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ON THE DECAYING ORBIT OF TETR-3

C. A. Wagner*

S. M. Klosko**

ABSTRACT

The orbit of TETR-3 (1971-83B), inclination: 330, passed through resonance

with 15th order geopotential terms in February 1972. The resonance caused the

orbit inclination to increase by 0.0150. Analysis of 48 sets of mean Kepler ele-

ments for this satellite in 1971-1972 (across the resonance) has established the

following strong constraint for high degree, 15th order gravitational terms

(normalized):

10 9 (C,S)15 = (28.3 ±1.5, 7.4 1.5)

0.001(C,S)15,15 - 0.015(C,S)17,15 + 0.073(C,S)19,15

- 0.219(C,S) 2 1,15  + 0.477(C,S) 2 3 ,15  - 0.781(C,S)2 5,15

+ 1.000(C,S) 27 ,1 5  - 0.963(C,S) 2 9 ,15  + 0.622(C,S)3 1,15

+ 0.119(C,S) 33 ,15  - 0.290(C,S) 35 ,15  + 0.403(C,S)37 ,15

- 0.223(C,S) 39 ,15  - 0.058(C,S)4 1,15  + .

This result combined with previous results on high inclination 15th order

and other resonant orbits suggests that the coefficients of the gravity field beyond

the 16th degree are significantly smaller than Kaula's rule (10 -5 / 2).

*Goddard Space Flight Center, Greenbelt, Maryland 20771

**Wolf Research and Development Corporation, Riverdale, Maryland 20840
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15TH ORDER RESONANCE

ON THE DECAYING ORBIT OF TETR-3

INTRODUCTION

In the last two years considerable progress has been made in the study of the

high degree and order geopotential from decaying, low altitude resonant orbits. 1 ,2

These orbits are distinguished from the many near resonant ones, in actually

passing through perfect commensurability. As a consequence the decaying, reso-

nant orbits suffer much larger perturbations over longer times. Therefore;

these commensurate orbits can, in principle, be studied with much simpler tech-

niques. In addition the decaying, resonantorbits offer the novelty of having es-

sentially unpredictable perturbations through commensurability. 3 This arises

because the changes are critically dependent on the satellite's longitude. But

due to high and uncertain drag, the longitude is rapidly lost for these satellites

without continual tracking.

The decaying, resonant orbits receiving the most attention are, naturally, the

most plentiful ones. These are the ones commensurable with 15th order geopo-

tential terms. Orbits established near 15 revolutions a day (at about 500km

altitude) are common to begin with. In addition, those initially above the criti-

cal altitude will decay (from the effects of atmospheric drag) sufficiently fast to

pass through perfect commensurability in a reasonable time (say from 5 to 10

years from launch).
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In his 1973 paper,1 King-Hele presents good results on ten such (15 rev. /day)

orbits of satellites launched since 1965. (Many more have passed through this

resonance without tracking adequate to see the perturbations.) However, only

six of these are sufficiently distinct to be useful in discriminating the odd degree

geopotential terms to which they are sensitive. Furthermore, these six orbits

are all at inclinations over 50', making them particularly sensitive to the low

(odd) degree terms. If this sensitivity were exclusive, it would be an advantage

and enable a good determination of the first few such terms from the available

data. But this is not the case, so that even with six orbits King-Hele has not

demonstrated an acceptable solution for some of these low degree terms [i.e.,

(15,15), (17, 15) and (19,15)].

It appears that good discrimination of 15th order resonances will only come

when a better range of inclinations are available. This is essentially the same

consideration as in the satellite determination of the general geopotential field.

To further this end, we study the 15th order commensurability (in 1972) of the

orbit of TETR-3 (1971-83B). It is the first low inclination orbit-(330) used for

this purpose and as such, is very sensitive to the high degree terms rather

poorly represented by the previously analyzed orbits. A strong constraint on

15th order terms from the TETR orbit is derived, compared and combined with

the previous results to yield a reasonable set of terms through (39,15).

DATA

Table 1 presents the (analyzed) mean elements for TETR-3 as determined

at Goddard Space Flight Center in 1971-72 from Minitrack radio interferometer
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tracking measurements. TETR-D (TETR-3 in orbit) is a magnetically stabilized

octahedron (20kg, 0.3m on a side) launched September 28, 1971 and tracked till

June 1972 when the satellite was "retired". A unified S-band transponder failed

soon after orbit was achieved and the primary mission for TETR-D was lost.

This was to calibrate the NASA's Manned Space Flight Network. Nevertheless

excellent (and compatible) elements on TETR-3 were obtained from the tracking

data by two methods.

The unstarred sets in Table 1 are the routine Goddard Brouwer mean ele-

ments for this orbit determined from independent data at (usually) one week in-

tervals. These are essentially Brouwer single primed mean elements 4 (with the

Brouwer long period zonal terms kept in). They are equivalent to conventional

mean elements defined as osculating values less only short period terms which

time-average to zero over the anomalistic orbit period. Two corrections to the

Goddard reported (double primed) quantities have been made. The major one,

converting to single primed elements used the following zonal coefficients (from

the original orbit determinations): 103 J2 
= +1082.48, 106 J 3 = -2.56, 106 J 4 =

-1. 84 and 106 J 5 = -0.06. The second, very small, correction to the single

primed elements is for long period terms implicit in them because the short

period Brouwer terms only orbit average to zero with respect to the true anom-

aly, not the mean anomaly. This second correction is given on p. 371 of

Kozai's 1959 Astronomical Journal paper. 5
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The starred sets in Table 1 are mean elements converted by an analytic-

numeric filter 6 from precise osculating values. The osculating elements (input

to the filter) were determined by least squares fitting to (usually) 4 day data

arcs using a precise trajectory calculated by numerical integration (See Appen-

dix). The filter determines the Kepler elements of a best fitting secularly pre-

cessing ellipse to a one day are of osculating data from the precise trajectory.

The osculating data is first smoothed analytically by the removal of short and

intermediate period terms due to the geopotential. The quality of these specially

filtered mean elements is significantly better than the routine Brouwer elements.

For example, independent processing of the inclination data shows that, after re-

moving long term geopotential, radiation pressure and luni-solar gravity effects,

the Brouwer inclinations have "residuals" (observed minus computed values)

about a mean value of ± 0.00080(rms). The equivalent residual for the filtered

elements is ± 0.0004'(rms).

The double starred sets in Table 1 were filtered mean elements received

after the analysis reported here was completed. They were not used in the re-

sults. However, preliminary tests show that these results are not significantly

altered (but somewhat sharpened) with this "new" data.

ANALYSIS

This analysis of the 15th order resonance pass for TETR-3 is es-

sentially the same as that for the 11th order pass of the orbit of Vanguard 3

(1959-7A).2 Independent sets of mean elements are treated as observables.
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Their long term variations are analyzed by a rapidly integrating semi-numeric

program (ROAD) which accounts for all significant geopotential, radiation, drag

and luni-solar gravity effects. The ROAD program calculates (by a least squares,

differential orbit correction process) a pair of geopotential coefficients which

"absorbs" the resonance perturbations across the commensurability. Although

all the data is used in this orbit-geopotential fitting process, the heaviest weight

is put on the inclination data (following King-Helel) which is the least corrupted

by uncertainties in the drag. Using the analytic variation of the inclination due

to all the resonance terms, constraints for these terms are developed and evalu-

ated from the ROAD results.

The chief distinguishing feature of this resonance (contrasted with Vanguard

3) is that it is "seen" directly in the inclination "observations" which show an

increase of about 0.0150 across the time of exact commensurability (Figure 1).

In the case of Vanguard 3, odd zonal geopotential gravity dominated the long term

inclination variation and the resonant effects could only be seen in "residuals"

with the other perturbations removed.

Figure 1 shows the inclination "observations" (from Table 1: unstarred and

singly starred only) onTETRwith their standard errors as given previously. The

dashed curve shows the evolution of the inclination for the orbit computed (by

ROAD) without resonant geopotential effects but with all other relevant pertur-

bations. There is a small secular decrease due to atmospheric rotation and

minor periodic changes due to odd zonal (geopotential), luni-solar gravity, and

5



radiation pressure effects. The solid curve shows the same computationwith two

resonant geopotential terms added. The characteristic "step" in the inclination

with preceding and succeeding building and dying oscillations 3 is unmistakable.

Plotted against the lower right hand axis (in Figure 1) is the characteristic

longitude rate which dominates this resonance (commensurability occurring when

S= 0). The significance of this particular rate arises from the characteristic

geopotential variation whose longitude argument (4/) is stationary at resonance.

(The fact that 4 is nearly constant shows that the drag forces along track on

the orbit predominates over the resonant ones, even in the vicinity of the

commensurability.)

The variation of the inclination due to a particular gravitational harmonic

term (2, m, p, q) in Kaula's development of the potential 7 is [from the Lagrange

Planetary Equations ]:

i = sin cosI aT ' (1)
na2(1- e2)2 sin I w 3 s '

where,

T - F,m,p  I) Gplq (e) Smpq
a+1 

m

and:

2-m even 2-m even
C2,m S2 1

S,m,p,q = I cos 2,m,p,q + sin 4 Qnp ,
L,m -rn odd Q,m- 2-m odd

with the orbit longitude (4') defined as:

2,m,p,q = ( - 2p) w + ( - 2p + q) M + m (2 -).

6



In the above expressions, g is the Earth's Gaussian gravity constant, a e is

its mean equatorial radius, 0 is the hour angle of Greenwich, a is the orbit's

semimajor axis, n its mean motion, and I, e, w , 92, and M its inclination, ec-

centricity, argument of perigee, ascending node, and mean anomaly. The F

functions are sinusoidal with frequency proportional to 2-m, and the G functions

are generally monotonic of order e q1. For TETR (I = 330, e = 0.01) this im-

plies special sensitivity to those terms for which q is low and 2-m is high.

The Crn and S2,m are the usual gravitational harmonic coefficients (fully

normalized).

Orbital resonance occurs when 1i= 0 for any gravitational term since, at

that time I is constant (to first order) and I can increase linearly with time.

Note that in Figure 1 the inclination increase near resonance is roughly linear.

Examination of just the resonance variation shows this precisely. There is a

point of inflextion (i = const, I' = 0) at exact commensurability. 3 For a near

circular orbit the dominant commensurabilities are those for Which q = 0 and

2 - 2p = 1, so that 4 0 when m = 1/0. For 1I - 15 revs/day, the resonant

order is m = 15 and the degrees for the dominant series are odd since 2p is

even. Other resonant series exist on TETR for m = 15 (q # 0) near the dominant

one (2, m, p, q = 2, 15, (2-1)/2, 0; 2 > 15, odd) but these have much less effect

on the orbit because the G functions for them are small. In addition, commen-

surabilities for m = 30, 45, 60, etc. (q = 0) also exist at the dominant reso-

nance. These have minor effect because their degrees (2> 30, 45, etc.) are
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large so that their potential effect at altitude are scaled down. In addition, the

passage through these resonances are faster (permitting less buildup of pertur-

bations) than the dominant one and the expected gravity terms (C, S) are smaller

(10-5 / 2)

The dominant resonant orbit longitude is thus:

Pm,q = 15,0 = o + M + 15 (~ - 0 ),

and it is the rate of this longitude which is seen to go through zero at resonance

in Figure 1. This argument is the same for all degrees of the series so that an

evaluation of the actual inclination variation essentially can determine only the

ampl tud es of a sine and cosine of this argument. These (determinable) ampli-

tudes a.re, in turn, weighted sums of the SR,5 and CQ, 15 gravity coefficients

according to factors which [from Equation (1) ] depend on the degree and the par-

ticular F and G functions of that degree. 1, 2 Evaluating these factors from

Equation (1) and normalizing with respect to the highest weight, these two de-

terminable amplitudes (constraints) are found to be:

(C,S)15 = 0.00133 (C,S) 15,15  - 0.015 (C,S)1 7,1 5  + 0.073 (C,S)19,15

- 0.219 (C,S)2 1 ,1 5 + 0.477 (C,S)2 3 ,15 - 0.781 (C,S)2 5 ,15 + 1.000 (C,S)27 ,15

- 0.963 (C,S)29 ,15 +0.622 (C,S) 31,15 + 0.119 (C,S)33,15 - 0.290 (C,S)35,15

+ 0.403 (C,S) 37 ,15 - 0.223 (C,S)3 9,15 - 0.058 (C,S)4 1 ,15 +. . . (2)

The (15,15) term, while negligible, is given to three significant figures because

this was the (lumped) term actually solved for in the data reduction. The series

is carried to the point where the "influence" (weight) factors are less than 20%.

8



Clearly this is a slowly converging sum even with the benefit of coefficients de-

creasing according to Kaula's rule7 (10-5 / 2 2).

DATA REDUCTION

The data in Table 1 was analyzed in the ROAD program for all relevant long

period variations (zonal Earth gravity, radiation pressure, atmospheric drag, luni-

solar gravity, motion of the pole) and a single pair of resonant coefficients (C, S) 15,15s

The inclination data was most heavily weighted in this analysis which was in all es-

sential aspects identical to that performed on Vanguard 3 to determine its reso-

nant coefficients. 2 For example, the most critical aspect of the analysis was

again the calculation of the satellite's mean anomaly to insure the proper phase

for the resonance. This was accomplished in ROAD to within 5 ° of the obser-

vations with the aid of an empirically determined 3rd degree secular term in the

mean anomaly. As before, the secular term was only weakly correlated with the

resonant coefficients because the mean anomaly data was not strongly weighted.

The coefficients determined by ROAD, producing the (solid curve) inclination

evolution in Figure 1, were:

106 (C,S) 15,15 = (21.3 ±1.1, 5.6 ~1.1),

with a correlation of -0. 84 between these parameters. Using this result in

Equation (2) determines the cosine and sine constraint for TETR-3 as

109 (C,S)1 5 = (28.3 ±1.5, 7.4 ±1.5).

Further analysis of the data for the nearby resonances of even degree with

q = 1 produced no significant change in this result nor did the analysis for the

resonance with 30th order terms.

9



RESULTS AND DISCUSSION

The most convenient way to present the results of the TETR analysis is in

a (C, S) diagram of the kind used by Kozai to compare individual gravitational

terms 8 (see Figure 2). Here the determined constraint is represented as a ro-

tated 1 a ellipse with considerably different semi-major and minor axes due to

the relatively high correlation. It should be remarked (happily) that TETR-3

yields the first 15th order constraint in the first quadrant. The previous ten

analyzed orbits have all given these lumped terms in the 3rd quadrant. 1 But

this fact alone strongly suggests that even with 11 orbits, we still have an overly

biased sample to obtain a good separation of terms. The TETR result is also

only the second occurrence of an inclination increase through the resonance; a

nice accident too, but of no bearing on the problem of separation. According to

Allan's analysis, 3 there is almost an equal chance of inclination increase or de-

crease in a strongly dragged resonance such as this.

But the occurrence of the high correlation between sine and cosine coefficient

has not been remarked on. These are important and have only been reported once

before (for Ariel 3) on 15th order resonances.9 They are likely to be high because

they arise from the (generally) unequal sampling of the sine and cosine potential

functions during the passage. Heavy sampling occurs in that (local) portion of

the potential closest to the commensurability; light sampling takes place else-

where. There may be special conditions for the passage which produce zero or

small correlation, but the likelihood of them appears to be small. For Ariel 3,

10



the reported correlation was -0.82. For the 11th order Vanguard 3 resonance, 2

the correlation was -0.51. The highly correlated constraints should significantly

alter least squares solutions for individual terms to force the "calculated" con-.

straint to "line up" with the major axis of the "observed" constraint. But such

adjusted solutions cannot be tried until more correlations are known.

Obvious tests of the observed TETR constraint are with calculated values

from gravitational fields containing a significant number of gravitational terms.

For the TETR case the fields should extend to at least (27,15). But since no

such field has been calculated from other data, the best we can do is use tenta-

tive 15th order fields estimated from previously analyzed decaying, resonant

orbits 1 , 10 (Figure 2). The calculated constraint from three such fields (listed

in Table 2) are shown here. The first is a 4 orbit, 4 term solutionl0 from 1972

which is complete to (21,15) only. This solution contains only one orbit, with

inclination less than 600, which is especially sensitive to high degree terms

( > 21). It gives a small (and poor) TETR calculation, mainly because the max-

imum degree is not high enough. The second is a 6 orbit, 6 term solution, com-

plete through (25,15). It uses the "best" data from King-Hele's 1973 analysis 1

for the six distinct orbits of inclination 510, 560, 630, 740, 80' and 900. The

result on TETR is much too large. Even though higher degree terms (sensitive

to TETR) are represented, they are not well determined. The terms of degree

23 and 25 are clearly absorbing the effects of terms of higher degree which are

not solved for but which have significant effect on two of the orbits (560, 630).

11



These orbit sensitivities and constraints (including TETR) are shown in Table 3

to degree 39.

Calculations using Kaula's rule for the coefficients show that for the higher

inclination orbits the influence of terms beyond 25 should be negligible. But for

the orbits below 700 inclination, higher order terms should have significant ef-

fect compared to the precision of the constraint. Unfortunately there are, as

yet, not quite enough orbits of high inclination to separate the low degree terms

completely using the resonant data alone. The unreasonable high C values in the

6 term, 6 satellite solution show this. King-Hele has found 1 that (least squares)

solutions for less than five terms do not recover the constraints for the six dis-

tinct orbits (I > 500) satisfactorily. A 5 term (7 orbit) solution (listed in Table 2)

does but also has an unreasonably distorted set of C values. However, it is a

smoother (least squares) solution than the 6 orbit, 6 term one (with smaller

values as a set). By chance (?) it comes the closest in calculating the TETR

result (-8 a).

The addition of the TETR result might be expected to help resolve the un-

certainty and distortion in the lower degree C values by more accurately ab-

sorbing the higher degree effects to which it is sensitive. However (solutions

show), this single orbit still cannot do the whole job because its sensitivity ex-

tends too far. It is tempting to turn this drawback into an asset by using outside

information and seeking a solution (with TETR) as high as that sensitivity extends

(i.e., V<39).

12



One logical way to do this, in the context of weighted least squares, is to

constrain the whole set of coefficients to zero with uncertainties (errors) given

by a rule, such as Kaula's, for the expected size of the coefficients (rms). The

fourth field in Table 2 is such a "Bayesian" least squares solution for (15,15)

through (39,15), R odd, using the results on the seven orbits in Table 3 as con-

ditioning data. The residuals (observed constraints minus computed quantities,

including a priori information) are all less than la except for only two which lie

between lo and 2 . This is a very compatible solution for 40 condition equa-

tions. The striking feature of it is the significant adjustment of C 15,15 and

C23,15 from King-Hele's 5 term solution (in Table 2). This adjustment essen-

tially eliminates the distortion (noted by King-Hele) and restores C 15,15 to pre-

vious values compatible with exact solutions for the orbit constraints.

The formal standard deviations of this "Bayesian" solution suggest that

many terms are not significantly different from zero. It seemed meaningful to

ask, therefore, whether a reasonable 7 term (exact) solution for the seven orbits

existed with zeros for the least significant coefficients. After some experimen-

tation field number 5 (Table 2) was found to satisfy these requirements.

It also seemed worthwhile to compare another complete solution through

(39,15) computed on a different basis so as to have a range of possibilities for

the coefficients. We chose to compute an exact minimum coefficient power solu-

tion; that is a coefficient set which both satisfied the condition equations (without

error) and had a minimum sum of squares. Field 6 (Table 2) is this solution.

13



However it may be rather easily seen that this "minimum power" solution is

actually equivalent to a special case of a "Bayesian" least squares fit. This is

a "fit" without error on the orbit equations and with zero a priori estimates and

equal error for the coefficients. These conditions are not terribly different

from the realistically "errored" Bayesian solution. With regard to the exact

7 term solution, the large number of "insignificant" coefficients and the good

Bayesian fit, make it seem probable that a reasonable set can be found which

matches the orbit results perfectly. The real question is: what is a reasonably

full latitude for these terms, given this limited data?

It is true that the formal standard deviations of the Bayesian solution

cover" the two other "varied" solutions with TETR for all but a few coefficients

of high degree. But a fair judgement (aware of the limited expectations with the

TETR data) would be that these statistics are only to be trusted to about the 25th

degree. Nevertheless, these limited results, when compared with Kaula's rule,

suggest that many of the terms beyond degree 15 may be significantly smaller

(rms) than the rule (see Figure 3). However it should be said that no complete

fields have been published beyond about degree 16. But these fields beyond de-

gree 16 do contain four or five orders. Nevertheless more definitive results

must wait on the analysis of further odd and even degree, 15th order resonant

orbits and the extension of the complete fields. Meanwhile, the present orbits

should considerably strengthen the more "complete" solutions for the gravita-

tional fields from diverse data sources. 1 1
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CONCLUSIONS

The analysis of 15th order, odd degree, gravitational coefficients has been

strengthened by the inclusion of resonance data on the decaying orbit of TETR-3

(1971-83B). A strong constraint on these terms, especially those above degree

21, has been developed. In combination with other resonant data and a priori

information, the TETR data shows that the relevant 15th order terms (except for

the 23rd degree) are significantly less than Kaula's rule (10-5/2) at least as high

as the 25th degree. Recent high order comprehensive gravity solutions appear

to confirm this judgement.
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Table 1

Mean Elements for TETR-3 (1971-83B)

TIME (MJD) a(e.r.) e 10 no M.

41223.43402780 1.07682137 .0129728 33.0E5f 50.1704 310.3399 203.2011
#t22titC0tWCO- - ti0748245t- .0130227 - -0t6- 6ae -----3t -3--t--?0
4122!.COCOCCO0 1.07482388 .0120055 33.0854 63.8772 30fO.2135 169.9763
4 -22f. C0!0 0t00- 1.07682388 .013nl8 33.J0 -CS --- T9 ~ --

-  
tfl--- - t9.9*4,

41222.CCCOCCOC 1.07679237 .0129280 33.0827 128.9158 254.9216 12M.0564
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NOTES: All unstarred sets are Goddard's conventional Brouwer mean elements. The data given are modified single primed values (see text). The starred sets are "filtered'
mean elements determined from precise orbit determination (see text). The double starred sets were received after the results, reported here, were obtained. They
are given for completeness (see text). The standard sigmas are the data weights used in the ROAD orbit-harmonic determinations. The standard sigmas for the incli-
nation data in the starred sets are 0.0004'.
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Table 2

Gravitational Coefficients of 15th Order from Decaying, Resonant Orbits

(Coefficients Fully Normalized: Units of 10 - 9)

Field

Contains TETR Constraint

Q 1 2 3 4 5 6

15 C -18.3 -21 +4 -12.4 -20.4 ±1.5 -19 -21

S -8.9 -8 ±3 -9.5 -7.9 ±0.6 -8 -8

17 C 5.3 2 ±3 6.5 2.7 ±2.4 0 4

S 10.1 9 ±3 8.5 9.4 ±0.8 10 10

19 C -13.5 -1 ±5 -5.3 -10.7 ±3.2 -14 -11

S -21.8 -17 ±4 -15.8 -13.8 ±1.0 -14 -13

21 C 26.5 -25 ±14 6.2 -1.4 ±5.3 0 2

S 10.2 14 ±11 6.6 6.7 ±1.8 8 6

23 C 73 ±15 56.8 36.4 ±8.4 40 27

S -8 ±15 -3.6 2.6 ±2.8 0 3

25 C -55 ±24 -10.3 ±9.1 -4 -6

S 13 ±20 -1.9 ±3.0 0 -3

27 C -14.6 ±4.1 -12 -16

S 6.9 ±1.3 6 7

29 C -14.3 ±9.3 -23' -20

S 0.7 ±3.1 0 2

31 C 5.5 ±9.8 -3 12

S 1.2 ±3.2 8 2

33 C 2.9 ±9.1 0 8

S 0.1 ±3.0 -6 0

35 C -1.6 ±8.2 0 -5

S -0.1 ±2.7 0 0

37 C -0.6 ±7.2 0 -3

S 0.4 ±2.4 0 1

39 C -0.5 ±6.6 0 -2

S -0.2 ±2.2 0 0

COMMENTS:

1 is a 4 satellite solution with orbits of 51", 630, 74' and 800 inclinations. 10

2 is a 6 satellite solution with orbits of 51', 560, 630, 740, 800 and 900 inclinations. The standard deviations
include an estimate of the influence of neglected higher degree terms.

3 is a 7 satellite "least squares" solution with orbits of 510, 560, 63", 74*, 740, 80" and 900 inclinations.
1

4 is a 7 satellite "Bayesian least squares" solution with orbits of 330, 51 ° , 560, 630, 740 , 80* and 90" inclina-
tions. The standard deviations do not include estimates of the truncation error.

5 is a 7 satellite "exact" solution with the same orbits as solution 4.

6 is a "minimum power" solution which exactly satisfies the (unerrored) constraints for the orbits of solutions 4
and 5 and minimizes the sums of the squares of the coefficients included.
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Table 3

Constraints for 15th Order Resonances

Influence Factors for (C,S)4, 1 5

Satellite I' a(e.r.) e 10 9 (C,S) 15 Q = 15 17 19 21 23 25 27 29 31 33 35 37 39

TETR-3 28.3 ±1.5(1971-83B) 3310 1.076 0.012 28.34 1.5, .001 -.015 .073 -.219 .477 -. 781 1.000 -. 963 .622 .119 -. 290 .403 -. 223

Explorer 44
Rocket 51.10 1.078 0.011 -19.8 ±3.2, .091 -.517 1.000 -.771 -.110 .508 .000 -.086 .000 .045 .004 -.024 -.006

(1971-58B) -25.9 +1.3

Cosmos 72 45.7 ±1.0(1965-53B) 56.0 1.079 0.003 -22.8 2.20 .196 -. 853 1.000 -. 050 -. 562 -. 009 .351 .101 -. 194 -. 144 .070 .132 .014

Cosmos 373 62.9 1.080 0007 1.0 .40 -1.00 .20 .54 .13 -.24 -.25 -.03 .15 .14 .02 -.08 -. 05
(1970-87A) -12.5 ±1.1

Cosmos1970-111A) 74. 1.084 0.001 -26.0 0.9, 1.00 -.33 -.59 -.45 -.20 .03 .16 .19 .15 .07 .01 -.05 -.07
(1970-111A) -5.0 0.5

Ariel(967-42A) 80.2 1.085 0.007 -19.97 01.2, 1.000 .347 .059 -.097 -.172 -.195 -.184 -.153 -.102 -.062 -.027 .000 .019
(1967-42A) -7.7 ±0.8

Burner
Rocket 90.20 1.087 0.002 -20.5 2.3, 1.000 +.511 +.323 +.217 +.151 +.106 +.081 +.062 +.036 +.040 .000 .000 .000

(1971-54A) -5.1 ±2.2
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Figure 1. Variation of Inclination for TETR-3
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O' = ROOT MEAN SQUARE COEFFICIENT

- C + S m)2

WHERE N IS OVER AS MANY ORDERS
AS AVAILABLE. ORDINARILY, N = 2.+ 1.

\ AS COMPUTED:
\FROM .KAULA'S RULE (10-5/,2)

® FROM GEM 4 FIELD (1972), COMPLETE PORTION 1

* FROM GEM 4 FIELD, INCOMPLETE PORTION

x FROM 15TH ORDER RESONANT FIELD (4, TABLE 2).
[BEYOND THE 3 0 TH DEGREE, THE STANDARD

10_7  
DEVIATIONS OF THE COEFFICIENTS OF THIS FIELD
ARE SIGNIFICANTLY LARGER THAN THE VALUES

D * THEMSELVES]

Ox
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Figure 3. RMS Potential Coefficient by Degree
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APPENDIX

PRECISE ORBIT DETERMINATION FOR TETR-3

INTRODUCTION

The NASA/GSFC developed GEODYN precision orbit determination pro-

gramA 1 has been used in conjunction with certain ancillary routines to determine

the orbit of the NASA Test and Training Satellite IV (TETR-3, 7108302) for 22

epochs. Data taken by the NASA Minitrack system was used in this recovery.

The span of data reduced was from November, 1971 through June, 1972.

TETR-3 was only tracked by five of the NASA minitrack stations. Alaska

and Winkfield were not used, having latitudes which did not permit visibility

with this 330 inclined orbit. The data taken by Johannesburg, Tananarive,

Orroral, Santiago and Quito was dense, providing excellent orbital recoverability.

The on-board S-band transponder on TETR-3 never functioned properly

causing the complete cessation of all tracking, including minitrack, for this

mission at the end of June, 1972. However, the orbit of TETR-3 entered deep

resonance with the 15th order terms of the geopotential early in 1972 and the

orbital evolution from minitrack provided excellent data for the study of these

resonance terms in the geopotential.

The Keplerian osculating elements for TETR-3 at the epoch of May 17,

1972 were:

a = 6854.660km

e = 0.01238
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I = 33.07920"

Apogee ht. = 565.9km

Perigee ht. = 396.2 km

The Orbital Recovery

The minitrack data from TETR-3 was reduced in arcs of four days in length.

The 1969 Standard Earth II gravity modelA2 was employed; complete to (16,16)

with resonance coefficients as high as (22,14). The minitrack station coordi-

nates were obtained from Marsh, Douglas and Klosko.A3

The GEODYN program employs full state-of-the-art force modeling including

BIH polar motion and UTI time corrections, full luni-solar and earth tide per-

turbations, and corrections for precession and nutation of the earth's polar axis.

GEODYN uses a Cowell 11th order integrator. For TETrI-3, a 75-second fixed

integration step was employed. A Jacchia model atmosphereA 4 was used with a

ballistic coefficient adjusted in each orbital arc.

The entire available set of minitrack data over the selected arcs was used.

Routine Goddard orbit determination uses only a few "normal points" of smoothed

data per pass. These data, about 30 points per station pass, contained timing

corrections for delay times at the individual sites and used the airplane calibra-

tion corrections. Tropospheric refraction corrections were not applied to the

data. Schmid has shownA5 that the tropospheric refraction subtracts out to

first order for minitrack measurements. The ionospheric refraction correc-

tions were not applied due to the uncertainty in the available models incorporated
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into the GEODYN system for minitrack data. DunnA 6 has shown that for arcs

of a few days in length the ionospheric refraction effects largely cancel and

therefore this is probably an insignificant error source.

The entire history of solar and magnetic flux values were modeled as daily

values throughout the period of interest for this study. In this fashion, by using the

full state of the art force models available and using all available minitrack data,

a precise orbital computation in the given arc length of four days was achieved.

Table Al presents a summary of these data reduction orbital solutions

giving the number of passes, the number of observations, the recovered bal-

listic coefficient (CD) and the rms of fit for each arc. The fits to the data are

generally quite satisfactory, at the usual minitrack level of 0.3 mils accuracy.

The determined orbits themselves (osculating elements) are given in Table A2.

Mean Element Determination for TETR-3

Mean elements for TETR-3 were recovered using a new technique which

combines both analytic and numerical procedures. A 7 Briefly, the osculating

elements in Table Al were integrated by the GEODYN program with intermedi-

ate mean elements being produced every minute for one day. These intermedi-

ate mean elements were produced by analytically subtracting off the short period

perturbations of the geopotential to degree and order (4,4). These mean ele-

ments were then numerically averaged by fitting to a precessing Kepler ellipse.

This technique has been shown to result in little loss of accuracy in going from

osculating to mean elements. These special mean elements of TETR-3 produced

for this study are presented as the starred element sets in Table 1.

A-3



REFERENCES

Al. T. V. Martin, C. C. Goad, M. M. Chin, and N. E. Mullins, "GEODYN,

Vol. 1, 2, 3 and 4, " Wolf Research and Development Corporation,

Riverdale, Md. , 1972.

A2. E. M. Gaposchkin and K. Lambeck, "1969 Smithsonian Standard Earth 2,"

Smithsonian Astrophysical Observatory Special Report 315, Cambridge,

Mass., 1970.

A3. J. G. Marsh, B. C. Douglas, and S. M. Klosko, "A unified set of station

coordinates derived from geodetic satellite tracking data," Goddard Space

Flight Center Document X-553-71-370, Greenbelt, Md., 1971.

A4. L. G. Jacchia, "Static diffusion models of the upper atmosphere with em-

pirical temperature profiles," Smithsonian Contributions to Astrophysics,

Vol. 8, 215-257, 1965.

A5. P. Schmid, "NASA minitrack interferometer refraction corrections,"

NASA TN D-5966, 1971.

A6. P. Dunn and J. Diamante, "Minitrack system calibration using USB data

from ERTS," Wolf Research and Development Corporation, Riverdale,

Md., 1973.

A7. B. C. Douglas, J. G. Marsh, and N. E. Mullins, "Mean elements of

GEOS and GEOS 2," Goddard Space Flight Center Document X-553-72-85,

Greenbelt, Md., 1972.

A-4



Table Al

The Orbital Solutions for TETR-3

Date Number Number RMS Recovered Drag Coefficient
Arc of of of Fit CD

Start Stop Passes Observations (x .3 mils) (Area/mass = .0445 cm 2 /gm)

1 71/11/27 71/11/31 28 1521 1.425 2.736

2 71/12/04 71/12/08 15 1122 0.868 2.894

3 71/12/11 71/12/15 27 1484 1.067 3.272

4 71/12/18 71/12/22 32 1658 1.214 3.290

5 71/12/25 71/12/29 30 1908 1.202 3.375

6 72/01/01 72/01/05 22 1245 1.111 3.660

7 72/01/08 72/01/12 26 1537 .994 3.556

8 72/01/15 72/01/19 26 1396 .945 2.806

9 72/01/22 72/01/26 23 1407 .816 2.860

10 72/01/29 72/02/02 18 1418 .921 3.493

11 72/02/05 72/02/09 12 1009 .832 3.066

12 72/02/12 72/02/15 15 914 1.078 2.675

13 72/02/28 72/03/04 18 1547 1.270 2.695

14 72/03/14 72/03/18 22 1430 2.134 3.206

15 72/04/26 72/04/30 25 2299 1.137 3.092

16 72/05/14 72/05/18 26 2650 1.401 3.071

17 72/05/17 72/05/20 13 1589 0.777 2.810

18 72/05/28 72/05/31 9 624 1.165 2.244

19 72/06/04 72/06/07 18 1471 1.076 2.756

20 72/06/11 72/06/14 24 2724 0.907 2.979

21 72/06/14 72/06/18 28 2196 1.527 2.180

22 72/06/18 72/06/21 22 1738 0.889 4.271
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Table A2

Precise Osculating Elements for TETR-3

Date
Arc YYMMDD hhmmss a(km) e Io 0 O Mo

1 71 11 27 00 00 00 6867.5320 0.011486801 33.091790 250.249716 291.239486 257.562037
2 71 12 04 00 00 00 6868.8252 0.011076075 33.101449 321.925797 245.937689 216.090905
3 71 12 11 00 00 00 6867.0146 0.011678642 33.091119 32.507824 200.627436 178.114120
4 71 12 18 00 00 00 6863.4262 0.012339996 33.065595 98.809203 155.273843 147.102969
5 71 12 25 00 00 00 6862.5517 0.012174602 33.066823 165.841122 109.867261 119.143247
6 72 01 01 00 00 00 6865.9139 0.011813023 33.095764 237.164494 64.484823 90.503873
7 72 01 08 00 00 00 6866.8202 0.012044779 33.100460 308.375059 19.150942 65.100429
8 72 01 15 00 00 00 6862.2126 0.012475018 33.073718 14.860169 333.776306 47.141732
9 72 01 22 00 00 00 6861.6261 0.013125726 33.074356 79.682299 288.338288 33.843197

10 72 01 29 00 00 00 6865.9910 0.013420358 33.103665 145.617101 242.954616 22.782131
11 72 02 05 00 00 00 6862.6698 0.012409840 33.085961 213.321821 197. 588800 13.489006
12 72 02 12 00 00 00 6860.1674 0.011982187 33.076384 282.618934 152.113630 5.582155
13 72 02 28 00 00 00 6858.9505 0.011977390 33.077769 77.488670 48.274350 209.419407
14 72 03 14 00 00 00 6863.3635 0.012460344 33.117396 219.016478 310.914887 332.345352
15 72 04 26 00 00 00 6856.8002 0.010583139 33.092743 281.298305 31.444333 201.976449
16 72 05 14 00 00 00 6854.7168 0.012632566 33.076953 95.488455 274.431847 342.039158
17 72 05 17 00 00 00 6854.6609 0.012384475 33.079209 122.400240 254.928833 309.646498
18 72 05 28 00 00 00 6854.9117 0.011486745 33.087669 233.854968 183.296120 64.864925
19 72 06 04 00 00 00 6855.0024 0.010709449 33.090276 305.295784 137.792332 108.477867
20 72 06 11 00 00 00 6858.2457 0.010533324 33.116296 14.122878 92.184854 157.885672
21 72 06 14 00 00 00 6858.1190 0.011106346 33.117387 44.882174 72.655660 127.548320
22 72 06 18 00 00 00 6853.0662 0.011454693 33.086522 76.913336 46.600330 217.161852


