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SUMMARY

The stability characteristics of a launch vehicle as a function of gain and phase
variations at the thrust vector controller (TVC), cannot be obtained using classical
sampled-data control theory if the launch vehicle attitude control system contains
both sampled-data and continuous feedback control loops. This poses a unique problem
for the analyst in determining the stability characteristics of the vehicle, because the
control system design criteria are generally stated in terms of gain and phase varia-
tions at the controller. In order to fill this void in the analysis and design techniques
of sampled-data systems with both sampled-data and continuous feedback control loops,
a method is described which can be used to generate a pseudo-Nyquist plot for measuring
gain and phase variations at the controller. The pseudo-Nyquist plot can be used to
assess the stability characteristics of the vehicle in terms of the design criteria.
This method was developed and used to determine the stability characteristics of the
Saturn IB launch vehicle in the backup guidance mode. The validity of the method is
established by correlating the frequency response results from the new method with
the time response results from a computer simulation.



INTRODUCTION

The first-stage pitch/yaw attitude control system for the Saturn IB launch
vehicle consists of attitude error, attitude rate, and accelerometer control loops.
The attitude rate and accelerometer control loops process continuous analog signals
while the attitude error control loop processes a discrete signal which is updated every
0. 04 seconds (25 samples per second). Early Saturn IB studies verified that the high-
frequency attitude error sampling had little effect on the stability and response
characteristics of the vehicle; consequently, the vast majority of the work performed
on the Saturn IB control system ignored the attitude error sampling effects and treated
the attitude error loop as a continuous, nonsampled feedback loop. This permitted
stability analyses of the system using classical control theory for continuous feedback
systems. During the course of the Apollo program, a backup guidance system was
adopted for the Saturn IB and Saturn V vehicles. The backup guidance system utilizes
the attitude error signal computed in the spacecraft computer for display to the Astro-
nauts. This attitude error signal is updated at a variable sample rate with a pre-
dominant sampling period of 0.5 second (2 samples per second). At this low sampling
frequency, the sampled-data effects of the attitude error signal cannot be ignored in
analyzing the stability and response characteristics of the Saturn IB vehicle in the
backup guidance mode. To evaluate the stability characteristics of this system,
sampled-data analysis techniques are required.

Stability analyses of the Saturn IB control system in the backup guidance mode
present an analysis problem which has been encountered in previous studies (re-
ferences 1 and 2) of launch vehicles with sampled-data control systems. The analysis
problem is one of obtaining an explicit solution for the frequency response of the
system in terms of gain and phase variations at the thrust vector controller (TVC)

(actuator) for a control system with both sampled-data and continuous feedback loops.
A solution to this problem is vital because the control system design criteria are
generally stated in terms of gain and phase variations at the controller. Up to now,
applications of conventional analysis techniques to sampled-data control systems,
including the Saturn IB control system in the backup guidance mode, have yielded only
frequency response information in terms of gain and phase variations in the sampled
control loop. Earlier attempts (references 1 and 2) to obtain information about gain
and phase variations at the actuator resulted in approximate techniques which were
valid only for a restricted range of sampling periods. These approximate techniques
are not applicable to the Saturn IB control system in the backup guidance mode because
of the extremely slow sampling rates of the attitude error loop (e.g. , 1 to 3 samples
per second).



This report presents a method for determining the open loop phase and gain
characteristics at the input to the TVC of a control system with both sampled-data and
continuous feedback control loops. The difficulties associated with analyzing this type
of system are described in section 1. 0, and the analysis technique developed to cir-
cumvent these difficulties is presented in section 2. 0. The pseudo-Nyquist plot is
introduced in section 2.0 as an aid for interpreting the results of the new method. An
example problem is presented in section 3.0, illustrating the application of the new
technique and the pseudo-Nyquist plot in evaluating the stability of the Saturn IB pitch/
yaw attitude control system in the backup guidance rnode.^ The open loop gain and
phase characteristics at the TVC, predicted by the new analysis technique, are verified
in section 4.0 by correlating the frequency response results from the pseudo-Nyquist
plot with the time response results from a computer simulation.

1.0 STATEMENT OF THE PROBLEM

A simplified block diagram of the Saturn IB first stage flight control system is
shown in figure 1. This sampled-data control system is comprised of two continuous
feedback loops and one sampled-data feedback loop. This type of sampled-data
control system presents a unique problem because classical sampled-data analysis
techniques cannot be used directly to determine the system stability margins in terms
of gain and phase variations at the input to the TVC. The parameter K in figure 1 is a
complex gain factor which has been introduced for the purpose of measuring the gain
and phase margins of the system at the input to the TVC. The nominal value of K is
1.0/0.0°.

GZOH F0<S) °o

Figure 1. Saturn IB First-Stage Pitch/Yaw Attitude Control System



In order to obtain information about the gain and phase variations at the input to
the TVC in figure 1, the parameter K must appear exclusively in the numerator of
the open loop transfer function. For instance, if it is assumed that the control system
in figure 1 is completely continuous (i.e. ignoring the sample and hold element); then
from superposition, the open loop transfer function of the system open at TVC

(OPTVC (s) in shorthand notation) is

OFTVC(s) = K a0 0(s)

P(s) P(s)
(1)

POO

In equation (1), K appears in all three terms of the open loop transfer function;
therefore, K can be used to measure the stability margins or the allowable variations
in the system characteristics (e.g. tolerances) at this point in the control system.

No open-at-TVC transfer function exists for the sampled-data system given in
figure 1, because the pulse-data transfer function of the system must be taken at
the sampler. To obtain this transfer function, it is convenient to reduce the block dia-
gram of figure 1 to the one in figure 2.

Figure 2. Simplified Block Diagram for Saturn IB First-Stage Pitch/Yaw Attitude
Control System



The 0^(8) transfer function in figure 2, which combines the rate and normal
acceleration feedback loops with the plant and K, is given by

K & (s)
TVC

P(s) - K g2

_. • - -The pulsed-data transfer function of the system open at the sampler in figure 2
is simply

/ X31

OPAO(s) = (- a0 GZOH(s) F0(s) N0(s) Gp(a))
(3)

-.> . Substituting for G (s) in equation (3), the result in more general terms is

OPAO(s)* ,/ :- -oK W».) ¥s) V->.
P(s) - K G ( s ) ( g2 Fy(s) Ny( s)

The only stability information that can be directly obtained from equation (4)
is the absolute stability of the system and the effect of variations in the attitude error
channel. No stability information about variations in the attitude rate channel, varia-
tions in the normal acceleration channel, or variations at the input to the TVC can be
directly obtained from equation (4). An. iterative method can be used to determine the
gain margin of the system at the input to the TVC. For example, a family of Nyquist
plots can be obtained as a function of K using equation (4). The value of K that causes
the Nyquist plot to pass through 1.0/180* is the gain margin of the system. This
iterative method is cumbersome and does not provide a coherent picture of the overall
system stability characteristics as a function of K. Herein lies the prpblem: Current
sampled-data control theory does not give an explicit solution for obtaining stability
information about gain and phase variations in the attitude rate channel, normal
acceleration channel, or at the input to the TVC for the Saturn IB attitude control
system, in the backup guidance mode. Therefore, a new analysis technique is needed
which yields stability information about gain and phase characteristics at the input to
the TVC or at other points of interest in the system. CCSD. has developed such a
technique. The new technique and the .pseudo-Nyquist plot, introduced to interpret
the multivalued solutions from the new technique, are described in the next section.

2.,0 DEVELOPMENT OF SOLUTION TECHNIQUE

2.1 Inverse Function Concept

The analysis approach generally taken in computing an open-at-TVC Nyquist
plot for the primary Saturn IB attitude control system, (continuous system), is to
substitute values of s = jw, and K = 1. 0/0° into equation (1) and compute the



open-at-TVC gain and phase characteristics. At a particular frequency ( w = w ).
the open loop gain and phase computed from equation (1) is;

- a
OPTVC(^) =

(5)

a §2

The gain and phase characteristics of OPTVC (Jo; ) are plotted as a function of
frequency to obtain an open at TVC Nyquist plot. A typical open at TVC Nyquist plot
for the Saturn'IB first-stage-pitch/yaw attitude control system in the primary'guidance
mode is shown in figure 3. At any given frequency on the Nyquist plot ( w - w ),
the gain and phase changes (K) at the TVC (actuator) which will result in neutral
stability (i.e. , -1 on the Nyquist plot) can be obtained from equation (6).

= -i.o " -
• (6)

Solving equation (6) for K(Jo> ) yields:

-1.0

OPTVC(jWl) "-• ' ' ' "(7) • '•

Thus, equation (7) shows that K( jw ) is the inverse function of the open-at-TVC
frequency response. Furthermore, the complex parameter K(ju> ) is an indicator •-
of the general stability of the system relative to the - 1.0 point on the Nyquist plot. ••
For the s'pecial cases where the OPTVC (jw ) frequency response crosses the unit
circle and the 180-degree axis, K ( j w ) corresponds to the familiar phase and gain
margins defined from standard frequency response techniques (references 3, 4 and 5).
Normally, the computation of K ( J W ) as a continuous function of w is not necessary
in the analysis of continuous systems, because the value of K ( j w ) at the frequencies
of interest (e.g. uni t circle crossovers and bending mode frequencies) is easily
obtained by inspection from the open-at-TVC Nyquist plot.

2. 2 Solution Technique

As discussed in section 1.0, there is no direct solution for the open-at-TVC
frequency response of the system in figure 1 if there are both discrete and continuous
feedback loops. However, there is an indirect solution to this problem utilizing the
inverse function concept and the characteristic equation of the system in figure 2.



120 60

150 30'

180C

3RD BENDING
FREQUENCY

FREQ AMP PHASE
(cps) RATIO (deg)

.092

.250

.740

1.84 180.0
1.00 -150.7
0.50 180.0

-150 -30C

-120 -60C

-90C

MODE NATURAL
FREQUENCY
(CPS)

AMPLITUDE
RATIO

PHASE
(DEG)

1
2
3
4
5

.1326+01

.2327+01

.2623+01

.4924+01

.8532+01

.5061+01

.2710+00

.1681-01

.5909-02

.5245-01

24.65
-8.97

-127.39
170.02
78.10

Figure 3. Typical Nyquist Plot for Open Loop at TVC for the Saturn IB First-Stage
Pitch/Yaw Attitude Control System in the Primary Guidance Mode



To simplify the notation, the following definitions are made:

) F0(S) ¥S)

N ( s J = -

D( s) = _

P(s)

) F*(s) N0(s) g2 GTVC(s) Fy(s) Ny(s)
- — -

P(s) P(s)

(10)
K

Using equations 8, 9 and 10, the pulse-transform of the characteristic equation
of the system in figure 2 is:

(11)

Letting s = jw and expanding equation (11) in a series,

_ ^

T „=.„ - Z + D(j<j+ njw )

For Z = 1, equation (12) will converge provided the denominator is 1-order
higher than the numerator which is the case for most control systems. It is assumed
that equation (12) will converge also for different values of Z. This is a reasonable
assumption because |Zl « 1.0 corresponds to a negligible system response; and,
in choosing n, one limits the system response given by equation (12) to the significant
sidebands of the sampled response.

For the Saturn IB Control system, three terms of equation (12) are generally
sufficient for convergence of the series. The 3-term expansion is:

^
T Z + D ( j < j ) T Z + D(ju,-

+ -- . - .

T Z + D( j W + j W g)
(13)



For an arbitrary value of frequency ( u ** u ) and a given value of sampling
frequency (w = w ,). equation (13) can be rewritten as,

Q Si

.

Z + C1 + j^ Z + C2 + jD^ Z + C3 + J

where . . . -

:.. . "\ Ai + JB1 = T

A2

— N ( j W-L + j Wsl)

• ' . ... (15)

C2 -+-'

Equation (14) reduces to a cubic polynominal in Z with complex coefficients. Solving
for Z in equation (14) yields three roots: Z (jw ), Z (jw ) , and Z (j^J. Combining
equations (7) and (10), the result is:

(16)

t«

:Thus, at each value of <j, there are three sets of open-at-T-VC phase and gain char-
acteristics.. It is not .possible to construct a true Nyquist plot from these results
because of the multivalued solution of the phase and gain characteristics. A pseudo-
nyquist plot can be constructed by simply plotting all the solutions at each frequency
without connecting points. It will be shown in a later section that-the multivalued,
pseudo-Nyquist plot can be used to interpret the open at TVC stability characteristics
of the system, in .figure 2 in .the same manner that a conventional Nyquist plot is employed.
Also, the"significance of each solution at a given w will be explained.

An-analysis technique for.obtaining the frequency response of the system, open at the
TVC for a sampled-data control system with discrete and continuous feedback loops,
has been developed using the inverse function concept and a series expansion of equa-
tion (11). The number :of terms required-in the series expansion depends, on the resonant
modes-of the system and the sampling rate. If "q" terms a-re used .in the series.expan-
sion, then the resultant polynominal from equation (12) will be of the Border "q" and there
will be "q" open-at-TVC solutions at eachCJ.

OPTVC(jo>) = -Z i(jo>) 1 = 1 ,2 ,3 , ..., q (1?)



There are no restrictions on the 'sampling rate provided sufficient terms are .
taken in equation (12) to obtain the desired range of the continuous system response.

3. 0 APPLICATION OF SOLUTION TECHNIQUE TO THE SATURN IB CONTROL
SYSTEM IN THE BACKUP GUIDANCE MODE

A method for obtaining a pseudo-Nyquist plot of the open loop gain and phase . ..
characteristics at the TVC was developed in section 2.0 for a. control system con-
figuration with both sampled-data and continuous feedback control loops. The pseudo-
Nyquist plot is a new concept and an example is provided to illustrate the utility of
this multivalued polar plot.

3.1 System Description

The Saturn IB first-stage pitch/yaw attitude control system in the backup
guidance mode (figure 1) was chosen as an example of a practical control system
configuration with both sampled-data and continuous feedback control loops.; The
planar model of the control system used in this example included the following
vehicle degrees of freedom:

• . Rigid body rotation

• ' Rigid body translation ' ' •• ., '•>•• • - . . -

• 5 free-free bending modes

The equations of motion describing the mathematical model of the vehicle and
control elements are presented in appendix A. The control system stability char-
acteristics are investigated on a time-invariant (fixed-point) basis. The critical
time point chosen for this example (T = 80 seconds) is in the maximum aerodynamic
pressure region of the trajectory. The vehicle and control system data at 80 seconds
of first-stage flight'are presented-in appendix B. The polynomials used, to generate
the pseudo-Nyquist plot are also given in appendix B. A sampling period of 0. 5 second
was chosen for this example. . ' > . . - - . - . . . • ;

3.2 Interpretation of Pseudo-Nyquist Plot Results

A conventional Nyquist plot for open loop at TVC-is presented in.figure 3 for .;.-. ;,
the Saturn IB first-stage pitch/yaw control system in the-primary guidance, mode . . -,
(continuous system) at T = 80 seconds. These typical open-at-TVC results are
presented as a baseline comparison for the open-at-TVC pseudo-Nyquist results..

A pseudo-Nyquist plot of the open-at-TVC stability characteristics of .the Saturn ..;
IB first-stage pitch/yaw attitude control system in the backup guidance mode at T * 8.0-;
seconds-is presented;-in figure 4. A 3-term expansion of .equation (11) was. used in .
gene rating'this plot. The OPTVC (Jw) multisolutions.are plotted only for the frequency



interval O<^<^>g , because equation (11) is periodic with a>g and the plot for the
2"

frequency range from u>s to u> is the mirror image of the plot from 0 to o>s

2 S 2
(reference 6). Note that the plot in figure 4 is comprised of three distinct segments.
These three segments represent the multivalued solutions (3 complex roots at each
oj) from equation (11). Segment 1 corresponds to the first term, segment 2 to the
second term, etc. Furthermore, because the system is continuous at the TVC, each
segment represents a portion of the continuous frequency response of the system as
measured at the input to the TVC. Note the similarity to figure 3. The multivalued
solutions at the reflected frequencies of the first three bending modes are summarized
on the figure and noted on the plot by "1" for bending mode 1, etc.

To better illustrate the above points, consider the multivalued solutions from
figure 4 which are summarized in table 1. These solutions correspond to the cross-
over frequencies for the rigid body gain and phase margins of the system open at TVC.

Table 1. Multivalued Solutions at Low Frequency Gain and Phase Margin Crossover
Frequencies

Segment

1
2
3

1
2
3

1
2
3

Frequency
(Hz)

0.112
0.112
0. 112

0.202
0.202
0.202

0.738
0.738
0.738

Amplitude

1. 58200
0.02567
0.01197

1.00000
0.03635
0.00784

0.38200
0.97134
0. 00473

Phase
(Degrees)

180.00
87.34

-120.55

-162.29
80.90

-162.49

180.00
-108.49
-51.06

The results at 0.112 Hz and 0. 202 Hz show that two of the multivalued solutions
at each of these frequencies are trivial compared to the first value, while the results
at 0. 738 Hz show that only one of the multivalued solutions is trivial. A better in-
sight into the significance of these results is obtained from a closer examination of
the individual terms in the series expansion of equation (11) at the above frequencies.

The components of the 3-term series expansion of equation (11) at 0. 112 Hz are:

=^(0. 112 Hz)G_u(. 112 Hz) = -1. 2624 + j 0. 56843
I ij OilTN ( j c o ) GzoH ( j u > )

N ( J O > - J O > J
T S

= D(0. 112 Hz)

1,

- -.31764 - j 0.56368

0 ) = N(-1.888 H z ) G _ _ ¥ I ( - l . 888 Hz) = 1. 5735E-4 - j2. 1068E-3
S T ZUH

10
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Figure 4. Pseudo-Nyquist Plot for the Saturn IB First-Stage Pitch/Yaw Attitude
Control System in the Backup Guidance Mode
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_ D ( j u - j u > ) . = D(-1.888 Hz)- . = -6.8786E-3 - j9.9578E-3
s

) =JN(2. 112 Hz)G,__ (2. 112 Hz) = -1. 1436E-3 - jl. 6516E-3
• * * ̂ Jii,s' ZOHU J s'

) = 0(2.112 Hz) = 8.3727E-4+J2.6412E-2
s . ••. - •

(18)

the 3-term expansion of equation (11) at 0.112 Hz is:

-1.2624 + jO.56843 1.5735E-4 - J2.1068E-3

Z - 0.31764 -- jO.56368 Z - 6.8786E-3 - J9.9578E-3

-1.1436E-3 - J1.6516E-3
- . . -• + -= : = Q

Z + 8.3727E-4 + J2.6412E-2
(19)=

The first term of equation (19) contains the low-frequency information at 0. 112 Hz,
the second term of equation (19) reflects the 1. 888 Hz system response back to 0.112 Hz,
and third term of equation (19) reflects the 2. 112 Hz system response back to 0.112 Hz.
The triviality of two solutions of equation (19) at 0. 112 Hz is attributed to the absence of
any significant system resonant-modes at 1. 888 Hz and 2. 112 Hz. This means that vari-
ations in the TVC characteristics at these reflected frequencies are not critical. Further-
more, only a one term expansion of equation (11) is necessary to establish the gain mar-
gin of the system at 0. 112 Hz.

-1.2624 T jO.56843
1 + = 0

z - 0.31764 - jo.56368 • • • " •
:: • . (20) .

o r • - . . ; .

(21)
Z = 1.58004 - jO.000475 = 1.580/-0.02°

from equation (17)

OPTVC(0.112 Hz) = -Z = 1.580/180.02°

The value of 1. 580 /ISO. 02° using a 1-term expansion of equation (11) compares
extremely well with the value of 1. 582 /ISO. 0° using a 3-term expansion. This simply
means that the other two terms of the expansion contribute very little to refining the
solution from the first term. This does not mean that the other two terms are not.
important at other frequencies, for they still provide information about the open-at-
TVC characteristics at the .reflected frequencies. At this .example frequency, the
system response is highly attenuated at 1. 888 _Hz and 2.112 HZ.

* , e . _ , . - . " ' .
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The 0. 738-Hz case is a good example where there.are two dominant solutions.

The components of the 3-term series expansion from equation (11),at 0. 738 Hz
are:

J_M«,.,\ zOH(joj) =lN(0.738Hz) ZOH(. 738 Hz) = 0. 052487+jO. 082829

- D(0. 738 Hz) . = 0.45332-jO. 078978

-jcu ) = j:N (-1.262 Hz) ZOH(-1. 262) = 0. 16185 +j. 0. 079415

= D(-1.262Hz) = -0.45119_T jl. 0047

yN(ju>+ja> s) ZOH(ZOH(jo)+ja> ) = ̂ (2.738 Hz) ZOH(2. 738 Hz) = 8. 8327E-4 - jl. 6449E-4

I = D(2. 738 Hz) - = 1.-7591E-3--J3. 5474E-3
(23)

The 3-term expansion of equation (11) at 0. 738 Hz is:

0.052487 + jO.082829 ' 0.16185 + jO.079415
1 +

Z - 0.45332 - JO.078978 ' Z-0.45H9.-j l .0047.. . -

8.8327E-4 - J1.6449E-4 .
+ - = o • ' ' • • '

Z + 1.7591E-3 - J3.5474E-3 '

(24)

In equation (24) , the first term contains the low-frequency information at 0.738 Hz,
whereas, the second term reflects the 1. 262-Hz system response back to 0. 738 Hz, and
the third term reflects the 2. 728-Hz system response back to 0. 738 Hz. Again the rigid
body gain margin is determined by the first segment or first term of equation (24). In
this case, a 1-term expansion would give

= 0.40083 - jO.003851 = 0.400847-0.55°
(25)

f Hz) = - Z = 0.40084/179.45 '
'. - - (26)'

• ' • '.'

Comparing the value from equation (26) with the 3-term solution for Zl in table 1,
shows that the other two terms (primarily the second) have a significant effect on the;

gain margin of the system given by 'z\. In this case, additional terms are required
for.proper convergence of Z\. The second term of equation (24) folds back informa-
tion about the system response at 1. 262 Hz. The reflected frequency of the second

13



term is very close to the natural frequency of the first bending mode (1.326 Hz);
therefore, the influence of the first bending mode on the system response is given by
Z2.

As a matter of interest, the reflected responses at the natural frequencies of the
first three bending modes used in the example problem are summarized in table 2.

Table 2. Reflected Bending Mode Open-at-TVC Phase and Gain Characteristics

Bending Mode

1
2
3

Natural
Frequency

(Hz)

1.326
2.327
2.623

Reflected
Frequency

(Hz)

.674

.327

.623

Segment

2
3
3

Amp
Ratio

3.870
.155
.011

Phase
(Deg. )

-20.3
7.7

-89.6

The reflected response of the fourth and fifth bending modes (resonant frequencies
of 4. 924 Hz and 8. 532 Hz) are not included in table 2 because additional terms would
have been required to obtain their reflected response. A 9-term expansion would be
required to obtain the reflected response of the fifth bending mode.

4. 0 COMPUTER SIMULATION VERIFICATION OF STABILITY RESULTS

The pseudo-Nyquist plot (figure 4), introduced in section 3. 0, was developed to
provide a method for determining the stability characteristics of the control system
shown in figure 1 in terms of gain and phase variations at the TVC. In .this section
of the report, it will be shown that the pseudo-Nyquist plot can be used to assess the
effect of gain and phase variations at the TVC in the same manner that a conventional
Nyquist plot is used. This will be accomplished by correlating the stability results
from the pseudo-Nyquist plot in figure 4 with the results from a fixed-point digital
computer simulation of the vehicle time response at 80 seconds of first-stage flight.
The mathematical model and input data used in the digital simulation are identical
to those used in section 3. 0. The rigid body gain margins at 0. 112 Hz and 0. 738 Hz
will be verified using the time response results from a computer simulation to show
that the pseudo-Nyquist plot yields the correct low-frequency stability margins. The
gain and phase characteristics of the first and second bending modes in figure 4 will
also be verified using the digital simulation.

4. 1 Verification of Rigid Body Stability Margins

The low-frequency gain margins at 0. 112 Hz and 0. 738 Hz mean that if the gain
at the TVC (K) were reduced by a factor of 1. 0/1. 582 or increased by a factor of
1. 0/0. 382, respectively, the system would be neutrally stable. To verify these gain
margins, system time responses were obtained for cases where K was decreased by
a factor of 1. 0/1. 582 ± 5% and increased by a factor 1. 0/0. 382 ± 5%. -Because a
reduction in actuator gain by a factor of 1. 0/1. 582 causes a neutrally stable condition,,
the ±5% variations will show the stable and unstable, conditions which exist on either
side of the neutral stability point.

14



Figure 5 shows the engine gimbal angle time histories for these gain variations.
These results confirm the vehicle low-frequency stability characteristics predicted
by the pseudo-Nyquist plot in figure 4.

4. 2 Verification of Bending Mode Stability Characteristics

To verify that the pseudo-Nyquist plot gives the correct open-at-TVC bending
stability characteristics for the backup guidance system, the following approach was
taken. In figure 4, the segment that contains the first bending mode resonant response
crosses the 0. 0-degree axis with a magnitude of 3. 5, and the segment that contains
the second bending mode resonant response crosses the 0. 0-degree axis with a magni-
tude of 0. 151. If the gain of the first bending mode response could be decreased by a
factor of 3. 5, and the phase of the first bending mode response changed by 180 degrees,
the first bending mode response should cross the ISO-degree axis with an amplitude of
1. 0. Likewise, if the gain of the second bending mode response could be increased by
a factor of 1/0. 151, and the phase of the second bending mode response changed by
180 degrees, the second bending mode response should cross the 180-degree axis with
an amplitude of 1. 0. It is well known that the resonant gain of a bending mode is inversely
proportional to its generalized mass. Furthermore,

OPTVC
B.i

The generalized mass of the first and second modes can be manipulated
to achieve a neutral stability condition which can easily be checked by simulation results.

The new pseudo-Nyquist plots generated using the modified generalized masses are
presented in figures 6 and 7. Figure 6 shows the results for the case where first bending
mode generalized mass is multiplied by -3. 5, and figure 7 shows the results for the case
where the second mode generalized mass is multiplied by -0. 151. Figures 6 and 7 show'
that the individual responses of each bending mode cross the 180-degree axis very close
to the -1. 0 point. The response of the two bending modes does not cross exactly at the
-1.0 point because of the approximate nature of the relationship given by equation (27).
Changing the generalized mass of a given bending mode also changes the coupled response
given by the denominator of equation (4). For large changes in generalized mass, gross
changes in the system response can result as illustrated by the low-frequency segment
of figure 7.

The results of figures 6 and 7 show that the responses of the two bending modes
cross the 180-degree axis at a gain of about 1. 15. The generalized masses of the
two modes were adjusted by a factor of 1. 15 and simulation time responses were
obtained. The results are shown in figures 8 and 9. Case 1 (figure 8) shows the
time response results for a first mode generalized mass multiplied by -3. 5 (1. 15).
The first bending mode response is shown to be neutrally stable for a step attitude
command of one degree. Likewise, the second bending mode response is very close
to neutral stability in Case 2 (figure 9) where the generalized mass of that mode was
changed by -0. 151 (1. 15).

The results presented in this section confirm that the pseudo-Nyquist plot can
be used to predict the continuous open-at-TVC stability margins of a control system
containing both discrete and continuous feedback loops.
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150

180C

-150

60'

30(

PHASE
(DEC)
180.0°

-163.0
180.0°

FREQ
(CPS)

0.113 1.485
0.183 1.000
0.824 0.237

-120 -60C

NATURAL REFLECT
MODE FREQ- FREQ

(CPS)- - - ' (CPS)

AMP
RATIO

-90'

PHASE AMP
(DEC) RATIO

PHASE
(DEC) RATIO

PHASE
(DEC)

1 1.326 0.674 3.78-03 -40.3 3.01-01 -166.5 1.16400 170.9
2 2.327 :_ 0.327 8.82-02 -89.2 1.60-01 ..-• 8.1 5,94-01 -151.2

Figure 6. Pseudo-Nyquist Plot Using Modified First Bending Generalized Mass
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120 60C

150
30o.

MB2 = - (.151) MB2

PHASE
(DEC)

180.0°
-171.0°

180.0°

(CPS)
0.129 1.503
0.200 1.000
0.324 0.513

-150

-120

MODE

1
2

NATURAL
FREQ
(CPS)

1.326
2.327

REFLECT
FREQ
(CPS)

0.674
0.327

AMP
RATIO

6.94-02
2.92-01

PHASE
(DEC)

162.7
95.5

AMP
RATIO

2.06-01
5.11-01

PHASE
(DEC)

134.5
179.2

AMP
RATIO

3.93+00
1.26+00

PHASE
(DEC)

-19.6
-165.8

Figure 7. Pseudo-Nyquist Plot Using Modified Second Bending Generalized Mass

18



CN
CO

to

IO

CN

-M-

M=i

Q
Z
o
u
LU
in

CN
CO

10

CN

D3S/W)

OJ
CO

-^

* — "

•^— '
r ^

f

*"W

1

II
CN
«o.

[

•*"
"

—

^'.
.̂

***~

J

'

1

y

(

(
\

^

S^_

/̂

\
)

^

J
(
A

_̂

X

_

- — '

„

'

_

n

i^
_

x

o

U o

T3 4_>
C OT
0) •-;pq 3

*• — ̂  o
VQ 'O £»o c Z
Z R '
n S -S
U M SLU ^ ....
i/> n^

C
UJ O c-5 -rt c
•< 13 o
*~ S 'w

^ OT
t^ f^

d 'C .̂
O ?7

Q^ .
^ M
S

O) -ti
^ -f-^
^ ,o

.SP 5
pin CO

(S33cJ93Q)

CO

: i j

1
1 1 !

'•

1 1

! ; !1 1
1
i

' \
i

1

1
J--L -tJ_

1
,i

i 1
r- ~
j

L. -•^ "1

i
i

i

i

i
i

j

^ -*

= =

(i

i

i

i

i

y
/

L
*

_ -

i
_ !

1

Hiii
"i

^

)
a

)
~]
i

a
N.

B

"•

\.

••

.

-

CO

T3
O

U

Z
I

|

03
OT

§
u_ ™

O

O

^

CO
c
'Si
$-1

oo

03
^c

bfl

LD3S/W) {*
c

LD3S/W) (S33cJ03a)

19



CONCLUDING REMARKS

A solution technique has been developed for obtaining the frequency response
characteristics at the input to the TVC (a continuous element) of an attitude control
system with both sampled-data and continuous feedback loops. The inverse function
concept is used in conjunction with a series expansion of the pulse-transform of the
characteristic equation of the system to obtain an explicit solution for the open-at-
TVC response. The solution technique is essentially the universal problem of solving
for the roots of an n-order polynominal with complex coefficients at various frequencies
over the frequency interval from 0 to W*- . The order of the polynominal (n) is equal
to the number of terms of the series expansion. The series must be convergent which
it is for control systems with low band-pass characteristics. The number of terms
required depends on the resonant modes of the system (i. e. eigenvalues) and the
sampling frequency.

The multivalued solutions from this new technique can be plotted as a pseudo-
Nyquist plot. The pseudo-Nyquist plot can be utilized in the same manner as a con-
ventional Nyquist plot to determine the system stability characteristics of a sampled-
data control system with single rate sampled-data and continuous feedback loops.
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APPENDIX A

This appendix presents the equations of motion used in the analyses presented.
in this report. Figure A-l shows the coordinate system associated with the equations
of motion.

REFERENCE TRAJECTORY

Figure A-l. Coordinate System for Equations of Motion

A-l



Rigid Body Rotation Equation ( 0 )

(F - x) (XE YI,(XE) -AM • . ̂ i- -: + - FG XE ̂ E = 2

Rigid Body Translation Perpendicular to Trajectory ( Y )

MY + -22 5 Y - Cg M + Cna q AR) 0

Bending Degrees of Freedom ( 7}. , i = 1, 2, 3, 4, 5 )
i

MBi^'i + 2 fB i
W Bi M Bi^ i + WBiMB i

l ' i

= o

Sensed. Attitude at the Platform ( 00 )
" "n — "- ' "^ ~ ̂ ~ — —

0 = 0

A-2



Sensed Attitude Rate at the Rate Gyro Location ( 0 )s

1=1 ,,
Sensed Acceleration at the Accelerometer- Location • ( >

5 ( 1 = 1
g Y!(A) rj = o . . • ..

Control Equation ( ft

0 F0(s) (0S - 0C) + ^ F̂ (s) ̂  H: - g2 Fy(s)

A-3



APPENDIX B

This appendix presents the data used in the analyses presented in this report.
These data are typical Saturn IB vehicle and Control System data.

T = 80. 0 seconds

F = 8231172.0 Newtons

X = 474030. 0 Newtons

q = 32278. 0 Newtons/m2

I = 73671632.0 kg-m2

X = 28.07 m
cp

X. = -22. 91(m)

a =1.85 deg per deg

g = 4. 0 deg per m/sec

M = 356571.0 kg

F = 4115586.0 Newtons
G

g

V

= ..21.756 m/sec2

= 546. 5 m/sec

X = 17.25 m

5.18 per rad

A = 33.468 m'
R

1. 65 deg per deg/sec

B-l



Saturn IB First-Stage Pitch/Yaw Bending Data at T = 80 Seconds

MODE

1
2
3
4
5

MODE

1
2
3
4
5

FREQUENCY
(RAD/SEC)

8.322+00
1.462+01
1.648+01
3.094+01
5.361+01

FREQUENCY
(RAD/SEC)

8.332+00
1.462+01
1.648+01
3.094+01
5.361+01

FREQUENCY
(CPS)

1.326+00
2.327+00
2.623+00
4. 925+00
8. 532+00

FREQUENCY
(CPS)

1.326+00
2.327+00
2. 623+00
4. 925+00
8. 532+00

SLOPE AT
IU PLATFORM

(PER M)

-1.249-02
1.479-02
6.600-03
1.788-02
2. 602-02

GENERALIZED
MASS
(KG)

4. 455+03
• 2.780+03

2. 682+04
3.982+04
3. 195+04

SLOPE AT
RATE GYRO

(PER M)

-1.249-02
1.479-02
6.600-03
1.788-02
2.602-02

DEFLECTION
AT GIMBAL

8.287-02
-3.932-02
6.151-02
5.316-01

-1.046-02

DISPLACEMENT AT
ACCELEROMETER

1. 130-02
-1.064-01
-2.258-02
1.205-01
4. 722-01

SLOPE
AT GIMBAL

(PER M)

5.467-03
-1.698-03
-3.213-03
8.820-02

-6.450-02

MODE FREQUENCY "FREQUENCY
(RAD/SEC) (CPS)

SLOPE AT
S/C PLATFORM

(PER M)

1
2
3
4
5

8.332+00
1.462+01
1.648+01
3.094+01
5.361+01

1.326+00
2.327+00
2.623+00
4. 925+00
8. 532+00

-3.437-2
-3.132-2
-7.491-3
8.260-3
3.886-2

B-2



,Control. Filter and Actuator Data:

1.0
G (s) = *"

TVC 9.293E-13 s6 + 5.773E--10 s5 + 1.669&-7 s4 + 2.685^5 s3

+ 1.232E-3 s2 + 6.308E-2 s + 1.0

1.0

0.17 s + 1.0

0.0035 s2 + 0.01 s + 1.0

0.001679 s3 + 0.028568 s2 + 0.24518 s + 1.0

1.0
Fy(s) =

0.5 s^ + 5.1 s + 1.0

B-3
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