the more useful form of this solution is

X x - JsnP(t) cnV) dt

and

(X + ub) x - u'» = k* J sn*(t) cnP(t) dt

%

Case (ii) -a<b<"'o '<a

As In the previous case, we arrive at the integrals

x = s J [(a - u)(u +a)/(u - b)] '/°du

and

m - bx = sJ[(a-u)(u-Ki)(u-b)] T ^du

Now, we change variables by taking

sn(t)=[(a-u)/(a-b)]1/3

.

= -2sk?(2a)? /^ J sn3 (t) dn~ (t) dt

where the parameter k is given by k = [(a-b)/2a] . With this procedure we
obtain

and

or, with -X"?= -2skC(2a)^and M -1 = - 2sk4(2af/2= 2akP'^ ~\

and •

u(u) - bx) = Jsnr(t)dn2(t) cn2(t)dt

14



9 9 9 • ' 9 9

Since dn (t) = 1-k sn (t) and en (t) = 1 - sn (t), we obtain

and

Xx = A0 - k' A .
i 4

u («» - bx) = A - (1 + k') A +k" A
z 4 o

.where

Am=Jsnm(t)dt

Now, from well known reduction formulas, we know that

Consequently,

and

5kE A = 4(1 + k") A - 3A +sn>) cn(t)dn(t)
O 4 ^

Xx = A.- k?" A .

5Ll(<o- bx) - 2A2-(1 + kS)A4 + sn3(t) cn(t)dn(t)

Again, from known reduction formulas,

3k2 A4= 2(1 + k^) A2- AQ H- sn(t) cn(t) dn(t)

Then, we have

3 X x = AA >-0 - 2,k3) A '-sn(r) cn(t) dn(r)

and

15u k («o - bx) = (1 +k" )AQ - 2(1 -

-(l+k2)sn(t)cn(t)dn(t)

3-H3kn(t )cn( t )dn( t )

This result can be simplified further by writing it as

3 X x = A + 0 - 2kS ) A2- sn(t) cn(t) dn(t)

and

15U |T(«» - bx) - 3X (1 ^k^ )x =- 3(1 -k" ) A2f 3k%n3(t) cn(r)dn(t)

15



Now, k A =An-E(t) where E(t) is the fundamental elliptic integral of the second

kind. Thus, we have

, ' 3Xk"x = ( l -kS )A -(1-2k3)E(t)-kHsn(t)cn(t)dn(t)

and

yk"(l+k")x-5iik*(w-bx) = (1-kP)A0+(l-k8) E(t)-k4sn3(t) cn(t) dn (t)

This result can be inproved further by subtracting the first equation from the second

to obtain

3\k3x = (l-ka)A0-(l-2k3)E(t)-k%n(r)cn(t)dn(t)

and

> k3 (k" - 2) x - 5a k4 (u) - bx) - (2 - 3k') E(t) +]?' sn(t) cn(t) dn3 (t)

Now

Ao = t, and we have not yet added constants of intergration. Also, m =(aa ) y.

So, we have the parametric solution

Ay + Bx+C=(3k?-2)E(t)-k sn(t) cn(t) dn* (t)

and

Dx + F - (2lc? - 1) E(t) + (1 - k* ) t -k" sn(t) cn(t) dn(t)

where a, f?, C and F are constants to be determined, A = 5a k (o a )

B=-5Ubk ->kSn<
r'-2)/ D = 3>k3 , kS=2a/(a-b), X"1^

b = -p/(nr2
a
S), a = (5* 2)"/9and s = ^1 ( = sgnm").

Perhaps the more useful form of this solution is

-uou + (u b + X ) x = A - k " A= -j sn4(t)dn'(t)di

16



Case (iii) _ b = -a < diV a

In this case, the differential equation becomes "i"" (a-«)') = 1 , which is

satisfied whenever

That is, whenever

( a a)~\ = a x + 5 - 2 [+ 3(k + y)/2] " /̂S

where a , y and 6 are constants of integration, a=(5a /2) and B =a a .

Normally, these degenerate situations will not occur since there must be,

in general, four undetermined constants in each solution interval. If the boundary

conditions dictate the degenerate case, then the general case will in fact reduce

to this case naturally.

The Equation y"^ a y' + P )Q •'• 5y'P/4)'

This equation is one of the more interesting of the equations we are

studying. The general approach will be to obtain parametric representations

for x and y and then eliminate the parameter to determine the functional relationship

between x and y.

We assume that a/ / o and note thatrv y' + p>o with equality only at

points where y" =o. First of all, we change variables by the substitution

m = o r y + p x . This leads to the equation

11"—

17



where, for simplicity, we have let X = 5/4 a and k = (f + 4 a /5) . We note

that the quadratic equation t ' - 2 P + k = 0 has no real roots. Consequently,

(o ' "- ? Pfi)1 + k has constant sign throughout the interval of consideration. We

make the further assumption that m" (and hence y") has no zeroes in the interval of

consideration.

where s =+• 1 • Now, we may also write (since m" =d<u'/dx = 01''

s A , n ' dm'/dm = (m1)1^ (m1"- 2p(0 ' 4 \<?)

From these two forms, we conclude that

C du
x =

J>/T~(,f-2pu

and

nr du

+

(I) = > S
f

where the parameter u is actually"'1. Now, we change variables of integration by

letting v= (a) and obtain

x = I (v4- 2pv%|<4) dv

and

1
-i

I dv

In this representation, the parameter v is actually (m1) ."= (o'y'+p)

Fortunately,-each of these integrals can be integrated in closed form in terms of

well known functions. After considerable effort, we arrive at the result that

18



x + c1 =
1 /

2 cos(0/2) ^
V

P+ 2kv cos (9/2) +
vp - 2 k v cos ( n/2) +

.,/2kvsin(e/2)

and

a)
- i

2 cos(n/2) in(Q/2)s n

tanY2kvsrn(9/2)\

, ^ k-v- )

< fl v = u)1) pwhere cos t-\ = R/K^ , o < p < fl, v = (u)1) p, and c1 and d1 are constants of integration.

Consequent, we obtain

U) + d '+k"(x + cl) =

and

: + c')=(>s/2kcos(fl/2)) L^,

Now, for breuity, we write

and

F(m,x )=exp

G(u>/ x) =tan [g

where

and

f(«o,x) = [2kcos(R/2)] [co+d'-k :?(x + c1)] AS

= [k sin (o



Then, we have

T ' ' •

v -2kvcos(e/2)+k''= (vP+2kvcos(e/2)+kS) F( '» / x )

and

2kvsJn(0/2) - (k " -v - ) G('»,x)

By simplifying each, we obtain

v%2kcos<fl/2)coth(f)v+ka=0 (*)

and

v% 2ksin(fi/2)cot(g)v-k2 = 0 (**)

If we add (*) and (**), we obtain

v% vk [cos(6/2) coth(f)+sin(B/2) cot (g)] = 0

so (since v=o is not a solution)

v = -k [cos(P/2) coth (f) +sin (ft/2) cot (g)]

If we subtract (*) from (**) we obtain

v = - k/ [cos (0/2) coth (f) - sin (ft/2) cot (g)]

Since vA>o anc' cos (p/2)> o, we conclude that coth (f) < o (and hence f <o).

Equating the latter two expressions, we eliminate v and see that

[cos(fl/2) coth (f)1, B - [sin(fl/2) cot (g)] 3 = 1

Consequently (since coth (f) < o and cos (0/2) > o ) a necessary condition is

- cos (fi/2) coth (f)- [l+ sin(<V2)cot(g2] *A

20



where

f = 2kcos(e/2) [ay + (p-kS)x+c] /Xs,

g=ksin(fi/2) [ay

sin

cos(0/2)=[(k'>p)/2k P7;

s = s g n ( y " ) = ± l

The constants nr. , P, c , and d are arbitrary constants to be determined by boundry

conditions.

We note that the above result gives a necessary condition. For

sufficiency, assume that x and y are related as above. Define a function M. (x,y )

u,(x, y) = sinhT [sin (9/2)/tan g]

Then, sinh |i=sin (0/2)/tan g and cosh u = - cos(B/2)/tankf.
-U

Now, we let v = k e •> o and determine that

tang =2kvsin(e/2)/(kP-vn)

and

tanh f = - 2kvcos(R/2)/(kn +v")

Now, we solve for f and g and differentiate with respect to v. The result is

and

Then,

ay + px = 2>svp/(v - 2 R v "



and

then, we have

and

y" =(dy'/dv)/x = v ( v 4 - 2 p v P -

So,

(ay1 + p yy(\ + 5y'P/4)= 5v(v*-2R

Since a \ •

Consequently,

The Equation y"2=p + a. y1 + 5 P y'^ + 5 g.y'V2+ 25.Py'4/l6

As in other cases, we assume a fl ^0 and let s = sgn(y") = * 1. Since

y" = dy'/dx = y1 dy'/dy, we obtain the integrals

/
/ 4 J 3 , p A v " 1 / ![a_ u +4a u +6a u + 4 a u + a) / t ;duv ° i s» ? 4

and

4* 4 ^ r* •"! /2
y = s I u (a_ u + 4 a u - t - 6 a u + 4 a u + a ) du

J ° 1 ?. ••? 4



where a0 = 258/16, a = 5 nr. /8, a^ = 55/12, a =rr/4anda = (5 .

The parameter u is, in fact, y1. Now, we assume that y" = 0 when y1 = b0

(i.e. b0 is a root of the quritic); and let u = bo + u)'1 in the integrals. After

considerable algebraic manipulation, we obtain

$ / j » i ^ j » . \~i/i>.
(4A to + 6A a)' + 4A^ m + A ) ^

y - bQx = -s 5 m (4A

where y" = f(y') and

A, = a0b% 3a? b/ + Sa^ b0 + a, = f(bo)/4

\ =aob; ^.^b^a^ = f"(b0)/!2

.'« + 6A in + Ax) du

Now, we again change variables in the integral by taking <u = A (t-A/2).

The result is

x = -s ^ (4t3- g^t-g/Va dt

and

0 i

where

*^

- 4A A = a

(x-bx)/A = -s $ (t-A/2)" ( 4 t - g - g 7 ) - dt

0
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and
g O o ., ^

g =2A AA - A - A A = a0 a a +2a a a -a -a a -a a
? 1 S f l . n 14 ° n 4 ! " < > : • O o 1.4

Note that g and g are, in fact, the fundamental invariants of the original quartic

f(y'). In terms of or.and ^/

3p =(25Ba/12)'-(5a?/B)

f -(5R/6)(5an/8)(11/16)

Once more we change variables by introducing the Weierstrass Pe function

(z; g.'9fl) = )?(z) and letting t = $(z). This leads to the integrals
«

x =s$dz

and

The second integral is the Weierstrass elliptic integral of the second kind. With b

chosen so that A_ = 2 ̂ (b), we have

x + Y =sz

and

6 + (y-box)/Aj = [y (b)] "' {in [rj (z-b)A(z-fb)] + 2z r. (b)
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Here rr and C are, respectively, the sigma and zeta functions of Weierstrass. Because

the sigma function is an odd function (i0e. T (u) = - ^(u) ) we obtain, for either

value of s,

and y has been expressed as a function of x and four constants (a/ 0, Y, and 5) of

integration. The sigma and zeta functions are formed using the invariants g and g ,

The appearance of the numbers b and bo in the solution will present great difficulty

in fitting boundary conditions as will the dependence of g and g on the boundary

conditions*

For sufficiency, we note that

'(x+Y-b)/a(x-l-Y-b)] _(V(x + Y+b)/cr(x + Y + b)] + 2rr

So,

y" = _AI ^ '(x + Y)/ [g°(x + Y)- A^ /2J

Consequently, we have

But,

x+ Y)] 3= 4 'G*(x+Y) - 9^ tf (x+ Y) - g
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So,

V)-

However,

and we substitute to obtain

H3A> g)[A /(y'-b0)] + 4(A/2f-(g A /2) -<g
- *- ' 2 • t?. ?. ' 51

Now, 3A?-g =4 A A and 4(A fif - (g A /2) -g =A° A .
c ? i r» r n 2 ^ 1 4

So, we have

y"r=A (y'-bo)*+ 4A (y'-bo)'
+6An(y

l-bo)"+ 4A (y'-bo)
4 .*3 *- 1 -

Expansion and simplification gives the original differential equation (since f (bo) = 0).

The Equation y""= (r, v' + fl)/( i -Sy'

This equation lends itself well too parametric solution. However, no

method has been found to eliminate the parameter and finda functional relation

between y and x.

As in previous cases, we assume n. p ̂  o and that y" has no zeroes in

the interval of consideration.
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Then,

y" =

where s = ± 1 = sgn ( y" )

We now change variables by letting t» = nr. y + j*x. Then,

Then, we can write

and, since d(o'/dx = (dou'/dcuK,;

-3- 10

where M, is actually cu'

Now, we change variables in the integrals by taking t = y, ̂ , and

integrate, to obtain the parametric solution.

and

^s)"1 [5t

where the parameter t is actually (ay'

We note that, regardless of any knowledge of the significance of
p

the parameter t , t x =uj . From this relationship we can easily verify that these

parametric solutions are indeed sufficient to satisfy the original differential
»

equation (assuming that t is positive). The significance of this parameter will be

of considerable interest when we consider the boundary conditions and the

problems of joining solutions over adjacent intervals.
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The Equation y"?=(a ./'+ 8 )(1 + y'T

In this case we assume that, in the interval under consideration,

n.p^o . We effect a rotation of coordinates by making the change of variables

v=

Then, *i = du/dv= (a-py')/(a y'+p). Interestingly, this gives

y1 =(rt-p&)/K l+f). So,

ay1 + f = (^+fO/(°<M- + P)

and

1 + y '
 r = (a" + pp) ( 1 H-,f )/(

Hence, the differential equation becomes

Now, we let

u =

v =

Then, <*> = d<o/dT = dn/d v and u = d^u/d v* = (dnm/dTP) (^ff ) ^2 and we have

the differential equation

af = 4 ( 1 +AP)S/S
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By direct substitution, we discover that the equation is satisfied if

where Y's a constant of integration.

Now, we again change variables by introducing the Jacob! elliptic

functions and letting

(«> + Yf =crT(s,k); k=2J|/8'

We then obtain the differential equation

(dT/dsf = k%n4(s,k)

T = * k f cnn(s, k )ds = *k j (2dnp (s ,k)- l

So,

. r - f._ . P.
)ds

Hence, T +Y = + k (2E(s , k)-s)

where E (s,k) is the fundamental elliptic integral of the second kind.

By writing a = n./2(a +f?)l^and b = p/2(a% *y we can write this solution in

the form

(bx+ay + Y)" = k n ( 2E (s ) - s ) 3

s

where E(s) = 1 dn3(t,k)df, cn?(s,k) =(ax-by+ot)?
and k =2""*

o
To determine sufficiency, we note that d ( 2E (s) -s)/ds = cn (s,k) so that

(b + a y') (bx + a y + s) =k2(2 E (s) - s) cn2(s,k) (ds/dx)

But, -cn(s /k)sn(s,k)dn(s,k)(ds/dx)=(ax-by+Y)(a-by l).
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So,

:cn(S/x)(a-by')V(l-cn4(S/k))

Or,

where L=ax-by+Y . From rhis equation, we obtain algebraically

and by differentiation

Consequently,

= 4(a%b1/S

Several remarkable results can be observed by rewriting the above solution as:

ax-by + v = f ( *> = * cn(t,k)

bx+ay + Y = kg(t)=k\ cna(u/k) du

where, g=f2( t), k= 1~ *̂ , a= o/2(a% pa)'/4 and b= */2(a*+ p")^ .

We again check to verify solution of the differential equation by observing that:
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. , . i
a x - b y = f
i • • I rbx+ay= kf

P=k ? ( l - f
' •» o

f + f ' = 0

b k f a f > 0

sgn(f)=sgn(y")

We note especially that the curvature H Is given by K = y"/(l ^'ylr*') ^fi =

2(aS+b7) f = 2 (a+b^ ) (ax-by + v). Of more interest, and of considerable

Importance, is the significance of the parameter t. If s is arc length, then

ss = x ° + y = ( f + k " f )/(a '+b") =k'/(a'+b"). That is, the parameter t is, in

each interval, a constant multiple of arc length. We have then derived a

parametric representation of the true elastic curve with arc length as the parameter.
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MINIMIZATION OF INTEGRALS OF POWERS OF CURVATURE

The solution process for the previous equation, which arises from minimizing$ k ds

(where k is curvature as a function of s), suggests a method of approaching a much more

general problem. Though not directly a part of the present study, this generalization

will be presented.

Suppose that we wish to find a function y CC £a,b] which extremize the integral .

Jk ds where k is curvature, n is a positive integer and n t 1. From our earlier work,

we see that the Euler-Lagrange equation is

4n . _.-, . - (3-1)/2
(X") =("-!) (a y - -

Now, we change variables by making the substitution

a/j = a x - p y

a v = p x +fly
t/ _ - (n-D/2n

•?, 9
u - \ri-i; (a P )

With u = du/dv, we obtain

Of Ml",, -,(3n-"/2
(v) — \ - \ ) ( 1 + u )

By direct substitution, we find that this equation is satisfied whenever
_ 2n/(l-n)

09= Rn-lWn + YJ -1

Now, we put k = 2 ' and

]
/ I \ /

Then, we obtain
J3n-2)/n

(dv/dt) = 4k" Icn (t,k)|

For sufficiency, we write

- x - p y + Y = Ar/(n-l)[f(t)]

t (3n-2)/2n
= 2kBJ[f(tTj dt

o
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n
where f(t) = cn Xt,k), k = 2"V% A=(ri-l)('ia+8a) andB

We observe that

(3n-2)/2n
x + fy = 2kBf

f =

1 + y-2 = 4(a" + Pa ) Br k^ f/t1^ -A f + 2k P B f "S f

(3n + 2)/2n .
y " = (2kf AB (aa +)93 f f /( a. A f + 2 k 3 B f^ )"

n(3n-l)/2
Direct substitution shows that indeed, (n-l)(y") ={or y1 +p)( 1 +y' )

Alternately, we can write
a

ax-py+Y=[An/(n- l) ] P(t)](n"T)/5*n

(u)] " au

where f(t) = cos^t and A = (n-l)(a* + Pin) (n"1)'/2

We observe that

and
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f =2(l-2f)

(n+l)/2n
F

(n + l)/2n
f

rf.f + P f )

(3n + l)/2n

Direct substitution shows that indeed

.-1.,
• (3n-l)/2

For the special case n = 2, the parameter t is related to curvature k by the relation

»-t **> —i

k = cos t. Arc length s is related to the parameter t by the relation s = (cos t) ,

•
and strain energy E(t) at any point is related to curvature by the relation E = K.

Each of the previous cases is a special case of a more general approach. In

general, we can let

= [An/(n-l)]F(t)

and

Px+ r ry+ ft = [An/(n-l)]G(t)

i •-/iV • L... Ap c^i-r>n/(n"l)//i r-3n/(n~l)\ -i An / i\n/ iw •where F(t) is arbitrary, G =F F v /O'F ) and A =(-1) (n-l)(a
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We observe then that

o r x - B y =[An/(n-l)]F

nr.y'.f-p = K+ f") G/(«-F+ pG)

(3n
• » • • • * , -i • ^8

GF-FG =[n/(n-l)]G F

O " n

,
and direct subsritution verifies that (y") = (n-1) ( a y ' h P)(l + y'*)

This permits an infinite variety of parametric representations. We need only

choose F arbitrarily and let G be given by

=± f Fn(n"1!f v /J o-FVfn-i)^
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BOUNDARY CONDITIONS

The problem of matching the solutions of the foregoing differential equations

was to have been the major emphasis of the second phase of this project. Con-

sequently, as of the writing of this summary report, very little attention has been

devoted to the boundary condition problem.

Basically, the problem is as follows: in each of the intervals (x , x..)
n—i fi

n = 1,2, , N we have a solution of the form f (x, y, a n/ pn, Yn/ fin)
 = 0.

Consequently, we have 4N constants of integration to be determined. With these

constants, we have the conditions that the solutions pass through the specified

points (2N conditions), that y' be continuous at each joint (N-l conditions) and

that y" be continuous at each joint (N-l conditions). In addition, we impose

additional condition at each end (at x and at XM). Consequently, we have 4N

specified conditions to determine the 4N constants of integration. While, in theory,

this is sufficient, the practical situation is that this is a formidable problem indeed.

For example, in several of the situations the solutions involve elliptic functions

whose invariants are dependent upon the constants of integration. In these cases,

functional values cannot be determined except as transcendental functions of the

constants of integration. So, in general, the problem reduces to one of solving 4N

non-linear equations in 4N unknowns. Detailed study of individual cases might

wellresult in effecient individual procedures for attacking this problem. But, as of

this report, no such detailed study has been attempted.
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It is observed that, in each case, the differential equation provides an

additional route for investigation of half the constants of integration (the a and 8 ).

In this process, however, one must temporarily introduce additional unknown

quantities (the unknown values of the slope and the second derivative at each joint).

The following very general approach may indicate a possible process for determining

the constants of integration. Of the eight differential equations we have considered,

the six which result from approximate integrands are of the form

II / I \ ft \\ f* I \ 1 O k. Iy = (nr. y'+ p ) f(y') x€ (x , x ; , n = 1,2, , N

If we assume that y" has no zeroes, except possibly at the joints, and introduce the

quantities

mn - y'(x ) n=0, 1, 2, , N
n

and

Mn =y"(x ) n=0, 1, 2, , N
n

we obtain the "parametric solutions" (for n =1,2, , N)

y1

rr
s I r-*u
n J

m*1 I-

x-x = s I r-*u+Bjf(u) du
n-i

m*

and
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n-l

where sn = i 1 is the sign of y" in (x x ) For the determination of the
n-i n

constants we have

m
r ~\ /

< -x = s f |(" 'u+BjfM "
n n-i n I n

m-' L -1

n du n = 1,2, —, N

n-i

m

yn-yn-t. =s

m
n- 1

""du n= 1,2, —, N

(o n = l,2f --, N

(an Mn i Pn)f(Mn) n - 1,2, -, N

and two end conditions. This, in theory, would permit one to determine the 4N+2

unknown quantities if the values of sn were supplied in advance. Some obvious

simplifications are possible but it is not presently possible to state whether or not

this general process would be either effecient or fruitful. We can only conclude

that the boundary condition problem must be given considerable attention before

it is possible to make a valid conclusion as to the utility of our solutions for

applications oriented users.
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APPENDIX A: SPECIAL CASES

In our discussion of the eight differential equations given on page 5, we have

generally excluded the cases where rr. p = 0. The purpose for this exclusion was that,

generally, four arbitrary constants were required in each interval in order to satisfy

the imposed boundary conditions. In the case that a particular constant is zero by

viture of boundary conditions, then the solution will appropriately reduce to fit

the boundary conditions. In many physical applications, continuity of y" at the

joints is essential (e.g. in automotive or ship design problems, the mathematical

curves are reproduced by mechanical means. The milling (or drafting) machine

will not operate in such a way as to allow the second derivative (and hence the

currvature) to vary in a discontinuous manner. Such variance would require

machinery to achieve instantaneous acceleration.) However, in many curve fitting

applications, continuity of second derivatives may not be an essential feature. This

fact has led us to briefly examine the results of setting a;= 0 in the differential

equations in question.
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The Special Cases a=0

The cases which arise by putting a = 0 in the differential equations have a

special interest since they can also be interpreted as the results of minimization

of the strain energy integral when continuity of y" is ignored. We saw earlier
b

that the Euler-Lagrange equations for extremizing the integral $ ^y'/y'Odx, when
a

•

y" ^w" = 2co, was CP = O y' + P. If we put y's. u in the integral, we seek to extremize

fk
J ^(^u'Jdx. The Euler-Lagrange equation is then cp= u' fpyi- p. But u1 to u1* 2<tpt So,

we have ?p - 0 as the differentia} equation. This is the same result that fs obtained by

putting a = 0 in original case.

In this case, the equations from the six integrands given on page 3 become,

respectively,

2.

3. y"* = Pn/(l-5y'V2)

4. y"'=P (l+5y|8/4fn

n

we note that, in each case, Pn > 0. For simplicity of notation, we delete the sub-

script n and change the notation of the arbitrary constant by, respectively, taking

pn = p\ pft = 2p
c/5, Pn -5PV2/ pn = (4p/5f, pn = (5P/4)3, and ^ =f. This
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gives the six equations

1. y" '= ff .

2. /'"'= B'V+y'7); a2=2/5

3. y»' = p:'/(a7-y'°) ; a?=2/5

4. y"P = P:y +y''T ; a =4/5

5. y"> PV(a"-y'?f ; a?=4/5

•2 •*.*/*
6. y" = n (1 + y1 )

As in previous studies, we assume that y" has no zeroes in the interval in question.

Consequently, we may assume that j? and u" have the same sign and f -4 0.

The equation y"''= fC

With our assumptions, this gives y" = f and y is a second degree polynomial in x.

Note that there are three arbitrary constants to be determined

The equation y" = p (a + y'"")

In this case we have y" = f (a'-i- y1 ) whose solution

is P y + * = a cosh (f x -f y) (where a > 0).

The equation .y""= P /(a'-y1')

In this case we have y"(o-y1 ' ) = f . Now, since y" = dy'/dx and y" = y'dy'/dy,

we have

fJx -I- ̂  - ^ (a"- u^y du

and

f l y + Y = <$ (a - u ) udu
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where F> and Y are constants of integration and the parameteru is, in fact, y1.

Now> in each integral we change variables by letting u = a sin 9 (where

_ T/2< e < »/2). We obtain then

px + * = aajcos3 9 d9

and

py+ Y i= a 5 cos" 9 sin 9 d9

We can readily integrate these equations to obtain

p - x + f t - (a?/2)(9 + sin 9 cos 9)

and

p x + Y = -(aV3) cos* 9

It is easily verified that this parametric solution does indeed satisfy the differential

equation. It is also possible to eliminate the parameter to obtain a functional relation

between y and x. Since a> 0 and cos 9 > 0, we must have (By + Y) < 0. Then

acos9>- [3( (3y+Y) ] 1 / S ,

= scos'1

and a sin 9 = s

where s = * 1 =sgn(y') . Consequently,

2s( p x + ft) = a" cos"1 [ (-3/an)( Py
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The Equation y""= R (a"+ y>?)'

In this case, we have y" = fl (a °+ y1"). Again, since y" = dy'/dx

and y" = y' dy'/dx, we have

and

p y .,. Y * = 5 (a* H uV udu - (1/2) 4 n (a2 + u*)

where ft and V* are constants of integration and the parameter u is, in fact, y1. We

note that these equations can be written

u/a = ran la(Bx + f>j|

and

(1/2) jen (l+wC/<T) = px + Y

Thus,

P X + y - 0/2) ;<n [sec' a( PX + fijj

or,

P y •»• Y = - jK n cos a( R x + ?>)

The Equation y"3 = pV(a ~ X* )

In this case, we have y"(a"- y|!?) = p. Again, since y" = dy'/dx and y" = y1

dy'/dx, we have

c r* ° "* r^
p x + f) = j (a"- u )du = au - u'/y

43



and

P y + y = (a~-u~) du = (oV/a)- u/4

where 6 and yore constants of integration and the parameter u is, in fact, y1.

Now, from the second equation, we find that u" = a " ± [a -4 (Py + V)] Vs _

i/n . '
However, uE-aS «- 0 so that i/= a^ - [a4- 4( (3y + Y )] • Now, we find by combining the

original two equations that u(Px i Y )/2 - (f y + \) - u/12. But,

u4 = 2a*- 4( py + y) - 2a2 [a*- 4( p y 4- y)] 1//? . So, we have

u* = aa- [a 4 -4(Py+ Y ) ] A

and

3u ( p x + 6 ) = a4 + 4 ( p y + Y ) - a

M

If the second equation is squared, and then u is replaced by the first expression,

we obtain a functional relation between x and y.

The Equation y"^ p"(1 + y'3)^

"K/i .In this case we have y" = (3(1 I y1'") . By inspection, we see that equation

is satisfied when ever

We may assume, with no loss of generality that 0<"(- fly/2) + Y £. 1 . Now, we put

(~Py/2) + Y= c" (s/k) where k = 2 . With this substitution we obtain

(^ dx/dsf = 2 cn4(s)

so that
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So,

flx + * = + 2Va [E(s)-s/2]

where E(s) is the fundamental elliptic integral of the second kind.

There does not appear to be a method of eliminating the parameter s so

as to achieve a functional relation between x and y.
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BOUNDARY CONDITIONS

In the preceeding special cases, the boundary condition problem is quite

different from that of the general case. In these cases, there are three constants

per interval. Generally, two of the constants (say f, and v) can be eliminated

by requiring the solution to fit through the prescribed joints. This leaves, for

N + 1 intervals, N + 1 P's to be determined. The requirement of continuous

first derivatives at the joints will provide N conditions on these N + 1 constants

and there remains only one additional condition that can be imposed. In this

case then, we cannot provide the usual two end conditions. Since the approx-

imated integral can be integrated and expressed in terms of the R's one possible

approach is to take a fixed value for the (approximated) total strain energy as

the final condition. This might be of particular interest in computer graphics

where one could generate, and compare, an infinite family of curves by varying

this one variable.

As mentioned earlier, there is every indication that the boundary condition

problem will be a formidable problem. As of the writing of this report, very little

attention has been devoted to this aspect of the general problem.
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