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SUMMARY

The report covers the results of an analytical and experimental investi-
gation on the vibrational energy transfer between connected substructures
under random excitation., In the analytical area, the basic foundation and
assumptions of the Statistical Energy Analysis (SEA) method, a major tool
in random response analysis of structures, were examined and reviewed. A
new SEA formulation based on the strong coupling condition of the substruc-
tures was carried out and presented., Also presented were the results of
vibration energy transfer study based on the wave equations applied to
connected structures. In the experimental phase, three simple structural
models were fabricated and tested. Additional tests were performed on
selected substructures which formed parts of the test models. The test
results were presented and evaluated against the analytical data.

The work described in this report was carried out at Northrop Corporation
under the sponsorship of NASA Marshall Space Flight Center. The contract
number was NAS8-28171., The program was monitored by Drs. Hugo Steiner
and Rudolph Glaser of NASA, under the overall direction of Mr. Richard
Schock. The experimental work was carried out by Mr. Paul Finwall of
Northrop. Dr. Paul Seide participated in the analytical work which 1is

described in the Appendices of the report.
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INTRODUCTION

This report covers the analytical and experimental results obtained
in the conduction of the Contract NAS8-28171 entitled "Investigation of
Vibrational Energy Transfer in Connected Structures." The purposes of the
subject program are (1) to investigate the high-frequency energy transfer
mechanism between two connected structures, (2) to determine the major
parameters that affect the energy transfer, and (3) to determine the para-
meters and their influences to the application of the statistical energy
analysis (SEA) method to the structures. To accomplish the program tasks,
coordinated experimental and analytical methods were applied. Specifically,
conditions were established under which the SEA method can be used to predict
the vibrational energy transmission in two connected structures. Guidelines
were established. A new analytical formulation was introduced to cover the
cases where the substructure intercoupling was strong. In addition, analyti-
cal and experimental definitions of the key parameters relating to the appli-
cation of SEA were examined and applied to structures under high-intensity

acoustic or random mechanical loads.

The statistical energy analysis (SEA) method was first applied to the
structural vibration problem as an extension of the room acoustics approach
in acoustic engineering., Developed in the past decade by Lyon, Smith, Dyer
and associates (References 1-15), the method considers the linear responses
of multimodal structures and the resulting energy flow among the modes of
two or more sets of substructures, The modes of a substructure are called
a subset., Because of the complexity of the high-frequency modal data of
structures and the desire to have a simpie tool for engineering application,
a number of assumptions are made in the formulation of the SEA, These
assumptions, together with the related parameters which affect the validity
of the assumptions, are considered to be the key points in determining
the applicability of the SEA method to high-frequency vibrational energy

transfer problems for connected structures.



In addition to the fundamental derivations of Lyon and associates
described above, Zeman and Bogdanoff presented an elaborate formulation of
SEA using technical terms and analytical procedures commonly used by struc-
tural dynamicists (Reference 16)., Zeman's derivation deviates from the
original SEA formulation in some details relating to the coefficients of
dissipation functions, etc., While the end results are essentially the same
as compared to the Lyon and Maidanik derivation (References 1, 11), Zeman's
derivation and its reasoning are helpful in making the SEA method more com-

prehensible to the structural dynamicists,

The SEA is based on the power flow between groups of linear oscillators.
Between two groups, the power flow is established by a set of dynamic
equations, Each equation represents the mode response of one oscillator
and its weak coupling with one or more oscillators from the other group.

The coupling parameters are classified into inertia, damping, and spring
types. For a stationary process, the assumption that the damping coupling
parameters for any two oscillators are equal in magnitude and opposite in
sign gives rise to a condition called gyroscopic coupling. Specifically,

a gyroscopic coupling element is defined as one which produces a negative
coupling force on Osclllator No. 2 due to a positive velocity of Oscillator
No. 1 if the velocity results in a positive force on Oscillator No. 1 due to
a positive velocity of Oscillator No., 2 (Reference 11)., The gyroscopic
coupling force on Oscillator No. 2 due to a positive velocity of Oscil-

lator No. 1 if it results in a positive force on Oscillator No. 1 due to

of the power flow coefficient under the weak gyroscopic coupling condition.

Consider a narrow frequency band for which the modal density of the
substructure may be determined either experimentally or analytically. In
SEA, it is assumed that the input power spectrum is fairly flat within the
frequency band. Each linear oscillator which is directly excited by the
external source is considered to be subject to a "thermal bath." Under
this condition, the modal energies of all the oscillators whose natural
frequencies lie within the narrow band are fairly equal and may be repre-
sented by an average value. A final formulation of the SEA involves the
response levelsof two or more substructures (which may be either connected
substructures or a structure and a reverberant acoustic field) based on the

average modal energies of the externally excited and the coupled oscillators.



The SEA method has the potential of being a powerful engineering tool
because of its generality and, specifically, its averaging technique, where
the structural and response details are considered only in a broad sense,
The method may also be misused if applied indiscriminately. 1In view of this
background, the subject program investigates the key factors affecting the
SEA, and specially the high frequency vibration energy transmission, so that
the applicability of the method may be clearly defined. Furthermore, new
analytical derivations are established which tend to clarify certain aspects

relating to the formulation and application of the SEA,

As part of the engineering method development, a user-oriented
preliminary test procedure is developed in the application of SEA. The
purpose of the preliminary procedure is to ensure that the structural model
and the substructure definition implemented by the user will satisfy the
basic assumptions of SEA., The same procedure also yields guideline indica-
tions when the limits of the application of SEA have been surpassed due to
such factors as substructure design, the operating frequency range, and the

like.

In the experimental phase of the investigation, three structural models
were fabricated and tested in order to extract the maximum amount of in-
formation from the test program. The models were designed to consist of
connected substructures with typical variations in interface configurations,
modal density distributions, vibrational energy transmission paths, and

degrees of modal energy diffusion,

The remaining text of this report follows the logical sequence of
development. After a general discussion, the basic formulation of SEA is
presented where the degree of coupling of the connected structural sets is
discussed. This is followed by a new derivation on the SEA applicable to
the strong coupling case., The subsequent sections cover the user guide-
lines for SEA and the analytical formulations involving various types of
connected structures. The text is concluded with the presentation and

discussion of the experimental data.



DISCUSSION OF THE PROBLEM

The current investigation emphasizes a detailed understanding of the
mechanism of energy transmission at the interface of connected structures.
In general, the high-frequency energy transmission is in the form of bending
and shear waves for thin-skinned space vehicle structures. The tension/
compression waves may be involved in the picture, but they are considered
to contribute minimally to energy transfer. The major parameters affecting
the magnitudes and modes of energy transfer include the makeup of the sub-
structures, their boundary conditions, the interface configurations (length,
geometry, method of fabrication, etc.), the substructure and coupling loss
factors, the relative amplitudes of the modal densities of the connected
substructures, and the location and type of loading. In order to sort out
the various parameters and to reach a rational solution of the complex
problem, a number of simple test models featuring certain basic similarities

were used, The details of the models will be described in a later section,

In a given connected structure, the degree of modal diffusion depends
greatly on the wave length relative to the characteristics dimensions of
the substructure and, for a thin-skinned substructure, on its thickness.
As the stress waves propagate in the structure, they meet the structural
boundaries and interfaces where the waves are partially or totally reflected
according to the boundary geometry and the constraint conditions. The
infinitely many possibilities of these wave propagations and reflections
cause a randomly distributed wave pattern (i.e., a high degree of modal
diffusion). For waves of medium or long length, the degree of diffusion
will affect the energy transfer through an interface because the directional
properties of the waves determine the amount of energy transmitted to the
neighboring structure. The effect is believed to be less pronounced for

shorter-length waves,

To confirm the energy transfer mechanism in a structural interface,
analytical methods are applied using the classical equations of wave

propagation, In a previous work by Lyon and Eichler (Reference 4), a set



of flexural wave equations was established. Simplified boundary conditions
were applied to the interface. The energy transfer rate through the inter-

face was estimated based on the assumption of thoroughly diffused waves.

In the current program, more elaborate equations (e.g., those given by
Mindlin in Reference 50) and more complicated interface configurations are
used. For shell-type structures, the curvature effect and the proper con-
straint at the interface are considered. Typical applications of the wave

equations are described later in the report.

In previous work on the application of SEA, it was found that the weak
coupling conditions are not always satisfied, depending on the frequency
range and other pertinent factors (Reference 49). In addition to estab-
lishing the applicability of the SEA method for specific structures, alter-
native approaches are investigated and reported where non-weak intercoup-

lings of substructures are involved.

To make the SEA method a usable tool for practicing engineers dealing
with high-frequency vibrations of connected aerospace structures, it is
desirable to have available general guidelines on the proper application of
the method. The guidelines presented in this report take into consideration
such structural parameters as coupling loss factors, damping loss factors,
modal densities, etc. These guidelines also include preliminary test pro-
cedures which can be followed by practicing engineers. In the subsequent
sections, the basic foundation of the SEA method, the applicability of the
method to strongly coupled structures, and the guidelines and preliminary
test procedures to the proper application of the SEA method are described

in detail.



BASIC ASSUMPTIONS OF THE SEA METHOD

The theoretical foundation of the statistical energy approach to vibra-
tion analysis is that the steady-state time-average power flow from one mode
to another is proportional to the difference between the time-average kinetic
energies of the two modes provided that the following conditions are satisfied

(References 1, 11):

1. The coupling between the two modes which satisfy the following set

of equations is linear, weak, and conservative (gyroscopic).

e L] ’2 e ] —
m, (y1 + ﬁl ¥y + wy yl) + A Y, + B2y2 +C ¥, = fl
(1)
. . ) . . _
m, (y2 + ﬁéyz + w, yz) + A ¥, + B1 ¥, +C Yy, = f2

where m, B, are the mass, damping coefficient, and the natural fre-
quency of the oscillators,respectivély. The modal displacements are
denoted by y. In Equation (1), the coupling parameters A and C rep-
resent the inertial and stiffness couplings, respectively. The coupl-
ing parameters B1 and B2 represent the gyroscopic coupling when

B1 = —Bz.

2. The forces f, and £, (see Equation (1)) acting on the two modes are
uncorrelated and have spectra that are relatively flat within the

frequency band encompassed by the resonances of the coupled system.

Furthermore, the steady-state time-average power flow from one set of
modes to another 1is proportional to the difference between the set average

modal kinetic energies of the two sets provided that either:
1. The mode-to-mode coupling is the same for all mode pairs, or,

2. All modes in each set have equal time-average kinetic energies.

(Note that the members of each set are not coupled to each other)



The coupling factor, applicable to set—to-set power flow is equal to the

sum of all the mode-to-mode coupling factors.

For a given connected structure, the SEA method can be applied to predict
the response levels under high frequency excitation. For this case, it is
further required that the wave patterns are diffused, and the major wave
lengths of interest are small compared with the characteristic dimension
of the structure. Based on the above, the prerequisite conditions of appli-
cability of the SEA to a connected structure may be restated in terms of the

analytical formulations given below:

1. The generalized coordinates of displacements of the connected

structural system satisfy the following set of equations:

m, (%, +£3x1+w2x)+>:[A S+ B I=f, 1=1, «...,N

kivk T Ckivk

i k=1 i
@, (¥, + By, + )+§[ X, +C,x]=F, j=1 N
m, w, j Xy |= = coee
Gy By PR T I T N
where Aji = Aij and Cji = Cij
2. The coupling is gyroscopic, i.e., Bij + Bji = 0. (3)
3. The coupling is weak, I Aij l ,| Aji | «< m, mj;
- - -2
< .
|Bij . IBjiI miﬁi’ mjﬁj’ ij, , ICji |<<miwi y myw” (4)

In addition to conditions noted in Equations (2), (3), and (4), other
conditions such as uncorrelated modal forces, equal modal energies, etc.,

are also needed in order to apply the SEA to the connected structure.

In general, for a given connected structure, it is not always clear
whether the values of the coupling parameters A, B, and C satisfy condi-

tions contained in Equatiomns (2), (3), and (4).

In the following, the degree of coupling of a connected system used by

Lyon and Eichler {is examined.

(2)



In Reference 4, Lyon and Eichler treated analytically the coupled system

shown in Figure 1, namely, a mass—spring resonator attached to a finite thin
plate. The same configuration is used here to examine the magnitude of the
coupling parameters of the coupled system. The transverse displacement w

of the plate satisfies the following equation:

Kp? Cp? U* w+ w + ppw = —L [T(x, £) - £(t) 8(x - x5)]
Ps (5)

where KP is the radius of gyration of the cross section, CP i; the longi-
tudinal wave velocity in the thin plate, pP is the damping coefficient
related to the loss factor p by BP = Mp W, pS is the mass per unit area,
r(x, t) represents the random loads per unit area,and f is the reaction
force produced by the resonator which is attached to the plate. The cor-

responding modal response equations are:

é’m + BP :;m + u_)ma gm + __!- Y;‘ f = Fm(t) (6)
Ps
where §,= modal amplitude of n~th mode

-th
natural frequency of m mode

£
]

m
Ym° = m~th mode shape at x = x;
Fn = modal force corresponding to m~ th mode

Using the reaction force as the dependent variable, the equation of

motion for the resonator of Figure 1 is:
f+aof+u.b°f-l(§‘i’m°§m=ubzfs(t) (7)
and w°2 = % . The exciting force on the resonator mass is
fs(t). The reaction force f 1is related to the displacement of resonator

e a1

where Bo =

d by the following relation:
K(d - wy) = -f = K(d - °
° E Yo gm) (8)

The corresponding power balance equations for the system are:

B < psdm >*Yg

° < f §m>=ps<Fm Em =

€

e°<f°/K;-§Ym°<fé>= <fsffdt>.-\,-<fsc.i>

L
n M



The above equations show that the coupling of the system is conservative.
Since the equation of motion for the resonator is in a special form, Lyon and

Eichler introduced the following new variables:

1

6 = (K pg) - f
va = (K p¥ ¢
m Ps)”  &m (10)
W, = (K/p)% ¥

Based on the above, a new set of equations are obtained as follows:

. 2 .
Vm* B Vm*t W vmt ¥y 8

i}

(K ps)® F
Ps Fm(t)

(11)
8 + B 6 + up? 8- %y ° Vm = W2 6g(t)

Comparing with Equation (1), Equation (11) satisfies the following conditions:

Alm = Ap =0

Bim = -Bmy = V¥° (12)

Cbm=Cm =0

The above conditions establish the gyroscopic coupling of the system
and the applicability of the SEA method. Based on Equation (l1) and the form-
ulas given in Reference 1, the amount of energy transfer through the spring
resonator and the finite thin plate may be computed. Consider a simply sup-

ported square plate with a resonator attached at the center. We have:

Ymo = Z me = q; ° = g K_ = Zub M = 2 M
’ g~ Wo v
a " Ps v atpg v Mp (13)

where a is the edge length of the plate and MP is the mass of the plate.

In the narrow frequency band with center frequency Wy the ratio of

B/BP is:

2 [E (14)

I

P =



Figure 9 of Reference 4 shows np = 0.0005 for a 0.145 cm (0.057") steel plate.

So we have:

B /M
— == 4 -
BP 000 Mg

(15)

It is noted that for the case described above, m, of Condition (4) is
equal to unity. In other words, the weak coupling Condition (4) is now
B/Bp << 1, which may be restated as: M<3:MP/(16 x 106). Since the latter
condition is not satisfied in a typical set-up, we conclude that the resonator-
plate arrangement is not a weak coupling case. 1In the following section, new
formulation of vibrational energy transfer involving strong coupling of sub-

structures is described.

FIGURE 1 DIAGRAM OF PLATE WITH ATTACHED RESONATOR

10



THE EXTENSION OF THE SEA METHOD TO STRONGLY COUPLED STRUCTURES

A major item of interest in the application of the Statistical Energy
Analysis is the degree of coupling of connected structures. Previous work
at Northrop indicated that the weak coupling condition assumed by the original
workers of SEA was not always satisfied in typical structures. Our present
effort is to determine the extent of coupling of practical aerospace struc-
tures and to explore the additional formulation in structural responses based
on the condition that the substructure coupling is not weak. .Our findings

are described below.

Power Flow between Two Modes

The average net power transferred between two linearly strongly coupled
oscillators which satisfy the set of Equations (1) is derived below. The mean

value function equations of Reference 1 are the starting point of this deri-
vation. Thus, the sources f1 and f2 are assumed to be statistically inde-
pendent and to have power spectra which are flat as compared to the admittance
spectra of the two oscillators. Suppose an impulse "a" occurs from source f1

only, then by Equation (1)

gmldyl + Ady2 = a,

(16)
-AAy1 + m2Ay2 = 0.
Accordingly,
L 2
y, = am /(mlm2 - A7)
& 2 , (17)
p = -eA/(mm, - &)
From the nature of fl’ subsequent increments of A§1 and‘4§2 (due to
different impulses) are independent increments of velocity, and therefore
in one second the amounts of energy gained by oscillator 1, 2 are
' 2 2,2
<y1 I ~= m,m, Dl/(mlm2 - A")
1 sec. (18)
_ 2 2,2
>, = myA Dl/(mlm2 - A%)
1 sec.

where D1 is the spectral density of fl-



Thus, the power from source 1 is

. 2 2,2
<£,%,> =Dm,(mm, +A")/(mm, - A7) (19)
and similarly,
<£,9,> = Dm (mm, + 4% /(mm, - 45?2 (20)
272 Doy 1™
also, since A§72 = -AA&l/mz one has
<f,y.> = -D.A(m,m, + Az)/(m m, - A2)2 | (21)
172 1 172 172
and
<f£.9> = -D.A(mm + A2 /(mm, - A%)> (22)
2°1 2 12 12

Since an impulse produces no immediate increment of displacement,

<f.y.,> = <f y.,> = <f

191 272 12> = <fpy> =0

The above covariances between the sources, displacements, and velocities
define the statistical properties of the sources. The effective force which
the motion of oscillator 1 causes to be produced on oscillator 2 is seen from

equations (1)
f10 = Ay - By, -0y (23)

Thus, for stationary ergodic process the average net power flow delivered from

oscillator 1 to mode 2 is

Py = <f12y2> = -A<yy,> ~B <y;¥,> - C <y,¥,> (24)

Similarly, the net power transferred from oscillator 2 to 1

P21 =<f21y1> = -A < ¥,> - B2 <YY,> - C <Y, ¥

For a stationary process

<F 9,5 = -<§9,

172 172
(25)

YIy> = - <y,

12



and therefore we may write

Py = A<Y¥,> - B, <Y9,> + € <yp¥,> (26)

In order to evaluate the moments involved in Equations (24) and (26) the follow-

ing set of equations may be obtained from stochastic equations (1)

—

-
. 2 .
mlﬁl 0 0 0 0 B2 -C ~A <y > <f1y1>
L 2 [
0 m2(32 0 0 0 B, C A | <y, > <f2y2>
B 0 0 0 2 <y.%> <f.y.>
0 2 ™ Py i} U1 A 172
B 0 0 0 0 n., B —-m,w 2 -m,| /<y 2> <f,.y>
1 2"2 2% 2 2 _ 271 (27)
2
-m, 0 m W, 0 C -A B, 0 <Y1Y, > 0
2 - .
0 —m2 0 m,w, C -A —B1 0 <y1y2> 0
2 >
0 A 0 C m,©y —m, mlﬁl 0 <y1y2> 0
2
— <-- [ >
| -A 0 C 0 m,w, m, m, 52 0 Y19, 0
Equation (27) may be solved explicitly and the results used to obtain power
flow P12’ etc. This is accomplished if the coupling is conservative (gyro-
scopic coupling B, = --B2 = B).
Pl, = Py = 81, (8] - 6),) (28)
where Pij = the average net power delivered from oscillator i to oscillator j.
6, = the stored energy in system i = <fi§71> /B
817 = 891 = the power flow coefficient

2.2 2
= (mm,B,"B," {a [‘31‘*’24 + .‘32“’14 + ﬁlﬁz(ﬁﬁ"zz + 522"’12)]
+ (3% - 2a0)(Byw , + B0

2

+ON B YL B AT (Bt Byt - B BB

2 2 2 2 2
+ B )] - (BT 4 280) (Bw,” + By D) + €T (8 +8) ) .

13



2 2.2 2
{mlszlBZ (wl ) ) + (m1m28182 - B® - 2AC) -

2 2 2 2

2 2,2 ,2,-1 .2 -1
(Byuw,” + Byw, ") A b7 (3%4mm, 8, 8,) (29)

For the special case of weak coupling between two oscillators,

2 2
( |A|<<m1,m el « mw, %y mwys B | << m By, myB, and m1=m2=1), Equation (29)

2;
may be reduced to the form which is identical to the result of Reference 1,

Equation (3,4).

Equation (28) shows the fact that the steady-state time-average power flow
from one mode to another is proportional to the difference between the time-
average modal energies even though the coupling between the two modes is

strong, provided that all other requirements to apply the SEA method are satisfied.

In the following subsection, the power flow between two strongly coupled

sets of modes is described.

Power Flow between Two Strongly Coupled Sets of Modes

Consider two sets of modes. Within each set, the modes are uncoupled
to each other. The power flows between modes of the two sets are assumed to
be proportional to the modal energy difference. The modal displacements of

the oscillators, which are denoted by x respectively, satisfy Equations

19 yj
(2) and (3). Furthermore, assuming a stationary process, the time average
of a function is denoted by a pair of brackets < > around the function.

The power balance equations may then be expressed as follows:

ﬁ (5(2> = B. 6, - ﬁ ' 31 .
m, Py il T 5% kgl gik(oik - ki) i=1,+.+.., N (30)
N
- = .2 —_— _
3 . = 0. ' —' = - . . L]
my B (57 )= B8+ :él 8 (8gy =6 17 L N (31)
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or

.2 ! 1 3¢ (32)\
= 6. - -
m B (%) = & ij ~ Bi3(835 ~ &)
E; 7 (2 5 B [ (]
. . )= B.6.. + g..(0.. 8.
JﬂJ<yJ> By + g6y~ T5) _
i=1, +eee, N;j=1, -+, N (33)
where G;j, 631 are called the equivalent modal energies as defined below:
N
' = - -y ]
6 < 6 - 20 Bk O Oly) /By (34)
kxj
— I\ |
9.', = 0. + 1] - -t -—
LS t{:. By (G = 85) /B (35)
and
oi = fixi> /pi (36),
6. =(1y) /8 (37)
j = {%9) /3

Thus, the expression of the mode-to-mode power flow and the relation
between coupling parameters and g are as shown below:

<P, >

‘ L * Ld *
ij = gij (e;_j - eji <.x.iyj>- B <xiyj>- C <X > (38)

1 13 %17y

where the power flow coefficient 81 is defined by Equation (29). Equations
(34), (35) and (38) are used for defining the energy terms. Based on this
formulation, the power flow diagram for a typical mode (xi) and the mode (yj)
is shown in Figure (2a). The steady-state time-average power flow from one

set of modes to another may be expressed as
N N
1 1
P = -8
1J Z 2 85 (855 = 8yy) (39)
i=1 j=1

Taking the summation of the terms of Equation (33) with respect to index
vi" from 1 to N yields

bi N
Sop v E s e o) o

S T
Nm, ﬁ-{ Y-> = B, g.. .. 8.
! S EF RO = T At B

J ]
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Insertion of Equation (31) into Equation (40) gives the following

expression
N
] _ — o2
g By =% +®-D B <35> (41)

)
In Equations (40) and (41) the unknown O, may be represented in terms of

it

<§§:>and'<i§> - This is accomplished by solving the simultaneous equations
(32) and (33).
1 — o 2 -— o 2 ]
0y = [mj (1 - g;/8) <%y > - m(g /B <%,">] /4, (42)
B = [m (1 =g, /5 <k2> —m s,/ )<‘2>] / (43)
(EE S DS S L 3°B1y7847 <Yy A1y ‘
where
_ -1, =-1
Aij—l-(Bi +Bj ) 85 (44)

Substituting Equations (42) and 43) into Equation (39), the following expres-

- sion 1Is reached

N N
_ . 2 - [ 2
PIJ’ = 2: Z: 8 [mi<xi > - m <yj >] /Aij (45)
=1 3=l

It may be concluded from Equation (45) that the set-to-set power flow
is proportional to the difference between the set-average modal energies
of the two sets provided that either or both of the following two conditions
are true: (1) the mode-to-mode coupling is the same for all mode pairs;
(2) all modes in a set have equal time-average energies . Furthermore, Equa-~

tion (45) may be rewritten as

N X Y <2 5
- vi> M <S>
P "(E 12—1 814/4 11) ( N T TR ) (46)

where the M, N, <V2> are the mass, the mode count, and the mean square velocity
of Set I; and M, §,<:Vz> are the corresponding functions for the Set J. The

energy flow diagram of two coupled sets is shown in Figure (2b).
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In Reference 11, a term called coupling loss factor of Set I is defined

to describe the loss of mechanical energy from Set I, the energy being trans-
ferred to set J through the interface:

P

N
1J 1 1
e = N1y 2 — s (222 Biyfayy) @D
wOM<V> i=1l j=1
-2
<V'>=0

where wy is the center circular frequency of the narrow band excitation. The
=2
condition <V > = 0 in Equation (47) is imposed in order to make this loss

factor independent of the modal energies of the system receiving energy
inflow.

It is noted that the coupling loss factor ﬁc= nJI of set J is generally

not the same as the loss factor Ne = nIJ of Set I. Instead, we have
N N
Nnw, = N Y =1Z1jz1 By /A1j (48)

Ways to determine the coupling loss factors analytically and experimentally

for various connected structures will be discussed later in the report.

Estimation of the Response Ratio of Two Connected Structures When One Is
Directly Excited

In the SEA method, an important application is to estimate the response

ratio when the primary structure of the connected structural system i{s randomly

excited in a narrow frequency band. The response ratio may be estimated by

inserting equation (43) into Equation (41) and setting Py

jE 0 (Set J is excited
through attachment only):

N

m<yy’> i=i . (49)
B
RN Y

i=1
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The above result may be expressed in the following simplified form

<V> /<Vvi>=

™I

(50)

B8,
?I

where B is the average damping coefficient of the coupled structure J and

éc is the coupling damping factor defined below:

N
B = mean of Z 8. . /A, . for all j's ' (51)
C i.=1 1] iJ
- _ c
> NgWo & MNJ1%

Equation (50) conforms to the general formulation of SEA (see Equation 101,
a

1J

is introduced in Reference 11 (Equation 103). The apparent loss factor

Reference 11). Furthermore, a term called the apparent loss factor n

is the value of the dissipation loss factor ascribed to set I (on the basis
of measurements performed on Set I) if the observer is not aware that the set

is coupled to Set J, i.e.,

a U Ne 10
SRR L (52
n |
T (I_i)nc+n
N

where n and N denote the loss factors of Set I and J respectively. It is
a

evident from equation (52) that the apparent loss factor N1z

is always greater

than the actual dissipative loss factor

Based on the above equation, the mean square of response ratio of the

two mode sets (Equation (52)) may be reduced to:

2 2 "3 - "
<V >/ <Vi> = —_— (53)

jcdlic4
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Conservation of energy requires the following conditions.

2
Al = ngy M<V> + P (54a)
a 2
= Npy w, MV ) (54b)
2 -— —
P, = Nn_ (M——<V> - M———<_V>) (552)
N N
- - 22
= n w. M<V> (55b)

where AI is the time-average power supplied to Set I (Figure 2b). Equation (55a)

is an alternate form of Equation (46).

In Reference 4, Lyon and Zichler applied Equation (50) to two coupled
plates (Figure 3a) using the apparent loss factor:

a

n = N
1J + . (56)

Comparing the above with Equation (52), it may be concluded that Equation (56)
is true only when the weak coupling condition is satisfied. The weak coupling
condition is:

n = n
71 Nne<n ,or n..

z|=|
] |

(57)
In Equations (56) and (57), Set I denotes the vertical plate while the set
J denotes the base plate of the two-—plate system.

In the test phase of the program the loss factors and the apparent loss
factor were measured experimentally for various structural models. The acquired

data and the conclusion drawn from these data will be given in a later section.
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GUIDELINES AND PRELIMINARY TEST PROCEDURES
TO THE PROPER APPLICATION OF SEA METHOD

In order to make the SEA method a usable tool dealing with high-
frequency vibrations of connected aerospsce structures, it is desirable
to have general guidelines on the proper application of the method. The
guidelines described here include a preliminary test procedure which can
be followed conveniently by practicing engineers. The purpose of the
preliminary procedure is to ensure that the structural model and the sub-
structure definition implemented by the user satisfies the basic assumptions
of SEA. The same procedure also yields guideline indications when the limits
of the application of SEA have been surpassed. The procedure is formulated
below.,

The theoretical foundation of SEA in vibration analysis demonstrates
that under certain conditions, the average rate of flow of energy between
two sets of modes (representing groups of modes of two coupled systems in a
given frequency band) is proportional to the difference in the set-average

modal energies (Equation (46))

(M<V2> _ b_d'<V'2>)
N N

P, =NNg (58)

where 813 denotes the average value of the power flow coefficients from a
mode of set "I" to a mode of set "J." Equating Equations (55b) and (58)
yields

<v*> _u¥ NEu (59)
2 - - -
<V'> MN ‘ﬂwo+NgIJ

The above equation is equivalent to Equation (50) where "J" represents the
substructure excited through the connecting interface only. Furthermore,

by means of Equation (48) we have

.. = N 60
817 = " wo/N (60)
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For a connected structural system, if all the basic assumptions of SEA

are satisfied, it may be concluded from the above equations that

g5 = g1 O (61)

The proposed test procedure will check whether EIJ (Set "I" excited)
is approximately equal to 811 (Set "J" excited) for all frequency bands of
interest. (The ways to determing g values will be described later in the
discussion.) It is expected that the test results will fall into one of

the two categories given below:

1, The values of EIJ differ substantially from the values of E&I It
indicates that the SEA method cannot be applied to the connected

structural model under test.

2. The values of EIJ are approximately equal to the values of E&I' It
indicates that the coupling between the connected structures is

conservative and the SEA method may be applied.

For typical structural elements, mass M and modal density n are known
quantities. The dissipation loss factor M may be determined based on the
measurement of the decay time. Another test method called the Q-method may
be applied to determine M. The total number of modes N in a set may be de-
termined as the product of modal density n and the frequency band of exci-
tation Aw. For a connected structural system after the substructure data
M, N, n,ﬁ, ﬁ, M are determined, the values of EIJ may be determined by either

one of the following approaches:

l. Excite primary structure "I" of the system at points chosen at
2 =2
random and measure the response levels < V' >,< V">, The values

of EIJ will be computed based on Equation (59).

2. Compute EiJ based on equation (60). The values of the coupling loss
factor n, may be obtained as a function of 7, ﬁ,'];J by solving
equation (52),

(M2 -n)
no=— (62)
W-N(HIJ-H)/N

The loss factor U;J may be determined either experimentally or analyti-
cally (Reference 4),
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The aforementioned test procedures were performed on the three fabri-
cated test specimens which are described in a later section of the report,
The same procedures may be used to various types of connected structures. It
will yield guideline information when the limits of the application of SEA
have been surpassed due to such factors as structural element designs, the

operating frequency range, etc.

In the following section, analytical methods are applied to investigate
the energy transfer mechanism in the structural interface of two types of

connected structural systems.
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VIBRATIONAL ENERGY TRANSFER MECHANISM IN
TWO _CONNECTED STRUCTURES

In this section, the mechanism of energy transmission at the interface
of two connected structures is investigated analytically. For this purpose,
the classical equations of wave propagation are employed based on the assump-
tion of thoroughly diffused waves. The results developed are compared with
the test data given Iin a later section. Two typical structural models are

considered:

l. A two-plate system considering rotatory inertia and transverse shear.

2. An infinite flat plate with an integrally attached half circular
cylindrical shell.

Two-Plate System Considering Rotatory Inertia and Transverse Shear

The classical two dimensional theory of flexural motions of elastic plates
is good only for waves which are long in comparison with the thickness of the
plate. In case of transient loads with a sharp front, the significant fre—
quencies of modes of vibration are of a high order. The flexural wave lengths
of interest may reach the order of the plate thickness. An improved theory,
which takes into account the effects of transverse shear deformation and
rotatory inertia, should be used. 1In the following, the more elaborate plate
equations of Mindlin (Reference 50) are used to determine analytically the
energy transfer mechanism at the interface of a two-plate structure (Figure
I-1) which was investigated by Lyon and Eichler (Reference 4) using the
Bernoulli-Euler plate equation. In the approach, the base plate is assumed
to be continuous and supported along the interface in such a way that the nor-
mal deflection vanishes and the twisting moment is continuous. The vertical
plate hypothetically extends to the middle surface of the base plate where

it is fastened along the interface. The detailed formulation of the flexural
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wave propagation is given in Appendix I. If the effects of the transverse

shear deformation and rotatory inertia are omitted, the result is identical

to that obtained by Lyon and Eichler in Reference 4.

In Reference 27, Heckl used an analogy of architectural acoustics to
characterize the localized boundaries of plates in terms of absorption coeffi-
cients. The absorption coefficient Y is defined as the ratio of the outgoing
wave energy rate per unit length of the junction line vs. the incoming wave
energy rate in the other plate. The absorption coefficient Y may be related
to the difference between the apparent loss factor n? and the loss factor n
as shown below:

YC L
a g
(n —n)<u0 = —— (63)
mSs
where S is the area of the plate, L is the total length of the boundary, and

Cg is the group velocity for bending waves on the plate.

In Appendix II, the effect of the coupling of the flexural and tangential
waves on energy transmission is investigated analytically. In Appendix III,
the transmission of a flexural wave in an infinite plate with an integrally
attached half cylindrical shell is analyzed. The end results of Appendices
I through II1 are applied in Appendix IV where the energy transfers in various
structural systems are formulated. Specifically, Appendix IV of the report
shows the energy transfer mechanism in the two structural systems as previously
mentioned. The expressions of the average input power and the transmitted
power are formulated. It also shows generally the orthogonality relationships
for the average power expressions. In other words, the average power involved
in the forces of one mode of motion moving through the displacements of another

mode is zero.

For the two-plate system to be considered, as shown in Reference 4, the
junction absorption coefficient may be computed as the total absorbed power
averaged over all angles of incidence ¢1 (Figure I-1) and divided by the aver-
aged incident power. 1In the following, the expression of Y for the incoming
wave in the vertical plate is formulated and simplified. All the symbols used

are defined in Appendix I.
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Based on Equation (IV-7) of Appendix IV, the average input power per
unit width at an angle of incidence ¢1 is given by

(.UAD C1 01 c P,h

1 cosd>1 1l - —— + —
' w
2 Cy G1 1

(64)

The corresponding average transmitted power per unit width is given by

Equation (IV-32) as

h

2 Py (65)

d
il
N
»>
NS
(2]
o]
w
©
)

1f sin ¢2 = %ﬁi sin ¢1 > 1, the outgoing power vanishes.

By definition, the absorption coefficient Y may be expressed in the following

form
/2
- ]2 (66a)
P, do¢
2 1 9%
H o hoc. p1/2
272 7
= = I A2 < cos ¢, d¢1 (66b)
hlplhlcl -T/2
where
2
1 - giVI + 8y + )
By = [\/—-—2 Y (67)
1 + g4 + Si]
1 T vy 2 (68a)
= —_— $ - a
gy 7 % 7 K°)
s, = 1 (1 + EJ%XJ- Kz) (68b)
_ *2
o = A%y /6 (68¢)
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Substituting Equations (I-17c¢) - (I-17f) into Equation (66) yields

2 2 2
(1+g)° - 28, V1 +g(1+g" (1+g, _g2V1+g2)
Y= 2r
[( V1+g12+ s ( V1+g22+ sz)]% (1+g22) (1+312 - 8 V1+g12)
n/2
cos ¢1 cos ¢2 (69)
d ¢
- 2 1
-m/2 PN
where

Jl-#glz (\/T+ g22 "82) 72
+r

5 cos ¢2 (70)
1 +¢ 2 %
2 ( 1+g2 +SZ) ]
5 *
c
. =_1_2_* (71)
2 D2C1

In general, for a thin plate with thickness h = 0(0.2 em,) and the
interested frequency range f <20 K Hz, The values of ¢2, gz, 52 as de-
fined in Equation (68) are much smaller than unity. Under this condition,
Equations (69) and (70) may be simplified as follows:

Y = 2r (72)

(1-2g) (1-g,) f"/2 cosd, cos ¢, d ¢,
2

(L+sP@+s) (1-g)) _n/2 lal
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a, (1 + g,) a, (1 + g, (1 - 81)
|‘2|= 1 1 +r 2 2 + | ———— cos cbl
(1— 51) (1_52) 1+s1
L-s 2 (73)
+ r ————— cos¢2
l-i—s2
The expressions for &i and ¢, may be represented as
* 1 +
¢ ° 74
sin ¢ = 2 1 sin ¢ (74)
2 * 1 +s 1
“1 2

2
_ T s, cos ¢ 75
o, =Vl + sin2¢i 1 - i (75)

i 2
2(1 + sin ¢>i)

Two simple cases of Y of special interest to the present program are

described below. The plates are assumed of the same material.

1 2
y=2 A-290U -5s) [, , 1+a _, -1 va (76)
> ¢l+s) Vi ViTa
a=2¢/(l-s)
2. h1<<h2
Let b = hl/h2<K 1, then
. b3 (1 - 2bg2)(1 - gz) 1+ S, (77)

T
A
(l—bgz) ‘h+sz+b s, 1 + b32

After the absorption coefficient 1is obtained, the corresponding loss factor

data may be computed based on Equation (63).
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Flat Plate with an Integrally Attached Half Circular Cylindrical Shell

In the analytical work on the wave propagation between two perpendicular

plates (Appendix I), the junction line has been assumed to remain straight

and the coupling between flexural and extensional waves was ignored. Since
flexural and extensional waves are always coupled in the cylindrical shell
equations of motion, an analysis was performed where coupling between flex-
ural and extensional waves is taken into account. The results are given in
Appendix II. The formulation indicates that there is a range'of angles of
flexural wave incidence for which coupling effects are important. These results
also indicate that the proper boundary conditions should be used for the plate-

cylinder structural systems.

The detailed formulation of the wave propagation in an infinite plate to
which an infinite half circular cylindrical shell is integrally joined along
the diametrically opposite generators (Figure III-1) is given in Appendix III.
A harmonic flexural wave is assumed to be produced in the plate with the angle
of incidence ¢ which is scattered by the half cylindrical shell. For this
case, in order to simplify the problem, rotatory inertia and transverse shear
deformations are neglected in both the plate and the cylindrical shell. The
proper boundary conditions, in which the coupling between flexural and exten-

sional waves is taken into consideration, are used.

The expression of the average input power per unit width and the average
transmitted power in the half cylindrical shell are defined in Appendix IV,
by Equations (IV-4C) and (IV-34) respectively. Some analytical computation
based on the formulation of Appendices III and IV is given in the following

section dealing with experimental results.
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EXPERIMENTS ON VARIOUS STRUCTURAL SYSTEMS

In the current program, a combined experimental and analytical investi-
gation was performed on the random vibration and energy transfer in connec-
ted structures. In the following, the experimental results are described.
The description starts with the model fabrication and testing procedures.
The test data acquired from the different models are illustrated and com-

pared with the analytical results.

Model Fabrication and Testing Procedures

Three simply connected structural models and three separate components
were fabricated in the performance of this experimental investigation.
The specimens were fabricated from Gage 16 (.16 cm) and Gage 22 (.081 cm) Type
304 stainless steel plate stock. Electron beam welding techniques were
employed to fabricate the simply connected structures to minimize warping
of the specimens. The first model has an irregular shaped vertical plate
welded to a rectangular base plate. The second model has a half cylindri-
cal shell welded lengthwise to the base plate along the longitudinal bound-
aries of the shell. The third model consists of welding an open-end circu—
lar cylindrical shell to the base plate. All three models were supported at
the corners of the l6-gage rectangular base plate. The three components
fabricated were duplicates of the model No. 1 vertical plate, Model No. 2
half cylindrical shell, and a base plate which was common to all three
models. The three models are illustrated in Figure 3 and photographs of
the models are shown in Figures 4 - 6. Also shown in Figure 4 is a typical
deformation pattern (center frequency 2668 Hz, half wave length 1.5 inches)
yielded by the visualization technique through the use of lightweight poly-
vinyl chloride particles.

For each of the simply connected structural models and the components,

the following test procedure was employed. A Goodman 390A shaker was attached
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STEEL PLATE THICKNESS
-079 CM (.031°) OR LESS

157 CM (.062"}

STEEL PLATE SEAM WELD OR

SILVER BRAZE

FOUR SUPPORT POINTS
1.27 CM ({.50°) FROM EDGE
IN BOTH DIRECTIONS

12.70 CM g

(5)

12.70 CM
‘5!')

12192 CM
(487)

(a) MODEL NO.1
DIMENSIONS ARE TYPICAL FOR ALL THREE MODELS

HALF CYLINDRICAL SHELL
THICKNESS .079 CM (.0317)

OR LESS .187 CM {.062")

STEEL PLATE

SEAM WELD OR SILVER BRAZE ALONG
TWO LONGITUDINAL LINES OF SHELL

(b) MODEL NO. 2 °

T

STEEL CYLINDRICAL SHELL
THICKNESS .079 CM (.031")
OR LESS

.157 CM (.0627)
STEEL PLATE

SEAM WELD OR
SILVER BRAZE

(¢) MODEL NO. 3 ALONG BASE CIRCLE

FIGURE 3 SKETCHES OF TEST MODELS
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FIGURE 4 TEST MODEL NO, 1 AND THE TYPICAL DEFORMATION
PATTERN OF THE BASE PLATE WITH CENTER FREQUENCY
f = 2668 Hz, HALF WAVE LENGTH = 3.8 cm.
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FIGURE 5 TEST MODEL NO. 2

FIGURE 6 TEST MODEL NO. 3
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through a Kisstler 931A force transducer to a selected point on the model.
Endevco Model 2222B accelerometers were then ceﬁented to the surfaces of
the test specimen at selected locations. The specimen was then excited in
1/3 octave bands ranging in center frequency from 250 Hz to 16K Hz. During
random excitation in each 1/3 octave band, the rms response acceleration was
recorded for selected locations on the specimen surface(s). In addition,
power spectral density plots of input and response functions were recorded.
This was conducted using a spectral dynamics Model 30lc real time analyzer.
A SD 302c ensemble averager was used in conjunction with the 30lc to pro-
vide a time-averaged value of power spectral density. The time-averaged
value of power spectral density were used in evaluating the modal density
of the specimen. In averaging, the discrete frequency components of the
response function are enhanced while purely random components diminish.
Resolution of data in the frequency domain was obtained by the use of a

SD 107 low frequency translator. The translator provided a means of analyz-

ing a narrow band of data at any frequency.

After completion of tests to determine the response ratios and the
modal density under narrow band random excitation, each specimen was sub-
jected to sinusoidal input of constant force. The force level was main-
tained by a SD 105 servo amplitude controller. A very stable SD 104-5
oscillator was used as a function generator and a Hewlett Packard Model
5323A electronic counter provided an accurate means of frequency readout.
The counter displays the frequency to seven place accuracy in .4 sec.

At the major modes of frequency response on the structure being excited,
the 3 db bandwidth was obtained as a measure of damping. Several criteria

were established for the selection of frequencies where damping was measured:

1. The frequencies represented major modes of the surface being

excited.
2. VNo other modes existed close to the selected frequency.

3. The 3 db down points were nearly equally spaced about the

selected natural frequency.
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A block diagram of the typical instrumentation {s shown in Figure 7.
For tests of the three simply connected structural models and the base
plate, the specimens were supported at the four corners of the rectangular
base plate. The supporting structure was non-resonant up to 2kc. However,
some motion was detected at the attachment above this frequency. Between
2kc and 6kc the amplitude of the attached corners was less than one tenth
the input level. At frequencies above 6kc, corner motion reached unity
with respect to the input excitation level. The overall effect of cormer
motion at high frequencies was not examined. However, it is expected that
the high damping values measured above 6kc were in part attributed to the

attachment.

The vertical plate and the half cylindrical shell components were
tested separately by suspending them from light strings. No problems

related to the means of suspension were detected.

In each test condition the shaker was in turn, attached through a
.635 cm (.25 inch) diameter hole to each surface of the specimens.
Models No. 1, No. 2, and No. 3 were first excited at the base plate with
response ratios, spectral density measurements and damping ratios determined.
The shaker was then suspended by shock cord and attached to the vertical
plate, cylindrical half-shell, and open-end cylindrical shell, respectively,

and a similar set of tests were repeated.

Test Data of Model No. 1

The first model (Figure 3a) has an irregularly shaped vertical plate
welded to the base plate. The general configuration is similar to the
model tested by Lyon and Eichler (Reference 4) except that the plate

thicknesses are reduced.

The measured values for loss factors (= 2c/cr) were ave;aged within
each 1/3 octave frequency band. The apparent loss factor " b of the top
plate, measured at the top plate of the two-plate system when the top plate
is excited, is plotted in Figure 8 vs. 1/3 octave band center frequency.
Also plotted in the figure is the dissipative loss factor N, of the top

plate component. Similarly, Figure 9 shows the plots of the apparent loss
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FORCE LINK
KISSTLER 931A

ELASTIC
SUPPORT

VIBRATION
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3904
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FIGURE 7  INSTRUMENTATION BLOCK DIAGRAM FOR MEASURING

STEADY-STATE RESPONSE
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a
factor n N of the base plate for the two-plate system and the dissipative
loss factor Ny of the base plate component. For most cases, the apparent

loss factors are greater than the corresponding component loss factor.

This is as it should be, as indicated by Equation (52) previously. The

few data points which do not satisfy the above condition are considered
unreliable and are rejected. For the steady-state response measurements
the specimen was excited with 1/3 octave frequency band random force,

and the rms response acceleration was recorded at selected locations on

the specimen surfaces. Typical input PSD plot with center freduency at

630 Hz is shown in Figure 10, while the corresponding response is shown

in Figure 1l1. The ratios of the measured mean square values of average re-
sponse <:Vt2:>/< Vb2>, when the base plate was excited were plotted in Fig-
ure 12 vs. center frequency of excitation (broken line). Also plotted in the

figure are two sets of estimated response ratio data based on:

1. Strong coupling assumption: using Equation (53) and measured

a
loss factors n bt? "b? N¢f

9 a
n,._o-
Ve > My Mpe -y (78)
< V2> M Ne
2. Weak coupling assumption: using equations (50), (56), and
a
measured loss factors n , n, :
tb™ 't
<V 2 2
t > _ Mb Nt "eb T e (79)
2 M N a
< >
Vb t b "eb

2
>

\)
< > _ Mb t
2 M
<V > t b
was plotted. This line serves as an upper bound of the actual <in2:>/<:Vb

ratio for the weak coupling case in view of Equation (79). It may also be

stated that the line represents a condition where the average modal energies
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in the directly excited substructure and the indirectly excited substructure
become equal. This condition makes it necessary that 84 has to approach
infinity in order for SEA to be applicable (see Equation(39)). Referring
to Figure 12, the data seem to indicate that for the major portion of the
frequency range, the computed response ratios based on the measured damp-
ing factors of a weak coupling case are more close to the actual measured
ratio, while the computed ratios based on the strong coupling case are
higher except in the low frequency end. The difference in the computed
ratio data is believed due to the fact that the lower thicknesé of the

top plate yields a low N, which gives rise to a high <:Vt2>-/<:Vb2>> ratio
based on Equation (78). As will be shown later, the trend is reversed
(i.e., strong coupling equation gives better fit), when the top plate is
excited. Our conclusion is that in this case, the top plate is virtually
cantilevered, the measured mean value <:Vt2>> is sensitive to the locations
where the measurements are made. In the high frequency end (e.g., 16,000
Hz), the large deviation in the measured and computed results indicates

the uncertainty in damping measurements based on which data Equations (78),

(79) are applied.

When the top plate was excited, the estimated response ratio

<V 2>»/<:Vt2:> may be obtained by using Equation (53) with the measured

1025 factors nib, Ny, and Nee In addition, instead of using measured

values of (nib - nt), it may be evaluated analytically through the use of
Equation (63) and the absorption coefficient Y. For the test model con-
sidered, the values of Y may be computed based on Equation (77). The results
of Y/Y, are plotted vs. one third octave band center frequency in Figure 13.
As shown in the figure, the straight line result is based on the Kirchhoff
plate theory and the curved line is based on the Mindlin theory., Similar

to Figure 12, Figure 14 shows the measured and computed values of the

response ratio <V 2:>/<<Vt2:> when the top plate was excited. The dotted

line represents thz response ratios computed based on the theoretical
absorption coefficient Y as given in Figure 13. The computed response
ratios based on Equations (78), (79) are also plotted in Figurel4., 1In
this case, Equation (78), based on the strong coupling assumption, yields

data which are closer to the measured response ratio data.
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In order to evaluate the average mode-~to-mode power flow coefficient
g using Equations (47) and (50), the modal density is an important physical

parameter. The modal density of a plate is given as:

2
n, () = V3 (1 -v9 Ap/Cphp (80)
where Ap is the area of the plate, hp the plate thickness, v the Poisson's
ratio, and CP the longitudinal wave speed of the plate material. Equation
(80) gives np (f) = .232 mode/Hz for the base plate and nc(f) = 0.1605
mode/Hz for the vertical plate. The analytical modal density data may be
compared with the PSD peak count data in a high resolution PSD plots such
as those generated by the real time analyzer. Typical PSD plot of the
vertical plate component covering the frequency range (580-680 Hz) 1is

shown in Figure 15. The mode count yields 15 modes in 100 Hz band at the
center frequency of 630 Hz, which compares well with the modal density

data quoted above,.

It has been shown previously (Inequality (61)) that in order for the
SEA method to be applicable in a connected structure, it is required that
the two-way average power flow coefficients between the mode sets be equal
and positive. This condition is now examined based on the measured and

computed response ratio data. The values of the average mode-to-mode power

flow coefficients g may be obtained as follows:

1, Ebt —- using Equation (59) with measured data of response ratio

< Vt2> /<;Vb2>, when the base plate was excited, and nee

2. 8¢, —— using Equation (59) with measured data of response
ratio <<Vb2>>ﬁ<vt2:> when top plate was excited, and Ny

-t

3. 8t using Equations (60) and (62) with the measured loss
factors Mes Ny and ngt or using Equation (59) with computed

data of response ratio <:Vt2?>/<:Vb2:> as shown in Figure 12,

géb -- using Equations (60) and (62) with measured loss factors
Nes Npo and nib or using Equation (59) with computed data of

<Vb2>>/<IVt2>> as shown in Figure 14,
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— -_— -1
The results of B and 8.p are plotted in Efgure 16 while Bt and By
are plotted in Figure 17. As described above, bt is computed based on
—1
Equations (60) and (62). Referring to Equation (62), n. and g, are negative

if the numerator on the right side of (62) is positive and the denominator is
p—

negative. In other words, 8y, LS negative (and thus unacceptable in the

physical sense) if the following is true:

Nb a
n - -
. N (nbt ﬂb)< 0 ‘ (81)

For the two-plate system, it was found that in the frequency range (630-
—1
1600 Hz), condition (81) is true. As a result, it data are not shown in

Figure 16 corresponding to this frequency range.

Test Data of Model No. 2

The second model has a half cylindrical shell welded lengthwise to the
base plate along the longitudinal boundaries of the shell (Figure 3b). The
average values of the apparent loss factor ”2b of the half shell of model
Number 2, as well as the dissipative loss factor N of the half shell com-
ponent, are plotted in Figure 18. (Note that Figure 18 also includes one

apnarent loss factor plot for model No. 3, to be discussed later in the
a

b of the base
c

report.) The average values of the apparent loss factor n

plate of model No. 2 are plotted in Figure 19,

The response ratio plots for model No. 2 are given in Figures 20 and
21. Figure 20 shows the values of <:ch>>/<:vb2;> when the base plate
was excited. Also plotted in the figure are the computed data based on
Equation (53) and the measured loss factor data. The response ratio
plots <:Vb2:>/<'Vc2;> when the top shell was excited are given in Figure

21, where one curve corresponds to the measured data, and the other curve

corresponds to the computed data based on Equation (53).

The analytical expressions of the average input power per unit width
in the plate and the average transmitted power in the half cylindrical shell

are defined in Appendix IV by Equations (IV-4c) and (IV-34) respectively,
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Work was carried out to calculate the ratio of the average transmitted power
to the average input power. For this computation, use was made of Equations
(I11-9) to (III-13), (II1-20), and (III-21), corresponding to various input
bending wave frequencies and angles of incidence for Model No. 2. The re-
sults indicate a rather erratic variation of the average power based on
strain energy rate in the shell with small values for some angles of inci-
dence interspersed by very large peaks. The behavior is attributed to
resonance effects in the cylindrical shell, most likely to the interaction
of flexural and extensional waves. Because of the excessive oscillation

of the power ratio as a function of the incidence angle, our conclusion is
that it is impractical to compute the energy transfer coefficient of this

model using the present analytical formulation.

The modal density of the half cylindrical shell is given in Reference

35 as:
%1 de
n (D) = n (D) —Tf—f ; (82)
o Vh - (fr/f) sin™6
where
np(f) = modal density of an equivalent plate, Equation (80)
1 E
= - 83
fr 21R p (83)
R = radius of the cylindrical shell
m/2 f>f
r
e =
1
1

sin \/f/f;‘ f<f

r

The ratio nc/np based on Equation (82) is shown as the solid line in Figure 22.
The modal density function has a singularity at frequency fr' As an alternate

approach the total number of modes below a frequency f is

6
M (f) = np (£) ¢ % '/; L {1 - (fr/f)z sinae de (84)
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The average modal density ;c (fo) over a frequency bandwidth of A f with

center frequency fo may be obtained as follows:

_ M(E + % Af) - M(E - %4f)
n (f) = (85)
[ [e] Af

A computer program was prepared to compute the values of ;c(fo)/np(fo) for
each 1/3 octave frequency band from fo = 250 Hz to fo = 16K Hz. The result

is plotted in Figure 22 by the dotted lines. For the half cylindrical shell
of model No. 2, fr is equal to 3120 Hz. Based on the values of ;C(f), the
upper limit lines for the response ratios similar to the limit line of

Figure 12 are drawn in Figures 20 and 21. The limiting line corresponds to
<VC2>>/<ij2:> = Mch/Mch in Figure 20 and corresponds to <iVb2>’/< Vc2;> =
Mch/Mch in Figure 21. The average mode-to-mode power flow coefficients

for model No, 2 are plotted in Figures 23 and 24. Similar to the two-plate

system (Figures 16 and 17), the values of gbc, gc are computed based on

b
the measured ratios and the dissipative loss factors using Equation (59).

—1
The values of Bhe and B.p are computed based on the measured apparent and

dissipative loss factors using Equations (60) and (62).

Test Data of Model No. 3

The third model features an open-end circular cylindrical shell welded
to the base plate (Figure 3c¢). The average values of the apparent loss
factor nib of the cylindrical shell of the model were measured and plotted
in Figure 18. Since no individual cylindrical shell component was fabri-
cated, the values of dissipative loss factor Ne of the half cylindrical

component of model No. 2 (with the same thickness) were used in the compu-
a

tation. The average values of the apparent loss factor "be

of the base
plate of the model are plotted in Figure 19,

The response ratio plots of the model are given in Figures 25 and 26.

Figure 25 shows the measured and computed values of < Vc2:>/< Vb2

the base plate was excited. The plots of <:Vb2>»/< Vc2> when the cylindri-

> when

cal shell was excited are illustrated in Figure 26.
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For a finite cylindrical shell of length l, Reference 55 gives the

total number of natural frequencies below a given frequency f. The formula is:

f
n (f) — {(ZU = 1) [ T+ sin_1 (2u- 1)] + U - u2
P i 2 2 - /£
u /f,
MH = for f<fr
np (£) £ for f;zfr (86)

where fr is the reference frequency as defined by Equation (83), and n (f)
is the modal density of a flat plate with the area WR[ (half the e¢ylindrical
surface). The average modal density ;c (fo) over a frequency bandwidth Af
with center frequency of f0 may be obtained using Equation (85). With the
modal density data, the upper limits of the response ratios for the sub-
structures of model No. 3 are determined. These limits are plotted in
Figures 25, 26. As shown in Figure 25, both the measured and computed
response ratio data surpassed the upper limit curve for frequencies under
2000 Hz. This fact can be interpreted by the observation that the inter-—
face between the plate and the cylindrical shell forms a boundary which has
a dominating effect on the low frequency motions of the based plate. As

a result, the SEA formulation in its present form is not applicable to the

structural configuration in the low frequency region.
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CONCLUS IONS

In this report, the basic foundation and assumptions of the SEA method
were studied in detail. A new formulation based on the strong coupling case
has been generated and presented. As far as the power flow coefficient was
concerned, the previous formulation based on the weak coupling case could
be considered as a special case of the strong coupling case. On the other
hand, in determining the kinetic energy transfer between connected sub-
structures, the presentation of the coupling loss factors and the defini-
tion of the apparent loss factors of a connected substructure were differ-
ent between the weak and strong coupling cases. This deviation in turn
caused a difference in the predicted substructure response ratios based

on the experimental loss factors.

In an effort to determine the power flow coefficients between two
typical connected substructures, three simple models were made which
included a two plate system, a plate and a half cylindrical shell system,
and a plate and an end-connected cylindrical shell system. For the two
plate system, the analysis was carried out to completion. The response
ratio prediction based on the analytical formulation indicated that through
the frequency range of interest, the analytical method was correct to
within the order of magnitude of the mean square response ratios (see
for instance, Figure 14), 1In evaluating the deviation between the
experimental and analytical results, our conclusion is that part of
the deviation was due to the limitation and arbitrary assumptions made
in the Statistical Energy Analysis method. On the other hand, the measure-
ment of the experimental responses was based on the averaging of the response
data at a number of randomly chosen locations. Since the motion was not per-
fected diffused, the experimental response data was dependent on the random
locations selected. The existence of a partially diffused wave motion was con-
sidered a contributing factor to the deviation between the experimental

and analytical results. Our experience on the SEA method is that even

63



though the basic guidelines as developed in the report are satisfied, the
predicted mean square values are usually only accurate to within the order

of magnitude of the experimental results.

For the plate and half cylindrical shell system, analytical formulation
was carried out to define wave motions at various regions of the connected
substructures. In the process, a set of definitive expressions was developed
for the wave motions considering the interface. Based on the wave motion
equations and the response formulation of Appendices III and IV, selected
computation was carried out on the ratio of power input to the‘cylindrical
shell at various frequencies and angles of incidence. Because of the exces—
sive variation of the power ratio as a function of the incidence angle, it
has been found impractical to compute the energy transfer coefficient using
the present analytical formulation. On the other hand, for this model, the
computed response ratios based on the substructure loss factors and the
apparent loss factors compared favorably with the measured response ratio
data (Figures 20, 21). As far as the average power flow coefficients were
concerned, the variations between the experimental data and the computed
data again covered a band whose maximum at any one frequency might differ

from the minimum value by one order of magnitude.

The third model consisted of a flat plate and a complete cylindrical
shell with one end welded to the flat plate. For this structure, because
of the strong interaction of the interface, it was found that the SEA
method was not capable of reaching any intelligent prediction of the
coupling loss factors, and the energy transfer coefficients. This fact
was also confirmed by the guidelines which indicated that the SEA method

in its present form was not applicable to the model under consideration.

In exploring the application of the SEA method, certain limitations were
encountered. In general, for a connected structure it is not uncommon that
the predicted mean square response data and the power flow data differed from
the corresponding experimental data by one order of magnitude. For this
reason, the SEA method seemed at best to serve the purpose of trend predic-~
tion when the guidelines were carried out and presented in this report.

These derivations 1llustrated the vibrational energy transfer mechanisms

between the specific substructures under consideration.
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APPENDIX I

FLEXURAL WAVE PROPAGATION IN A TWO PLATE SYSTEM
CONSIDERING ROTATORY INERTIA AND TRANSVERSE SHEAR

Mindlin (Reference 50) deduced a two-dimensional theory of flexural

motions of isotropic, elastic plate from the three-dimensional equation of

elasticity. The theory includes the effects of rotatory inertia and trans-

verse shear in the same manner as Timoshenko's one~-dimensional theory of

bars. For this case, the three equations of motion may be expressed in

terms of the plate-displacements as follows:

Ry
> ? 20 ] Lagy fy. + 2w} gh® Z 'x
P [(l -v) V wx + (1 + v) ] ®3Gh (?x + ax> =5 =
2 h3 BBW
D [ (1 - vV gy +(L+v) 90 | - w3gh (Vy * ow) = pn” 'y
2 y dy dy/ 12 32

2
x2Gh (7" = on 2.
vV w+ Q) ph St

where

+ —

3x> Bya

w
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" = a constant involving Poisson's ratio (see Reference 50)
G = shear modulus (l~E——— )

- 2(1+v)

B

D = plate bending modulus <}2(1-v3)
v = Poisson's ratio
h = plate thickness
p = density of the plate
w = transverse displacement of the plate
Uy s ¢y = changes of slope
0 A

Toax 3y (1-4)
G = n* G

The relations between the plate-stress and plate displacement components

are

: <§l+v—z>
Y
(s,
LZXD(S_iz+a_i§) (1-5)
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A single differential equation for w may be obtained by eliminating ¥y
and wy from equations (I-1) through (I-3) to yield

2 3 2 2
(vz-_;La_)(Dva_&a_waha_x:o (1-6)
3G 3t 12 t° at®

Consider a semi-infinite Plate No. 1 cantilevered to an infinite Plate

No. 2 as shown in Figure I-l.

Outgoing Wave
Direction
zZ,w

PLATE NO. 2

FIGURE I-1 A TWO-PLATE SYSTEM
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Let the incoming wave (see Figure I-1) in Plate No. 1 be of the form

y sin @, + X cos @,
iwft - -
Vi = ( Cw ) (x = 0) (1-72)
where, from equation (I-6), the wave speed c,, is given by
1 ~ PL 1 . l-\)lz :t\/( 1 ]_-\)lzi 48(1-\)13) 1/2
Cun 2 Gy E G'y E; ) p1E1h12w2 (I-7b)

Assoctated with the normal displacements are the rotation angles Yeis and‘llyi]

given by equations (I-1) and (I-3) as
y sin @, + x cos @,

. 1 iwyt-
q"xi\ = twe, ( c 3 ° (F;—i_' ) cos 0, e\ Con ) (1-8a)
wr
. y sin @& + x cos ¢,
o 1 [ in o t - e (1-8b)
Wyil = lwey, [—5 - o sin @, e w
Cwr 1
1f
t
WP < 122 Gy (1-9)
h* p

Equation (I-7b) yields only one real wave speed, the value when the plus sign is
used. In what follows, the range of w will be assumed to be gbverned by

equation (I-9). Then the outgoing flexural waves in Plate 1 can be represented by

. iw x cos @ y sin 0,
w = A C -+ B woy X iw (t - ———— \ (I—].Oa)
o 1 € wL 1 € e S /
. X cos 0
_ . 1 o3} fw =27 71
Ve = 7 @ Loy, cos O 7 _T) A e Cun
Cw1 G,
A /Gl ' ' i
w X y sin @
T L + B, ’M* . gin 0, C e % QLW - !
o - 51n2®] Sy
c 2
w1
(I-10b)
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. 1 Py X cos 0,
‘i’yOI =tlwec  sing - — A fw——r70

wl
1)
“w G
/Gy ! WYy X 'x
+ L 1 + ___p.l__l._._z_ B, e - o' C e %
2 2 sin
S o ————SL
S
in O ‘
i e 250 (1-10¢)
e
CUJ],I

where from equations (I-1) to (I-3) and (I-6)

1- 2 2 A iy 2
o = 221— (1L + sin® 9,) —1— - he! + ——————8(1 \); 2)
Gy ! E, pE h "W

1/2
- —l— + L-v cos® 0,
G, E,
(1-104d)
2 1/2

o = sin® O, ) o 12 »n

: c @ G o®h,?
wi 1 2 (1-10e)

Note that the terms multiplied by C, are the so-called thickness—shear mode

and are associated with a state of zero normal displacement. In the range of

frequencies considered here only one outgoing wave is harmonic while the other

two are of the Rayleigh type with an exponential decrease in amplitude as the

distance from the joint increases. Similarly for Plate 2 the outgoing waves

are given by

. z cos @, ) ( y sin 0, (1-11a)
+ iy —_— = - i -
Uz = Ay e e Sz + Bp+ e woez e w\ Cwa2
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22

Z Ccos

. ' 1 Po + ~Lw T¢
w[lcw2 cos 0, (c 2_G') B N
. 2

/G5! - |
+ 1 + — P2 /2 }32‘" e W2z 4 sinaoz C2+ e ‘
022 Sinaog
c 2
w2
iw ( t - ysind, ) (i)
Cun
Z cos
1Jf+_1c a1 1 P2 A, el cg
ye T 1y Sin & 2 Gy i ”
Cup Gz
. sin@,
+ 1 <l + apz 2 Byt e Wz 4 o 1c, eV 2 G
—
- 2 % sin® @, ;
- -
2
Cue
(I-11c)
for z > o and
ysin(Z)z
] ) ZCOS - ' i ]
R N P TR A Ry ¢ o
- ur
’ l zcos@,
- - iw
\vzz _ ‘e cos @2 <__2 - &;) Ag e Cuﬁ
) c C2
we
ysing,
%/Gzl - UJ Z ‘ iw t_
+te [Ll+ 2 _ sin®0 Bzecé-smz@ece S I e
o 2
c 2
ue
(I-12b)
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1 o zcos@,
- 2 - lg——
wyz = iwc  sin@, ( = - ———) A, e e
c G, !
we 2
sin
/G, ! - Wz - wop'z iw c-_y_____az_
+ 1 1+—L-?——— By e -’ Gy e e s
cm3 a? sin®Q,
CU-EB
(I-12¢)
for z < o. Here
sin O sin O
2. : (1-13)
Cuwe Cun
and, with w restricted also to the range
G t
R <12 72 (1-14)
haa P2
1/2
2 _u.2\2 48(1-v,2)
1 Pa 1 L-vy 1 1-v,
g— = —2‘ E'—' + E2 + \/<(-;—I— - ) 2 2 (I—lSa)
uL 2 2 E; P Eabp®w
e = > 1 + sin 02) _ - + p—
Gy E PaEph W
1/2
1 L-v;
- = 4 cos? 05 (1-15b)
Gy ' Eg
sin? 12 »° 2
o' = [ L % e 120 (1-15¢)
CU.QQ GE wahea
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The nine constants of integration are determined in the present problem

by the following conditions:

_ - (I-16a)
e
" . (I-16b)
v =V
ye ye
+ - (1-16c)
u = U =w =20
2 2 1
+ B, (1-164d)
Myza = Myzg
(I-16e)
byp = O
. . (I-16f)
Mm 'Mm 'me =0

along x = z = 0. With the use of equations (I-5) and (I-16), equations (I-16d)

and (I-16f) may also be written as

awye . awya (I-16d)!
Az oz
+ -
3
Dy Ve - ¥z + D, _YEL =0 (I-16f)1
az dz ax

The quantities W wx‘, and wy‘ are the sum of the incoming and outgoing
waves in Plate 1. The first of equations (I-16a) and equation (I-16b) state

that Plate 2 is continuous so that lines along the y-axis originally perpendicular
to the middle surface rotate the same amount. The first of equations (I-16c¢)

and equation (I-16d) state that Plate 2 is supported along the y-axis in such a
way that the normal deflection vanishes and the twisting moment is continuous.

The remaining conditions imply that Plate 1 hypothetically extends to the

middle surface of Plate 2 where it is fastened along the y-axis in such a way

that a line originally normal to the middle surface has the same rotation in

the x-z plane as a normal line in Plate 2 and remains in that plane.
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Substitution of equations (I-7a), (I-8), (I-10), (I-l1), and (1I-12) in equations
(I-16) yields the following relations for the constants of integration
(I-17a)

Ay -(1 + B;)

o 3 + COSa @1
c, = - P b TCun® B, (1-17b)
Gl' a],‘ 2 Sin2 @1
[
c ]
w1
cos® 0,
+ - + - D ala * c 3
A, =-4A, =-B, =B, = 1 w1 B, (1-17¢)
2 D 2 CO§ 02
2
% F]
Cup
cos® O
o\ o+ ——
LA By Cu, ? (1-174)
C, =C =2 — 5 B,
2G," &' D _a _ sin® &
et -
c @
we
= 2i 1 k1 cos @
B, = 2ije 5 - A 1 (1-17e)
c Gy
wl
2 005301
A c .2 3
a (o - w sin® @, . cos 0,
G,' o 1 D L
A = oy + 2 . 2 2 + 3 o
a, - sin’ @,/c, Dy o,2 + 005 %
c 2
we
3
0,3 cos? g,
.
—_—
_%__ 02 - Cu‘E S]'.l'l3 @2
Gy '
0.1 + (o 7]
a3 - sin’® @,/ch,
cos® 0,
1 %] D 1 t o 1
- i <_.___£ - ——) C,y COS 0+ 1 cw; > . P C,p COS @
! c
‘n & 2 o +_3522 Cee Gz '
c
ue
(1-17f)
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If the effects of the transverse shear deformation and rotatory inertia are

omitted, Equation (I-17c¢) will be reduced to

+ _ .
A" = -BT = -2i(k; r/ky) cos @, {i cos 0, - /1 + sin® @
. . 2 -1
+ r[i cos @ - /1 + sin 2, 7}

where ki = uJ/Cmi
ro= B Cue (1-17g)
2D2 Cun

Equation (I-17g), a special case of equation (I-17c), is identical to the

result obtained by Lyon and Eichler in Reference 4.

If the incoming wave is in, say, the z>0 side of Plate 2, the analysis

is modified by adding the incoming wave solution

. e /t ) y sin @, - z cos @2) (1-18a)
u: = e
12 \ Cup
) ) . y sin @, - z cos @,
T 1 -
Vaip = - lw e (___2 L cos 0, e w € (I-18b)
\ “uz Gz !
y sin @, - z cos 0,
. _ I
b T= dwe 2 P VYsinoe, e“"(t < (1-18¢)
Yiz we 2 \ we
i Gy

to the outgoing wave solutions for the z >0 side of Plate 2 and deleting the

incoming wave solution for Plate 1. Satisfaction of the boundary conditions

then yields the following values of the integration constants:
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>
o
I
)
&
1}
|~
-
[e]
5
TN
o
—
N
]

NE ‘Xi’
N——
[g]

o]

/]
>
+
&
—
—

1
é\ [¢/]

-
- :N
el $
5
T
|

uR
/Gy !
] . el - (1-19a)
aza sin&
c 3
COS3 01 +
c a° A
S N VA (1-19b)
PG w") w? 4 cos® @ Dy /(zbz)
2
Cue
B. ) * (1-19¢)
2 = - A2 = Ag - 1
+ +
By = - (1L +A;) (I-19d)
COS2 @1
2
- N S e TG
C," — . Tr e b sin® @
2 ' G, ' > .2 2
e~} 2 %2 - - 2_ ('0.2 022 - a_
C'(‘Ue Cma
(1I-19e)

1
If ' exceeds the value }113(; in a plate, the wave speed c, given by
p

(D) (2)

Equation (I-7b) has two real solutions, say ¢, and c . In addition, a

(3)

real wave speed c can be associated with the thickness-shear mode. Then

the outgoing waves can be represented by

2 . y sin @(j)- Xcos (D(j)
w. = & A W |t - (1-20a)

o . j j)
J:l J Cw
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2
. (i (1) 1
= - iwX c cos O — - 2
¥xo =1 w e (1) G')

P (1)
iw t . Y _Sin 1) (.3 X cos O
Aj e cw J
(3) (3)
y sin @ - x cos @ 20b)
. _ I.
+ Aasin ¢(3)e1(.l) t (3) (
(o]
w
_ lw; c (3 sin Q(j) ——l“ﬁ? - B
wyo J=1 w Cw(J) G!
( (j
y Sin @ - X Cos @
A, et ) ]
j Cw Bi
y Sin ®(3) - X cos 0(3)
R (1-20¢)
+ Ay cos @ e (3)
Cy
with
sin 81 _ sin 0% _ sin 9P (1-21a)
. 1
Cw( ) cw(Z) Cw(3)
1
c (L) 1/2
w 2 / 1 LR )2 48(1-V#)
- p 1,1V 4 R i + — I-.21b
: [Gl+———_E \/(Gv E thB wz ( )
1
¢ (2)
w
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1212 (1-21c)
h® yf

1 =
c (3)
w

:1'

Thus, different coefficient relations must be determined from the range

12G' « @ < 126" (I-22a)
bo hp p by ®
and for
12 G, !
o > == (1-22bY
Olhl

In the range of frequency value given by equation (I-22a) the waves in Plate 1
have exponential decay and harmonic space variations while in Plate 2 the space
variation is harmonic only. When the frequency is governed by Equation (I-22b)

both plates have only waves with harmonic space variations.
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APPENDIX TII

EFFECT OF FLEXURAL AND TANGENTIAL
WAVE COUPLING ON THE TRANSFER FUNCTION

In this study the effects of rotatory inertia and transverse deformation
are neglected to better isolate the effects of flexural and tangential wave
coupling. Consider a plate, the middle surface of which is the x-y plane.

The pertinent equations of motion and force-strain relations are given by

9w

DV*w + ph 7 0 (11-1a)
g)%‘;. + 1_;‘: g;g_ Ll-v;)p g:tzx + %} ai::Fvs_r - o (11-1b)
no= (-g% + va—;) (11-1d)
N, = =, (a—;- + v-a%) (11-le)
M = 'D( g'%] * ”%?') (11-1g)
M, = —D( g% + y%'{) ‘ (1I-1h)
M = —D(l-v) 2% (11-11)
Xy 9 x0y
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o = Dz (vw)

(]

0y -D 5%— (vzw)

The effective transverse shear forces are given by

. = Q¢

T oMy

Y 7

My
5y

9x

-D

=D

8 | 2w . 2w
ox ox? + (2-v) ay2]

-

- .
o [ , (. 2% ]
oy | ay? (2-v) 9x?

The positive force and deformation directions are shown below,

ey Y

Y,
Q,

___ e e T —
o, 7

Qx !’/
Z,W ‘
A /l W
~
Nx <] Qy - >
y 3 d //////////
/’ /‘__ - s 5 x,u
N
N (a) Positive Force and Deformation Directions
M
b4
M ‘
g::);?L/’ ,ﬁZi/
M
/////xy &
X
/ / M
\\** My (b) Positive Moment Directions
FIGURE II-1 POSITIVE FORCE AND DEFORMATION

DIRECTIONS OF A PLATE ELEMENT
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An incoming flexural wave can be expressed

1wt - y sing - x cos¢
e c

i
1 ‘ Ph
where —_— = —
c \ Dw
Outgoing flexural waves are given by
X cos9 _ x
w = (A e—lw c + Ae_wa c
o
with o = ‘/ 1+sin2¢

Outgoing tangential waves can be written as

as

= sin
uo = (B e AWX + B e—wa) eiw (t - )
i - X - 5 jw(t - Ysing
v = i(w g Srwx . Ae Be—)\wx)elw(t 1
o AcC sing
with A _\/( sin @ ) (1-v®dp
c E
< . [sin®\? _ p
22 4
Z,W
A
/ ate 1 AN
o
* By
- N/, plate 2
-« |
27. 1.7 —% 29
>x,u
FIGURE 1II-2 INTEGRALLY JOINED PERPENDICULAR PLATES
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Consider now an imcoming flexural wave in Plate 1 of the form

_ joft - X sin®y -z cos®,
u,; = e <y (I1-5a)
Outgoing wave displacements in Plate 1l are
_ -iw 25038 - -wa,—zw) iw (t - L—leno)
U, = A e q + Aye ¢ /e Cj (I1-5b)
v = (sinol/c] B, oMWz A 3 e-i' w z) ei-w(t- Y*Scli?l)
lo Ay ! sing,/c, ! L
(1I-5¢)
AWZ - “hwz iw(t-yim'-)
Vie = B, eV + B, e e C (11-5d)

For the x>0 and x<o sides of Plate 2, the outgoing displacements are

given by
- . Y sin @2
+ = - - iwlt-
u-: = (B2 e r2wX B;-e Asz)e ( C2 ) (II-6a)
v+ i( sin @2 /c; Bt A, wX A, 3+ e-izwx w(t- Lcs—li?'ﬁ)
Az sin@,/c; 2 2
(II-6b)
- wxm — - X y sing,
W;- = (A-; e 1 C2 + A;'e waz elw(t s ) (II—GC)
and
- Y . _ysing
u = (Bz e M 4 B, exzwx) elw(t __C;_z) (11-72)
- in®2/c - A Az == AwX)\ . sin9®;
-1(5____2. WX N 2 t- Y 2
v; e By e * Siede B e elw( = )
. o (1I-7b)
- . CO0S 02 x S1n @;
- fx 2322 o, X ) jwft- L22R2
Y2 T (A’ € c2 t oAy e g )e ( C2 ) (1I-7¢)
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with

sing, _ sing, (11-8)
< C2

c
Note that if f— sin @,> 1, there are two Rayleigh waves rather than one

1
plane wave and one Rayleigh wave.

At the joint the displacements and rotations must be continuous. Then

at x=2z2=20

u; = uf = uj (11-9a,b)
v, = vi= v; . (11-9c, d)
w = W-; = w, (I1-9e,f)
+ -
- 9w _ Qw2 _ 9wy -
0z ax ox (11-9g,h)

These eight deformation continuity conditions are supplemented by four force

and moment continuity conditions (see Figure 11-3)

FIGURE II-3 JOINT FORCES
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Mt — M- + M = 0 (II-10a)
x2 X2 21
NF - N~ - Q. = 0 (11-10b)
X2 X2 Z1
+ —_ - + N = 0 (II—].OC)
Xy2 xy?2 yz1
3t _ 3- - (11-10d)
sz sz * NZI 0
which can be expressed with the aid of the deformation continuity conditions as
2.7t 2., 2 2
-p (22 - 2% + u, oy \ | (11-11a)
D"’<<'9x2 ax > D‘<Bz + V8y2 0
Ezhy (M_&)_Dﬁ.&+(2_,,)§fﬂ - 0 (1I-11b)
l-V';’ ox 99X | ' 9z | 822 ay?
E,h (av+ - av;) + Eih vy av]> = 0 (11-1lc)
2(1+) \ 9x X 2(1+1) dy 9z
_p, 2 (2wi _ awi Eh (pw B_V:_)= (1I-11d)
D, ox ( 9 x? 8x2) + 1-v? oz + y 0

The substitution of equations (II-5), (II-6), and (II-7) into equations
(11-9) and (II-11) yields twelve simultaneous equations for the determination

of the integration constants.
l1+A, +A, = B, + B, = B, + B, (1I-12a,b)

sing,/c, B. + 7\1 5. = sing—z/c2 B—;— + 7\2 }-3;{— -
2

A ! sing,/c; ' A sin¢,/c,
- (__._z_sm‘b fe2 g3 4 M 3 (11-12¢,d)
A, sing,/c,
By + B, = Ab+ At= 43 + 43 (I1-12e,f)
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£os9, (1—A,) + AZ, = -(i 2‘2—523 A+ flﬁ;\):
2 2

i _C%.?.z.A; + cﬂzz; (11-12g,h)
2 2

-:?-1- l[l - (1-y sin’q),] ( 1 + A,) - [l + (1-1) sin2¢,] X,

- 12)32' [(l-sin2¢'2) (AT - A3

(1 +Sin2¢2) (I;-"'Z;)] = 0

(11-121)
2’3(22 il 1l + (l-V‘) sin? (]_ - A + 1 — 2 24 3
¢ ?, 1) cos 9, (1-y) sin ¢i‘ A, o
E2h - (= -
1?. ,}; [}‘2 (B; + B{) + AZ(B; + B{)] = 0 (11-123)

=2

E, h , sineg A sin =
221+v') [ © ' By + ( + ¢)’C| )B|]

Cy sin ¢1/C,

E,h sine - 32 - -
=2 + 2 + _
+ 221+b [ <, (Bz + Bz) + (5 + B,)]_ 0

sing,/c, \?
- (II-12k)
E,h sin?p,/c? ——
=11 s ]
1-p? [( A " A, ) B, + (1- ABy|+
Do | 5( 4%+ a3)cos’s, - o (Kf+ 3; (11-12)
<:§ il A, + Ajjcos’y, o, (A, + A2) = 0
The solution of these equations can be expressed as
+ ™ _  _ i coso -
A2 + A, = 3 ( 1+ —a—z-z) (A;- + Az) (I11-13a)
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T+ - + . a= II-13b) .
A - K= - (- a) ( )
- _ _ A2 A =+ == - + - -1
B; + B2 - sin ¢ 2 (B2 + 82 ) = K (A2 + A2 ) (II 3C)
( Yec,
BY— B; = — (Bt - B;) =N+ A7) (11-139)
= D2 /)2 +
+ A, = =< (2L — AT
' ' D, (Cz) *; A7)
- Lo e [ 000 fle <) (11139
4 A7,
- D c -
= = =2 (& + _
A, o (&) (- =)
\ 2
. sin _
+ 1-(1-vp 51n2¢1 [1 - (____321_22_) ]K (A‘!‘; + A; ) (11-13f)
[1 + (1-v) sin201 o~ i cos9, + 2Dr¢y ]4_
K(&5+ A) - (% - AZ) 2 2 = = L1 Ca
C2 sin ¢2 2 . 2
Yy 1-(1-v) sin‘g, c
1 - = 1 +
A A, 2
(11-13g)
- - s 7 2
A“;— A;= - 41 &2 cos ?, [l+ 1-(1-1) sin‘y, 4‘]((12_ i cose,
Cy 2
2D, ¢ . ) 1-(1-1) sin‘®
+ "f)‘?,' 33; (- 1 cos @) + §{(,-i cose) ! 2' L]
-2 -1
_ i Sosg, [1+(l-u,) sin?ey| | _ 1 2D2 & o "
a, 2 B D] Coq
(I1-13h)
)2
‘sin
(- D wiey 7 A?CZ 1
¢ = 3Eh])\ ) Az A2 . (11-131)
C 1
1 LEahg A, l_(51n}\¢75 )
2
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' 2 . 2
_Gh cos o A _ (sm ¢‘ZC1 ) ] - - 1‘.1
< g (sl ) o

Q3 ! Ay 7‘"
(1-1%) D,wicos 9, A 2 _ )
oA el E hA, singy
1 . -1
X sing, )2 X
—_ ot - L —- - R4S
(1 M)[l "( A, (1w 3 (11-133)
= i
p o= | (1o S038) X (N 0 )+ (19 Dutcoses ,
012 A] sin Q]/C' )\' [+ EI hl A"l
Y sing sing, - o
N /ey ( /e X
(sm gy A, A, sin¢2/ )
sin¢l/ 2 3 =1
[l- v (-——TCL—) - (1-y) -)-‘-' (I1-13k)
1 1

The effect of flexural and tangential wave coupling depends on the
parameter { . The results for uncoupled motion are obtained with { equal
to zero. If { is large, however, the effects of coupling can be signifi—

cant. In order to get a better idea of the magnitude of {, let it be
rewritten as '

X
: = - BHhy @, sin ¢ (l“' 1—-—1)'2‘*) - L (11-14
- -l4a
P h, 1 2 (1 _1 ;;”)‘2 <l- P)? )
with
= whacsc?9,
S Lw &
AL (1I-14b)
If M is small, { can be approximated by
$~ - L8 Bhyg sing, (11-15).
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so that { will also be small if the mass ratio is of the order of unity.
However, { becomes large when # is in the vicinity of unity. This is

possible in the range of values of W of interest for a certain range of

values of @,. For example, for a steel plate with
E, = 30x10% psi = 20.69 x 10° N/cm’
v, = 0.3

2
o = 0.00777 *5€°%/i04 — 6.813 gm/ca®

h, = 0,062 in = 0.158 cm

w = 27 x10* rad
/sec

u is equal to unity if ¢2 is equal to 7.18°. The magnitude of the coupling

effect is very sensitive to angle, however, for if @, vanishes (implying

large i), then %
t=—1 p‘hl wh?/vlz
Pyh, \/—Ez/(l- v3) (11-16)
p2

which is small again.
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APPENDIX TITI

TRANSMISSION OF A FLEXURAL WAVE IN AN INFINITE
FLAT PLATE WITH AN INTEGRALLY ATTACHED HALF
CIRCULAR CYLINDRICAL SHELL

INTRODUCTION

The structure under consideration consists of an infinite flat plate
to which an infinite half circular cylindrical shell is integrally joined
along the diametrically opposite generators (Figure III-1). A harmonic
flexural wave is produced in the plate and is scattered by the half cyl-
inder. The object of the investigation is to determine the scattered
wave distribution in the plate-cylinder combination. In what follows
rotatory inertia and transverse shear deformations are neglected in both
the plate and the cylinder. Flexural and extensional wave coupling is
considered, however. The effects of transverse shear and rotatory inertia
in the cylinder can be considered with the use of Reference 53, if neces-

sary.

A y,vp
/
/
z’wp Region 4 // Region 1
/o
Region 2 //

o,v
\

hC
Ny \
/) )

h Direction of
//Region 3 ¢p //?Encident Flexural Wave
il

1 XqU
L *p

FIGURE I1I-1 PLATE-CYLINDER COMBINATION
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FLAT PLATE ANALYSIS

The plate is considered to be divided into three regions, region 1
for which x >R, region 2 for which x <-R, and region 3 for which -R<x<R.
In region 1 the incident and reflected wave deformations are given by the

following equations (see Appendix II):

_ - - . sin @
ul')" = [B+ eAw(x R) + Bt eAw(x-R)] elw(t - CL—) (11I-1la)
Simz)/c -A(x-R) A =+ -Aw(x-R) iw(t - ﬂ)
vt = i| —4<L= Bt e + _1n—_ Bt e e c
P A 5 ¢/c
(TII-1b)
. COS . .Ccos9® o
W; = [ew_c_ﬂ (x-R) + A+ -iw ( R) + AF -w-é (X-R)] .
ot - Lsine ) (111-1c)
e c

In region 2, the outgoing wave deformations are given by

u- = [B— Mk +R) | 7o Rewlx +R) ] ot - Y—S%“—?—) (111-2a)
P
sing EY -
v = i /c . exw(x +R) . A 5 - eAw(x + R)] .
P A SlI’1¢/C
o (t _y sing ) (1I1-2b)
C
, Cos@ ,
w =[A— L (x+R) , 7 ew% (x+R)] iw(t -@’)

(III-2c¢)

Finally in region 3, waves are directed into the interior from both

boundaries so that the deflections may be written as
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- _ _ sing
+ To e)\w(x R)]eiw(t y—c )

sin
v = i’ __:&:_ [B° e-Aw(x + R) _ co e"w(X'R)]

4 — A [']-3'0 e-}\w(x + R) _ <o
sing
/c
—iw S0S@ , . cos¢
W; = [AO e 1w . (x + R) + D° elw c (X-R) + K°
o . sing
+ D0 &€ “‘”} et - Leing)
with
D w?
C = —-P-—
p h
P P

v1 + sin2¢
2
A = \/<sin ¢>2_ (1- Vp) pp
c Ep

R
]

>
g
n
fur
ols
h=)
S
I
(3]
~
'—l
m| +
<
'O
~
"U-b
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. - [B" Al +R) o Aw(x ~R) |, Fo Aw(x +R)

(I11-3a)

eXw(X-R)” eiw(t- w)

(I1I-3b)

o
YT (x + R)

(II1-3¢)

(I1I-4a)

(I1I-4b)

(I1I-4c¢)

(111-4d)



CYLINDRICAL SHELL ANALYSIS

The equations of motion of a cylindrical shell with transverse shear

deformation and rotatory inertia neglected may be written as (Reference 54)

9 2 UC 1- Vc(l . k) 82 Llc pc hCR2 82UC . 1+ VC 82VC
ot ? 2 90° K. at’ 2 EYEL
A 3°w 1 53w ‘
4+ v _ c _ l-y c _ _
(o Y. k <8§3 5 8&892 0 (I11-5a)
1L +v 3%u 92V a%v ph R 3%
o c 1l -v c c _ 't¢ c
— 5200 + ——52 (1 + 3k) __fag + 557 %, YL
ow _ 3
+ B_GC _ 3 zvg K 53&2;% 0 (I1I-5b)
3 3 3
VBUC - x auc _ 1 -y 81'1(: BVC _ 3-Vckavc
“a; at> 2 3tae’ EX: 2 3t 8
bow o k(e 2w L 2lwe 00w,
¢ aE* ag80° ' 06 96 <
ph.R 2
+ .C_KC_ _a—“’t- = 0 (I1I-5¢)
c t
with
£ = Y/R (I11-6a)
2
1 hc
k= T3\R (I1I-6b)
Ehe
K. = 2 (IT1-6¢)
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The forces needed are those on the straight generators of the cylindrical

shell (Figure III-2) which are given by Reference 54.

v ou 92w
= .ISC _C < - +

2
l-Lk K auC 8vc 8uC o] wC ]
N,, = =C + + k +
3 2 R | a¢ 9t LY 0¢d 6

8%y
c

FIGURE IT11-2 STRESS - RESULTANTS ON GENERATORS
OF CYLINDRICAL SHELL
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(III-7a)

(III-7b)

(I11-7¢)

3 a—2v°>
8E?2

(11I-7d)



Let the solution of Equations (III-5) be of the form

. y_si \

u_ = U g8t 1w(t - iln¢) (111-8a)
4 <t _Yy sin¢>

v, =V oot 1w c (111-8b)
y9+-iw<t - X—Eigll)

w = We (I1I1-8¢c)

with U, V, and W constants. Then the substitution of Equations (III-8)

into Equations (III-5) yields the following set of equations to be

satisfied.
1-1% ) . 1 +-% l-lt 2 \
>— (1 + k)Y -4 Q - = 19y - 1\ kY% v+ k)|l U
1 +lé . ) 1-1% ) 3-l%
- =3 iy Y+ Q- 5 (1 + 3k)p° {1 + 5 k )y vi=o0
1- VC 2 2 3-v 2] 2 2
- iP5 kYt ey’ (L = Kk kY4 2(1-9)k Y
+ 1-9% k(1 +99 W
;- ot
(I11-9a)
with
p = Reing (11I-9b)
R = Pcth w R (III-9¢)
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Thus, for Equations (III-9) to be satisfied ¥ must be a solution of the

biquartic equation
a Y+ (2 a,— o'+ a0 v

-+Ph—%¢ﬁw%W-(%+awﬁgﬁw%qu‘
+ [0‘2 - o+ a9¢2—alo¢‘+ (a11+20,2‘/’2+ @, ¥ o?

= (o, + 2a, ‘1’2)9‘]72 + (@ + o, vt gt

— (ot 0,37 + 0, 3*)97Q% (o + ¥+ a, 90! = o
(111-10)
where
a = 1+k (I11-11a)
7 - 31}c 1l -v 2
%= b+ —F—k+3— £ k (III-11b)
3 -y
@3 = 7 _,,c +k (II1-11c)
[
o, = 2(4 ~v) + (7-5 v,) k+3(1-v) k? (III-114)
;= 6 + 3(2-v) k-v: Kk (I1I-11e)
1 A
o = — - ~— —
6 * T 2k (ITI-11f)
(o]
3 -y 9 -y
a, = 3 < 4 S x (III-11g)
7 1 -p 2
(o}
_ 2
as = l -V (III—llh)
C
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21

22

11 - 3L& 1 -p
4 + > k + 9 —
2 =V
1 [
E + 2 ) + k
54V —2v? 3 -V
1 c _,
k 1 -p 4
[}
3 -y S-SVC-UC2
k
3 L -p + 2(1 =)
3 -IE 1 3 +le
1 -lé k 1 "é
(1 + 3k) 1+(1-v02)/k]
2vc(1+3k)
(L - kY(1 + 3k)
3+2vc 3-2yc
+
m + 2 T -7 3k
c
l . 3 - 7l/c
k 1 -p
3-VC 1-31}C
+
1 -y T k
c Y
2(1 + k)
(1 -pc)k
3 -y
< + 3
zl -1%5k
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(ITI-111)

(111-113)

(ITI-11k)

(I11-114)

(I111-11m)

(III-11n)

(II1-110)

(IT1I-11p)

(I11-11q)

(III-11r)

(1III-11s)

(III-11t)

(I1I-11u)

(ITI-11v)



Equation (I111-10) has eight solutions which are denoted by

Y =2y n=1, 2, 3, 4 (111-12)

The ratios of A and B to C for each value of Y are given by
U .
T iyo (I11-13a)

% - —vye (111-13b)

with
1 -p 1 -p 1 -y
_ 1 c 4 _ c _ 2 C 12,22
é n — kY > (1 kQ'+ 3 —— k¢>‘)’
2 1-uC
+ (yc+kll)z) o' - —; (1 + 3k) ¥?
(I1I-13¢)
1Y L 3 -V,
= - 2— - ]
€ =% s~ Y [L+k+2{1+ ——k| ky (1-2)
2+VC 21,2 3-V 2 2
— + kP (1 + €k P*|Q
(I11-134d)

l-Vc 4 23-VC 1-VC
A= —— (L +K)r+y + k)92 - (1 -p-

<1 , L ;vc 4 + 3k k>¢zJ+(92_¢2) [92- L—;—’iﬂ(l + 3k) y?

(11I-13e)
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Then the expressions for the displacements, slope change, and pertinent

stress-resultants may be expressed as

4
Y. 6 Y, 6
. n -'n
u, = 1¢n ‘E 1 dn <An e + Bn e > (I1I-14a)
4 Ynb Y
v == X ¢ v [a e - B e (III-14b)
c n=1 n n n n
24: Y a8 -Ynt ‘
w, = %, An e + B e (III-1l4c)
oW ‘ Y.0 -Y.0
1 c _1 n=_ n
R <_§b— - VC> =R n El 7’n <1 + €n)<An e Bn € (I1I-144d)

4 Y.0 -Y.6
K 2 n n
Ng = =C §1 |:1‘—?\n €4 +VC¢26n + k (1+72)]<1. e + B_ e )

R n
(1II-l4e)
1 -y 4 Y ¢] =Y 0
_ c K, [ - I R i
Noy = > Rld)n;lvn(1+k)5n +€— k <Ane B_e
(I1I-14f)
4
2 2 ’YHB —'lee
Mgy = chn§1 (1 +Yn—vc¢)(An € +tB, ¢ (111-14g)
4 1 -v
= B ‘.—;17“[1 (2= v, 7! (3€n 6“)]
TR0 e—YnG) (I1I-14h)
n n

iw (t - LSin"b)
e c

The common factor has been omitted from each of

Equations (III-14) for simplicity.
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BOUNDARY CONDITIONS

The 24 constants of integration in the preceding equations are deter—

mined by the boundary conditions that must be satisfied at the two lines of
contact of the plate and the half cylinder. These are (Figures III-1 and
III-3)

e e = g (I1I-15a,b)

P P c

v+ = o =

p  p Y (III-15c,d)

w+ = o =

p Ve (II1-15e,f)

+ 0

ow ow ow

-2 _ _p _ _1 (_C_ _ ) I11-1

9x dx R 56 Ve ( 5g,h)

Q: - + N, =0 (IT1-1514)

N - N - Q. =

x X Qg = 0 (111-153)

NT - N 4+ N, =

Xy Xy g = O (I11-15k)

ooy - IT1-1

M M+ Mg = 0 ( 51)
at x =R, 6§ = =T/2 and

° = - = —

R S (111-16a,b)

V° = v— = u (III—IéC,d)

p p c

o = = = -

wp wp v (II1-16e,f)

ow’ ow_ w

°p _ T _ L1 (% _ v ) (III-16g,h)

ax d9x R a6 c
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° — -

N Nx QO

NS — N _— N
xy xy 0¢
o _ I

Mx Mx MB

at x = -R, 6= w/2.

and the continuity conditions for displacements, thée last four of

Equations (III-15) and of Equations (III-16)

From the force-strain relations (see Appendix

may be expressed as

= 0

9° + .
p ax’ (wp wp) - Ne
h
EL.% __3_ <u+ — u° — '6
l-l% 9x ) p) ¢]
E
p_p 9 +
2(1 +v) oax ("p v ) * Ngg= 0
92 +
Dp ox2 (wp o ) Mg
at x =R, 0=— % and
3
—_a_ <W° — W-) — N
p ax3 p p 6
Eh
2B 9 o _ - =
1-y ax (u up Qg
P
E.h, 3 Vo o u-
2(1 +1$) 9% ( p Vo ) — Npg
82
D Wo - - =
p ax? | v, ) + Mg 0
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(I11-161)

(ITI-16j)

(I1I-16k)

(111-164)

11)

(II1-17a)

(1I1-17b)

(I1I-17¢)

(III-174d)

(I11-18a)

(II1-18b)

(I11-18c)

(I11-184)
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Qx
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X
(a) x=—R, 0 =
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My =t
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1
N° s
b /;// ///
%/r/‘\\ M
N° l X
Xy
R
(b) x=R, 0=— 7—2T

FIGURE T1II-3 JOINT FORCES
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Substitution of Equations (III-1 - III-3) and (III-14) into Equations
(I1I-15a-h), (III-16a-h), (ITI-17) and (I1I-18) and manipulation of the
resulting expressions then yields the following set of equations

B =(e-2)\wR L 1t90

1-5) (B° * Co)*lfa (Eo * Eo)

(111-19a,b)
BF:y - ¢ 20

28 <B°:l:C°) +<e-2AwR¥1+6

(II1-19c,d)
- 2iwR cos®
+ - ( L A . 1+n)<° o) 2 (o:!:_o)
+ = ES + + A D
A=A e ¢ A G Al g
(111-19e, f)
- l+n
1 -7
—_ 2
2T : A = % N

(I11-19g,h)

+ Y6 (1+e'27“"R)].
(An-Bn) sinh ('yn %)= - (1+V >K

4
E c
E h Rw n é:
PP

L[« -v)u |+ 06 e, — K]
1 n

_S(i;ﬂ [l - (sin};b/c )2]

- 2 _ _ 2+ l -v _
N (1 gp)k[1+vn (2 ycw ,_2c(6n 3¢

_ 2 n) ”‘2] . (An ~ Bn) cosh (7,
NEET)

)

LIE

D
A

(111-20a,b)



nél [ m(l_e-zwa) +¢5n (l+e-2AwR)]_

A

(1 +v )KC

« [a-wfprr)e +e -k
(An - Bn) sinh(‘)’n %): _Eﬁ%a— n§1 c ’( n n l

=P - (=)

prosff @ i [1 7 (o )ws 250 (o, - em'l'
+ -

2 3 [ sin¢ ]

-— T
) (An Bn) cosh (vn E) (111-20¢,d)
4
Ao — p° = 2 X |wRe (1 . 2wozR/c> _(1 -2waR/c) (1+€ )
A, 0= 1 c n
K 4
_ T\ o o] - o p))
Yn (A B )COSh(n 2) 1 2D (&))2 n=1
p\c
2 _ M - de __ —y? . + +v? ] -
(l + Yn l)c 4 >k wR cos® 1 'Yn En vc $ 6 k(1 n)
(An ~ By ) sinh(’)’n -725) (111-20e, £),
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_ _ 4 -2iwWR cos®
Ao - Do = 2_ 2 [_W_R_C_O_S_?_ (]_ -+ e c >€
A, n= 1 c n

I E

)

< ~21wWR cos®
-\l -

c )(1 + e )J v (An - B ) cosh (v

4
N Y-S )

s 2 < |1 - 2 2 .
ZD(Q)2 n=1<l+‘yn Vclp)k * [1 hen”t VC¢GB+ k(1+yn )]}
p\c

coRozi

T
(A, = B,) siob (v, §) (111-20g,h)

4 —
2 A 2AWR 2AwWR
B —=(C° =-— £ _z (l+ )'*‘3/’6 (1"9- )
A, n =1 81n¢/c[
(1 +v)K 4
T c
(An + Bn) cosh (yn 2) =E—[>}l:i%- n § 1)"l

(1 =) 9L + 105 +e - k] k(1-») [L+72—(a-p) o2 B2 - 3¢,) o] .

Sl A2 I ka2 )

(An * Bﬂ) sinh (‘yn %) (111-21a,b)
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(1 —Vc)zp[(l + k)an te - k]

1" T sing [, _ [_%X__ ]
c [ (sinq)/c ) ]

(sin¢/c)2 (1 -y)k [1 + 72 = (2-v) :¢2+ %EC(Gn - 3e1) ¢’]

+ i L]
ST ]
(An + B ) sinh ('Yn lzr- ) (1I11-21¢,d)

4
2 wRo -2waR/c ) -2waR/c ) .
o o __ X podehhen - - -+ +
A° + D° = 3n§l [c (1 e en (1 e (1 en)

T K
v (An+Bn) sinh (v, 7) = 1+ —5=
20 (£)
ptc
4 2 2 ic |
1+ v = - - y2 2 2
n§1. ( yn l"c‘p)k WR cos¢ L yn En+Vc‘p‘5n+k(l-*-'yn):l
™
(An + Bn) cosh(')’n 3 ) (I11-21e,f)

104



M-

. [ iw‘i{ coso (l _ e-Zin cos¢/c) ¢

=]

) (1 . e_Zin cos¢/c) (l + en)}'yn (An + Bn) Sinh(yn ‘7';')

4
K 2 2 c
= = ——Sc Xz -
w3 n<1 (1+'Yn ucd))k+ SRO
2D (—)
P\ C
1-v2e +v ¥ +k(L+77)[{(a + B) coshy 1)
n n c n n n n n 2 (11I-21g,h)
with
. 2
5= (sine/) (111-22a)
A
S Y. (1I1-22b)
o
A 2 - -
| Sink (1 £ o ZAwR) (lq_e 2>\wR)
A, A
sing _ -2 % wR
- _.A (1 T e sz)(I + " 2w ) (111-22c,d)
A
A, - c.iR [a (116-2waR/c) (l N e-Zi wR cos q)/c)
A4

_ _ =2iwR cos¢/c)] I11-22e, f)
— i cos¢ (ld:ezwaR/C) (1+e ¢ ’

It will be seen that Equations (III-20a, d, f, and h) constitute four equations
for the coefficients (An - Bn) (n=1, 2, 3, 4) while Equations (III-21b, d,

f, and h) constitute four equations for the coefficients (An +»Bn) (n=1, 2,
3, 4). Thus, the solution of the problem has been reduced to the solution of

two independent sets of four equations.
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APPENDIX IV

ENERGY TRANSFER IN VARIOUS STRUCTURAL SYSTEMS

TIME AVERAGES OF HARMONIC COMPLEX QUANTITIES

In what follows we shall be dealing with time averages of quantities

iwt iwT
of the form (Re Ael )(Re Be ), where A and B are complex numbers.

The integration of the quantities are carried out for one period T = ﬁ

T T
1 f ( iwt) ( iwt) _ 1 / ( iwt ~ -iwt) .
T Jo Re Ae Re Be dt = AT Ae + Ae

where the tilde over a quantity indicates the complex conjugate of that
quantity. If A {s equal to B, the right-hand-side of Equation (IV-1)

becomes % A A.
AVERAGE INPUT POWER

The average input power per unit width for a flat plate governed by a
Kirchhoff plate theory is given by (Figure IV-19 and Appendix II)

T
1 f (— ow _ . o )
Pi T Jo %( ot Mx oxot dt
T
D f (azw azw) 9%w Pw 3w | aw
= = + v oW _ -p) &H oW
T 4 ’6x5 oy? | oxat o v Q@ ")axayz_jat at
(1v=2)
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(a)

Kirchhoff Theory Plate Forces
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(b)

Mindlin Theory Plate Forces

FIGURE Iv-1 STRESS RESULTANTS ALONG A PLATE BOUNDARY

with w, given by

W= Re eiw<t . 5) (IV-3)
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equation (IV-2) becomes

T 2 2
4 X i X
Pi - T::")g f [Re eiw(t + c)] + [Re ielw (t+ C)] dt

0

€
-~
o

== —T ( IV—Qa)

It should be noted that the input power is actually constant in this case.

Since ¢ 1is given by

oh (1V-4b)

equation (IV-4a) may be written as

P, = Phwlex (Iv-4c)

If shear deformations are included, the input power is given by (see

Figure IV-1b and Appendix I)

T Y. oY
.1 e oy du )
Fi Tfo (Mx ot T My & T % e dt
T A
=if D(% +,,a_¢z)a_¢z L L (&"’x +84’_x)ﬁ/’x
T Yy ox oy ot 2 o x oy ot

+ G]h(g—: + sz)g—"él dt
(1Iv-5)
With the deformations given by (Appendix I)
iw<t+5)
w = e c
(IV-6a)
b = =iw <1_Pc2> 1w<t+§>
X ¢ G! (IV-6b)
= 0
l,by
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Equation (IV-5) becomes

2
- ‘Dj'r ( _ c2)2 iw(t + £
Pi -%;? o 1 LGr Re e ( c)

(1Iv-7)

The wave speed c in this case is given by

2
1 1 1-v 1-y 2 (Iv-8a)
c - z*'\/l oo o] n (e 2 Y

with

c¥ (1v-8b)

(1v-9)

The quantity given is thus the ratio of the power required for the Mindlin

and Kirchhoff plate theories to yield a flexural wave having a given trans-

verse amplitude. The ratio is less than unity for all values of ®, ranging
3 1

from approximately 1 - % ® for every small & to NG for large ®, It

should be noted, however, that Equation (IV-9) 1is valid only for &

(A dix I).
< ’(1-21;),(2 ppendix
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ORTHOGONALITY RELATIONSHIPS FOR AVERAGE POWER EXPRESSIONS

We can show generally that the average power involved in the forces of

one mode of motion moving through the displacements of another mode is zero.
For the Kirchhoff flat plate, for example, with

iw(t - Y sing )

- (1V-10)

w = Re F(x) e
o

with the average output flexural power given by an equation of the form of

Equation (IV-2), and with use of Equation (IV-1) we have

~ 2
P = iwD d’F -V M) F daF
BK 4 dx?2 c dx
[ 4?F ing P aF
_ _ w sin ) dF
dx? v( c F dx
[ a3F w sing \? dF
- & T (2“’)(—'?- ) | F
3 2
dF _ wsing \ dF =
+ [dx5 (Z-V)< c ) dx] F
_ dwp | &F = _ &F o d'F dF
4 dxs dx3 dx? dx
a’F dF sing ' [ dF dF
LI W StV a ¥ _ gk
+ dx? dx 2( c ) (dx F dx F)] (1Iv-11)
However, F and F satisfy the equation (Appendix II)
d*(r,F w s:i.no;b)2 d’(F ) w* . 4 ~
S - o (2 LD g Gt 6B - 0 vy
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If we multiply the equation for F by F, the equation for F by F, and sub-

tract the two we have, after some manipulation

d ~ 4°F a°F d’r dF a’F  dF
a. F - - 4f dF ar
dx [ dx3 F dx? dx? dx + dx? dx
, 2 ~
- wsing \"fdF F _ dF - Iv-13
2 ( c ) (dx dx F)] =0 . ( )

which states, then, that the average power is a constant and thus is inde-
pendent of x. The implication of this result is that any product terms in
Equation (IV-11) which are functions of x can be ignored. This further
implies that the modes are orthogonal and that only exponential solutions

having pure imaginary characteristics contribute to the average power.

For the Mindlin plate the deformations are given by (Appendix I)

i i (Iv-14a)
w = Re w(x) el(.J(t - %@)
b, = Re X(x) ot - y_zm) (IV-14b)
ing i
¥, = Re Y(x) oot - L= (1v-l4c)

with the average output flexural energy given by an equation of the form

of Equation (IV-5), the use of Equation (IV-1) yields

iwD < (di‘( ., wsSing dX
p = X2 £ 4 jpwsing - (&
BM 4 dx T Y) X (dx
— iy wsinc) Y) ¥ o+ IEV [(% + ws(i:nqb ~) Y
dy w sing ~ ! >
(& - e x)YJ+.G.D_h[(g_g+ %) w
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dx 2 c
1
G'h W _ o~ aw —
* D (w dx Vet xw)]
(Iv-15)
But W, X, and Y satisfy the equations (Appendix 1)
a’x + pw? _6¢h _ 1-v (wsin¢ )2 O g e 4
ax? E/(1 =Y D 2 c 2
wsing dY ¢h v -
c dx D dx 0 (1v-162)
2
_ Lty wsine &x  1-v d% pw ¢'h _
2 c dx 2 dx? E/(1-v?) D
ing\ '
_ (w s n¢) Y + i Gh wsing W - 0 (1Iv-16b)
c D c
1 2
G h X _ ., wsing d'w sin’p _ P 2 =
D [dx t c Yo+ ax? ( c LN B v =0

and )~(, Y, and W satisfy the complex conjugates of Equations (IV-16). Now
multiply the three equations of the first set respectively by 3'(, Y, and W,

add the three resulting expressions, and subtract from it the sum of the
three equations of the second set multiplied by X, Y, and W respectively
to obtain the result that the derivative of Equation (IV-15) is zero.
Thus, conclusions similar to those for the Kirchhoff plate hold.
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For inplane motion of either a Kirchhoff or Mindlin plate the average

power involved in extensional motion is given by (Appendix II)

T
Pg T./()‘[(8x+6y)at+ 2<ay ax)at
(1V-17)

with u and v given by (Appendix II)

. y sin¢

u = Re Ulx) elw(t T e ) (Iv-18a)
. sineg

v = Re V(x) elw(t - LC ) (Iv-18b)

Equation (IV-17) becomes

dx c
_ iKw Al _ ~du 1+ wsing (
4 [ dx v X + 2 * c o
g -19)
~ l-p dav ~ dv (v
+ U —= = - V&
v ) * 2 (V dx v dx )]
But U and V satisfy the equations (Appendix II)
2
d°u _ l-p 2(sin2!2 p 1 +v . wsing dvVv
dx 2 2 @ c G u- 2 P dx = 0
(IvV-20a)
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2 0.2
_ 1+v wsing dU 1-y dv _ 2isin¢ _ (1- ) p _
2 i c ax T 2 dx? w [ c? E v=0

(1Iv-20b)

while U and V satisfy the complex conjugates of Equation (1v-20).

Then multiplying Equations (IV-20) by U and V respectively, adding the
two equations and subtracting the sum of the complex conjugates multiplied
by U and V respectively yields the result that the derivative of Equation
(1V-19) is zero. Thus, the same conclusions apply as for the Kirchhoff and

Mindlin plate average bending power.

Finally the case of the integrally connected half cylindrical shell
and flat plate combination can be shown to yield simf{lar results. The

average power per unit length of the half cylinder is given by(Appendix 111)

T M
P = _1. / [—Q i (awc - - 6 a_wc. 4+ N auc
o T J R ot o6 c ) 6 ot 0t ot

0
T 2
K 2
=_£f k(——-,awc + ow. +V awc)i(ai_

R Jy 89 c c 9¢? at 8 Ve
a’w ow a3w l1-v ; 8%
P i T (e
36 36 SETLIEY 2 \otod

2

o'v ow l-p 2
._3_;.)_c i ‘9_%.+‘?_V£+k(?i+aw)ac

ot ot 2 0 £ 0 8tob ot

[asd

(Iv-21)
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With uc, Ve and w_ given by (Appendix III)

u_ = U o1 (Wt -yg) (1V-22a)
v, = (8) it -¥8) (1v-22b)
W= w(g) i@t -vd (1v-22¢)

Equation (IV-21) becomes, with the use of Equation (IV-1),

P = .]._Ki k aw ——!-dzw - _d_W d’w - wd_s__w. + ﬁga_w
0 4R a6 de dé d 62 dg’ d g3
1 -» ~
_ y (Wl _ gi) 2k, (ual
2(1-¢)(wd6 Wde) 7 1Y 6
Udw Udw Wdu 3-¥ 2)( )
~  UdWw yat + W — WV
a0 s d9) (l+ k=W
1 -v =~
c du ~ dU
+ (L + k) (U 16 U35 )
1 +v
~ ~ A\
+ iy (Uv + VU) + V35 V 15
(IvV-23)
Now U, V, and W satisfy the Equations (Appendix III)
1 -vp 2 1 +y
c dUu 2_ 2 _ [ dv
5 (1 + k) -—-d92+(€2 $°) U > 11/)3—9
1 -y 2
c . d°w . 2 -
- =< iy i A kzp)w = 0 (1Iv-24a)
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1 +v 2 1 -p
c du d’v 2 [J 2
__T-i¢d6+-ﬁ, +[sz (1+3k)l.b:]v

Pk ) (IV-24b)
+\l+—— k¥ ) =5 = 0
1 -v 2 3 -v ‘
- c d'u _ 2 ( 2)_d_Y_
>~ 1Yo iy (v + kll/)U + (14 k¥ )

4 2
2 d'w o _ o2
+ k_de‘ + 2 (1 -¥7) k FTL + {1+k(l + ¢ Q]W

fl
o

(IV=-24¢c)

and U, V and W satisfy the complex conjugates of Equations (1Iv-24). Multiply
Equation (IV-24c) by W and subtract from it the sum of Equation (IV-24a) mul-
tiplied by U and (IV-24b) multiplied by V. Subtract the complex conjugate

of the resulting expression from it to obtain the result that the derivative

of Equation (IV-23) with respect to © vanishes. The usual conclusions follow.

AVERAGE TRANSMITTED POWER

The results of the preceding section can be applied to obtain expressions

for the average output power in the various structural systems under consideration.
a) Perpendicular Kirchhoff Plates with no Motion of the Joint Line

For this problem the outgoing wave displacement function is given by
(Reference 49).

- cos9 _ sin
W= Rec! (e ol 0502 wa,lxl/cg)eiw(t - slney

(IvV-25a)
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for x >0 and by the negative of the expression for x< 0, with

@, = [1+sinp, (1v-25b)
4 )

ck = WY, (1V-25c¢)
N p2h2

The average outgoing power is given by Equation (IV-2), for x>0 and by
Then Equations (IV-11) and (IV-13)

the negative of Equation (IV-2) for x <O.
yield the total output power in both parts of plate 2 as

KA ~1
P = —28hwky C,C,coso,
if sin¢2= C’f‘/c* singp <1l
) ! (IV-26)

. . _  Ccx .
if sing,= 2/2? sing >1

Perpendicular Kirchhoff Plates with Motion of the Joint Line

b)

For this problem the outgoing wave displacements are (Appendix II)

- Y it - LSing,
ot = Re [(B+ o A wx + B o A,wx ) elw( e ) (1V-27a)
2 2 2 2
sing/ - —
vi = Re [1(—19’—2 B oThx 4 A2 g+ e'>\2w><).
A sin ) 2
2 cw
2
. (Iv-27b)
iw(t - Y_M)
e c¥x
' 2
+ - o - X . _ y singz
W, = Re [(Az eTiwx cosg fex g+ wa, /672) elw(t c3 )
(Iv-27c)
and for x<0 by
= A _ Y sing;
u- = Re (B' e>\2wx + BT e WX elw(t c¥* )
2 2 2 / 2
(1v-28a)
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~N

sin 3 ! i
- A - . - sing
v. = - Re [i( jﬁz B2 e 2 X + -S—l-n—-z—- B; e>‘2 ) elw(t c;c )
A, %’c;f
(1Iv-28b)

2 2

- - 5 - o . _Y sing,
W Re [(A Jwxcosgpfex L 7 @ 2X/c;c) elw(t o )] (Iv-28¢c)

The average output power is given by the sum of Equations (IV-2) and (IV-17)
for x>0 and by the negative of these expressions for x< 0. Then the use of
Equations (IV-11) and (IV-19) and the conclusions reached in the preceding
section yield

= - (1Iv-29a)
P (PB + Ps)
where
= 2 + + - =
PB P2 h,w’c¥ cos 9, (A2 A7+ A A, )
[
if sing = o 51n¢' <1 (Iv-29b)
- " . _ ¢
0 if sing,= z’% Sin¢|> 1
and
E 2
_ . 1 -p ’ 2/(1-1) )
P = 0 < 2 2
S if whz/m 2 p2 sin ¢2
Y —_ -
=k 2P | (Br3F+ B; B;)
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E 2
2 - ,
/(]b V) sin2q)2
2

wh
if 2 >
JTZ
(1V=-29¢)
c¢) Perpendicular Mindlin Plates with no Motion of the Joint Line

The average outgoing power per unit plate width for a plate edge with
x>0 is given by Equation (IV-5) and by the negative of Equation (IV-5) for

a plate edge with x<0. The deformations are given by Appendix I, in the

, €2
case when sing, = = sin¢]< 1, as
1

. x| cos . sin
_jw xlcos o, - wft - )
wh o= (At e Cy + B:' e wa"’lxl) e’ t c,

(Iv-30a)
. . |x|cos @
. T L g . gelslcose
¥, w [m2 costpz(?; Eg- )A2 c,
b/ + ~wox| + 2 ~way | x|
+(1+2—SE§¢—)Be2 + C,; sin'®, e 2
Jiw c - Y.sing ) (IV=30b)
2
+ - s . | + -iw |x|cos 9,/¢c,
¢y2 iwc, sing, [(EE- Ep':) A, e I
1 8/c} + _~walx]
R T
E of. 2% |

€2
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- i . _Y singz)
+ 01’2 C; e wa2|xl:]elw(t

<, (Iv=-30c)
with, provided wh/J12 < )
2
g h 2 k
1 2 2 1-V. 2 1-v. 2
= = = 1+ - =2 72
C2 w'D, \/ [%(1 2 K)¢2]+ 15(1"" 2 ")q’z
(1Iv-=31la)
4
P h 2
_ 22 1-v. 2
= - =22 in2
%
1 + —zv K )<I>2 cos?e, (TV=31b)
/P h 2
1-v 2 1-V, .2 . 2
<J;+ -TZK)Qz] + 35(1+-—2—-2-K.)d>51n¢2
%
2 2 1
- K &+ o7, ry (1Iv-31lc)

2

2
wD
®, =J ;,;h—: /(G; /e,) (1v-31d)

Then it can be shown from Equations (IV-15) and the conclusions of the pre-
ceding section that

= - 2 + 7
p0 = -2P, h w cgr cosgp, A At .

NN P e,

\/‘/1 +[15 (1-3?Kﬂq>2]2+ l5(1+1—'-—”-z x’) e,

(1v-32)
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If sing, = -E—z- sing, > 1, the outgoing power vanishes.
1
d) Integrally Joined Half Cylindrical Shell and Flat Plate

For this problem the shell displacements are given by (Appendix 111)

4
Y, 6 -Y 9 .
= 1 z ( n n ) ilwt - ¥¢ (Iv-33a)
u, iy n=1 én An e + Bn e e ( )
4 -
Y6 Y 0 . IV-33b
v = - z € ¥ (A e®™ — B e M )el(wt-zp&) (1v-33b)
c n=1 n n n n
4 Y,.0 ~Y_6 .
w = § (A e O + B e 1 ) el(wt -Z/)g) (1Iv=33c)
c n=1 n n

from Equation (IV-23) and the conclusions reached in the preceding section

we have
K w
= X C , 2 _ 52 _ 1-y 3-v
Po n R t Yn 1+ Wh vt 2 6rl + 4 €n k
- l1+v 2 _ 2 € ) _  1-v 2 .2
5 o€ (l+ > V6, n n 7 (1 + k)y 6,

(1v-34)

where the summation is over all values of n for which 7h is pure imaginary.
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