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ABSTRACT

The central purpose of this report is to apply some of

the fundamental concepts of sharp crack fracture criteria to

cracks and narrow ellipses. The argument rests on the hypoth-

esis that fracture occurs when a small element of material

near the tip of the crack has absorbed a critical amount of

energy, and then releases it to allow crack extension. This

strain energy density theory is also extended to notch bound-

aries where in addition the energy in a surface layer is cal-

culated and the location of failure initiation is determined.

The concept of a core region near the notch tip, and its

consequences, are examined in detail. This stems from a con-

cern that at the crack or notch tip, variations in material

behavior, such as localized anisotropy or inhomogeneity, pre-

clude an accurate (physically) local solution, but an analy-

sis presuming a valid elastic solution external to this re-

gion, provides an accurate measure of the failure behavior

of the material. The size of the core region is left un-

specified at present, but subsequent research should provide

means to establish its size, perhaps as a parameter depending

on the microstructure of the material.

The example treated is that of an elliptical cavity

loaded uniformly at a large distance from the hole, and at

an angle to the hole; the results are shown to approach that

of the crack solution for narrow ellipses, and to display
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quite satisfactory agreement with recently published experi-

mental data under both tensile and compressive loading condi-

tions. Results also indicate that in globally unstable con-

figurations in brittle materials, the original loading and

notch geometry are sufficient to predict the subsequent crack"

trajectory with considerable accuracy. •
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A. INTRODUCTION

The primary area of interest has been that of an at-

tempted correlation of the problems of failure (by fracture)

of sharp cracks into a coherent theory where a crack is simply

the limiting case of the elliptical cavity, and needs, for

the most part, no special consideration. The means by which

this is to be accomplished involves the use of a recently

proposed theory by Sih (1972a) which requires local knowledge

of the strain energy density function as part of the failure

criterion.

The concept of a surface layer failure criterion for

notches is dealt with as a preliminary requirement to locate

the position (approximate) where fracture may be expected to

initiate from the notch surface. Once established, the form

is set to incorporate knowledge of the local strain energy

density field as a means for establishing the failure crite-

rion for the notch at some point in the bulk of the solid

near the surface. This requires that a local core region be

defined, which may include within its boundaries material

anisotropy and inhomogeneity, and possibly geometrically in-

duced singular features of the analytic solution.

The specific example chosen to exemplify the details of

the theory is that of an elliptical cavity in a large iso-

tropic, homogeneous medium, subjected to uniform loads ap-

plied asymmetrically to the hole. Both the cases of tension
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and compression are considered, and plots are included de-

tailing the specific behavior expected. The actual elas-

ticity solutions and equations are well known and are not

reproduced here.
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B. PHYSICAL BOUNDARIES AND SURFACES

It is well known that a physical boundary is not a sharp

mathematically defined curve, but a rough surface composed

of microscopic pits, holes, ridges, cracks, etc. Materially,

the surface is also unlike the bulk of the solid: once a

surface is exposed to an environment, gases are adsorbed,

chemical alteration occurs (perhaps by oxidation) and various

impurities may adhere. In general, thin layers of material

foreign to the interior form on the surface and will behave

differently from that of the interior. Additionally, forming

new surfaces or boundaries, whether by rolling, drawing, or

machining, results in layers of material that may be harder,

less porous, etc., properties that may significantly differ

mechanically from those further inside these regions; it is

also expected that a formal boundary likely does not separate

surface and interior regions.

At the continuum level, modeling the characteristics

mentioned above is largely inhibited by lack of physical un-

derstanding, and by the very nature of the continuum approxi-

mations. The smooth curve of a continuum cannot describe the

microscopic features of a surface as it physically occurs,

so the approximate averaged curve is employed to predict be-

havior in regions away from local disturbances. However, as

noted, it is these very surface features that ultimately de-

termine the failure strength of a solid, and to this end a

possible means of incorporating the effects of the solid sur-
-5-



face into a continuum model is proposed.

In order to include any surface phenomenon into a con-

tinuum model, it will be necessary to do so in an averaged

way. As an initial analysis, it will be assumed that a thin

layer, of approximately continuum dimensions in thickness,

extends into the solid from the boundary surface. In this

boundary layer will be included any surface inhomogeneities,

faults, etc., that characterize the physical surface (Figure

1). To a first approximation, it will be further assumed that

the gross elastic properties of the layer are similar enough

to those of the interior to permit treatment as an isotropic

homogeneous medium. The criterion for failure will be that

at some location or region along the boundary layer, the lo-

Physical Boundary
Boundary Layer

Figure 1 - Free Solid Surface Boundary Layer.
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cal energy caused by loading will exceed some materially de-

termined constant, and failure will initiate. Necessarily,

this criterion provides but one location point of failure at

the surface only, and any subsequent behavior is not expected

to emerge from consideration of the surface layer.. It may

also be noted that failure is expected to occur in a region

where the surface layer is in tension, subject to local sepa-

ration, although local inhomogeneitles may alter slightly

the ac.tual location of failure as predicted by the model.

Sih (1972b) has suggested that the form of this surface

layer energy, represented by y > be given as the product of
C

the local radius of curvature, p, the tangential strain at

the [continuum] surface, e_, and the normal stress, a , ons n
the interior surface of the boundary layer, designated to be

of thickness 6; i.e.,

Ye = pesan (1)

where Ye is the energy contained by a small element at the

surface of the notch, for unit thickness of material. The

quantities involved in ye are shown in Figure 2.

The.limitations on geometry are left unspecified. It is

expected that the usefulness of the surface layer tension

will extend to some limiting sharpness size beyond which an-

other fracture theory will be more precise in accounting for

the material behavior.
-7-



n

Figure 2 - Local Parameters of the Surface Layer Energy.

For an elastic isotropic material, the tangential strain

along the boundary is given by the ratio of the tangential

stress, CT., to Young's modulus, E;

es = at/E (2)

The normal stress acting on the interior of the boundary lay-

er, of thickness 6, can be shown to be related to the tan-

gential stress, local radius of boundary curvature, and

boundary thickness (to first order in 6);

= at«/p (3)
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Combining expressions (2) and (3) into (1), the surface lay-

er energy now takes the form

Ye = Scr'/E (4)

Since neither y nor 6 has explicitly been given, it is con-

venient to form the quantity y E/6 and treat it as a material

parameter. A notched specimen may be loaded to failure and

from equation (M), YeE/<S computed; then for any notch geom-

etry of this material, the failure load may be obtained.
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C. THE ELLIPTICAL NOTCH UNDER UNIFORM LOADING

For the purposes of illustrating numerically the behavior

of the surface layer.tension, consider an elliptical cavity

cut into a large sheet uniformly loaded far from the hole at

an angle 3 to the major axis of the ellipse (Figure 3). The

boundary surface of the cavity is assumed rough. Around the

Figure 3 - Loading and Geometry of an Elliptical Cavity.

cavity is depicted a boundary layer of uniform thickness, 6.

At some point along the layer, represented by (x,y), or

(acosT), bsinri), where n is the eccentric angle for the el-

lipse, the magnitude of the surface layer energy, y > may be

calculated from equation (4) when the local tangential stress

is known. In the case of the elliptical hole, the tangential
-10-



stress is known analytically.

In its present form, equation (4) obscures the differ-

ence between tensile and compressive loading. Along the

boundary of an elliptical cavity, a^ may be tensile or com-

pressive,' as indicated in Figure 4. However, ye remains pos-

tens.

(a) Tensile Loading (b) Compressive Loading

Figure 4 - Tangential Stress under Tensile and Compressive
(Normal) Loading.

itive at all points along the boundary, and hence, requires

that the nature of the loading be dictated in order to se-

lect the region in which the surface layer is in tension. As

the angle of loading varies, the regions of tensile and com-

pressive surface stresses also shift positions.

If equation (.4) is normalized to the form y E/6p2, where
G

p is the applied uniform stress, then this quantity may be

represented as a function of the loading angle 3, semi-minor

to semi-major axes ratio b/a, and the eccentric angle n-
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It has been assumed that failure will occur at the loca-

tion of maximum surface layer energy (in tension), and both

the magnitude and location along the surface vary with angle

of loading. Figures 5 and 6 show the normalized failure load,

p/6/YgE, for various angles of loading and several degrees

of sharpness of the tip of the ellipse. In Figure 5, under

tension in the minimum load to failure is at 3 = 90°, while

under compression (Figure 6), the minimum load to failure oc-

curs in the region 3 = 45°• The elasticity solution has as-

sumed no surface contact under compression, and the cavity

sizes entered are free of this problem. One of the values

of the skew-symmetric loading geometry is manifested by the

behavior of the elliptical cavity under compression.
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Figure •$• - Variation of Maximum Loading Stress
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D. THE SC-THEORY, THE CORE REGION, AND LOCALIZED FAILURE

As proposed by Sih (1972a), the concept of some critical

value of the strain energy density being a material constant

may be used to predict fracture of a material, whether at a

crack tip, notch tip, re-entrant corner, or in an unflawed

structure. In its original form, the theory takes the singu-

lar terms of the stresses near a line crack tip, and substi-

tutes them into the strain energy density expression. This

results in a quadratic form for the strain energy density

function,

— = — fa k2 + Pa k k + a k2 + a lr2 1 +^y - r ^
dn i ^d^2K^K2 22 2 33 3 **'

Here the quadratic

S = a k + 2 a - k k +-L2 1 2

represents the amplitude of the energy density field, where

the coefficients a.jj (i,J = 1,2,3) vary with a polar angle,

6, measured from the crack tip, and the stress intensity

factors k-^, kg, k-, are dependent only upon loading and geo-

metric conditions. The quadratic S is postulated to be in-

variant with respect to k-^, kp, k^, and possess the inherent

property of a constant. It has been shown, based on poten-

tial energy considerations, that crack initiation will start

on a radial direction along which the strain energy density
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is a minimum. In general, for a notch, the form of the

strain energy density will not be as concise as that of equa-

tion (5), but the evaluation of the energy field will be the

same as that for the crack, and the resulting failure loads

and angles also determined on the basis of the strain energy

density assuming a critical constant value in a given mate-

rial. It should be noted that in the considerations here,

the exact strain energy density function is evaluated, at

some finite distance from the notch tip. This, has been done

since, as alluded, there is no simple expansion of the energy

available for a non-sharp notch tip. It is for this reason

that as the notch degenerates to a line crack, the evaluation

is unaffected, since the locations of the points of interest

do not lie on the surface of the notch itself.

A fundamental difficulty in fracture mechanics arises in

the use of linear elasticity theory - singular stresses re-

sult at sharp corners in the analytical models, stresses which

are physically unattainable. In part, this difficulty arises

because analytically, one cannot expect the solution to be

accurate much closer to the tip of a crack or notch than the

minimum continuum element size. It must also be recognized

that in a very local region at the crack tip, the physical

behavior is unknown, and cannot be incorporated into a mathe-

matical model. In this region, the material is highly

strained, may become inhomogeneous, and in general, is not

conducive to modelling. In polycrystalline materials, for
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example, the orientation of a grain may be significant, but

unknown from a continuum viewpoint, and statistically, per-

haps random. These same limitations hold for sharp notches

as well, and likely for blunted notches. But it must be

emphasized that both the analytical and physical aberrations

mentioned are confined to a very small region near the notch

tip, and for this reason are not expected to significantly

perturb the analytic solution external to this region.

The initial approach taken here is that of postulating

the previously stated aberrant material behavior to be lim-

ited to a region local to the notch tip (Figure 7) character-

ized by a length dimension, r . This core region will

Core Region

Figure 7 - Notch Tip Core Region.

remain temporarily unspecified in shape. The region is not

unlike that proposed by Neuber (1946), and discussed by

Orowan (1955). The main purpose is to avoid the require-

ments of an explicit continuum solution everywhere around
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the notch. It is immediately obvious that the region in

question must be small, since it is expected that apart from

this region, the linear elasticity solution of the notch ge-

ometry retains its validity. Under these circumstances, the

materials to be evaluated are necessarily restricted to be

brittle, for otherwise, large local disturbances and energy

dissipation occur which must be taken into account by a more

refined continuum model. The motivation is that of evalua-

ting the fracture toughness on the basis of material behav-

ior external to the immediate vicinity of the notch tip.
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E. AN EXAMPLE - THE ELLIPTICAL CAVITY

1. Introduction and Intentions

For the purposes of illustration, a specific notch

geometry has been chosen to demonstrate the methods of anal-

ysis and the particular uses for which the resulting informa-

tion about the strain energy density near the notch tip can

be employed. The choice of the uniformly loaded [infinite]

solid containing an elliptical [through] cavity is based

primarily on the availability of an analytic solution for

this geometry, and also on the availability of recent experi-

mental work involving this geometry under both tensile and

compressive loading conditions. Additionally, the ease with

which the solution is reduced to that of the finite crack ge-

ometry permits comparison with this limiting case of blunted

notches.

The initial examination indicates favorable agreement

with current experimental data. A brief comparison to the

maximum stress theory for sharp cracks is also made in light

of recently published experimental work.

The details of the stress field around the elliptical

cavity under uniform loading are contained in textbooks.

Isotropy and homogeneity of material are assumed. The ellip-

tical cavity (in two dimensions - plane strain) is defined
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by the ratio of minor to major axis half-lengths, b/a, with

all other length parameters normalized with respect to the

major axis half-length, a. The uniform loading (at infinity)

forms an angle of 3 with the major axis of the cavity, and

the angle 6 used in the radius vector r is measured positive

counterclockwise, referenced to an axis parallel to the major

axis of the cavity. At any given point on the surface of the

cavity, the normal angle to the surface forms an angle <{> with

the major axis, and also is measured positive counterclock-

wise. Figure 8 indicates the geometry described. Only the

right hand notch tip will be considered, as antisymmetry of

the geometry implicitly allows description of the other notch

Figure /8 - Geometry and Parameters of Elliptical Cavity
and Radius Vector.
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tip as well.

The stress field is used in the expression for the

(exact) strain energy field surrounding the notch tip. All

stationary values of the strain energy density are obtained

numerically, as the contours followed do not lend themselves

to analytic evaluation.

Since the behavior of the strain energy field is load

dependent, the cases of compression and tension are treated

separately. There are some fundamental differences in the

two cases, and it is intended that separation will clarify

these departures without redundancy of explanation.

The strain energy density function is also dependent

upon the value of Poisson's ratio, and it will be assigned a

value of 0.250, unless otherwise stated. It is clear from

the work of Sih (1972a) that there are significant deviations

attributable to Poisson's ratio change. These deviations

are restricted to magnitudes only, however, and trends remain

unchanged. Hence, subsequent discussion will center not on

this effect, but on basic observable behavior, restricting

changes in the Poisson's ratio to matching experimental spec-

imen material where necessary.

The choice of specific values for the ratio b/a has

been governed to large extent by the experimental data avail-

able. In other cases, the choice is simply for illustrative

purposes, and any further comparison with new data requires
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new calculations to be performed. It is intended that the

choices reflect fairly completely the range of possible be-

havior for this geometry of notch and loading.

2. Origin of the Radius Vector

The evaluation of the local strain energy density

field requires a knowledge of the position of maximum surface

layer energy, which coincides with the position of maximum

tangential (tensile) stress along the boundary. For the el-

liptical cavity, this position may be analytically deter-

mined: setting the first derivative of a. with respect to
t

eccentric angle n to zero, the resulting equation, quadratic

in tann, may be solved to give

tann = b{asin23 - bcos23 ± /a2sin23+b2cos23> / x

x a(a+b)sin$cos$ (7)

The positive root provides the location for failure initia-

tion under compressive loading, and the negative root for

failure initiation under tensile loading (Figure 9).

The special case of — = 0 corresponds to that of ab _
a

line crack, and in such a case, the radius vector is attached

to the crack tip. This has been treated to considerable ex-

tent by Sih (1972a), where the asymptotic expansion is con-

sidered. Rather than repeat the results of that work, it

-22-



will be instructive here to discuss possible behavior further

from the crack tip.

P S

/P /P

(a) Compression (b) Tension

Figure 9 - Location of Points of Initial Failure
in Tension and Compression.

3. The Elliptical Cavity in Tension

If an elliptical cavity in an isotropic, homogeneous,

linearly elastic solid is uniformly loaded as shown in Fig-

ure 8, at an angle 3 to the major axis, the maximum surface

layer tension occurs in the surface region in the fourth

quadrant, where -90°<jilO°, (considering right hand tip only).

Loading behavior as a function of crack angle, notch size,

and position in the medium is the subject of the initial dis-
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cussion. Then considerations will focus on the initial and

subsequent crack trajectories. This order is necessary in

light of the earlier criteria established for the expected

nature of failure and its relationships to the core region

size.

a. Failure Loads in the Medium

For purposes of initial analysis, the applied

uniform stress, p, will be assumed to be small, with no core

region present, to establish the behavior of the strain en-

ergy field.

Although the normalization is slightly different,

the strain energy behavior at the surface coincides with that

shown earlier in Figure ^>s since at the surface, the strain

energy is a function only of the one non-zero stress compo-

nent, the tangential stress, the same one involved in the

surface layer tension. As the radius (normalized to the

major axis half-length) is made to increase, the located

stationary values of the strain energy begin to decrease,

indicating that analytically, (exclusive of surface layer

energy considerations) the strain energy density assumes its

absolute maximum value on the surface of the notch, (Figure

10). In the figure, a family of several curves appears,

each curve representing the possible loading behavior of a

particular notch at a different distance from the notch sur-

face. It may be observed that in all cases, the minimum

-24-
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Figure 10 - Variation of Load with Crack Angle:
Line Crack; (Tension).
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load required for fracture occurs in the normal loading case

(3=90°). Intuitively, one would expect such a result, al-

though some other fracture criteria have been proposed in

which the minimum load appears in the vicinity of 3 = 70°.

Palaniswamy (1972) attempted an energy release rate procedure

for complex loading, in which a small extension to the main

crack was varied in direction until the maximum strain energy

release rate for small crack extension was determined; in

this case, a minimum was located near 72°. It must be men-

tioned that in order to solve the stated problem, approxima-

tions in the numerical procedures altered the strain energy

density function by unknown amounts, assumed small, casting

some doubt on the validity of the results, and the extent to

which any implications can be made concerning fracture load

behavior. A second case in which the minimum load appears

near 3 =70° occurs in the criterion of maximum tangential

stress near the crack tip. Unmentloned in the original paper

on the inclined loading of a crack by Erdogan and Sih (1963),

Williams and Ewing (1972) pointed out this effect in the

loading response. This latter work included an attempt to

avoid the local material behavior by applying the criterion

a short distance from the crack tip using an additional term

in the asymptotic solution. Unfortunately, the truncation

errors in the results over-emphasize the minimum load, mani-

fest when compared to the exact solution (Sih and Kipp,

1973). The primary results (normalized to the 3=90° load)

are shown in Figure ll for the maximum stress criterion, and
-26- .
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in Figure 12, where the data obtained by Williams and Ewing

is compared to the strain energy density theory for core re-

gions of the same size as those used for the maximum stress

criterion. (The data presented appear to display a trend

towards minimum load near 8=70°; however, an authors' note

indicates that much of the data had to be discarded because

of inability to distinguish initial crack growth, so the

data is not truly representative of the failure loads as a

function of the angle of loading).

b. Fracture Trajectories

Although interest from a safety standpoint cen-

ters on loading capacity, and more specifically, on the worst

case if possible, the actual post-failure behavior of the

fracture provides another insight into the validity of the

theory under study. As briefly mentioned earlier, Griffith

had suggested that a crack would extend in a direction normal

to the maximum tangential stress, and Erdogan and Sih (1963),

in applying this criterion obtained striking agreement with

their experimental data. In a discussion of this paper,

McClintock (1963) suggested the use of the normal angle from

the ellipse surface as the directional property, but the re-

sult was not in the slightest agreement with the observed be-

havior. The published data of Williams and Ewing (1972) for

initial crack angle (with respect to the plane of the crack)

corroborates that of Erdogan and Sih. As discussed with re-

spect to the loading variations with crack angle, a core re-
-28-



1.2

1-0

0-8

0.6

0.4

0.2

Strain Energy Density Theory

r0/a=0.02

0.005

= 0.33

Experimental

Scatter

30" 60"
Crack Angle (3

90"

Figure 12 - Variation of Load with Crack Angle:
Strain Energy Density Solution for
Line Crack; (Tension).

-29-



gion concept was applied, and Figure 13 shows the results for

the maximum tangential stress, including the corrected (exact)

maximum stress solution. Figure'14 illustrates the predic-

tions of the strain energy density function for the same core

region dimensions. At 3 = 90°, the crack is expected to

propagate in its own plane, but as 3 becomes small, the di-

rection becomes less well defined. At 3 = 0 , the material

reacts as if (in theory) no crack at all were present, and

while the material would be expected to break at a normal to

the load, the crack solution cannot predict this. Before

proceeding further, it is necessary to be more precise in

'stating how the crack will extend from the tip of the crack

or notch. When the stationary values of the strain energy

density were determined for various radius vectors, in addi-

tion to the load, an angle 6 was found corresponding to the

load. So for each radius r/a, a curve is generated in the

angle 9; Figure 15 reflects this angle for the same ratios

of b/a and r/a as were used for the load variations of Fig-

ure 10. Once the parameter rQ/a has been established from

loading considerations, the angle of fracture, 0 , is deter-

mined from the assumption that there is separation of the

material from the surface to the edge of the core region in

the direction 6 , with subsequent fracture proceedings from

there.

One must remain cognizant of the non-stationary

position of fracture initiation along the notch surface. As

-30-
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the loading angle changes, so does the position of initial

failure. One result is that now, when 3 = 0 , there is a well

defined point of failure (because the geometry is now non-

trivial), and it is to be expected that the fracture will

extend from the minor edge of the cavity along the minor axis

direction. The path is, of course, perpendicular to the load,

and the behavior, apart from load magnitude, corresponds ex-

actly to that from the major axis notch tip at $ = 90°.

Cotterell (1969) has observed that for notches,

rather than immediately turning into a path of fracture co-

inciding with that of the line crack, the fracture trajectory

extends forward from the notch tip, roughly in the same plane,

for a distance of approximately one notch tip radius, before

turning into the path direction matching that for the line

crack. (The ideal line crack has, of course, no tip radius,

and would immediately assume its characteristic direction of

failure). If it can be assumed that the crack path is prede-

termined for initially brittle materials in unstable config-

urations, then the radius vector r = r(0) should trace out

the trajectory along which fracture is expected to occur.

In effect, the trajectory will follow a path that restores

symmetry to the geometry of fracture.

For a line crack, Figure 16 illustrates the pro-
*

jected paths for several angles of loading. A photograph

*
Appreciation for this photograph is expressed to Dr. T. T.
Wang, Bell Telephone Laboratories, Murray Hill, New Jersey.
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Figure 16 - Projected Fracture Trajectories;
Line Crack; (Tension).
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of an actual crack trajectory is shown in Figure 17. The

agreement between theory and experiment is very good out to

a distance of at least one half crack length.

4. The Elliptical Cavity in Compression

Although much of the behavior to be described in this

section corresponds to that of the tensile case, there are a

few additional difficulties that must be dealt with in com-

pression. Rather than reiterating the arguments already pre-

sented in detail, emphasis will be placed upon the features

that tend to complicate the compressive analysis. Were the

analysis confined to simply reversing the applied loads in

the last section and proceeding as before, there would be no

trouble. But immediately, caution must be exercised in re-

quiring that no interpenetration of notch faces occurs. The

line crack, for instance, must be reformulated to ensure that

sufficient normal stresses occur on the faces to prevent pen-

etration, and this has been attempted by McClintock and Walsh

(1962). In addition, it is clear that functional stresses

will be developed on the faces if any slip is to occur to al-

low fracture to progress. In the development here, the notch

geometry will be restricted to such dimensions that contact

between opposing faces cannot occur.

The geometry of the ellipse is such that in compres-

sion, the maximum surface tangential stress that may develop

is equal in magnitude to little more than the applied compres-
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Figure 17 - Predicted and Experimental Fracture
Trajectories; 8 = 45°.
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sive load, and elsewhere, tremendous crushing pressures may

be developed. The consequence is that some kind of material

damage is inevitable, although it does occur at locations

away from where a fracture is expected to initiate and grow.

A combination of these factors results in a weaker model for

fracture prediction than that of the tension case, although

limited agreement with experimental data does occur.

As before, assuming a small applied uniform stress,

the surface position of maximum energy (maximum surface tan-

gential stress) may be located, and an origin established to

evaluate the load behavior as a function of radial distance

from the surface. Figure 18 describes the load behavior as

a function of notch angle, for various constant radii, r/a.

A characteristic of compressive loading is the mini-

mum load to fracture occurrence in the non-symmetric case.

The families of curves plotted indicate a wide range of fail-

ure loads over the various values of 3 from zero to normal,

but experimentally, there exists much less variation. Cot-

terell (.1972) has published the experimental data that appear

in Figure 19 for an elliptical cavity in glass with propor-

tions b/a = 0.1. The curve r/a = 0 is that of the maximum

tangential stress criterion. As the position of failure

criterion is moved into the material, there appears quite

satisfactory agreement between r/a = 0.005 and 0.008. Hence

the energy criterion may be expected to provide quite reason-

able failure predictions. On the basis of the data, one
-38-
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Figure 18 - Variation of Load with Crack Angle:
b/a = 0.01; (Compression).
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Figure 19 - Variation of Load with Crack Angle:
b/a = 0.1; Data from Cotterell (1972);
(.Compression).

-40-.



choose a crtttoal oore ^^

::: ;::.:::;::r- - - - -»— ~-
°™ "" """' """»•• '. .M, «„„,.



REFERENCES

Cotterell, B. (1969). The Paradox Between the Theories for
Tensile and Compressive Fracture, Int. J. Frac. Mech.,
Vol. 5, PP. 251-252.

Cotterell, B. (1972). Brittle Fracture in Compression, Int,
J. Frac. Mech., Vol. 8, pp. 195-208.

Erdogan, F. and Sin, G. C. (1963). On the Crack Extension
in Plates under Plane Loading and Transverse Shear, J.
Basic Eng., pp. 519-525.

McClintock, F. A. and Walsh, J. B. (1962). Friction on
Griffith Cracks in Rocks under Pressure, Proc. 4th U.S.
Nat. Cong. Appl. Mech., pp. 1015-1021.

McClintock, F. A. (1963). Discussion of Erdogan and Sih
(1963), J. Basic Eng., pp. 525-527.

Neuber, H. (1946). "Theory of Notch Stresses", Edwards,
Michigan.

Orowan, E. (1955). Energy Criterion of Fracture, Weld. Res.
Suppl., pp. 157-160.

Palaniswamy, K. (1972). Crack Propagation under General
In-Plane Loading, Ph.D. Dissertation, Cal. Inst. Tech.

Sih, G. C. (1972a). A Special Theory of Crack Propagation,
"Methods of Analysis and Solutions to Crack Problems",
edited by G. C. Sih, Noordhoff, Holland.

Sih, G. C. (1972b). Private Communication.

Sih, G. C. and Kipp, M. E. (1973). Discussion on Williams
and Ewing (1972), Int. J. Frac. Mech., in press.

Williams, J. G. and Ewing, P. D. (1972). Fracture under
Complex Stress - the Angled Crack Problem, Int. J. Frac
Mech., Vol. 8, pp.

-42-


