
NASA TECHNICAL NOTE

CO
CO

ASA TN D-7339

y

NUMERICAL SIMULATION
OF NOISE PROPAGATION
IN JET ENGINE DUCTS

by Kenneth J. Baumeister and Edward C. Bittner

Lewis Research Center

Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • OCTOBER 1973



1. Report No.

NASA TN D-7339
4. Title and Subtitle

NUMERICAL SIMULATION OF

IN JET ENGINE DUCTS

2. Government Accession No.

NOISE PROPAGATION

7. Author(s)

Kenneth J. Baumeister and Edward. C. Bittner

9. Performing Organization Name and Address

Lewis Research Center

National Aeronautics and Space

Cleveland, Ohio 44135

; Administration

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, D. C. 20546

3. Recipient's Catalog No.

5. Report Date
October 1973

6. Performing Organization Code

8. Performing Organization Report No.

E-7217

10. Work Unit No.

501-04

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Note

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

A finite difference formulation is presented which should be useful in the study of acoustically
treated inlet and exhaust ducts used in turbofan engines. The difference formulation can
readily handle acoustic flow field complications, such as axial variations in wall impedance
and cross-sectional area, that would occur in a sonic inlet. In formulating the difference so-
lutions, the continuous acoustic field is lumped into a series of grid points spread uniformly
throughout the field. At each point, the pressure is separated into its real and imaginary
terms. Example solutions are presented for sound propagation in a one-dimensional straight
hard-wall duct and in a two-dimensional straight soft-wall duct without steady flow.

17. Key Words (Suggested by Author(s))

Acoustic Ducts
Suppressor Turbofan
Finite difference

18. Distribution Statement

Unclassified - unlimited

19. Security Classif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified
21. No. of Pages

48
22. Price*

Domestic, $3.00
Foreign, $5.50

* For sale by the National Technical Information Service, Springfield,'Virginia 22151



CONTENTS

Page
SUMMARY 1

INTRODUCTION. 2

GOVERNING EQUATION AND BOUNDARY CONDITIONS 3
Scalar Pressure Field 3
Acoustic Particle Velocity 5
Impedance Boundary Condition 6
Entrance Conditions 8
Axial Acoustic Power 9

FINITE DIFFERENCE FORMULATION 10
Helmholtz Equation 10
Impedance Boundary Conditions 11
Axial Intensity 12

MATRIX SOLUTION 13

EXAMPLE PROBLEMS 15
Example 1 - One-Dimensional Hard-Wall Duct of Infinite Length 15
Example 2 - Propagation of Sound in a Two-Dimensional Soft-Wall Duct 20

CONCLUDING REMARKS 21

APPENDIXES
A - SYMBOLS 23
B - ONE-DIMENSIONAL SOUND PROPA CATION IN AN INFINITE DUCT 26
C - FINITE DIFFERENCE EQUATIONS 28
D - APPLICATION OF DIFFERENCE EQUATIONS TO SOFT-WALL DUCT . . . . 31
E - CLOSURE PROBLEM . 37

REFERENCES 40

111



NUMERICAL SIMULATION OF NOISE PROPAGATION IN JET ENGINE DUCTS

by Kenneth J. Baumeister and Edward C. Bittner

Lewis Research Center

SUMMARY

A finite difference formulation is presented which should be useful in the study of
acoustically treated inlet and exhaust ducts used in turbofan engines. The difference
formulation can readily handle acoustic flow field complications, such as axial varia-
tions in wall impedance and cross-sectional area, that would occur in a sonic inlet.
The formulation is both mathematically rigorous and convenient to use.

In formulating the difference solutions, the continuous acoustic field is lumped into
a series of grid points spread uniformly throughout the acoustic field. At each grid
point in the acoustic field, the pressure is separated into its real and imaginary terms.
Then, the two-dimensional Helmholtz equations for both the real and imaginary pres-
sures at each grid point are expressed in difference form. The solution is obtained by
coupling the difference equations for the real and imaginary pressures with the impe-
dance conditions at the boundaries. The solution yields the two-dimensional distribution
of pressure, velocity, and intensity level throughout the duct.

The coefficient matrix of the acoustic difference equations is presented and dis-
cussed. Then, example solutions are presented for the propagation of sound in a one-
dimensional straight hard-wall duct and in a two-dimensional straight soft-wall duct
without steady flow. These numerical solutions showed favorable comparison with the
exact analytical results. The examples are used to establish rules of thumb for choosing
grid sizes for various frequencies and duct lengths.

Because the solution matrix for the acoustic flow field is not positive definite, con-
ventional iteration techniques cannot be used to solve the difference equations. Before
the finite difference formulation can be applied to more complicated problems which re-
quire a large number of grid points, such as the sonic inlet, iteration techniques will
have to be developed to overcome present grid-size limitations.



INTRODUCTION

The level of noise currently being proposed for new aircraft requires the use of
acoustic suppression in the inlet and outlet ducts of their engines. At the present time,
there is a need for more flexible suppressor design techniques which can handle acous-
tic flow field complications in engine ducts, such as axial variations in wall impedance
and cross-sectional area, that would occur in a sonic inlet. To meet this need, the
present report develops a numerical finite difference technique which can be used in the
prediction of sound attenuation in turbojet engine ducts. In addition, acoustic wave
propagation is important in ultrasonics and underwater technology, as well as in con-
ventional noise abatement problems in architectural engineering. The techniques pre-
sented herein might also be applied to these other areas of acoustics.

Morse (ref. 1), Cremer (ref. 2), and Rice (ref. 3) have presented analytical solu-
tions for the transmission of sound in ducts of infinite length, uniform cross section,
constant wall impedance, and no flow. The theoretical solutions were later extended by
Rice (ref. 4), Eversman (ref. 5), and Lambert and Tack (ref. 6) to acoustic propagation
with uniform subsonic flows. P rid more-Brown (ref. 7), as well as other authors (refs.
8 to 17), has shown that shear flows (boundary-layer effects) can have a significant in-
fluence on the attenuation of sound in ducts. All these works use the technique of separa-
tion of variables to obtain a complex eigenvalue formulation in which the eigenvalues are
determined by various numerical techniques.

The present report formulates a solution for the propagation of sound in ducts with
arbitrary wall impedance by a finite difference technique. A search of the literature
failed to uncover any previous work in this area. The difference solutions bypass the
conventional eigenvalue problem with its associated modes. As a result of the difference
formulation, the propagation of noise is treated as a diffusion process analogous to prob-
lems in thermodynamics involving heat flow or those in fluid dynamics involving the
transport of vorticity.

Immediately following the mathematical development of the difference technique,
two examples are presented to illustrate the numerical technique. These examples have
analytical solutions; therefore, a direct comparison between the numerical and analyti-
cal results can be made. These examples are also used to establish rules of thumb for
choosing grid sizes for various frequencies and duct lengths. By choosing the maximum
acceptable grid size, the amount of computer time necessary to obtain a solution to the
finite difference equations can be minimized.

The first example presents a solution for the sound propagation in a one-dimensional
hard-wall duct with the impedance specified at the duct exit. The second example treats
the propagation in a two-dimensional straight soft-wall duct without steady flow. Also,
the limitations of the present theory are discussed and suggestions for future work are
presented.



GOVERNING EQUATION AND BOUNDARY CONDITIONS

The governing differential equation and boundary conditions are introduced in this
section of the report. First, the equations are presented in dimensional form. Next,
the equations are made nondimensional, and the significance of the dimensionless pa-
rameters is briefly discussed.

The basic equations for the scalar pressure field and the velocity field are pre-
sented, as well as the appropriate expressions for the wall impedance condition and
acoustical intensity.

Scalar Pressure Field

The continuity, momentum, energy, and state equations of a perfect gas in a duct
reduce, in the case of no steady flow, to the linear two-dimensional wave equation

v,2p, = _1_

c2 at2

In equation (1), c is the speed of sound, t is time, and P' is the pressure fluctua-
tion which is assumed to be small compared to the ambient pressure. The prime (') is
used to denote a dimensional quantity. (These and all other symbols used in this report
are defined in appendix A . )

The assumptions involved in the derivation of equation (1) are given in most acous-
tic texts and are not discussed herein. For ease in illustrating the numerical tech-
niques, we have chosen this simple form of the wave equation rather than the more com-
plete form, which contains Mach number and shear flow effects such as given by Mungur
and Gladwell (ref. 8).

We now make a further simplification by working in rectangular coordinates. In
this case, equation (1) can be expressed as

32P' 32P' 32P' /
9 9 9 9

ax"2 ay"* c* ar

where

P '=P ' (x ' , y ' , t ) (3)



This coordinate system is illustrated in figure 1.
We are concerned primarily with the steady -state solutions of the wave equation,

equation (2); consequently, we neglect the transient startup effects in the system. Thus,
for steady state we assume a solution of the form

P'(x',y',t)=P '(x',y')e+ia ' t ' (4)

where in general

p'(x',y') = p'(1)(x',y') + ip'(2)(x',y') (5)

The (1) and (2) superscripts designate the real and imaginary pressure components.
Both p" 'and p" ' are real -valued functions by definition. Complex quantities are
used because of the ease of manipulation; however, only the real part of the solution will
have physical significance. Substituting equation (4) into the scalar wave equation
(eq. (2)) yields

(6)
ax'2 ay'2

where the wave number k is given by

k = £ (7)
c

Equation (6) is commonly called the Helmholtz equation. This equation and its appro-
priate boundary conditions will be solved numerically by the finite difference technique .

In nondimensionalizing equation (6) we choose to write equation (6) in such a form
that the numerical results will be compatible with present NASA Lewis acoustical design
procedures. To do this, we define the following set of dimensionless variables as sug-
gested by the results of Rice (ref. 4):

y = y - (8)
H

xr

x = *- (9)
H



p = SL (10)
PA

where H equals the height of the rectangular duct and p^ will usually be chosen as the

amplitude of the imposed pressure wave at x = 0.
Substituting equations (8) to (10) into equation (6) and rearranging terms gives

(11)

where

ax2 ay2

The frequency parameter TJ represents the ratio of duct height to acoustic wavelength.
The dimensionless height y ranges from zero to 1 , while the dimensionless length x

ranges between

0< x <t (13)
H

where L is the length of the duct. Thus, the important dimenionless parameters de-

scribing the acoustic attenuation are TJ and L/H.
Equation (11) now can be broken into its real and imaginary parts. Substituting

equation (5) into equation (11) yields

(14)

(15)

Acoustic Particle Velocity

The boundary conditions in acoustics are generally given in terms of impedances
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which relate the pressure and velocity fields at the boundary. The velocity field can be
expressed in terms of pressure from the equation

pf^Hl] = -V'P' (16)
W

which for a harmonic solution of the form given by equation (4) reduces to

u ' = J _ V ' p ' (17)

In terms of the scalar velocities, equation (17) becomes

< = —-^ (is)x nw 3x'

u; = A_ apl (19)
y pci) 3y'

In terms of the dimensionless parameters, equations (18) and (19) become

= i (20)
3x

= i (21)
3y

where

u = u' (22)
PA

Impedance Boundary Condition

In the transverse direction, the acoustic impedance at the walls is defined as

Z, = £l at y = 0 and 1 (23)

"y



The impedance Zt is now replaced by the impedance ratio £t, which is defined as

?t = — (24)
pc

Substituting equation (19) into (23) and introducing the dimensionless parameters yield

the following expression for the impedance at the walls:

?t = -i27r?) -&- at y - 0 and 1 (25)

ay

or, the pressure gradients at the walls become

at y = 0 a n d l (26)
ay Ct

Because of convenience, we shall use equation (26) to apply the boundary constraint

rather than equation (25).

It is convenient to express the reciprocal of the impedance ratio in terms of the

acoustic conductance ratio K. and the acoustic susceptance ratio cr,, that is,

ff (27)

where !/£. is called the acoustic admittance ratio. Therefore, equation (26) becomes

^£ = -27777(0 + i/c.) p (28)
ay r

Finally, expressing p in terms of its real and imaginary terms, and equating these

terms gives

/I \ p -i

Q—- -27T7J p^'a, - p^K, at y = 0 and 1 (29)
3y L t tj

(2) r ~\
Q— = -27T7J p^'a. + p^/cJ at y = 0 and 1 (30)

9y L r II



The impedance at the exit plane, x = L/H, leads to a similar expression

3x
(31)

x=L/H

,(2)

3x
= -2m]

x=L/H
(32)

We can see that the pressures p^ ' and p^ ' are coupled by the impedance condi-
tions represented by equations (29) to (32).

Entrance Conditions

At the entrance, the dimensionless pressure p(0,y) is assumed to be of a general
form

P(0,y) = p (1)(0,y)+ip (2Vy) (33)

Generally, some real pressure profile f(y) is assumed at the entrance, that is

P ( 0 , y ) = f ( y ) (34)

where f(y) is normalized such that

/' f(y)dy = (35)

The function f(y) can be chosen to map any assumed pressure profile. For the prob-
lems treated in this report, the real and imaginary pressures at x = 0 are

P ( 1 ) (0 ,y)=f(y)

P ( 2 ) (0 ,y )=0

(36)

(37)



For a uniform profile, as is used in the examples considered later, equation (36) be-
comes

P(1)(0,y) = 1 (38)

Axial Acoustic Power

The sound power which leaves a duct and reaches the far field is related to the axial
intensity. The axial intensity can be expressed as (ref. 4)

' = (39)

In terms of the dimensionless parameters, equation (39) can be written in dimensionless
form as

I = J_/?e[p*u)
27777 l AJ

(40)

where

(41)

For a hard-wall duct with a pc exit impedance, I is identical to 1 for all frequen-
cies and duct lengths. This result is shown in appendix B.

In terms of the complex representation, the expression for I becomes

I =
27TTJ

,(2) 31 -P(1) 3P(2)
(42)

The total dimensionless acoustic power is the integral of the intensity across the test
i

section

Ex = <,y)dy (43)



By definition the decrease in decibels of the acoustic power from x = 0 to x can

be written as

E
AdB = 10 log1Q — (44)

E0

FINITE DIFFERENCE FORMULATION

The continuous system will now be reduced to an equivalent lumped-parameter sys-
tem by means of the finite difference approximations. Instead of a continuous solution
for the pressure, we shall find the pressure at isolated grid points, as shown in figure 2.

The previously discussed governing differential equations can be approximated in
difference form (ref. 18) by using one of the following three methods: (1) a Taylor ser-
ies expansion, (2) a variational formulation, or (3) an integral formulation. For prob-
lems where the gradient is specified along a boundary, such as in our acoustic problem,
the integration method for generating the finite difference approximations is most con-
venient and is used in this report.

The difference equations for the acoustic field are presented without derivation.
The detailed derivations of these equations are given in appendixes C and D.

Helmholtz Equation

The Helmholtz equation, (14), in finite difference form becomes

°

\» * 2(-f -L \Ay/
p[2\ = 0 (46)-1) j

where

and where i corresponds to x and j corresponds to y. Note, the frequency term
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n
(27TTJ Ax) subtracts from the term which will occupy the main diagonal element of the
coefficient matrix; consequently, for sufficiently high frequencies or spacing param-
eters, the matrix will no longer be positive definite (ref. 18, p. 68). As a result, con-
ventional iteration techniques cannot be used.

Impedance Boundary Conditions

The impedance boundary conditions of the upper wall with j = m (eqs. (29) and (30))
become

AX i,m
-^ i/V

L-l , m

,(2)

2\Ax

1 + I*!) + 27T7, Ay (a,
,Ax

(27TT? Ay)'

,m
(2) _ l/

-1 2 \

Ay\2

2 \Ax/

(2)
i-1 m

(49)

Similar equations exist at the lower boundary (see appendix D). The subscripts on a
and K indicate that these quantities can vary along the length of the duct.

At the duct exit, the impedance condition

(50)

(51)

is used so that a finite duct can approximate a duct of infinite length (see appendixes B
and E for detailed discussion). For this case, the finite difference approximations to
equations (31) and (32) become at the exit (i = n)

11



1 + /Axf . (2^ Ax)2 (1) .1 /AxY 8 (1)

-

Ay
(52)

,2 ,(27rTy Ax)~ (2) _ 1 M2
D( 2)~

-lHV2> + 27T7J Axp(2)

(53)

Finally, special consideration must be given to the corners at the exit of the duct,
i = n and j = m, since both the exit and side wall impedance values influence this point.
Asa result, the impedance condition at the corner is

n,m (*" A \2 / \
^ 1 + 2fl"n Avlcr ii -i- £// »; iiy iu, i

Ax/ V /n

(27TTJ Ay)2

,m 2

(54)

D(2)
• n , m 27H, Ay (at)\ V

(27T7J Ay)'
m

3<
2) - D^2) +?n-l,m pn,m-l + (55)

Axial Intensity

In terms of the difference notation, the axial intensity as given by equation (42) can
be expressed as

12



'u- 27T7J AX

(2) (56)

The total intensity across the test section, as given by equation (43) is written in differ-
ence notation as

E. = II.
m-1

— -I-• „_2 i, m

j=2

(57)

We shall now apply the difference equations to the problem of noise attenuation in a
duct.

MATRIX SOLUTION

The collection of the various difference equations at each grid point forms a set of
simultaneous equations which can be expressed in matrix notation as

A • P - F (58)

where A is the coefficient matrix, P is the pressure matrix containing the unknown
pressures, and F is the known matrix containing the various initial conditions, where
A, P, and F are complex in general.

In considering solutions to equation (58) , it is convenient to express this equation in
terms of all real quantities. To accomplish this, the matrix P is written as a column
vector in terms of the ^ ' and p' ' pressures and subdivided as follows:

Ai i -c
•

C i A1

i

"p(D~

p(2)

pID

pl2)
(59)

The upper left A, matrix is associated with the p^ ' terms and the lower right A1
(2^matrix is associated with the pv ' terms. Both matrices are identical because of sym-

metry which exists in the governing equations. The Aj matrix has a form typical of
those matrices found in two-dimensional heat conduction problems or neutron diffusion
problems. The A matrix has one main diagonal element and four other diagonal ele-

13



ments which represent the coupling of the central point to the four adjacent points.
The C matrix represents the coupling that occurs between the p* ' and ^ '

pressures through the impedance boundary conditions. The lower left matrix differs
from the upper right matrix only by a change of sign. The C matrix is a sparse matrix
with only one main diagonal term.

To better illustrate the detailed structure of the matrix given by equation (59), con-
sider the simple example shown in figure 3. For this simple case the detailed matrix
structure becomes

-i

-i

-i

-1

-1

-i

-1 0 a,

-1

0

0

-L -32 3

.

-i
a2 ,

p- — — — — — — — — _

a, -1 -1
1 2

-I a, -I -1 X
2 * 2 N

-1 a2 0 -1

-1 0 a3 -1 -1

-1 -1 a3 -1 -1

-I -1 a. 0 -I
2 * 2

-1 0 a, -I
1 2

N0 -1 .1 a, -I
x 2 1 2

C2 "' -1 a2

P2"

P!"

P51'

P^1'

«4"

Pg"

•42)

P^

Pf

Pf

t

P92'

a
2

0

0

+1

0

0

2

0

0

0

0

0

0

0

0

0

0

0

where the values of the coefficients a and c in this matrix are given in appendix D,
along with the derivation of the other elements .in this matrix equation.

As shown in appendix D, the constants a and c depend on the impedance and the
grid size. The double-subscript notation, illustrated in figure 2, has now been replaced
by a single-subscript notation. However, the double-subscript notation will still be used
to set up the basic form of the matrix coefficients.

14



Matrices of the form of equation (59) can be solved by elimination techniques. In
particular, the Gauss elimination technique was used to find a solution in the example
problems which follow.

EXAMPLE PROBLEMS

Two examples are presented to illustrate the numerical technique. Both examples
have analytical solutions; therefore, a direct comparison between the numerical and ana-
lytical techniques can be made. As mentioned in the INTRODUCTION, these examples
are used to establish rules of thumb for choosing grid sizes for various frequencies and
duct lengths. The first example presents a solution for a one-dimensional hard-wall
duct with the impedance specified at the duct exit. The second example presents a solu-
tion for the propagation of sound in a two-dimensional straight soft-wall duct.

Example 1 - One-Dimensional Hard-Wall Duct of Infinite Length

As our first example of the difference technique, we shall consider the problem of
an infinite hard -wall duct with a plane pressure wave at the entrance of the duct.

In this case, "hard wall" implies that

z oo y = o and y = 1 (61)

or

*t = 0 y = 0 and y = 1 (62)

<rt = 0 y = 0 and y = 1 (63)

For this special case of a plane wave entrance condition, no pressure gradients will exit
in the transverse direction in the duct; consequently, the Helmholtz representation of the
wave equation, equation (11), reduces to the one -dimensional form

(64)

The difference form of the general equation presented earlier can be simplified by
noting that

15



• • •
In this case, the difference form of the wave equation, equation (45), reduces to

=o (66)

with an identical expression for pv ' component of pressure.
The word "infinite" used in the title of this example problem implies that the duct

is sufficiently long so that no reflective waves occur in the duct. In the numerical
formulation of the infinite duct, we can simulate the infinite duct by assuming a finite
length of duct and applying an impedance of value pc at the exit plane of the duct (see
appendix B for proof). As a result, K = 1 (eq. (B12)) and a = 0. Thus, the exit im-

c c

pedance boundary conditions corresponding to equations (52) and (53) become

. 0

(27T7T -.(2) (68)

The entrance conditions are simply

p(1)(0) = 1 (69)

p(2)(0) = 0 (70)

In solving the resulting set of matrix equations we will simplify the structure of the
solution matrix. This simplification should be useful in future work if block iteration
techniques (ref. 18) are applied to the solution of the two-dimensional matrix equations.

Consider the simple case shown in figure 4, where four points are used to describe
the pressure distribution in a finite hard-wall duct with pc exit impedance. In this
case, the general matrix equation, equation (59), reduces to the following form:

16



1
a , -1 ,01 | x

1 \
-1 aj -1 | 0

I
-1 a, -1 0

0
1 \

-I aj -c

T

0 a, -1
0\

o -i ai -i

v. 0 -1 a. -1
0 1

\
cl | ~1 a2

X

~(iTPi
( i \

P2

P3
, .

4

o\
PI

42)

p(2)
"

Jlil

=

•"• ~~

1

0

0

0

0

0

0

0

(71)

where

= 2 -

C, = 27T77 &X.

As seen in equation (71), the basic structure of the solution matrix is similar to the
structure shown in equation (60). The Aj matrices become tridiagonal and the coupling
C matrix has only one element.

The detailed structure of equations (60) and (71) are arbitrary, since we are free to
construct the column vector P in a variety of ways. Therefore, for one-dimensional
problems, we shall now redefine the column vector P to be of the form

17



Pi"

P =
,(2)

(2

(72)

where the pv ' components have been inverted. For the special case of n = 4, as
shown in figure 4, ,

(78)

P =
pi"
p
p

18



Expressing the general matrix equation (58) in terms of this new column vector gives
for our simple example the following matrix equation:

-1 a -1

-, a, .,

-1 a

\

-c

a2 -1

-1

-!

-1

-,

X

"pi17

4"
4"
P41}

42)

42)

p^2)

_p(l2!

=

1

0

0

0

0

0

0

0

where a,, a2, and c are the same as defined in equation (71). As seen in equation (74),
the resulting coefficient matrix is tridiagonal, which is extremely easy to solve.

Equation (74) was applied to a duct with a height-length ratio L/H of 1 and a dimen-
sionless frequency 77 of 1. For a value of n = 12, the numerical as well as the ana-
lytical results are shown in figure 5. As seen in figure 5, the numerical and analytical
results are in good agreement.

In determining the attenuation of a particular liner, we are interested in how well
the difference formulation predicts the intensity at the duct exit. Figure 6 displays the
numerical results for axial intensity at the duct exit for a variety of dimensionless fre-
quencies 77. Recall that the intensity was nondimensionalized such that it is identical to
1 for a hard-wall duct. For a sparse number of grid points n, the numerical results
fall below the analytical value of 1. However, as the number of grid points is increased,
the numerical value of the intensity asymptotically approaches the theoretical value of 1.

From the numerical results shown in figure 6, we can establish the following rule of
thumb for one-dimensional problems:

±= 12- for Z. = « o f z = pc
H

(75)
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or

Ax = -A- for Z. = °°, Z = pc (76)
12 l e

That is, for a given L/H or 77, if we choose n greater than or equal to the value sug-
gested by equation (75), the calculated value of I will be within 4 percent of the true
value.

For the two-dimensional problem with finite Zt, equation (75) will not hold. Be-
cause the intensity can vary inside the duct in the transverse direction in the two-
dimensional problems, more grid points will be necessary to assess the intensity in
two-dimensional problems. Consequently, for the general two-dimensional case

t for Z , < ~ , Z =pc (77)
H * e

Example 2 - Propagation of Sound in a Two-Dimensional Soft-Wall Duct

In our second example of the difference technique, we shall consider the problem of
calculating the maximum attenuation possible in a two-dimensional duct with L/H of
0. 5 and dimensionless frequencies 77 of 0. 6 and 1. We can compare the numerical re-
sults to the analytical results found by using the techniques presented by Rice (ref. 4).

The first step in determining the maximum attenuation in the duct is to calculate the
attenuation at various Z-values in the impedance plane. This is shown in figure 7, where

C = JL = 6 + iX (78)
pc

defines the impedance plane. As seen in figure 7, the peak occurs at negative values of
wall reactance. The sound attenuation values shown in figure 7 were obtained by choos-
ing discrete values of & and x throughout the 0-x plane, calculating the sound atten-
uation at each point, and interpolating between the points to obtain smooth contours.
The impedance associated with the peak attenuation is called the optimum impedance.

As was previously mentioned in this report, the solution matrix for the acoustic
flow field is not positive definite; consequently, conventional iteration techniques cannot
be used to solve the difference equations. This is a serious limitation, since iteration
techniques generally are quicker and require a much smaller storage in the computer
than conventional elimination procedures. Nevertheless, a standard elimination sub-
program was used.
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Because of matrix-size limitations in the elimination subprogram used to solve
equation (59), the technique of varying grid size (ref. 19) was used. This technique is
illustrated in figure 8, where the grid spacing Ay is decreased toward zero. The at-
tenuation at the optimum impedance is found by extrapolating the grid size to zero
(dashed portion of the curve). As shown in figure 8, the extrapolated numerical values
are in agreement with the analytical values calculated from the theory presented by Rice
in reference 4.

Based on the known computational times for the solutions presented in this report,
we can now estimate the computer time involved in solving some realistic liner prob-
lems. We will assume that an elimination subprogram will be available which is spe-
cially tailored to the particular acoustic matrix; that is, no zero need be stored in the
subprogram. Furthermore, we will assume that 1000 grid points will adequately de-
scribe the liner geometry to be analyzed. For the two-dimensional example problem
considered in this report, the solution would require approximately 0.4 minute of com-
puter time. In the future, when nonuniform shear flow effects are incorporated into the
governing flow equations, the computer time will increase by a factor of 3, to 1. 2 min-
utes. Both time estimates are quite acceptable for liner design calculations.

The numerical procedure is quite flexible and can be used to obtain details of the
acoustic field structure, such as pressure, velocity, and intensity, at any position in the
duct. Complications such as variable impedance or wall geometry are easily pro-
grammed.

CONCLUDING REMARKS

Finite difference solutions are presented for sound propagation in a one-dimensional
hard-wall duct and a two-dimensional soft-wall duct for zero Mach number. The results
show the numerical procedure to be in agreement with the corresponding exact analytical
results. Because the solution matrix for the acoustic flow field is not positive definite,
conventional iteration techniques cannot be used to solve the difference equations. Before
the finite difference formulation can be applied to more complicated problems which re-
quire a large number of grid points, such as the sonic inlet, iteration techniques will
have to be developed to overcome present grid-size limitations.

The finite difference formulation is flexible and should be a powerful tool in the so-
lution of more realistic studies of inlet and exhaust ducts of turbofan engines. The
present formulation allows complete freedom in choosing the inlet pressure profile and
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the complex impedance along both boundaries. The extension of the present formula-
tion to both uniform flow and shear flow is straightforward.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, April 10, 1973,
501-04.
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APPENDIX A

SYMBOLS

A coefficient matrix, eq. (58)

Aj submatrix, eq. (59)

a..,a2,ao,a4 elements of matrix A..

C submatrix, eq. (59)

c speed of sound

C1'°2'C3 elements of matrix C

AdB decrease in decibels, eq. (44)

E acoustic power, eq. (43)

F matrix, eq. (58)

f frequency

f(K.) function of K.
J J

f(y) function of y

G(y) arbitrary function of y

H channel height, fig. 1

I dimensionless acoustic intensity, eq. (41)

I' dimensional acoustic intensity, eq. (39)

K, complex propagation constant
J

k % wave number, co/c

L dimensional length of duct

m total number of grid rows (points in y-direction)

n total number of grid columns (points in x -direction)

O order of v

P pressure column vector, eq. (58)

P' dimensional pressure, P'(x',y',t)

p dimensionless pressure fluctuation, eq. (10)
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PA
p'
t
u

u'

X

Ax

X'

y
Ay

y'
z

K

X

p
a .

9

X

cu

Operators:

v2

V

Subscripts:

amplitude of pressure fluctuation at duct entrance

dimensional pressure fluctuation

time

dimensionless acoustic particle velocity, eq. (22)

dimensional acoustic particle velocity

dimensionless axial coordinate, eq. (9)

axial grid spacing

dimensional axial coordinate, fig. 1

dimensionless transverse coordinate, eq. (8)

transverse grid spacing

dimensional transverse coordinate, fig. 1

acoustic impedance

dimensionless specific acoustic impedance

dimensionless frequency, eq. (12)

acoustic conductance ratio

wavelength

density

acoustic susceptance ratio

dimensionless specific acoustic resistance

dimensionless specific acoustic reactance

circular frequency

Laplacian

gradient

exit condition

axial and transverse indexes, respectively, fig. 2

mode index

transverse y-direction
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x axial position

y transverse position

Superscripts:

' dimensional quantity

* complex conjugate

( ) vector quantity

(1) real part

(2) imaginary part
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APPEND IX B

ONE-DIMENSIONAL SOUND PROPAGATION IN AN INFINITE DUCT

Pressure Field

For one -dimensional sound propagation in the x-direction, the dimensionless wave
equation, equation (11), reduces to

dJ? + (27n7)2p = 0 (Bl)
dx2

In this case, the waves are uniform with no gradients in the y-direction. The general
solution of equation (Bl) is

p = e + Be+i2777^ (B2)

The boundary conditions for equation (B2) are as follows

B = 0 (no reflecting waves) (B3)

•N

p = 1 at x = 0 (B4)

Applying conditions (B3) and (B4) to equation (B2) gives as a solution

p = e-127"^ (B5)

or

p = cos 27T7JX - i sin 2-rnix (B6)

Thus, in terms of the real and imaginary pressures in the numerical solutions

P' ' = COS 27T77X (B7)

p^ = -sin 27HJX (B8)
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Terminal Impedance

The specific acoustic impedance £ at any point is defined by equation (25) and is
given for the x-direction as

12777? JL

9£
ax

(B9)

Substituting equation (B5) into equation (B9) gives the impedance at any position x as

(BIO)

or the impedance at any position from equation (24) as

Z = pc (Bll)

In terms of the acoustic conductance and susceptance ratios, defined by equation (27),

(B12)

<r= 0 (B13)

These results can be used in the numerical analysis to allow a finite length of duct
to represent an infinite duct by using K = 1 and a = 0.

G 6

Intensity

The dimensionless axial acoustic intensity is given in the body of this report as

I =
27T7]

(2)
Sx

(42)

Substituting equations (B7) and (B8) into equation (42) and collecting terms gives

I = 1 (B14)

Thus, the axial acoustical intensity is invariant along the length of the duct.
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APPEND IXC

FINITE DIFFERENCE EQUATIONS

The basic difference equations are determined by integrating the appropriate differ-
ential equation over a unit cell, as shown in figure 9. The cell is enclosed by the dashed
lines which are spaced midway between the grid lines (not shown). The grid lines would
go directly through the grid points. In this particular problem, the governing equation
is the wave equation as given by equation (14) or (15) in the body of the report. Thus, the
finite difference integrals become

V1' + (27TT?)V ' dA = 0 (Cl)
L. J

cell

/ / Tv2p(2) + (27777) V2)]dA = o (C2)

cell

By applying Green's theorem for the plane region, these equations reduce to

cell
p<J) dA = 0 (C3)

ft) £ii_ds + (277TT // pwdA = 0 (C4)

''cell

«' ff
f*p11

(2)

where dA is a differential area element of the unit cell, ds is the differential length on
the boundary of the unit cell, and n is the normal to the cell boundary.

As usual, the difference formulation approximates the first derivatives as follows:

3p
3x Ax
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- Pi

-
2

Wave Equation

The wave equation in finite difference form, equation (47) in the body of the report,
is developed by applying equation (C3) to the cell marked 1 in figure 9 . In evaluating the
surface integrals, the gradients are assumed to be constant on each side of the cell and
the interior pressure is assumed to be constant in the interior of the cell. Thus, equa-
tion (C3) becomes

Ax

p 1L3 Ay +
 pi.]-l

Ay Ax

- -
i,] Ay

- p
ij-1 Ax + (27TT7rpp Ax Ay = 0 (C5)

Multiplying all terms by -Ax/Ay and collecting terms gives

2 + 2/—} - (2777? Ax)2

\Ay/
(C6)

which is equation (45) in the body of the report. Using the same procedure, the differ-(y\
ence equation for the pv ' component can also be found.

Finally, let us consider the difference equation which applies in cell 2, which is
adjacent to the upper boundary in figure 9. For this unit cell, equation (C3) can be ex-
pressed as
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i.m Ay i ,m

Ax Ax

AAy

2

3n
(C7)

wall

y=i

The normal derivative at the wall, 9p/ay is given by the known impedance boundary con-
dition given by equation (29) in the body of the report, which is repeated here for con-
venience

(29)

In difference form,

ay - , mj
(C8)

Substituting equation (C8) into equation (C7) and collecting terms yields

Ax 2 \AX

\Ax

In a similar manner, equations (C3) and (C4) are applied to cells 2 , 3 , and 4 to
yield equations (50) to (56) in the body of this report.
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APPEND IX D

APPLICATION OF DIFFERENCE EQUATIONS TO SOFT-WALL DUCT

In this appendix, we develop some of the matrix coefficients which make up the
matrix given by equation (60) in the body of this report. This matrix results from the
difference formulation for sound propagation in a straight soft-wall duct for zero Mach
number.

General Difference Equations at Lower Wall

Before looking at the specific form of equation (60), we will write the general form
of the difference equations at the lower wall, since the coefficients in the first two rows
of equation (60) result from applying the difference equations to points 1 and 2 along the
lower wall shown in figure 3. At the lower wall, equations (48) and (49) can be written
as

i , i

i , i

-^- + 2 TTIJ Ay cr,
Ax

D̂i 9 -- 1l>* 2 VAX

2 VAX
(D2)

In this example, Ay = Ax; therefore, the ratio Ax/Ay = 1; thus, these equations reduce
to
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P(i)
1,1 2 + 27TT? Ay

- 27T7] Ay//ct\ pj2^ = 0 (D3)

p'fi 2 + 27777 Ay
Wi,l

(27777 Ay)2

2
(2) 1
i,2 2

(2)

+ 2717] Ay (D4)

For simplicity, we now define

a, = 2 + 27T7? Ay fa, )
\ Vi> i

(2^77 Ay)'

2

and

(D5)

(D6)

Substituting equations (D5) and (D6) into equations (D3) and (D4) yields

a Da
(1) - c p(2) - 0c p ~ u (D7)

a pa p
(2)

i ,2 + o(2)
+ (D8)

In a similar manner, the difference equations at the lower corner take on the form

p2pn,

a p(2)
 D(2)

a2pn,l "pn-

(1) - c p(2) - 0n , 2 C 2 p n , l " u

- 0
'°

(D9)

(D10)
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where

a = 2 + 2vn Ay (a) - (2^ Ay) (Dll)
2 Wn.l 2

C9 = 2Trri Ay 1 + M (D12)
2 L V V n . l J

Application to Equation (60)

We shall now apply these equations and the other equations derived elsewhere in this

report to the derivation of equation (60) .
Point 1. - The double-subscript notation will be transformed into the single-

subscript notation used in figure 3 for this example. Applying equation (D7) to point 1
yields

a D(1) nW X [D
(1)

 + n(1)l c o(2) - 0 (Dlftalpl P4 ~ P0 + P2 ~ C1P1 ~ ° (L>16>
4 L J

where a^ and c^ are defined by equations (D 5) and (D6). However, PQ represents an
initial -condition grid point, which in this example has a value of 1. Thus, equation

(D13) becomes

(D14)

or in matrix form
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a. -- 0 -1 0 0 0 0 0 -cn 0 0 0 0 0 0 0 C ] x
L 2 1~ - I

(D15)

which represents the first row in equation (60).
(n\

The imaginary pv ' pressure equation at point 1 results from applying equation (D8)
to point 1. This yields

(2 ) _D (2) _ iP4 11 (D16)

In this case, however, p^ ' represents a zero initial condition; thus, equation (DIG) be-
comes

c n+a n o - o -0clpl +alpl ~P2 P4 ~° (D17)

which represents the 10th row of equation (60). The matrix form of equation (D17) is
similar to equation (Dl 5) .

34



Point 2. - At point 2, equations (D7) and (D8) become

j. \ *•) \*-) •! --»\ •*•/ «*»\-^J f* *-*\^) A /7~^ 1 O"\
- — pi + <*iPo PQ " PR " clPo = " Vi-'IoJ

2 1 1 L 2 ^ 0 I <*

and

>(2) 1 o<2) t>(2)
 + c o(1) - 02 --P3 -p5 +0^2 -U

which represents the second and llth rows of equation (60) .
Point 3. - At point 3, equations (D9) and (D10) become

=0 (D20,

and

-P2
2>+a2pf-p<2 ' .c2p(»=0 OKI,

which represent the third and 12th rows of equation (60) .
Point 4. - At point 4, equations (45) and (46) in the body of this report become

-4* - 4" - PjW - P?' + [4 - (if* A^pJU - 0 (D22)

and

-p{,2) - P(
5
2) - P(j2) - pf + [4 - (27T7J Ax)2Jp^2) = 0 (D23)

But from the initial condition, p^ = 1 while p^' = 0; thus equations (D22) and (D23)
become

-,«> + a3p<!) - 4" - pW . 1 (D24)

-pf + a3pf - p<2> - p® . 0 (D25)
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where

a3 = 4 - (2777] Ax)2 (D26)

Equations (D24) and (D25) represent the fourth and 13th lines in equation (60).
Point 5. - The difference equations that apply at point 5 come directly from equa-

tions (45) and (46) as

- p W - p W ^ p W - p W - p ^ O (D27)

and

D(2)
 D

(2) + a 0<2) n<2) n(2) - 0 (D2®-P2 - ?4 + a3?s -P0 - PS ~ u ^uzti>

These equations represent the fifth and 14th lines in equation (60). In an actual acoustic
problem, the bulk of the difference equations in the central flow field will be of this form.

Point 6. - At point 6, equations (52) and (53) in the body of this report become

and

r> n + a t> n c o - 02~P3 ~P5 +a4p6 "^P9 "C3P6 ~°

rA ' rA ' J- Q rA ' rA"' j- r» r»' ' — 0
Po ~ PC + aA?K Pq + CqPfi ~U

2 "* ° 4t> 2
\

where

2
„ r> (27777 Ax) /r»oi\a. = z woi;

* 2

and

c3 = 27777 Ax (D32)

Equations (D29) and (D30) represent the sixth and 15th lines in equation (60).
The equations for points 7, 8, and 9 are similar to the equations at points 1 , 2 ,

and 3. These equations will not be presented here.
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APPENDIX E

CLOSURE PROBLEM

The close agreement between the numerical theory and the corresponding exact
analytical results substantiates the utility of the pc exit impedance assumption made
earlier in this report. However, we shall now establish criteria for which the numerical
and analytical results will be in exact agreement. To accomplish this task, we must
first look at the analytical theory.

The analytical solution (ref. 7, e.g.) assumes that the solutions to the wave equa-
tion are separable and can be expressed in terms of an infinite number of modes. For
only forward -going waves (no reflections, i.e. , an infinite duct) the expressions for
pressure and velocity are of the form

N

Z G.(y)e
-ikK».x

(El)

where K. is a complex propagation coefficient for each mode.
The propagation constants K. are functions of an eigenvalue p...

\ ' J J
fj.. are determined by the wall impedance condition

The eigenvalues

£t = 277T?
P^

(E2)

A solution to equation (E2) yields an infinite set of eigenvalues ju . , each identifiable with
a mode. Also, as a direct consequence of equation (E2), it follows that for each mode

yly w
Uy3/w * 'w

(E3)

Conversely, it follows that at some finite distance L down the infinite duct, which
we label e for exit plane, the ratio of pressure to axial velocity is different for each
mode:
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(E4)

Equation (E4) follows as a consequence of the fact that this ratio depends on the eigen-
values (through K.) which were previously determined by equation (E2):

J

(E5)

Thus, each ratio of pressure to axial velocity at the exit position takes on its own unique
value depending on the values of the propagation constant K..

If we now define the axial impedance in the usual manner, the impedance condition
for no reflection at x = L becomes

pl P2 Pi
£ j = 27TT? —-, £ g = 2mi ——, . . . , £ . = 2777? —]- , . . . (E6)

"xl "x2 uviA. J. A.£i j£ I

That is,' the infinite duct with no reflections could now be replaced by a finite duct of
length L with each mode having its own respective exit impedance as given in equa-
tion (E6). Clearly,- as a consequence of equations (E5) and (E6), the exit impedance con-
ditions for no reflection are such that

£ i ^ £ o / £ o / . . . ^ £ - ^ . . - (E7)

with each mode having its own unique exit impedance for no reflection.
In the numerical treatment, the boundary condition used at the duct exit x = L was

fe = 27Hj^ -= l (E8)

where the numerical value of 1 indicates the condition for the case in which a plane one-
dimensional pressure wave would not be reflected at the tube exit.

In comparing the exact analytical exit impedance conditions required for no reflec-
tion, equation (E6), to the numerical exit impedance condition, equation (E8), we are led
to the conclusion that reflections are occurring at the duct exit in the numerical calcula-
tions. Choosing £ equal to 1 in the numerical calculation cannot satisfy all the distinct
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impedance values for each mode as given in equation (E6). Clearly, the analytical and
numerical solutions for the attenuation in a duct of a given length will not be identical.

If we overlook roundoff and truncation errors in the numerical calculations, the at-
tenuation calculated by the numerical technique will be greater than that calculated by
the exact analytical technique because of reflections which occur at the exit; that is,

AdB)numerical * AdB) analytical <E9>
0<x<L 0<x<L

The reflected energy appears to have been absorbed by the soft wall in the numerical
calculation.

Fortunately, in many practical problems, most of the higher order modes decay out
and only the lowest order mode appears at the exit. A comparison to the analytical re-
sults indicates that in general the exit impedance associated with the lowest order mode
is close to pc. Nevertheless, it is important to establish a general numerical proce-
dure which will converge to the correct answer .

Consider the case where an additional length of absorbing liner AL is added to the
original liner, so that the liner now has a length L + AL. If AL is chosen sufficiently
long, the reflected energy at the duct exit, x = L + AL, will be absorbed before this
energy can reach the previous exit position at x = L. Therefore, for soft -wall ducts

limit A d B m e r i c a l = AdB (E10)

0<x<L

Practically, the liner length need only be increased by some minimum length AL until
the attenuation for the liner length between x = 0 and x = L remains constant to a
given percentage.
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Acoustical energy flow
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Figure 1. - Coordinate system for two-dimensional duct.
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Figure 2. - Grid-point representation of two-dimensional flow duct.
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Figure 3. - Illustrative example of soft-wall duct with total number of grid rows m of 3 and
total number of grid columns n of 3.

Ke = 1 <Ze = pel

Figure 4. - One-dimensional sound propagation with no reflections.
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Figure 5. - Pressure profiles for one-dimensional sound propagation without reflections for dimension-
less frequency 17 of land number of grid columns n of 12.
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Figure 6. - Effect of increment number on calculated intensity of one-dimensional sound wave
propagation without reflections.
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Figure 7. - Sound power attenuation contours for dimensionless fre-
quency 17 of 0.6, length-height ratio L/H of 0. 5, total number
of grid rows m of 20 and total number of grid columns n of 5.
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Figure 8. - Effect of spacing on attenuation at opti-
mum impedance.
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Figure 9. - Integration cells for establishing difference equations.
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