
N A S A C O N T R A C T O R

R E P O R T

CNI

CO

N A S A C R - 2 3 2 6

ft

C O P Y

A NON-COHERENT MODEL
FOR MICROWAVE EMISSIONS
AND BACKSCATTERING
FROM THE SEA SURFACE

by S. T. Wu and A. K. Fung

Prepared by

THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC.
!

Lawrence, Kans. 66044

for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • NOVEMBER 1973



1. Report No. 2. Government Accession No.

NASA CR-2326
4. Title and Subtitle

A Non-Coherent Model for Microwave Emissions

and Backscattering From the Sea Surface

7. Author(s) . • . . . .

S. T. Wu and A. K. Fung
9. Performing Organization Name and Address

University of Kansas Center For Research, Inc.
2291 Irving Hill Road - Campus West
Lawrence, Kansas 66044

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D. C. 20546

3. Recipient's Catalog No.

5. Report Date

November 1973
6. Performing Organization Code

8. Performing Organization Report No.

Technical Report 18o~3
10. Work Unit No.

11. Contract or Grant No.

MAS 1-10048
13. Type of Report and Period Covered

Con tractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

This is a topical report.

16. Abstract

The two-scale (small irregularities superimposed upon large undulations)
scattering theory proposed by Semyonov has been extended and used to compute
microwave apparent temperature and the backscattering cross section from ocean
surfaces. The effect of the small irregularities upon the scattering character-
istics of the large undulations is included by modifying the Fresnel reflection
coefficients; whereas the effect of the large undulations upon those of the small
irregularities is taken into account by averaging over the surface normals of the
large undulations.

The same set of surface parameters is employed for a given wind speed to predict
both the scattering and the emission characteristics at both polarizations.
Improved agreement with measured results is demonstrated when compared with
predictions by a single scale surface. This indicates that the sea surface is
better modeled by a composite rather than a single surface. The results also
imply that the adequacy of a scattering model is best exemplified when it is used
to predict both the scattering and the emission characteristics.

17. Key Words (Selected by Author(s))

Non -coherent model
Microwave emission and backscattering
Two-scale sea surface
Agreement with measurements

19. Security Classif. (of this report)

Unclassified

18. Distribution Statement

Unclassified - Unlimited

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

34

22. Price*

)omestic,$3.0C
Foreign, $5. 5C

For sale by the National Technical Information Service, Springfield, Virginia 22151



FOREWORD

The value of microwave scatterometers and radiometers as remote sea wind

sensors has been independently demonstrated by a number of investigators. However,

near-simultaneous observations by a'composite radiometer and scatterometer

(RADSCAT) instrument have been judged to have value in making better estimates

of the surface winds beyond the improvement provided by two independent measurements,

To demonstrate this potential a joint effort between New York University, General

Electric Space Division , the University of Kansas and NASA Langley Research was

undertaken through the Advanced Applications Flight Experiment program of NASA.

This document reports the investigation? performed by the University of Kansas during

the first year of this joint program.

Specifically, this report was prepared by the Remote Sensing Laboratory of the

University of Kansas Center for Research, Inc., under Contract NAS 1-10048.
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I . INTRODUCTION

The microwave emission characteristic of the sea has been measured by several

investigators [1,2,3,4,5]. These investigators have compared their observations

with predictions from geometric optics theory [6] which uses a single surface model

and found some but not satisfactory agreement between predictions and measure-

ments. The wind dependence of the geometric optics approach was based on measured

rms sea slope data presented by Cox and Munk [7]. However, the theory failed

to predict the observed emission characteristics near nadir and fitted only loosely

for nadir angles between 30 and 70 degrees. The failure of the geometric optics

model to account for wind dependence at nadir was first reported by Nordberg,

et al. [1], and verified by Hollinger [5].

In view of the above deficiencies, an investigation is necessary to seek a

more adequate model for microwave emissions from the sea. The emphasis in this

investigation is oriented towards using a composite surface model which better

reflects the roughness characteristic of the sea. Since several lengthy numerical

integrations are required to yield the emissivity, the more adequate model must

not be so complicated as to make numerical calculations prohibitive. With this

perspective, a non-coherent scattering theory of the type described by Semyonov [8]

is extended to yield the bistatic scattering coefficient. Since an acceptable scat-

tering coefficient for predicting the microwave emission characteristics must also

be acceptable for predicting backscattering, the latter case is examined to provide

a cross check on the model.

To compare with experimental observations, an isotropic surface character-

istic, although not realistic for the ocean surface, is assumed. A justification for

this assumption is based on the observed directional insensitivity of emissions from

the sea [9]. The two-scale rough surface model is also assumed to have Gaussian

surface height distribution and Gaussian surface correlation for both scales. The

dielectric constant needed in the calculations is based on the data reported by

Saxton and Lane MO].

The wind dependence of the surface parameters in the composite model is

introduced in accordance with rms slope data measured by Cox and Munk for the

large undulations and Sutherland's [11] results for the small irregularities. Details



for the theory and the choice of surface parameters are given in sections II and III

respectively. Comparisons of the computed brightness temperature and backscattering

characteristics at two different wind speeds are made with both measured data and

the predictions of a single surface model. The results are presented in section IV.



II. A SURFACE BRIGHTNESS TEMPERATURE THEORY

11.1 Formulation of the Problem

The basic theory of surface brightness temperature was developed by Peake

[12]. The relationship among the surface emissivity, the surface temperature and

the brightness temperature is as follows:

TBjC0J=eJ-(9)T3 j= kor v

whereTB)-(8) is the brightness temperature;€j(0)the emissivity; Tg the surface temper-

ature; k denotes horizontal polarization and V vertical polarization. Note that

the azimuthal angle <$> needed together with the nadir angle 8 to specify a direction

has been chosen to be zero without loss of generality.

The connection between the emissivity and the differential scattering coef-

ficient of the surface,tj(^0s,4s)is

e .(6) = I --L f8*f* V. (9, 6S,4>S) si* 9S d6s d^s (i)
J ^"' Jo Jo J

where 6s,<t>5are angles defining the direction of scattering corresponding to a wave

incident at an angle 8 .

The basic formulation of the problem indicated above shows that the differen-

tial scattering coefficient is the quantity that defines the angular characteristics of

the brightness temperature of a given surface. Consequently, different brightness

temperature theories are also distinguished by the different models assumed for

the differential scattering coefficient.

Under the non-coherent assumption Hi(9,63,4*5)000 be shown [8] to consist

of two terms, i.e.

^ce,es ,4>s) = ^(0,0s^5) +< */ce,es,4>5» (2)

where ti(Q,65/1*5) denotes the main contribution by the large undulations;($:(.8, 64,4**)

denotes the differential scattering coefficient of the small irregularities averaged over

the distribution of the surface normals of the large undulations. Detailed derivations

for Jj(0,8i<j>4)and<^j(6,0s,
<tls))are given in sections 11.2 and 11.3 respectively.



Since the backscattering cross-section is a special case of the differential

scattering coefficients, it can be obtained from the knov/n differential scattering

coefficients, (see Figure 1 ) i.e.

<r° (6) = co5 6 • i j (6 ,0 sA
f^—TT

or equivalently

B̂j° <e> = ffe>l* ce> ->- < 0-^*4 ce) > (3)

with

8j0 J - co j • S> 5 63= 0
'4>s = TT

(3b)

Detailed derivations of 0~n.(0) are given in section 11.5.B3

11.2 Derivation of y° ( Q, Qs , $5)

To derive ^(6,85^s)we may begin with the vector scattered field due to a

plane wave incident upon an undulating surface to which the tangent plane approx-

imation is assumed applicable. Such a field expression is, in general, rather

complicated. To simplify results, the stationary phase technique will be employed.

An expression for ij^flj.'t'j) not indicating explicitly the effect of the small irregularities

will be derived first. This expression is then clarified to reflect the small structure

effects by computing the explicit forms of the modified Fresnel reflection coefficients.

As pointed out by Semyoncv, such a computation may be performed for the more

general finitely conducting surface in accordance with Rice's paper [13].

11.2.1 The scattered field

The far zone scattered field in the direction n2due to a plane wave polarized

along O^ impinging upon an undulating surface Kt.y) can be shown to be [14]



« -
where a time factor of the forme3" has been suppressed; K=—^ R— , R is the

distance from the origin to the field point, k is the wave number; <.Rh),<Rv) are

the modified Fresnel reflection for horizontal and vertical polarization respectively;

£ is the magnitude of incident electric field; 2-1 is the unit propagation

vector of the incident field, and 71 is the normal to the surface

The set of orthogonal unit vectors (^i/^ serving as the local coordinates

for evaluating the local field on surface is illustrated in Figure 2. The unit vectors,

~t and d relate to n and i^as follows

•t = C*n, x n ) /)
1W» •»•»*. xv«^ / I

, x n

d = -n.xt (5)
/*>* -^Vk /WV

where no. mav be written in terms of the partial derivatives, Z<x, ZH of Z ( "X, ̂ 1 )

along x and y axes as follows

n = ( - X Z^ - i 2j t k )/(i t 2^ -e Z*v\ ^ *** * >iU « /V\A / ^ * fl
/ /

C •*• ; ^ , k ) are the unit coordinate vectors.

To simplify (4) by the stationary phase approximation, let ^=^f~^

Ifv^t ?f ^°e ̂ e vec^or components of If . Then the phase factor in (4) is

3L'L ~ K*+ t)t + I r z Z W ' V (6)
The stationary phase assumption requires

It follows that

* : l/iif
The significant result indicated by (7) is that all surface slopes in (4) may

be written in terms of ihe incident and scattered propagation vectors. Consequently,

the integrand in (4) except for the phase factor, exp(- jk ft • r ~\ can be moved

outside of the integral sign, i.e.
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with

A =
."•Vl

B =

<8>

D = C l - < R k » ( ^ " - t ) C 'n - -", ) t
«ii, v «. V •*"•"> "«• - < - « « » ^«» v ^v,

The local coordinate vectors, two other vector products in (9) and the differential

surface element in (8) may all be written in terms of the propagation vectors,

I 2,
nx t =

a I -n, x
' **+

HO)

i
To express the polarization states of both the incident and the scattered !

field, it is'convenient to introduce a set of orthogonal! unit vectors (-JJ^UJ.hj) for ;

the incident field and another set (ntvz K2) for the scattered field (see Figure 1 ). In
*** *** '̂ **

view of Figure 1 , explicit expressions for these unit vectors may be written

- -11, = - sin 6 ̂  -j- cos 0 jj,

V, = cos0 £ -f si.71 0 Jk (n)

k, - j*-> ^u
n2 = sin 0S cos 4>s i -f sin 0S si.n 4>s ^ + cos 0* J<,

2& = -COS 0sc°s^sd.- cos es s-in^s j^ + SLTX^S j^ (12)

Kj = sin 4., -i. - cos £, j
•w.* ' S /w\ ' 5 ^^v^

For horizontally polarized incident wave, (£=£/)/ the polarized and cross

polarized scattered fields are given respectively by

" L ^*7l T» \ K*

e"J -*-' '̂
(13)



where

S l-f l

Similarly, for vertically polarized incident wave ( <* =^Ti ), the polarized

and depolarized scattered fields are

where

(14)
r
ds

v= i f lO-<Rv»'
= -|f|C i-KRv»

The above field expressions may be further simplified using the vector

identities

h-z ' ^ 2"( M 4- 71 2 * M ) = V, • M - k2 • N
*^ & « C > ^ / * V » ' v » ' 2 -«*• ' \

Thus,

= C.C <RK> bf +<RV><U) I

= Co(-<R h>df + < - R v > b c ) I



where C. > -

cos<f>s - sin. 6

frz = cos 6 H- cos 6S

b = ( V- - 33-a. ) = sen 0 cos 9S -t- cos 0 sin 0S cos <J>5

>s- cos 5 sn
d * C ' -

3 3 ' ) = s ine sin. <J>S

- 2i'|? /2 = n- cos 0 cos 0S ~ S(~n 6 sin- es cos

Note that by expressing Uiin terms of the orthogonal set (j^, , v,, K^, )

it can be shown that 1,2);* x "Ji," I = b •+ d . Similarly, by expressing r^, in

terms of the orthogonal set (;nz t\r^ . !Kj.), it also follows that I 2fci x £* 1 2= c.*-*--fZ •

11.2.2 The differential scattering coefficients

The differential scattering coefficients related to the scattered fields computed

In the previous section [12,15] are of the form

where the symbol * denotes complex conjugate, and C" ^ tne ensemble average.

The subscripts i , t. denote the polarization states of the incident and the scattered

fields respectively. A0 is the illuminated area.

Upon substituting (15) into (16), it follows that

k' a.2 r
* I t> 24d 2

i & /a x^^ \' ' /

k2 «*M C IVINV-'I D T IVAVv/l d ( y , ^ ,2.

A0cos6
,



For on isofropically rough surface with Gaussian height distribution, < III

simplifies to

where J0( ) is the zero order Bessel function of the first kind; <f2 and _pft)are the

variance and the autocorrelation coefficient of the surface respectively.

An approximate solution for (18) consistent with the stationary phase approx-

imation is

/ |T |2 \ £ 7T Ao _ oynf- If'* + 0* ~] „„.
<UI >= ^ fc2 m« PL 2 fz*™ Z J °9)

where tn. = (ff f f (o) | ] z is the rms slope of the surface .

11.3 Derivation of < ^/CQ, 9S, ^>s)>

The scattered field due only to the small irregularities has been derived by

many investigators [1 3,16,17]. As indicated in the previous section, with the '

scattered field expression known the scattering coefficient can be computed. To

account for the interaction between the small irregularities and the large undulations,

the expression for the scattering coefficient of the small irregularities is then averaged

with respect to the slope distribution of the large undulations. The resulting expression

is the desired scattering coefficient, (it1; (Qj^s^s^X

11.3.1 Differential scattering coefficients

The far zone scattered field of l-polarization along the direction defined by

the angles 6s and <fs due to a plane wave of j-polarization with unit amplitude

impinging upon an irregular surface sc*,jj)along the direction defined by the angles 8 and

<$>' has been derived by using the method of small perturbation [17]. The ensemble

average of the magnitude square of the scattered field, <|E;i(0,<£,' 6s,<J>s ) | >

can be shown to be [17]

<|Ei(e;^X^)lV - cosVcos8fls'|MJ- i|
aWCp,<j) (20)



where

j.i,. = incident and scattered polarizations respectively, either horizontal

or vertical polarizations,

A = illuminated area,

R = distance from the field point to the surface,

M (£,- |) cos (<frs ~ »')

( cos e'-fy^-suv'e') (coses ' -r /e r-sin2e; )

( e >• - i ) sen C<£s - ft'j 7e r - sin2 6's
~ ----

M =

: rCosG'-t-ye,- -sin26' X cos B's -i-

M ~~ Cc *- *• i > ~ "
vv= 7.

6y = complex relative dielectric constant,

p,<t)= surface roughness spectral density,

p= k(si.n6s cos C<^s' -<?!>') -SLTI 9')

g- = k SLTI 6>s sin C <&;' - ^ ')

Note thpt the surface roughness spectral density w(p,q), is related to its correlation

function R (x,y) by

r°° r

- f [
J- 00 J -00 -00

For an isotropically rough surface, it reduces to

R ( r ) = ̂ f 'w (t) J 0Ctr- ) tdt
Jo

and ^

-WC- t )= ~r f RCr-J J0Ctr-) rdr
-'o

For a Gaussian spectral density, it is expressed in the form

W(t)=^exp[-(-^-)2 j (22)

where

y * = standard deviation and correlation length of the small irregularities
respectively.

11



From (16) and the relation

y/cO/CO = f } - K

we get

y.'ce>X4>s) = ̂  kV
•j = k or v

11.3.2 Averaging Procedure

To account for the tilting effect of the small irregularities by the large

undulations it is necessary to average J^ (9,' £', 85,^) with respect to the slope

distribution of the large undulations [8]. That is

where 9 is the incident angle and 9S and <£s are the scattering angles.

To evaluate the above integral, connecting relations between the surface

slopes Zx,Z^ and the local angles, 0', <j>', 9S'> <£s'
 are needed. To find these

relations let us first express 2X and Z^ in terms of the azimuth and the elevation

angles, 4n. ar>d 671. i which represent the tilting effect

Z^ = cos <f>n tan 8n (25)

2 = sdn <f>n

From (25) it follows that

= sec

The local angles ( 6 , <#>, ^5,^5 ) may now be related to the azimuth and the elevation

angles ^ and 0^ by connecting relations derived below.

12



In Figure 3, the two sets of coordinates (x,y,z) and (x1, y1, z') are related

in terms of the angles 6n and <Kv as follows:
^ S

X

(27)
-X

3'
^'

COS 6n COS <#>.„ COS Qn Stn </>„

- SLJI <£TI cos <t>n o

-s</n6n cos <£n -sinQnsin<t'n cosQn

Hence, for a scattered field point, P, located at a distance, R, from the origin,

the coordinates of P may be expressed either in terms of the angles 6j and £s' or

the angles 0S and <£s ,

*' = R sin 6S' cos 4>5

^' = R sen 65 '

Z = R cos 6s

(28a)

f. - R sin 6S cos

2 = R scn,6s

£ = R COS 6S

(28b)

Substituting equation (28) into (27) we obtain the connecting equations for the sets

of angles as follows:

5<,Tt 0

cos 65

cos 6n cos

cos

COS 67

(29)

cos 6S

If we take the angles with a prime to be local scattering angles, we see from

(29) that the local scattering angles may be expressed in terms of the scattering angles

6S/ <f>3 and the tilting angles &„. , $>„. , i.e.

cos 6s = cos ^*- CoS0<; ~ si.u 9-n si.n6s cos ( <f>5 - <f>^ )

, -i- (30)

sin i>s = sdn ds si.n (.<Ps~ <£>n} ( i - cos?6s
/^ 2

In a similar fashion, the local incident angles can also be expressed in terms of the

tilting angles On.'ifViand the incident angle, 6 .

13



Figure 3.
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COS &' = COS 6-n C°S 9 + Sin 6-n. SLTV Q cos

2 ^2sn <> = - SLTt9 sin ( i- cos

With the connecting relations between the local angles and the surface

slopes known (24) can be evaluated by assuming a form for P(Zx,Zy)> For a Gaussian

surface slope distribution it may be represented as

Z ' + 2» (32)
*

or equivalently

tan.'

where m is the rms slope and is assigned according to Cox and Munk's slick sea data.

Since m is usually sufficiently small for the sea and since 1^(6,$. QS.^S) is

insensitive to 6^ for a small value of 9-n , the integration with respect to Bn given

in (24) can be evaluated by the method of steepest decent; if so, the result may be

expressed as

(34)

11.4 Modified Fresnel Reflection Coefficients

As mentioned in section I 1.2, the Fresnel reflection coefficients should be

modified to account for the presence of the small irregularities [12] [8]. The method

for computing these coefficients has been discussed by Rice for horizontally polarized

waves. Following Rice's approach also for the vertically polarized wave, we obtain

the modified Fresnel reflection coefficients as follows

J J 1 (35a)
du. d v V

^g -(a.%v2)SLn2eJ4- ak2/^^1^!^" ul J du d vj

(35b)

15



COS <9-

R C01 = rO -s/€r-si.-n.2@
v

co50 = 7(1 + cos6cos6s- sin s

^r= complex relative dielectric constant

_ _

n 9S cos4><, ;

For the special case where

11.5 Backscatterlng cross-sections

Substituting 0S= 6 and 4"s=Tr into (36) we obtain

From (17), (19) and (3a), it follows that

tan26

|<R:>| simplifies to
2 2 2 - - v (38)

and

2 2 C . - 4 . 0 kV,2) (39)

Equation (40) shows that the backscattering cross-section of the large

undulations is polarization independent.

16



To find /(5 • .^, note the following two points:

(I) Substituting 0S=9 and<t>«. = Tr into (30) we obtain

cos 65 = cos 9 '= cos en cos 6 -+ si.n 6n cos $.
(41)

or

(2) Since0s-6and4>5-ir imply 65 =e'and «^'=</>V tr, from (34)

it follows that

Thus from (3b) and (42),

/<7* (6) W-i-^ Bl / a-rr

where

ce>

K or v

i- e'

6 ^-

( e') = cose'- VKC 6-' ' -rs - T- T

65= &'

64=6' (42)

(43)

(44)

= cose 4> = 4> -f
0'3 = 6'

(45)
The complete backscattering cross-section is, of course, given by (3) that is the sum

of (40) and (43).

17
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III. SELECTION OF PARAMETERS

The surface parameters appear in the above theory are the rms slope of the

large structures m, the standard deviation of the small structures <*~, , and the

correlation length of the small structures £ . This scattering model can be adapted

to predict sea returns by noting that the rms slope can be based on measurements by

Cox and Munk [7] and that the assumed Gaussian spectrum for the small irregularities

can approximate the high frequency portion of the sea spectrum BK where the Bragg

scatter condition applies, i.e., K - 2k sin 0. In view of the requirements of the

composite surface theory it is reasonable to choose the oil slick sea measurements by

Cox and Munk, since the small irregularities have been suppressed. The value of

m is thus assigned. The value of /c-^- is assigned so that the correct angular

behavior of the Gaussian spectrum approximated BK well over the angular range,

30°< 0 < 70°, i.e., BK"4 is approximated by 6? JL*/-a e *f> (~ K2Jt*/4- )

where K = 2k sin 0 , the Bragg scatter condition. This is achieved by noting that

when k/ = 2 similar behavior is realized (see Figure 4). The factor 35.3 appears

in the Gaussian approximation to bring the levels into agreement at ©= 60 degrees.

The value of B must yet be assigned.
-3

Oceanographic investigations indicate values of B in the range from 4.6 x 10
_2

to 3.26 x 10 [7,18,19]. This implies that kcr, should lie in the range from 0.084

to 0.24 when BK~ is equated to ,^/rr £xp(~K^'/4-) at 0= 60 degrees. These

values of k<*", are consistent with the assumptions of the small perturbation theory,

an encouraging result. The recent reports by Sutherland [11] and Pierson [20] indicate

that B is a function of the wind speed. Thus, the surface parameter a~. must also be

a function of the wind speed. It is noted that the horizontally polarized emission

characteristic for nadir angles from zero to thirty degrees is very sensitive to ka~1

and hence the parameter kcr-, can be estimated by fitting the predicted emission

characteristics to the measured data.*

With the surface parameters established in the manner described above, both

the emission and the backscatter characteristics may be computed and compared with

reported measurements.

It appears that the wind sensitivity of B may be assigned by this technique.

19



IV. COMPARISON WITH EXPERIMENTS

The parameter k <r. is estimated from horizontally polarized emission

characteristics at 8.36 GHz associated with two distinct wind speeds. The

emission characteristics are based on an average of several of Hollinger's

experiment runs* under similar wind stress conditions.** The vertically polarized

emission characteristic is then computed from the estimated k <r,. These results

are shown in the graphs of Figures 5 and 6. The dielectric constant is based on

data reported by Saxton and Lane [10].

Comparison of the predictions of this emission model indicates a

significantly improved agreement over that predicted by a single surface model.

Better level and trend agreement is evident for both horizontally and vertically

polarized emissions. Sensitivity to wind speed is evident at nadir which is not

noted with the single surface model. The sensitivity at nadir is carried by the

modified Fresnel coefficient (see Equation (38)).

The adequacy of the composite surface theory is further demonstrated when

the predicted backscatter characteristics are compared with measured characteristics.

Data at 8.91 GHz reported by Daley, et al., *** [22] at similar wind stress

conditions were chosen as a basis for comparison. The dielectric constant is changed

to reflect the influence of the slightly different frequency. The comparison of

predicted and measured-characteristics are shown in Figure 7 through 10. These

results indicate reasonable agreement with measurements and improved agreement over

the predictions of the simple geometric optics approach (single surface model). It

is noted that the best agreement with measurements occurs primarily at larger angles

and for vertical polarization. There is some uncertainty in the accuracy of the

measurements near nadir [22] so lack of agreement may be anticipated there. The

discrepancy at large angles for horizontally polarized cross sections may be attribu-

table to receiver noise at these small cross sections. This statement is, however,

speculative.

*The authors are indebted to Dr. J. P. Hoi linger of NRL for making his radiometric
measurements available to us. His data with foam and atmospheric effects removed
are appropriate to compare with the authors calculations.

**The authors are also grateful to Dr. V. J. Cardone of NYU for interpreting
Hollingcr's wind speed measurements under comparable wind stress conditions.

***The authors are indebted to Mr. N. W. Guinard of NRL for making these backscatter
data available to us.
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The level of NRL data which are based on the statistical median had to be

raised by 6 dB to realize the agreement. Valenzuela [23] indicated that the

average cross section was about 4.6 dB above the median based on exponential

statistics assumed for the returns. As a consequence, 1 .4 dB remains unaccounted

for. Perhaps the remaining 1.4 dB may be partially associated with the biases

disclosed by Claassen and Fung. [24]

21



V. CONCLUSIONS

A bistatic two scale non-coherent scattering theory extended from

Symyonov's paper [8] has been developed to yield the expressions for the differential

scattering coefficients. The emission and the backscattering characteristics are then

derived from the differential scattering coefficients in the standard way. The theory

assumed Gaussian surface height distributions and Gaussian correlation functions for

both scales of roughness.

The emission and the scattering characteristics are shown to be dependent on

the rms slope of the large undulations m, the standard deviation of the small irregularities
cr~1 , and the correlation length of the small irregularities £, . The wind dependence

of the first two parameters is associated with m through slick sea measurements by Cox

and Munk, and the c~1 through the high frequency sea spectrum. The parameter J^

is associated with the shape of the high frequency sea spectrum and can be reasonably

chosen by fitting the sea spectrum BK to the assumed Gaussian spectrum.

It is noted that the emission characteristic for horizontal polarization is a

sensitive measure of cr,. Thus, cr is established by fitting the emission characteristic

to measured data for different wind speeds. The parameters chosen in this way are

then used to compute the vertically polarized emission characteristic. Good

agreement with measured data and better agreement than a simple surface model are

demonstrated.

The same set of surface parameters at each wind speed is then used to compute

the backscatter characteristics. The results except for level are shown to agree

reasonably over all angles with NRL backscatter data under similar wind conditions.

Comparison of these characteristics with a single parameter surface model demonstrated

better results.

These findings have proven that the validity of scattering theories is better

demonstrated when both the predicted backscatter and the emission characteristics

are compared with measurements. They have further shown that the measured emission

and scattering characteristics with the aid of a reasonable composite surface theory

may aid the oceanographer in identifying the wind dependence of the sea spectrum.
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Figure 5. Comparison of computed and measured emission characteristics.
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