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ROUND-OFF ERRORS IN CUTTING
PLANE ALGORITHMS BASED ON

THE REVISED SIMPLEX PROCEDURE

INTRODUCTION

This report statistically analyzes computational round-off errors associated with
the cutting plane approach to solving linear integer programming problems. Cutting
methods typically employ the revised simplex procedure to augment fractional cuts
(secondary constraints) during the search for the optimum integer solution. The revised
simplex procedure requires that the inverse of the basic matrix be computed at each
iteration. Since the inverse for each successive iteration is computed directly from the
previous inverse, round-off errors tend to propagate. The accuracy of the computed
inverse is very important because all the other information associated with an iteration is
computed from the inverse and the original problem coefficients.

Two procedures for minimizing round-off error accumulation are presented and
their influence is statistically analyzed. One procedure employs a very small tolerance
factor to round computed values to zero. The justification for the procedure is that
computed quantities having absolute values less than the tolerance are most likely
accumulated errors. The other procedure is a numerical analysis technique for
"reinverting" or improving the approximate inverse of a matrix. The value of the
tolerance employed and the frequency at which the basic matrix is reinverted are both
shown to have a statistically significant effect on round-off error. The results indicate
that employing a tolerance factor which reflects the number of significant digits carried
for each calculation and applying the reinversion procedure once to each computed
inverse effectively minimizes round-off error accumulation. If 18 significant digits plus an
exponent are carried for each computed quantity, then a tolerance factor
of 0.1 X 10"12 is reasonable.

Readers of this report are assumed to have a working knowledge of the simplex
method and the revised simplex algorithm.



LINEAR INTEGER PROGRAMMING AND
CUTTING PLANE METHODS

Cutting methods seek to reshape the continuous solution space by consecutively
imposing special constraints on it until the required optimum integer solution coincides
with the optimum simplex solution. These methods capitalize on knowledge that the
simplex solution to the continuous problem must occur at an extreme point. If the
continuous solution is integer, it is the optimum solution. Otherwise, it is an infeasible
point that can be eliminated. One or more secondary constraints can be computed from
the current simplex tableau which, when augmented to the problem, "cut off" a portion
of the feasible space which contains the current solution. A secondary constraint, referred
to as a cut, does not violate any feasible integer points since it is nothing more than a
necessary condition for integrality. The dual simplex method isolates another optimum
extreme point as feasibility is recovered. Successive application of cuts produces a feasible
space with an optimum extreme point satisfying the integrality conditions.

Figure 1 illustrates the application of cutting methods. Only two cuts were
required in this example to permit the optimum simplex solution to coincide with the
optimum integer solution.

Since most cuts contain fractional coefficients, the addition of each new cut adds
to the round-off problem. Therefore, it is desirable to employ a simplex algorithm which
has a mechanism for purging the tableau of round-off errors after several iterations have
taken place. The revised simplex algorithm has such a mechanism. At any iteration of this
algorithm, the entire tableau can be constructed from a knowledge of the inverse of the
basic matrix and the original problem coefficients. This means that the tableau can be
purged of round-off errors at any iteration by reinverting the basic matrix.

Figure 2 presents the primary steps required to use the revised simplex algorithm
as an integral part of cutting algorithms. Each step is straightforward except for updating
and inverting the basic matrix. The procedure for accomplishing this task depends on
whether a redundant cut was dropped the previous iteration.

Case 1. No redundant cut was deleted the previous iteration. This means that the
current problem contains k < m + n cuts, where m and n are the original number of simplex
constraints and variables respectively. Let

aiXi + «2x2 + ... + akxk + S =

be the computed cut in terms of the initial problem variables. The «j are used to

construct a row vector C to be augmented to the bottom of the current basic
matrix BC in forming the new basic matrix Bn . C = (cj , ̂  , . . . , cm), where

ci =

«j if j < k and Xi is tne ith basic variable

0 otherwise
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Figure 1. Illustration of cutting methods.
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DROP INTEGRALITY CONSTRAINTS AND SOLVE BY
THE REVISED SIMPLEX METHOD
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t

Figure 2. Cutting algorithms based on revised simplex.



Also, the column vector (0 , 0 , . . . , 0 , 1) must be added to the right side of BC in
forming Bn . Then

Bn -

0

C 1

Bn
 l is obtained from B 1 by the partitioned matrix method [ 1 ].

-C

Case 2. A redundant cut was deleted at the end of the last iteration. Deletion of
a cut means that one row and one column of the current basic matrix BC must be

deleted. However, a new cut is being added to the problem which will add a row and a
column to BC . Rather than reduce the basic matrix by a row and a column and

immediately add back a row and colymn, it is simpler to replace the old row and column
with the new'row and column. Note that the column being deleted and the column being
added are identical. That is, this column corresponds to the slack variable being deleted
and the slack variable being added. All the entries in the column are zero except for a
one in the row being deleted/added. Thus the problem of finding the new inverse reduces
to the following problem.

Given a k X k basic matrix A and its inverse A"1 , construct a new basic
matrix B from A by replacing row r of A with a new row vector C . Compute the
inverse of B from a knowledge of A"1 and the new row C . Here C is the row vector
defined in Case 1.

B"1 can be identified by first computing the row vector

p = C A l = («! , a2 , . . . , ak)

Construct a new row vector £ from p as follows:

oij. , -a 2 /QT> • • • ,



where the ith element is -O!j/o:r except for the rth element which is 1/Oj.. Let E be

a k X k identity matrix with its rth row replaced by % . Then,

= A'1 E

This procedure is only a slight variation of the revised method using the product form of
the inverse. References 2 and 3 both provide a detailed discussion of the product form of
the inverse.



ROUND-OFF ERRORS

Recall that at any iteration, the revised simplex procedure generates the tableau
from the inverse of the basic matrix and the definition of the problem in terms of the
original variables. This means that round-off can be minimized in the tableau by
minimizing round-off accumulation in the inverse. An iterative procedure for improving
the inverse of a matrix can be used for this purpose.

Let A be the current basic matrix and let Bj be a computed approximation

to A"1 . Then BJ+J , the new approximation, is computed from B- by the matrix
equation

Bi+1 = B t(2I - ABj ) ,

where I is the identity matrix. The sequence Bj , BJ+J , Bj+2 , ... converges

to A"1 quadratically if any norm (the Euclidean norm is usually used) of

is less than one. A detailed presentation of this procedure is provided by Reference 4 and
a discussion of its use with the revised simplex method is given by Reference 5.

Another technique which has proven to be computationally effective in reducing
round-off accumulation is to round all computed values to zero that have an absolute
value less than a given tolerance. That is, if a is a computed value and I a I < £ where
£ > 0 is chosen to be very small, then set a = 0 . The value chosen for £ should reflect
the number of significant digits stored for the computational variables.

The computational success of these two techniques and the influence of the
problem characteristics on round-off error have been statistically analyzed. The problem
characteristics considered were number of variables, density of the constraint matrix, and
the relative magnitude of the constraint coefficients. These three characteristics and the
two round-off minimization techniques were considered as five factors in a
nested-factorial experiment. The number of variables is considered to be nested within
constraint matrix density which is considered to be nested within the relative magnitude
of the constraint coefficients. A factorial experimental design is used since it provides an
efficient means of obtaining information about the influence of each factor and about
possible interactions among the factors.

The experiment contains 108 distinct combinations of the 5 factors. One iteration
of the procedure for improving the inverse of the basic matrix was considered at three
levels — after each simplex base change, after each fifth base change, and after each ninth
base change. Three tolerance levels (0.1 X 10"6 , 0.1 X 10"12 , and 0.1 X 10"18) were
included for rounding computed values to zero. Ten variable, twenty variable, and thirty
variable test problems were considered. All problems had 10 constraints of the type



xl + ai2 X2 vn b i = 1 , 2 , . . . , 1 0

All coefficients for the test problems were randomly chosen from uniform distributions.
Table 1 provides the ranges for these distributions. The constraint matrices had either 75
or 40 percent densities. Also, the relative magnitude of the a^ was either high (-2000 to

10000) or low (-20 to 80). The 108 experimental conditions come from combining 3
factors having 3 levels and 2 factors having 2 levels.

Six observations were taken for each of the 108 experimental conditions. An
observation was obtained from the application of 30 fractional Gomory cuts to a
randomly generated test problem. Each test problem was screened to insure that 30 or
more cuts would be required to solve it. All test problems were pure integer problems.

Since there exists no direct way of measuring accumulated round-off error, an
indicator of this error is used. It is obtained as a byproduct of the computations for
improving the inverse of the basic matrix. In this procedure

= A[A-' = AS

represents the residual, while Sj represents the error matrix. Since Rj is available

but Sj is not, the relationship of the norms

TABLE 1 . COEFFICIENT RANGES FOR THE TEST PROBLEMS

I. Problems with 3jj range of -20 to 80

Number of
Variables

10
10
20
20
30
30

Density of
Constraint Matrix

40%
75%
40%
75%
40%
75%

Range for
thebj

30 to 110
75 to 200
80 to 220

150 to 430
100 to 330
225 to 650

II. Problems with ay range of -2000 to 1 0 000

10
10
20
20
30
30

40%
75%
40%
75%
40%
75%

3 000 to 15000
4 000 to 25 000
6 000 to 30 000

15 000 to 55 000
9 000 to 45 000

22 500 to 80 000



A II II

provides the only clue to the magnitude of the actual error. Note that B: = A"1

whenever Rj vanishes. In the absence of any better measure, the average value of the

Euclidean norm llRjII obtained during the application of 30 fractional cuts to each test

problem was selected as a quantitative indicator of the accumulative round-off error. All
calculations were made in double precision by a UNIVAC 1 1 08 computer which carries
18 digits plus an exponent for each double precision variable. As stated at the begining of
this report the computer code used to generate the data is based on the revised simplex
procedure.

Tables 2 through 5 present the data. The sample medians and ranges are given by
Tables 6 and 7. The sample means are not presented because many of the samples
contained extreme values which caused the sample means to be poor indicators of central
tendency. The large variations in the ranges clearly indicate that the variances of the
different factorial combinations cannot be assumed to be equal. This precludes the use of
the F-statistic in performing an analysis of variance on the data. However, Wilson [6]
developed a Chi-square statistic which is distribution-free and does not require the equal
variance assumption. This statistic can be used to test main factors and interaction effects
in a factorial design.

Wilson's procedure was used to test the following hypotheses:

1. There is no difference in the round-off error accumulation in all 108 factorial
combinations.

2. Round-off accumulation is the same for 10, 20, and 30 variable problems.

3. Round-off error is the same for all three frequencies at which the procedure
for improving the inverse of the basic matrix was applied.

4. All three tolerance values used to round small computed values to zero have
the same effect.

5. A 40 percent dense constraint matrix has the same effect as a 75 percent
dense constraint matrix.

6. "High" relative magnitude constraint coefficients have the same effect as the
"low" relative magnitude coefficients.

7. There is no significant interaction among the factors.

All the hypotheses were tested using an a (probability of rejecting a true
hypothesis) of 0.05. Table 8 gives the Chi-square statistics associated with each hypothesis
and the corresponding critical Chi-square value.

Having rejected all the null hypotheses, the following alternative hypotheses must
be accepted.
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TABLE 6. SAMPLE MEDIANS

Low Relative Magnitude of Constraint Coefficients

40 Percent Dense Constraint Matrix
Tolerance = 0. X 10"6

Basic Inverse Updated After

First Base Change Fifth Base Change Ninth Base Change

Number of Problem Variables

10

0.63 X 10"13

20

0.20 X 10"12

30

0.13 X 10"7

10

0.37 X 10"' 3

20

0.76 X 10"' 2

30

0.29 X 10"' °

10

0.11 X 10"' 2

20

0.40 X 10""

30

0.14 X 10""

Tolerance = 0.1 X 10"'2

0.95 X 10"13 0.77 X 10"13 0.26 X 10"12 0.12 X 10"" 0.30 X 10"12 0.26 X 10"" 0.11 X 10"12 0.75 X 10"' ° 0.35 X 10""

Tolerance = 0.1 X 10""

0.61 X 10"13 0.18 X 10"' 3 0.46 X 10"13 0.17X 10"" 0.26 X 10"12 0.40 X 10"12 0.11 X 10"' 2 0.24 X 10"'° 0.16X 10"'°

75 Percent Dense Constraint Matrix
Tolerance = 0.1 X 10"*

0.16 X 10"12 0.22 X 10"" 0.37 X 10"12 0.16 X 10"' 2 0.89 X 10"9 0.48 X 10"" 0.12X 10"" 0.12 X 10"" 0.18 X 10"'°

tolerance = 0.1 X 10"12

0.25 X 10"12 0.75 X 10"' 2 0.17 X 10"12 0.14 X 10"' 2 0.16 X 10"' ° 0.78 X 10"' ' 0.50 X 10"" 0.22 X 10'" 0.61 X 10"9

Tolerance = 0.1 X 10""

0.60 X 10"12 0.65 X 10"'2 0.81 X 10"13 0.98 X 10~13 0.11 X 10"" 0.68 X 10"' 2 0.14 X 10"' 2 0.80 X 10"12 0.45 X 10"' '

High Relative Magnitude of Constraint Coefficients

40 Percent Dense Constraint Matrix
Tolerance = 0.1 X 10"6

0.22 X 10~« 0.39 X 10^ 0.32 X 10~* 0.76 X 10"'° 0.11 X 10"' 0.17 X 10^ 0.52 X 10"' ° 0.38 X 10"3 0.17 X 10"9

Tolerance = 0.1 X 10"' 2

0.47 X 10"" 0.12 X 10"10 0.67 X 10"" 0.19 X 10"'° 0.73 X 10"'° 0.14 X 10"" 0.92 X 10"' ' 0.1 IX 10"'° 0.40 X 10"'°

Tolerance = 0.1 X 10"' '

0.74 X 10"12 0.22 X 10"" 0.26 X 10"'° 0.49 X 10"" 0.10 X 10"'° 0.71 X 10"" 0.23 X 10"' ' 0.19 X 10"' ° 0.24 X 10"'°

75 Percent Dense Constraint Matrix
Tolerance = 0.1 X 10"6

0.12 X 10"'° 0.28 X 10"" 0.11 X 10"1 0.13 X 10"'° 0.13X 10"9 0.20 X 10"8 0.36 X 10"' ° 0.22 X 10"8 0.39 X 10"9

Tolerance = 0.1 X 10"12

0.36 X 10"" 0.67 X 10"" 0.92 X 10"' ' 0.13 X 10"'° 0.69 X 10"'° 0.74 X 10^ 0.16 X 10"9 0.41 X 10"9 0.11 X 10"1

Tolerance = 0.1 X 10""

0.32 X 10"" 0.10 X 10"' ° 0.25 X 10""> 0.36 X 10"" 0.34 X 10"'° 0.20 X 10"'° 0.10X 10"'° 0.28 X lb"10 0.13X 10"9

14



TABLE 7. SAMPLE RANGES

Low Relative Magnitude of Constraint Coefficients

40 Percent Dense Constraint Matrix
Tolerance = 0.1 X IO"6

Basic Inverse Updated After

First Base Change Fifth Base Change Ninth Base Change

Number of Problem Variables

10

0.74 X 10""

20

0.42 X IO"9

30

0.61 X IO"5

10

0.40 X 10""

20

0.61 X 10"'°

30

0.52 X 10"1

10

0.42 X 10""

20

0.14X IO"3

30

0.23 X 10"'°

Tolerance = 0.1 X 10"' 2

0.15 X 10"' 2 0.18 X 10"" 0.30 X 10"12 0.15 X 10"'° 0.23 X IO"9 0.16 X 10"'° 0.19X 10^ 0.33 X 10^ 0.71 X 10"'

Tolerance = 0.1 X 10""

0.19 X 10"' 2 0.84 X IO"8 0.87 X 10"" 0.70 X 10"' 0.10 0.17 X 10"' ° 0.27 X 10"' 2 0.18 0.45 X 10"'

75 Percent Dense Constraint Matrix
Tolerance = 0.1 X IO"6

0.33 X 10"8 0.27 X IO"8 0.83 X IO"8 0.21 X 10"'° 0.54 X IO"7 0.74 X 10"'° 0.17X 10^ 0.14X IO"8 0.27 X IO"5

Tolerance = 0.1 X 10"' 2

0.14 X 10"'° 0.31 X 10"' ' 0.26 X 10"'° 0.17 X 10"* 0.10 X IO"9 0.1 IX IO"9 0.21 X IO"9 0.14 X IO"10 0.88 X 10"

Tolerance = 0.1 X 10""

0.90 X 10"'° 0.1 3 X 10"" 0.27 X 10"'° 0.22 X 10"" 0.55 X 10"' ' 0.26 X 10"'° 0.87 X 10--'° 0.20-X 10"8 0.68 X 10"'

High Relative Magnitude of Constraint Coefficients

40 Percent Dense Constraint Matrix
Tolerance = 0.1 X 10"*

0.61 X 10"3 0.22 X 10"' 0.2 IX 10"' O.SOX IO"4 0.78 X 10"' 0.32 X 10"' 0.34 X 10"' 0.11 0.16 X 10"2

Tolerance = 0.1 X 10"12

0.22 X 10~" 0.29 X 10"'° 0.20 X 10"'° 0.45 X 10"* 0.92 X IO"3 0.32 X IO"5 0.22 X IO"7 0.29 X IO"6 0.34 X IO"9

Tolerance = 0.1 X 10~18

0.25 X IO"9 0.16 X IO"9 0.35 X IO"2 0.75 X IO"9 0.19 X IO"4 0.21 X 10"'° 0.96 X 10"" 0.24 X IO"8 0.56 X Iff*

75 Percent Dense Constraint Matrix
Tolerance = 0.1 X 10"6

0.42 X Iff* 0.67 X IO"2 0.14 X 10"2 0.27 X IO"3 0.86 X 10"* 0.13 X 10"' 0.37 X 10"" 0.38 X IO"5 0.69 X Iff

Tolerance = 0.1 X 10"12

0.14X 10"' ° 0.26 X l<f 0.37 X 10^ 0.20 X 10^ 0.97 X 10"9 0.18X IO"3 0.75 X 10^ 0.31 X 10"6 0.38 X IO"2

Tolerance = 0. X IO"18

0.18X IO"9 0.23 X IO"9 0.62 X 10"'° 0.51 X 10^ 0.37 X 10"* 0.22 X 10"9 0.99 X 10"'° 0.85 X 10"9 0.21 X 10^
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TABLE 8. RESULTS OF FACTORIAL EXPERIMENT

Hypothesis
Number

1
2
3
4
5
6
7

Degrees of
Freedom

107
2
2
2
1
1
8

Computed
x2

249.33
15.82
15.26
19.70
4.17

124.47
69.91

Critical
x2

133.26
5.99
5.99
5.99
3.84
3.84

15.51

Decision

Reject
Reject
Reject
Reject
Reject
Reject
Reject

1. All five factors have a significant effect on round-off error accumulation.

2. There exists a significative interaction among the factors.

The remainder of this report is devoted to an analysis of the individual factor and
interaction effects. The results of this analysis should indicate which combination of the
two round-off error minimization techniques produces the best results. The individual
factor effects will be discussed first.

The 648 observations of round-off error, on which the above analysis of variance
was based, can be divided in different ways and used to develop histograms for the
different levels of each factor. The observations were first divided into three groups
according to the number of problem variables. Figure 3 gives the histograms developed
from these groups. Note that in all three histograms the median provided a much better
estimate of central tendency than did the mean. This is a common characteristic of data
collected in this experiment.

One would expect round-off error to increase with the number of problem
variables. Figure 3 indicates a significant increase in both central tendency and variation
between 10 variable and 20 variable problems. There appears to be no noticable change
between 20 and 30 variable problems. These results can be partially explained by noting
that round-off accumulation is more directly related to the size of the basic matrix than
to the number of variables. This is true because the entire simplex, tableau is generated
from the original data and the inverse of the basic matrix. Since all the test problems had
10 original constraints, then the average size of the basic matrix for the 20 and 30
variable problems was not significantly different.

Next, the error observations were divided according to density of the constraint
matrix and histograms were constructed. Figure 4 presents the results. Larger errors
appear to occur more frequently in the 40 percent density problems. Also, the mean and
standard deviation of the histogram for the 40 percent density problems are larger than
the mean and standard deviation of the histogram for the 75 percent density problems.
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The two histograms associated with relative magnitude of the constraint
coefficients are presented by Figure 5. They clearly indicate that round-off error increases
with the relative magnitude of the constraint coefficients.

Figure 6 presents the histograms associated with the procedure for improving the
inverse of the basic matrix. Both central tendency and variation decrease as the procedure
is applied more frequently. However, the range of these data was chosen to narrow to
show the importance of the procedure. The experience of' this writer indicates that
round-off error accumulates very fast when the procedure is not applied at all.

Finally, the observations were divided according to the tolerance factor applied.
The histograms are presented by Figure 7. A tolerance value of 0.1 X 10~6 appears to
be too large. It apparently causes valid data to be lost, thereby adding to the round-off
problem. However, a review of Tables 2 through 5 reveals that it is an acceptable
tolerance for problems which have low relative magnitude constraint coefficients. That is,
only one of the 108 error observations for problems with low relative magnitude
constraint coefficients was greater than 0.7 X 10"s.

A tolerance of 0.1 X10"18 creates a problem that is not revealed by Figure 7. It
allows very small round-off errors to remain in the tableau. When one of these small
values is selected as the pivot element, the problem completely degenerates. This
phenomenon occurred in over half of the problems that had high relative magnitude
constraint coefficients and 40 percent dense constraint matrices. A total of 73 random
problems with high relative magnitude constraint coefficients and 40 percent dense
constraint matrices had to be generated to obtain 18 test problems that would not totally
degenerate before 30 cuts were applied when a tolerance of 0.1 X 10~18 was used. The
phenomenon occurred very infrequently in the other test problems when a tolerance
of 0.1 X 10~18 was applied.

Figure 7 indicates that 0.1 X 10"12 is an acceptable tolerance value. It is small
enough to prevent valid data from being" lost, yet it is large enough to prevent the
phenomenon discussed above.

The discussion will now turn to an analysis of the interactions among the factors.
Wilson's Chi-square statistic can also be used to test first order interactions. Since the
number of problem variables and the density of the constraint matrix were considered to
be nested factors, only the interaction among relative magnitude of constraint
coefficients, tolerance value, and the procedure for improving the inverse of the basic
matrix will be analyzed. Table 9 gives the Chi-square statistics assuming an a of 0.05.
Each null hypothesis assumes that no interaction exists.

Having accepted the alternative hypothesis that all three interactions are
significant, a detailed inspection of each interaction is in order. An interaction can best
be inspected by dividing the data into subsamples according to factorial combinations of
the levels of the factors involved. The interaction effect can then be analyzed by
comparing the statistical characteristics of the subsamples.

Table 10 presents the medians and ranges of the subsamples for the interaction of
tolerance value and relative magnitude of the constraint coefficients. These data indicate
that a tolerance value of 0.1 X 10~12 is more desirable than the other two values
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TABLE 9. CHI-SQUARE VALUES FOR INTERACTIONS AMONG THE FACTORS

Interaction
Hypothesis3

R X T
R X P
TX P

Degrees of
Freedom

5
5
8

Computed
x2

148.07
140.07
44.67

Critical
X2

11.07
11.07
15.51

Decision

Reject
Reject
Reject

a. R means relative magnitude of constraint coefficients; T means tolerance
value; and P means procedure for improving the inverse of the basic matrix.

TABLE 10. ROUND-OFF ERRORS ASSOCIATED WITH
DIFFERENT COMBINATIONS OF TOLERANCE VALUES

AND CONSTRAINT COEFFICIENT RELATIVE MAGNITUDES

Relative Magnitude of
Constraint Coefficients

Low

High

Tolerance Values

1.0 X 1(T6

0.93 X lO'1*3

(0.14 X 10"3)

0.57 X 1Q-9

(0.1066)

0.1 X 1(T12

0.47 X 1(T12

(0.0709)

0.17 X 1(T10

(0.0038)

0.1 X 1(T18

0.20 X 1(T12

(0.1838)

0.97 X KT11

(0.0051)

a. Median (range) from sample of 108 observations of round-off error.

because it has the smallest range for high relative magnitude coefficients and the second
smallest range for low relative magnitude coefficients. Also, its median is acceptable in
both cases. The ranges for the other two tolerances are not consistent between the two
coefficient cases. As noted previously, 0.1 X 10"6 is an acceptable tolerance to apply to
problems that have low relative magnitude constraint coefficients.

The interaction between the frequency at which the basic matrix "reinversion"
procedure is applied and the relative magnitude of the constraint coefficients is indicated
by the data in Table 11. These data clearly indicate that decreasing the frequency at
which the reinversion procedure is applied increases both the median and range of the
round-off error.

Table 12 shows the interaction between tolerance value and the frequency at
which the basic matrix reinversion procedure is applied. Once again, a tolerance
of 0.1 X 10"12 is shown to be superior to the other two values. Also, applying the
reinversion procedure after each base change holds the range of the round-off error well
within acceptable bounds. However, each application of this procedure increases the
amount of computer time required to solve a problem. Some compromise between
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TABLE 11. ROUND OFF ERRORS ASSOCIATED WITH DIFFERENT
COMBINATIONS OF CONSTRAINT COEFFICIENT RELATIVE

MAGNITUDES AND FREQUENCIES FOR APPLYING THE
PROCEDURE WHICH IMPROVES THE COMPUTED INVERSE

OF THE BASIC MATRIX

Relative Magnitude of
Constraint Coefficients

Low

High

Reinversion Procedure Applied After

First Base
Change

0.15 X lO'12*
(0.61 X 10r5)

0.99 X 1CT11

(0.0217)

Fifth Base
Change

0.65 X 10~12

(0.1035)

0.31 X 10"10

(0.0779)

Ninth Base
Change

0.13 X 1Q-11

(0.1838)

0.47 X 1(T10

(0.1066)

a. Median (range) from sample of 108 observations of round-off error.

TABLE 12. ROUND-OFF ERRORS ASSOCIATED WITH DIFFERENT
COMBINATIONS OF TOLERANCE VALUES AND FREQUENCIES

FOR APPLYING THE PROCEDURE WHICH IMPROVES THE
COMPUTED INVERSE OF THE BASIC MATRIX

Tolerance Values

0.1 X 1Q-6

0.1 X 1CT12

0.1 X 1(T18

Reinversion Procedure Applied After

First Base
Change

0.21 X lO'10*
(0.0217)

0.14 X 1CT11

(0.22 X 1(T8)

0.84 X 1CT12

(0.0035)

Fifth Base
Change

0.15 X IF10

(0.0779)

0.12X 10T10

(0.92 X 1(T3)

0.36 X IF11

(0.1035)

Ninth Base
Change

0.26 X la10

(0.1066)

0.18 X 10"10

(0.0709)

0.37 X lO"11

(0.1838)

a. Median (range) from sample of 72 observations of round-off error.

computer time and allowable range for the round-off error may be desirable. Table 12
indicates that the reinversion procedure should be applied at least after each fifth base
change, because the round-off error in the table is only the amount which accumulated
during the application of 30 cuts to each test problem. Several hundred cuts may be
required to solve difficult problems if they can be solved by cutting methods at all.
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SUMMARY

The first part of this report shows how the revised simplex procedure can be used
in cutting algorithms. The second part defines and statistically analyzes two procedures
for minimizing round-off error accumulation in a cutting plane code. The following five
factors are shown to have a statistically significant effect on round-off error:

1. The number of problem variables.

2. The density (percent of non-zero elements) of the problem constraint matrix.

3. Relative magnitude of the coefficients in the problem constraint matrix.

4. The tolerance value used to round small computed values to zero.

5. The frequency at which a matrix procedure is applied to remove round-off
from the computed inverse of the basic matrix.

Round-off error accumulation was shown to increase with ( l ) an increase in the number
of problem variables, (2) a decrease in the density of the constraint matrix, (3) an
increase in the relative magnitude of the constraint coefficients, (4) a tolerance value
of 0.1 X 10~5 or greater, and (5) a decrease in the frequency at which the basic matrix
reinversion procedure is applied. Round-off error can be minimized by applying the
matrix procedure to improve the computed inverse after each base change and selecting
an appropriate tolerance which is related to the number of significant digits carried for
each variable. When all calculations are done in double precision (16 to 18 digits plus an
exponent) a tolerance value of 0.1 X 10~12 is an acceptable value. The selection of a
significantly larger tolerance tends to add to the round-off problem. Selection of a
significantly smaller tolerance reduces the effectiveness of the tolerance by allowing
division by very small insignificant values.
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