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FOREWORD

This report summarizes research in the theory of elasto-plastic

flow performed at Carnegie-Mellon University for Langley Research

Center, National Aeronautics and Space Administration under NASA

Research Grant NCR-39-002-023 during the period October 1966 -

April 1973. Notes for this report are maintained in file SM-73-8;

it is one of several issued in conjunction with this effort, the

others including references 4-6, 10, 13, 15-19, 21, and 22 following

the text. In addition, several articles intended for journal

publication are in preparation and will be released subsequently.

The author is most appreciative of the valuable technical

contributions of associates at CMU to this effort, in particular

Professor T. A. Cruse and Drs. D. P. Jones*, J. R. Osias**, and

P. C. Riccardella.*** I am further indebted to Ms. K. J. Sokol

for her meticulous preparation of the manuscript.

*currently Senior Engineer at Bett'is Atomic Power Laboratory,
Westinghouse Electric Corporation

**currently NRC Resident Research Associate at Lewis Research Center, NASA. <
***currently Senior Engineer at Nuclear Energy Systems, Westinghouse

Electric Corporation
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INTRODUCTORY REMARKS

In a variety of situations of engineering interest, materials

behave in a nonlinear manner, that is to say, the response to excitation

deviates from a simple linear relationship. In years past, it was

sufficient to ignore this behavior or, in some instances, to approximate

it in what is now viewed as a crude manner. More recently, however,

there has been impetus to look closely at nonlinearities. The motivation

derives from several sources. On the one hand, design requirements

have grown more stringent as the result of the need for improved

performance of materials, the use of more expensive materials, and the

desire for better prediction of response to high excitation. On the

other hand, our capabilities have grown not only with the overall

advances of technology but also and perhaps more importantly, with the

availability of large high-speed computers. These tools have provided

researchers and engineers both with the capacity to solve problems

that once were posed largely for intellectual interest. Computers have

also served to reduce the disparity of language between researcher

and practicing engineer; the one can translate complex mathematical

results into computer programs, and the other can use the code to solve

problems directly.

One of the kinds of nonlinearity that is of extensive interest

occurs in metals and their alloys where excitation is sufficient to

induce plastic flow. Such behavior is expected in structures designed
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for high strength and is sometimes observed in structures otherwise

intended to be quite stiff. Plastic flow also occurs in regions of

high stress concentrations such as holes, cutouts, and notches,

sometimes quite unintentionally. The issue in such cases becomes

that of determining the integrity of the structure after plastic

flow has occurred. In addition, there is frequent interest in the

mechanics of the flow process itself partly to determine whether the

process can either be avoided or be turned to advantage.

The theory or, more accurately, theories of plasticity are hardly

new to students and practioners of mechanics. The literature dates

from the last century, and elements of plasticity are to be found in

engineering curricula, both undergraduate and graduate, throughout the

country. Since 1950, the publication date of Hill's book [1]*,

there has been a resurgence of interest and effort in plasticity.

Yet, in certain respects, such attention has been accompanied by

inherent limitations which may be of consequence in a variety of

applications. The use, for example, of 'perfect' plasticity fails to

model many materials of technological importance; rigid plasticity is

inappropriate to structural situations in which elastic and plastic

strains are both of interest; and slipline techniques tell little of

the process that precedes and engenders flow.

Of more recent origin is what we term here the theory of elasto-

plastic flow. Developed by the author, his colleagues and students

*Numbers in brackets denote entries in the list of references following
the text.
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over the past few years, elasto-plasticity results from a special

formulation of information already in hand. This formulation is

believed to serve two purposes. First, it provides means for solving

a broad variety of problems involving" plastic flow, a few of which are

indicated in later sections of this report. Second, it suggests an

approach for formulating theories of other non-linear phenomena. While

we do not discuss the latter feature in this report, we fully expect

it to offer a significant potential to other researchers and engineers.

This report is divided into several sections which give general

and special forms of the constitutive relations, together with other

relations which provide the full theory; reductions to two spatial

dimensions; solutions to elementary problems; numerical methods for

solving more complex problems; and a review of some solutions that

have been obtained.
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CONSTITUTIVE RELATIONS IN GENERAL

As suggested above, there are several theories of plasticity,

distinguished by a variety of relationships between strain or other

kinematic measures, and stress. Accompanying this range, there are

many approaches available for deriving or developing these relationships,

and the interested reader may care to peruse some of the texts now

available to see these approaches. Since our discussion is not as

heuristic as that found in a text, we proceed on a more axiomatic

basis, relying on just two primary assumptions.

In addition, we omit dynamic effects so that the flow process to

be described is taken to be slow, in the sense that no wave phenomena

occur. For the most part we deal with infinitesimal strains, although,

attention is given below to finite strain effects. While body forces

will appear in the formulation of the next section, they are regarded

largely in a formalistic sense and are excluded in specific problems.

The first primary assumption is that there is a loading function

f which depends upon the stress field* a.., the plastic strains e. . ,

and the plastic strain energy density W " . At each point of the body,

if f < 0, no flow occurs; where f = 0, flow may occur and we write this

*Standard indicial notation and its associated conventions are used
throughout, except where noted. The range of roman indices is 1,2,3
and 6.. is me Kronecker delta.



- 5 -

condition on the loading function as

f(a..,ê VP>) < 0
ij 1J (1)

This statement may be visualized somewhat more easily if we write

the particular form

. . < 0 (2)

which is used throughout most of our development. In (2) <f>(a. •) is

a function which may be regarded as having two roles. In the hyperspace*

whose axes are the stresses a.., c)> is a measure of the vector from the

origin to the point describing the stress field at a point in the body.

If this measure is less than the scalar fy, no flow ensues. Alterna-

tively, the relation \

<J>Oi;j) - * = 0 (3)

is a surface in stress space; if the stress vector is such that its tip

lies on the surface, flow may occur depending upon how the stress vector

changes as a result of additional excitation. Note that flow will

alter ty so that the stress vector will never pierce the surface.

The second primary assumption is that hypothesized by Drucker [2] .

Without reviewing the arguments in full detail, we note that the

hypothesis concerns a prestressed body subject to a small increment in

load. This self-equilibrated loading is applied and then removed.

*Alternatively, one may think in terms of a 3-space whose axes are the
principal stresses a\t o2, 03. While the alternate is more easily
visualized, the form in (2) is more useful in formulation of the
constitutive equations.
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The resultant stress increment 6a.. engenders an increment in plastic

r.

that

. .

strains 6er. and, largely on thermodynamic grounds, Drucker requires

60.. 6e > 0 (4)l J

That the quantity on the left of (4) is nonnegative requires that no

work may be extracted from the process. We may also interpret (4)

to imply that the motion in the process corresponds to the loading,

and vice versa.

The utility of (4) lies in the conclusions that may be drawn

from it. The first is that the surface described in (3) is convex,

and the second that the direction of 6e. . is normal to that surface.

Hence we have

8e^ = A8f /9a . . (5a)
ij iJ

or

6e^ = A3<j>/9a . . (5b)

depending on whether (1) or (2) is the appropriate form of the loading

function. The third conclusion is that the increments of stress and

plastic strain are proportional to one another and, as that result is

central to our formulation, we consider it in further detail below.

The arguments necessary to develop convexity and normality may be

found in Drucker's paper [2] or Fung's book "[3], chapter 6.
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Consider a point in a body whose loading history is such that

(3) applies. Let an increment in excitation be imposed such that

flow occurs; it follows that <f> and ty will change in concert:

<$4> - Sty = 0

or, to first order terms,

= 0 (6)

where we have used the differential definition of plastic strain

energy density in the increment:

13 13

Substituting. (5b) into (6) and solving for X gives*

ij 13
/••n~\

(7)mn ^ mnj T mn

so that there results

and the proportionality between plastic strain and stress increments

is clear. Had we used (5a) , we would find

-^- - -
+ (3f/3W l P J)a ](3f/3amn v ' J m n j v '

*An obvious substitution of dummy indices is required in this step.
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Either of (8a,b) is often termed the flow rule for incremental plasticity.

It is useful next to introduce an intrepretation of the function <j>.

As we have described it, it is suggestive of an equivalent stress, and

we now specify that

<J> = Teq

and it should be noted that eq are not indices. There is then a

corresponding equivalent plastic strain increment defined by

T 6e = a..6e = 6W (9)
eq eq ij ij

and we infer a functional relationship between the two equivalent

quantities. In particular, we have at any value of T such thateq

flow is in progress

6t /6e = 2y(p) (10)eq eq Heq v J

It may be observed that, once suitable experimentation is performed

to find the form of the function <f>(a. .)> the (scalar) equivalent

stress and plastic strain relationship may be identified, and that

the modulus of that relationship may be determined. If we combine

(8a), (9), and (10) we find that

(p) 4>(3< |> /aa ,-:
— - 6 a . « (11)
)aeq mn mn
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We have thus a form of the flow rule that depends on $ and the more

physical y " , rather than i|». It does not appear possible to reduce

(8b) to an analogous form since f is not dependent only on a...

The total strain increment comprises both elastic and plastic

portions, and we have so far dealt with the latter. The former

follows Hooke's law written in incremental form, viz:

2y6e!'?-) = 60. . - [v/(l+v) ]6a. . 6. . (12)L ' *• J J *• '. .kk

where y is the elastic shear modulus and v is Poisson's ratio. Combining

(11) and (12) we have the total flow rule

i. = 6a i ; j-[v/(l-Hv)]6akk6 i ; j + W/Ba^) Of/Sa^fia^ (13)

where we have set

F = T v / y l <f r / [ (3* /3o ) a ]L ' eq J Y/ lv Y' mn^ mnj

as a matter of convenience. The inverse to (13) is

6a i j/2y = &e^ [v/(l-2v) ^^^ (14)

Terms of the form (3<}>/3a )6 are to be observed in (14). The degree±j r j

to which such terms do not vanish is a measure of compressibility of the
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plastic strains. That is, in (11), we have the plastic dilatation

which so far is not presumed to vanish. If it is required, however,

that plastic strains are incompressible, (14) reduces to

(3<}>/3a. .'
6ai;j/2y = «£„ + [v/(l-2v) l̂S.... ^-

a somewhat more compact form and one which corresponds to the

usual assumption (in metals) of incompressibility of plastic strains,

While (8b) does not reduce to a form analogous to (11), it

may be inverted to a form similar to (14); the result is

6a../2y = 6e. .+ [v/l-2v)]6e. . 6..

(3f/3a ){3f/3a +[v/ ( l -2v)]3f /3a 6_ 6 } +1/1*v irar mn L J tu tu mn '

where

F* = -2y/{[3f/3e ]^
: )-H(3f/3W (p : ))0mn](3f/9amn)}

Note that utility of the last expression awaits a definite form for f,

although one may use this result in a formal sense in the development

below.

In each of these cases, we find relationships that show the pro-

portionality between the increments in stress and strain. Symbolically
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we may therefore write

and

where C. ., » and E. ., « are a generalized compliance and modulus whose

specific forms depend upon the loading function selected or otherwise

taken to model the material. To the extent that other models may be

put into this same form, we may proceed to develop the complete set

of equations for elasto-plastic flow, as shown in the next section.
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GOVERNING EQUATIONS

The derivation of a flow equation of the form of (15) and the

existence of its inverse (16) permits development of the full theory

to proceed. We take as a starting point the fact that the constitutive

equations relate increments of stress and strain in an explicit manner.
/

It follows that the remaining elements of the theory should deal with

incremental quantities directly; to do otherwise leads perforce to

nonlinearities in the theory and therefore difficulty in solving

problems.

Experience has shown that the simplest formulation will be in

terms of displacement increments rather than potential functions

(or. their increments), such as any of several types of stress functions.

Accordingly, we write the strain-displacement equations in the form

Se.. = (6u. . + 6u. .) / 2 (17)13 1,3 3,3/

where <Su. are the displacement increments. These quantities will

become the dependent variables of prime interest. Note that (17) is

tensorially correct when the differentiation is interpreted as

covariant inasmuch as the development here presumes small deformations

(or displacement gradients). This feature characterizes the remaining

development except where noted in the following sections.

The equilibrium equations are also written in incremental form.

Formally, we have

60.. . + 6X. = 0
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where SX. are increments in the body force. For most problems of interest,

however, we drop reference to body force and write simply

60. . . = 0 (18)
iJ.J .

as the equations of equilibrium.

Note that both (17) and (18) are in effect differential equations

in both space and some time-like parameter that reflects the sequential

nature of the loading and the process of elasto-plastic flow. It

follows that (17) and (18) must be accompanied by initial conditions.

One might specify, for example, the position of the body at an initial

't ime', along with its then-existing state of stress and strain. While

in many problems, these field quantities will be null, it is clear

that problems involving, say, a residual stress state may come under'

consideration; the mathematical need for initial conditions provides

the proper means for inserting such physical information into the problem.

We now assemble the foregoing. (17) is inserted into (16) and,

owing to the symmetry of the generalized modulus, we have

6oij /2v = Eijk£6uk,£ ™

Equilibrium is enforced to obtain

> = ° (20)

which is an extended or elasto-plastic form of Navier's equations.

It is this (set of three) equation (s) which governs the flow of an

elasto-plastic medium.
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Boundary Conditions: It should be reasonably clear that (20) is

an analogue to the equations of classical elasticity; the differences

are that the modulus is variable rather than constant, and that the

variables are the increments of displacement rather than their

instantaneous values. We may use this analogue to write boundary

conditions. At the boundary of the domain in which (20) is to be

integrated, one specifies either increments in displacement <Su. or

increments in traction 6t., the latter being given by an adaptation

of Cauchy's equations

6t. = 6(j. .n. = 2uE. ., />6u, />n. f211- i I T T i n V y ^ r y - i \.*" • * • s-L J. I I J. I K-C K. ,/C 1
.

having employed (19). In (21) n. is the unit outward normal to the

boundary. It is further possible to specify a mixed boundary -value

problem in exactly the same manner as is done in elasticity.

Integral Theorems: Because the theory is formulated in a manner

to identify incremental quantities as dependent variables, it is

straightforward to devise integral theorems that may be of use in solving

problems. Some of these have been described elsewhere, and we repeat

them for completeness, In order to avoid complexity of notation, we

replace the incremental notation by that usually associated with rates;

thus

<5u. -> u.i i

6e. .->£..
ij iJ

6a. . -*- a. .
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so that the variables of interest are instantaneous rates of change

(with respect to the inferred time -like parameter noted above)

rather than increments .

We have first an analogue to the theorem of minimum potential

energy; consider the functional

/

* • m * * / ' *
E. .. »e. .e, .dV - I X.u .dV - I t .u.dSijk-t ij k£ 111 J i i

V V So

in which V is the interior of the domain of interest, S is its

surface or boundary, and S is that portion on which the traction

rates t. are specified. It may be shown [4] that, if all displacement

rates that satisfy stated boundary conditions on S , where

S = S + S , those which satisfy the equations of equilibrium in rate

form are distinguished by a stationary value of II; moreover, that

value of II is a minimum. The procedure by which this theorem is

established is given in [4] and by the pattern set in [3] , chapter

10. Basically, one sets the first variation of II to zero, i.e.,

= 2y / E . . . »e. . f i e . p d V - / X .Su .dV - I t .6u.dS
I ijkfc ij k£ J i i Jii

V V Sa

= 0

and integrates terms in the first integral by parts, using (17). The

results are (20), modified to include body forces, and (21), in rate

form.
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We consider next the functional

II • I • • I • •n* = T- I C. ., »a. .G. »dV - I u . X . d V - I u. t .dS4y ./ ijk-t ij k-t J i i J i i

V V Su

Using the same type of procedure, it may be shown that, of all stress

rates that satisfy the equations of equilibrium rate and boundary

conditions on S , those which lead to a compatible strain rate field

are distinguished by a stationary value of II*; moreover, that value

of n* is a minimum. This theorem is less useful than the one above,

since its proof and use require introduction of stress (rate) functions

which we view, as noted above, as awkward.

Third, we write the functional

r . . . k i ] d v _ A [;
v v

- I t.u.dS - I n.o..fu.-u.*)dS
J i i J 3 x/ i i

S Sa u

. *
in which u. are the displacement rates specified on S . We compute

• • • •
the first variation of P, allowing u., e.., and a.. to vary in V, u.

to vary on S , and a.. to vary on S . Note that X., t., and u* are

prescribed. Computing 6P, integrating by parts those terms involving
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6u. ., and setting the result to zero, we find
!> J

• •

a. . = 2yE. ., « e. p in V13 ijkt kt

a. . . + X. = 0 in V
i J , J i

e. . = (u. .+ti. . ) /2 in V
ij i,J 3,i

• •
t. = a. .n. on S
i ij J a

• • ^
u. = u. on S1 1 u

Thus this analogue to Reissner's theorem gives a recapitulation of the

various equations derived above. A complementary form of the theorem

derives from the functional

p* = - I [~ C. .. 'a. .a. p +Xu.]dV + |[a. .(u. .+u. . ) /2 ]dVJ L4y ijk£ ij k£ ij j L ij i,j 3 ,1^ J

V V

- l u . t . d S - / (u.-ii*)o. .n.dS

S S..

but is of limited utility as noted above for n*.

Finally, we note the existence of a form of Betti's reciprocal

work theorem. It has been shown [5] that

/
a.'.eP^dV = / e f . a . . d V
ij ij J iJ !J

v-v' v-v'

The primed stress and strain fields are those associated with an

elastic field; in particular we consider Kelvin's problem of a point
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load in an infinite elastic body. V is a ball surrounding the

load point, deleted from the integrals owing to the singular nature

of the local stress and strain fields. Note that rates or equivalently,

increments, form the basis of reciprocity. Due to the inferred
•

ellipticity of the governing equations [5,6], the u. are continuous

and should possess continuous second .derivatives. Thus the divergence

theorem holds and the reciprocal theorem may be written as

/

-*• is* i ^ • f n
t.u.dS = I u.t .dS + I a. .e.L?7 11 7 u u

S+S' S+S" V-V

where S' is the bounding surface of V. Taking the limit as V ->• 0,

we have

• I • I * I w—^ * frO
u. + I T . .u .dS = I U . - t . d S +§£. . . elfJ

i J ij J J iJ J • J^Uk jk
s s v

as an extended form of Somigliana's identity. In this relationship,

note that the plastic strain rate is proportional to the stress rate

and therefore the total strain rate, through either of (8), and (10).

Thus this integral statement may be written to relate surface tractions

and displacements may be eliminated [5]. The kernals T. ., U . . , and

y\ ., are given in [5] and need not be repeated here.
!JK

Undoubtedly, other relationships analogous to those familiar in

elasticity may be developed for elasto-plastic flow. The reason for
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this, and the central feature of the present theory, is the attention

given to increments (or equivalently, rates) of field quantities as

the dependent variables of interest when a problem is to be solved.

What this type of formulation does is to shift the nonlinearities of

the physical process into a slightly subordinate position. Mathemati-

cally, the governing equations are not nonlinear. Instead, they are

quasilinear; the nonlinear aspects of the process show up as coefficients

in the governing equations and, as described below, the solution of

problems is greatly facilitated. Moreover, the equations themselves

are accessible to study; we have, for example, looked in varying

degrees of detail at the character of the equations [5,6] and found

them to be elliptic so long as there is some work-hardening. This

nature of the equations has enormous implications for the means to be

used in solving problems. We know, for example, that so long as

there is some work-hardening, no slip lines will occur. Thus many

of the solution techniques developed for rigid and perfectly plastic

materials are demonstrably inappropriate. In their place, however,

one is free to choose methods appropriate to elastic problems; the

chief numerical methods thus available are finite elements, finite

differences, and boundary integral equations. Each of these offers

certain advantages and disadvantages to the analyst, depending upon

the particular problem at hand, and he has access to the extensive

experience relating to each as he proceeds to attack his problem. We

discuss some aspects of solution strategy in a subsequent section of

this report.
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SPECIAL CONSTITUTIVE RELATIONS

In the penultimate section, we discussed constitutive relations

in general, arriving at relations of the form

2y6e. . = C. .. »6a, „ (15)ij ijk-c k£ v '

and the inverse

It is important that relations of this type be used so that the

remaining development of the governing equations may be followed.

Within these limits, however, a considerable variety of specific

constitutive relations may be employed and, in this section, we

indicate a few that may be useful in analysis. Fung [3], Chapter 6,

lists many such possibilities by indicating the appropriate form of

the loading function, and his bibliography cites much of the literature

in this area. Both isotropic and anisotropic forms are given, the

latter deriving from Koiter's work [7], and various examples are cited

that provide for kinematic and isotropic hardening, and for a

Bauschinger effect. Indeed, Fung provides an informative overview of

this aspect of plasticity without becoming involved in the details

of individual relations or solution methods.

It is useful here, however, to examine such details for a few

situations. In so doing, we are altogether mindful of the dual needs

for computational convenience and physical sensibility. Thus, for
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example, we do not discuss loading functions that reflect a

Bauschinger effect; the experimentation required to infer the form

of such a function alone is prohibitive in the absence of compelling

reasons for such work. Still, the procedures outlined are easily

adapted to such representations when warranted.

AnisotTopic Relations: Following Koiter's generalization [7],

we consider not one but a set of n load functions

' ° a=l,2,...,n (22)

The condition f =0 describes a segmented surface in stress space

comprising n mutually exclusive segments. These pieces of course

are contiguous and, since the stress vector corresponding to any

point in the physical domain must be single-valued, yield proceeds by

activating only one load function at any instant of time. Thus, if

£3 = °

then

f a < 0 a = 1,2,..., 3-1, 3+1,. ..,TI

Of course, different f may be operative at different points of the

physical domain at a given time, or at the same point but at different

times. If for convenience we let

f C0..,e(?
),W(p)) = * (a..)-* (e.

(P},WCp))v ' ' ' Y ' y ' ' (23)^ J
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it is a direct calculation to arrive at the flow rule

(P) A *a(
3*a/3aii)(3V3V)6e.tPj = £ a, " 2J 5 *£_ 6a (24)

^ a=l 2y(P) (3* /3a )a k£
Ka v Ya' imr ran

as an analogue to (11). In (24) y • is a set of plastic moduli

analogous to y ™ in (11). Note that since flow is proceeding oneq

only the 3th surface, the summation in (24) is not a collection of

processes that occur simultaneously, but of those only one of which

may occur at any time and position in the physical domain; (24),

however, represents the totality of processes that'may go forward

at all times and points.

The simplification (23) is non-essential and an analogue to

(8b) may be written. It would involve replacement of f by f and a

summation, as in (24), and need not be written here explicitly. To

either such a result or (24) may be added the necessarily linear

relations between the elastic strain increments and the stress increments;

the result assumes the form (15) which is necessary for the remaining

development of the theory. It should be noted that the elastic relations

may be fully anisotropic with no conceptual difficulty. There is

certainly the potential tedium of inverting such equations to arrive at

the analogue to (16), but, to the extent that we envisage extensive

use of the computer in solving problems, no practical impediment to an

anisotropic theory of elasto-plastic flow is apparent.
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Isotropy and I-H-compressibility : Up to this point, we have allowed

the function <j>(a . •) (or the functions <|> (a. .) to be arbitrary.

Experientially, however, it is clear that specific functions are very

attractive from the standpoints of computational convenience and

physical sensibility. In particular, we may now require flow to

be both isotropic and incompressible by restricting <j> to depend

only on the stress deviator

S. . = a. . - (a.. /3) <5. .13 aj *• kk' J ij

and, more particularly, its invariants

J2 = S. .S../22 ij Ji

J3 = S. .S..S, ./36 ij jk ki

so that, for example

* = <J>(J2»
J3) (25)

This form is appropriate to the observations made by Osgood [8] and

discussed by Drucker [9] wherein

(25a)

is suggested as an equivalent stress. The resulting equations pertinent

to (25) were given in some detail in [6] and need not be repeated here.

It is a straightforward matter to use the specific form (25a) in these

formulae, althouth we have not pursued such an effort.

Alternatively, one may revert to the simpler and more popular form
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associated with the name of von Mises. In this case

$ = /(2J2/3) (26)

and the equivalent stress T is indistinguishable from the octahedral

shear stress T . Using an octahedral plastic strain increment in

place of the equivalent quantity defined in (9), we find that if

o- o = 2V

then

11 (?) - 7yo = 3' eq

It is then easy to show [5] that the flow rule is

.. = 6a i .-[v/(l+v)]6akk6..

and its inverse is

..

The extended form of Navier's equations is, in the absence of body forces,

f ( j B 0 (27)

and it is again useful to note the quasilinear form of this diffemetial

equation: The dependent variable 6u. appears linearly in (27), while

the nonlinearities of the problem are confined to the coefficients of

the last term. The operational result of this important feature is
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discussed below as well as in separate publications dealing with special

aspects [5,10]. Finally, we note that, as y ™ /y ->• 0 (perfect

plasticity), the flow rate in the form shown loses meaning; however,

both the inverse and the differential equation (27) go smoothly to the

limit and exist and are tractable.
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FINITE DEFORMATIONS

Up to this point we have developed the theory of elasto-plastic

flow wholly within the context of infinitesimal strains, that is, for

e.. sufficiently small for (17) to apply. As Rice [11] and Hill [12]

have noted, however, there may be instances in which the magnitude

of the deformations and the implied assumption a. ./y « 1 areij eq

such that this framework is inappropriate. For these and other

reasons, the theory was extended to the case of finite deformations.

The development is presented in considerable detail elsewhere [13],

and we give below just its main points.*

The total deformation is described in a fixed reference frame

by the mapping

x1 = x1(XJ,t) , [x1,̂  t 0 (28)

In (28), x are spatial coordinates of material particles comprising

domain B at time t -> t which were located in B at t . Weo o o

differentiate (28) with respect to time to obtain a velocity field

v = v (x , t) and compute the velocity gradient

v. . = d. . + u>. .i;;j 13 ij

*For this purpose, we use in this section general tensor notation,
covariant (contravariant) character is denoted by subscript (super-
script) indices; a comma (semicolon) indicates partial (covariant)
differentiation; repeated indices in subscript-superscript pairs
implies summation over the range 1,2,3; x1 and X* are coordinates in a
single, fixed, orthogonal curvilinear system yi; g.. is the metric
tensor of yi; and §\ is the Kronecker delta. 1-)
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where d. . is the (symmetric) deformation rate tensor and w. . is the

(skew-symmetric) spin tensor. These tensors are of particular

significance in that they both provide a full description of motion,

and are linearly dependent upon v .

We next invoke the assumptions of the existence of a load function

and Drucker's hypothesis. In his original work [13], Osias used a

loading function of the form of (25) — in the context of (3) — but it

seems clear that far more general forms are altogether acceptable.

The statement of Drucker's hypothesis is written as*

a d > 0 (29)ij

where a is the Jaumann stress rate given by

"ij 'ij i kj j ika J = a J+a co -a, to
k k

and d. . is the plastic component of the deformation rate. It may

be shown that, independent of any rotation, (29) requires that work

done by the external agency in producing d. . is nonnegative, con-

sistent with the sense of the original hypothesis. The Jaumann rate

is used in (29) to provide an objective measure of the change in stress

viewed from a frame rotating with the material, as follows from the

work of Prager [14].

^Note that (e), (p), and eq are not indices.
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With these bases, Osias derives a flow rule of the form (15);

the details, however, are such that explicit notation is in order.

The flow rule is

Bijk£

i i k/
•'

Y =
^M

and the inverse is

,p (31)

and g ^ is the associated metric. Note that the elastic deformation

rates and the Jaumann stress rate are presumed to be related in precisely

the same fashion as are infinitesimal strains and stresses — or their

increments — in classical isotropic elasticity. To that extent,

(30) and (31) are tailored to materials for which a shear modulus and

and a Poisson's ratio may be defined in the elastic range. It should
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also be noted that (30) and (31) do not involve strains per se; such

quantities are computed a posteriori in analysis.

In requiring equilibrium, Osias adopts the rate or increment

viewpoint which has proven so useful. He observes that the total

force acting on a body must vanish, i.e.,

I t1dS = 0

S

where t are surface tractions, and requires that the time rate of

change of this integral also vanishes. Hence

At1 + a 1 Jv k . kn-)dS = 0 (32)

S

so that the traction rate is

t1- (a^-akV.k)n- , (33)
»K J

and the equations of equilibrium are

olj .-okl .vj . = U (34). -, . ̂  v . V \."̂ J>J >J >K

with no body forces acting, of course. In the interior of B, (34)

apply. On the boundary S, however, there is some choice. One may

specify velocities in the usual way; one may specify traction rates

(33) when, for example, a pressurization is known; or one may specify

a force in terms of an integral as on the left of (32) when such a
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quantity is known over some portion of the boundary S.

Combining (34) and (31), al-ong with the definition of deformation

rates in terms of velocity gradients gives the final equations for the

latter as

r_ijk£ •, i£ kj
[°' v j ; £ ] ; i + g a vi;j£

(35)

4c&3M«M&U-«!&lJ"''V];i . o

Inspection of (31) and (35) shows the latter to be quasilinear in

the velocity v. so that, aside from increased complexity, (35) is

operationally of the same form as (20) or (27).

As a result we have a form of Navier's equations further

extended to the case of elasto-plastic flow of bodies permitting

finite deformations, together with boundary conditions appropriate to

their integration. The various comments in preceding sections of

this report concerning the utility of this sort of formulation

pertain equally here. While we have not examined such matters as

integral theorems, we have used a planar counterpart of (35) to solve

problems, and these results are described fully elsewhere [13].
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REDUCTIONS TO 2-SPACE

While derivation of the theory is easily prosecuted using indicial

notation, it is useful to reduce the final relations to a form akin to

that employed when actually solving problems. Accordingly, we devote

this section to the governing equations for a series of situations in

2-space, that is, in more familiar extended representations. We

perform this reduction only for Mises or J2 theory where <|> is given

explicitly by (26). Forms appropriate to (25) are given in [6].

Torsion: There are two cases of torsion, one for prismatic

bars or bars of constant cross-sectional shape, and the other for

axisymmetric rods whose shape is otherwise variable. The first may

be described in rectangular cartesian coordinates (x ,y ,z) , and the

dependent variables are the corresponding displacement increments

(6u ,6v ,6w) . It may be shown that, if the z-axis lies along the

center of rotation,

6u = -yzStf

6v = xzSi?

6w = 6w(x,y)

where 6t? is an increment in the twist per unit bar length. It follows

that the stresses are given by

0 = 0 = a = o = 0
x y z xy

0 = T (x,y)xz x*- >}J

a = T (x,y)yz y >}J
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and that equilibrium requires

/3y = 0
y

We define

(P)

and observe that

J2 = T2 + T2

^ x y

to write the flow rule

y6w, = yy<5t> + OeT/J2 ; )6T + (3T T /J2)aT
J\. X A. A. / /

y6w, = -xy6t? + (6x T /J2)6r + (1+Br 2/J2)T*y y x x y y

and its inverse

[(l+S)/y]6T = [C l+BT/J 2 ) (6w. -y6*)-(3T T /J2) C-Sw,
A y A A y

(36)

[ ( l+B) /y]6T = [ - (BT T /J2)(6w , -
/ y A x A

If we apply equilibrium to the inverse of the flow rule, we obtain

C37)

o^Sw, + a26w, =x y

where

= (1+BH-tCBT T/ -
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Boundary conditions for (37) are

<St cosi|> + 6t sinij> = 0x y

where iji is the angle between the unit outward normal and the x-axis,

and the stress increments relate to 6w and its derivatives through

(36). Note that, where no flow occurs, 3 = 0 and (37) reduces to the

familiar
V26w = 0

The alternative formulation derives from elimination of 6w from

the flow rule, having introduced an extended Prandtl stress function as

T = 9?/8y , T = -3C/9xA /

with ? = £(x,y). The differential equation is

(38)

"y " ~°"*''

where

03 =

and 65 = 0 on the boundary of the domain so long as it singly connected.

This last restriction renders (38) less useful than (37), for multiply

connected domains are excluded from study. Still, the quasilinear form



- 34 -

of (38) is evident, as is true for (37), and solution procedures may

be developed to exploit this feature.

Torsion of axisymmetric bodies is described in a similar fashion

In a system of cylindrical coordinates, the only active displacement

is in the circumferential direction and we denote it by v(r,z). The

only active stresses are

and

are = Tr ' aez = Tz

Jo = T + Tz r z

Using the same definition of 3, the flow rule becomes

and its inverse is

[ ( l+g) /y ]6T = (l+gT^/J2)6v, - (gT T /J2)(6v, -<5v/r)z r z z r r

[ (H-g) /y]6T - (BT T /J2)6v, - (l+eT^/J2) (6v -6v/r)r i L L L r

If we apply equilibrium

/8r + 26r IT + 36r /8z = 0

we have
2

(39)

(40)
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where

[(1+BT*/J2)/(1+B)]. - [CBT T /j2)/(i+B)], }+(l+BT*/J2)/r
L, I Lt J. Z Zr

<*2 =
 +e

Boundary conditions for (40) reduce to

<Sr cosij) + 6T sinip = 0

where ty is the angle between the unit outward normal and the r-axis

(i.e., the plane z=0) , and the stress increments relate to 5v and its

derivatives through (39). Note that, for purely elastic behavior, (40)

reduces to

, - (l/r2)6v + 6v> = 0

which of course is the standard elastic result.*

Alternatively we may introduce the stress function C(r,z) through

and eliminate reference to 6v in the flow rule. The result is easily

written terms of the ratios

O

with Ivd = /(?. +

*A slightly altered form of both this relation and (40) is obtained if
the dependent variable 6v is replaced by an angle of twist 6t?(r,z) =
6v(r,z)/r.
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as

(41)

-•

with

<*3 =

The boundary condition on (41) is of course constancy of 6£» as in

elasticity. In both (40) and (41) the quasilinear nature of the

differential equation is evident as noted for other cases in this

section.

Axisyrmetric Extension: Still operating in cylindrical coordinates

(r,0,z), the non-zero displacements are observed to be

u = u(r,z)

w = w(r,z)

and the strains are

e = 8u/9rr

ee = u/r

e = 3w/8z

to which there are corresponding stresses a , a , a , and T . Ther D z rz

flow rule is conveniently written in terms of normalized deviators
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where

rz.

To =

then have r 8

rz

rz rz

2s
r z r z

jto8 L v j
O Z z

Yrz ~ S s <Sarz r P

as the flow

the

•inverse is

constant

" "

's raodulus fi

E =
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and we have

6 a / E = [ (X+2y) /E - s*/(H-l/B) ] 6 e + [ X / E - s s / ( l + l / B ) ] 6 er - r r e

+ [A/E-s rsz/(l+l/e)]6ez-[s rs r z/(l+l/e)]6Y r z

<5aQ/E = [X/E-s es r / ( l -H/3)]6e r+[(X+2y)/E-Sg/( l+l /e)]5e e

+ [X/E-s s / ( l+ l /B)]6e -[s s / ( l+ l /B) ]6Y r zo z z o rz rz

6az/E = [A/E-s zs r / ( l+l /B)]6e r+[X/E-s zS e / ( l+l /3)]6e e

6Trz /E = -

Navier's equations are obtained by combining (42) with the equations

of equilibrium, viz.

36a /3r + (6<J -6aJ/r + 35-r /3z = 0r r o LL

86T /3r + ST /r + 86a /3z = 0
37 Z I*Z Z

having expressed the strain increments in terms of displacement increments

in the usual manner. Boundary conditions are given in terms of 6u, Sw, or

tractions which are linear combinations of (42). The result is more

involved than (40) or (41) , say, but the operational nature is very

much the same.
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Planar Behavior: It is useful to consider two types of problem

under this heading, plane strain, and combined plane stress and

(Kirchhoff) bending. The first may be established by formally requiring

EZ = 9w/3z = 0

Y = 3v/3z + 3w/3y = 0

Y = 3u/3z + 8w/3x = 0xz

where the domain of interest lies in the x-y plane. We then operate

on (27) and its associated relations to develop the requisite equations.

From (17) we have

Se = 3<5u/3x
JC

fie = 3<Sv/3y

6Y = 3<5u/3y + 36v/3x

and the flow rule is again written in terms of normalized deviators :

s =

sy = (2ay-az-ax)/(3/3to)

sz

S = T /(/3T )xy xy' *• oj

with

r2 = (2/9)(a +a +a -a a -a a -a a +3T )o x y z y z z x x y x y

We note that the transverse stress az accumulates from observing the

constraint

0 = (l+0sz)6oz+(-v+Bszsx)6ax

+(-v+3s s )6a +(23s s )6tv zy y^z xy' xy
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which, together with ST = 6t =0, insures the plane strain condition.
A2 y £*

The flow rule then becomes

6ce = [l-v+e(s2+2vs s +s2J]6o
A A A /, Z, X

+[-v+B(s s -2vs2)]<5aL x y z'J y

+2[B(s +vs )s ]6xL v x z-7 xyj xy

with the inverse

So JE = [(A+2M)/E-s^/( l+l /0)]6e +[A/E-s s / ( l+ l / e ) ] f i e v• A . A A A V y

6ay/E = [A/E-s ys x / (H-l /B)]6e x+[(A+2yD/E-S2/( l+l /0)]6 e

-[s s / ( l + A / B ) ] 6 yL y xy J xy

61 /E =-[s s /( l+l/3)]6e -[s s / ( l+ l /B)]6exy L xy x ' J x L xy y v J y

+[y/E-sxy/(l+l/8)]6Txy



- 41 -

which are then combined with the equilibrium equations

36a /3x + 96r /3y = 0
jv ^y

/3x + 36a /3y ' = 0

to produce the final result .

The combined bending-stretching equations are derived by using

the analogue to to the theorem of minimum potential energy, outlined

above. We consider the displacements and their increments to be

functions of the coordinates (x,y) only, but write the strain

increments as

6e = 8Su/3x - z326w/3x2
J\

6e = 36v/3y - z326w/3y2 (43)

6y = 36u/3y + 36v/3x - 2z32w/3x3yxy

and insert these' into the functional II under the condition that

T = T = a =0. Jones [4] has worked this out in full detail,xz y ^
so we shall not repeat his results here. It may be noted that he

recovers a coupled theory, and this coupling occurs both in the

field equations and in the boundary conditions. The former are in

terms of the three displacement increments (6u,6v,6w) and are of

course quasilinear. The latter are in terms either of these three

quantitites or resultant increments of force (for in-plane loading)

and of moment and equivalent shear (for out-of-plane loading) .
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He also demonstrates appropriate 'corner conditions', in terms of

twisting moment and corner angle. Through solutions to problems, he

shows that, although the strains remain linearly distributed through

the plate's thickness per (43), the stresses become nonlinear as

yield progresses. He also makes clear the manner in which bending

and stretching couple in the presence of plastic flow, although.the

two events are distinct for purely elastic behavior. We do not

reproduce his findings here both because they are accessible elsewhere

and because their form is evident from the foregoing developments.
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SOME ELEMENTARY SOLUTIONS

It may be useful, in order to see more clearly the workings of

the theory, to consider some elementary examples. We therefore look

in this section at torsion of an axisymmetric rod of constant radius

R, and at bending and extension of a rectangular bar. For the first

case, the circumferential displacement increment is simply

Sv =

where, as in the last section, $ is the twist per unit rod length.

The flow rule is simply

having used the notation of the last section. Since the only active

stress is T and

S = y/y0
Cp)

where y = y " (T ) and T = /(2/3)t , the flow rate may be easilyo o o o z

integrated. The result is

yrtf = T + 2yeC p- )[/(2/3)T ] (44)z o z

and e " is a given function of T or, as implied, /(2/3)r . Next,o 0 2

we observe that the twisting moment is simply

R

Mt = 2ir

o
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so that moment and twist may be related. Let.us suppose, for example,

that
0

e*(TQ/T£-l) 1/n
T o > T £

where e*, T,,, and n < 1 are constants. Then if

T = (2 /3)To
p -L

we have

2ye*(Tz /Tp-l) 1/n

0 < r < T /yt?
P

T /y < r < R

Thus the elastic relation is recovered for Ri? £ T /y and
P

Mt = yJt? , J = TTRV2

but as yield progresses, (45) obtains. In that event (45) must be

evaluated for T as a function of r to find M . As an illustration,
2 L

let n = 1; we have then

8e*/5R

which gives a moment-twist relationship that is asymptotic to the

implied bilinear 'curve'. The case of perfect plasticity may be

represented by e* -> °°, in which case

M . . . = (2ir/3)T R 3

t-lim p

(45)
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is a limiting moment that may be applied to the rod.

For rectangular beams, Jones [4] derives the governing equations

with the aid of the analogue to the theorem of minimum potential

energy. The beam occupies the region 0 < x < L, -y /2 < y < y /2,

-z /2 < z < z /2; the end at x = 0 is cantilevered; the end at x = L
o o

is subject to increments in an axial extension force 6F, a shear

force 6Q, .and a bending moment 6M; the length of the beam is loaded

transversely by 6q. Since the flow rule is

60 = (1/E + l/3u^)6a

where subscripts on 6e and 60 are suppressed, and the inverse

(including transverse straining) is

60 =

he takes the strain-displacement equations in the form

6e = d6u/dx-yd26v/dx2

and computes the functional n. Operating to find a minimum value,

he obtains the equations

d (Cid6u/dx)/dx - d (C2d26v/dx2)/dx = 0

(46)

d2(C3d26v/dx2)/dx2- d2(C2d6u/dx)dx2 = 6q
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where

I= ZQ E'dy

rC2 = ZQ I yE'dy

C3 =

-70/2

and E" = E where no yield occurs, otherwise

The boundary conditions (at x = L) are

CidSu/dx - C2d
26v/dx2 = 6F or 6u

C3d
26v/dx2 - C2d6u/dx = 6M or d6v/dx

d(C3d
2<5v/dx2)/dx - d(C2d6u/dx)dx = -6Q or 6v

specified

specified (47)

specified

It is seen that C2 couples bending and stretching in both the

differential equations and the boundary conditions. Furthermore,

all of the coefficients (Cj, C2, €3) are problem dependent so that

solution to a given problem may not precede in a simple manner.

If the bar is loaded in simple tension, then it is easy to show

that the original stress-strain relationship is recovered, albeit in



- 47 -

uniaxial quantitites. On the other hand, if the bar is put into pure

bending, matters are more complex in that there is an elastic core

sandwiched between two elasto-plastic outer layers. The strain

distribution remains linear through the beam's thickness, i.e., with

respect to y, but the bending stress distribution becomes nonlinear

as a reflection of the stress-strain curve.

For the particular case of pure bending, Cj is of no interest;

€2 is null owing to the symmetry in E'; 03 has different values in

the core and outer layers, the latter depending on the shape of

the curve; the increment in curvature is given by

SK = d26v/dx2

and the (incremental) moment-curvature relation is

C36K = 6M

which satisfies both (46) and (47). So long as a is everywhere

less than the yield stress Y, we have

(Ey3/z /12)6K = 6M

and the deflection increment is

6v = 6[6M/(Ey^zo)]x
2

which are the familiar elastic results, and they obtain for

M < My = y2zoY/6

As the moment M exceeds M.,, however, we need to account for the stress-
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strain relationship. Suppose that

as before, except that the exponent is by implication set to unity.

Then

- l / [ l+Y/( /2Ee)]}6e

and, since <5e = y6ic, we have

6M = 2zo I Ey26Kdy + 2zQ j E{1-1/[l+Y/(/2Ee*)]}y26Kdy

o yp/2

Kyp/y0)3 + {i-i/[i+Y/(/2Ee*)]} [i-(yp/yQ)3A

where y = 2Y/EK. Observing that y depends upon K, we integrate this

last expression to obtain the final relationship. Setting

K* = Ey K/2Y

3* = l/[l+Y/(/2Ee*)]

we have
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the additive constant of integration being adjusted to connect this

result with that for purely elastic behavior. At K* = 1, M/1VL = 1; as

K* becomes large M/R, -> (1-3*)K* + 38*/2. In addition, perfect

plasticity is characterized by g* -»• 1 so that we observe the limiting

situation of M/R, -> 3/2. For perfect, plasticity, it is easy to show

that

Yx2v = -

so long as 1 < M/R, < 3/2.

Thus we have solution to some elementary problems. Slightly more

complicated problems may of course be devised, but the algebra becomes

far more difficult and it is not in our interest here to pursue the

matter. The point remains, however, that a variety of approaches is

available to solve problems and that, while we may develop explicit

formulae for simple cases, we are always in a position to observe the

process of response from purely elastic to combined elasto-plastic

flow. We may also allow excitation to reverse and examine the process

whereby residual stresses develop.
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SOLVING MORE COMPLEX PROBLEMS

To this point in the development, it should be clear that the

theory of elasto-plastic flow is fully described by a set of one or

more differential equations, and boundary and initial conditions.

The governing differential equations are typically* written in terms

of displacement increments; they are quasilinear with variable

coefficients which depend upon the current stress state and given

material properties and thereby reflect the nonlinear aspect of the

process. The boundary conditions are in terms of displacement increments

or traction increments which depend linearly on the gradients of

displacement increments. Initial conditions perforce are to be given

in terms of stress and strain fields.

Problem solving will usually entail numerical procedures and use

of a large, high-speed digital computer. The issue then becomes ,

identifying an appropriate method. If we look at the kind of problem

to be treated, as summarized above, we observe that the equations for

incremental quantities are similar to those for ordinary elasticity,

but with two important exceptions. The first is that the apparent

material properties, as described by the coefficients, are inhomogeneous

and effectively anisotropic. The second is that distinction must be

*Alternate formulation in terms of stress function(s) is permissible
but, on the whole, has not proven to be particularly useful. Other
than the one example shown above, we do not pursue this form further.
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made between loading and therefore continuing elasto-plastic flow, and

unloading and thus only elastic behavior.

These exceptions give no especial impediment to problem solving

when a computer is used, for these devices are easily programmed to

handle what are, after all, merely complex details. Accordingly, the

question of selecting a method appropriate to elasto-plastic flow is

no more difficult than settling on a numerical technique for ordinary

elasticity.

Accordingly, we may choose from a more or less standardized list:

finite differences, finite elements, and so on. In the specific problems

we have solved and released for publication [15-19], we have preferred

finite elements of the simplest kind, largely for reasons of convenience

and economy. These considerations have proven sensible in dealing with

more complex situations of bending [4] and finite deformations [13].

We have also formulated an approach using the boundary-integral equation

method [5], and Riccardella has implemented this technique for the

case of plane strain [20]. The overall algorithm has been described

as well, in a context that transcends specific method [21,22,10]. In

most methods of practical interest, differential equations of the

form (27), but reduced to a specific situation, are then reduced to

algebraic equations which we represent as

[A] {6u} = {6t> (48)



- 52 -

with boundary conditions being specified in terms of certain elements

of (6u) and/or {6t}. In (48), [A] is a matrix of coefficients that

replace the differential operator in (27) , {6u} is a vector of

displacement increments at points distributed throughout the domain

of interest, and (6t) is a vector of traction or force increments

at these points such that, except for specified boundary locations

{6t} is largely null. Note that (48) obtains for both finite

differences and finite elements, and that a parallel form is sufficient

to represent the equations for the boundary integral technique.

Program Outline*: Typically, a computer program for elasto-

plastic flow in two spatial variables comprises an executive routine

followed by one that sets up data and initializes various arrays, and

then by several operational routines. The initializing routine reads

in geometric information, loading data, and material properties. The

load data may consist of tractions and/or displacements, in either

of two orthogonal directions. The material data include two elastic

constants and the relation between e ™ and T . This is read in as ao o

table of coordinates of a sequence of points along the octahedral

stress - plastic octahedral strain curve; spacing between the points

*This discussion is taken largely from [10]; we appreciate the
cooperation of that publication's editor in releasing the text for
presentation here •
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is roughly proportional to the curve's radius of curvature. It is also

useful to provide an artificial extension to the curve, and we assume

indefinite continuation of the slope on logarithmic scales, as evaluated

near the end of the input data. Alternatively, one could employ a

simple straight line extension. Use of this technique precludes

inadvertant loss of a run because the stress-strain curve was out-run;

the analyst is enabled to decide where to cut off his results after

they are in hand.

The first load step is necessarily elastic, and no difficulty

is encountered in performing it for an arbitrary level of loading.

The matrix [A] is assembled, the vector {6t} is computed together with

whatever modifications in [A] are required due to imposition of boundary

conditions, and the resulting equations are solved for {6u}. Deformation

and stress increments are determined. Excitation may then be scaled so

that the most highly stressed point in the domain just exceeds the

proportional limit, e.g., T /T»- = 1.00010.

Before beginning the next load step, certain operations are

necessary, so that the initiation of yield may be taken into account.

The table of points describing the stress-strain curve is scanned,

beginning with that at the proportional limit (i.e., (0, T«) in the

table described above). The scan continues until a point is found

whose coordinates exceed that of the point in the material; the next

highest point is then selected for further computation. The slope of
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the curve (2u " ) is then taken to be that of a straight line connecting

this point on the curve and the material point.

This procedure accomplishes several things. It is clear that the

value of y " thus determined is a reasonable approximation to an average

over the increment of loading to come. Proximity of the material

point to the point in the curve will not exert undue influence on the

value of y which, incidentally, is necessarily positive. If the

material point happens to be off the curve, it will be steered back

on; both overshoot and undershoot are corrected. Furthermore,

extensive experience has demonstrated that this procedure is inherently

self-correcting.

At the position where yield has just begun, no significant plastic

strain or strain energy has occurred, and no values of these quantities

are stored. The calculation proceeds with whatever further data

reduction and output preparation are appropriate. In our finite

element programs, for example, we find strains, stresses, and several

of their invariants. As is evident from (37), for example, at least

the stresses are needed to prepare for the next load increment.

The second load step follows the same pattern used for the first,

with two exceptions. Assembly of [A] is modified to account for yield

through introduction of suitable material parameters where yield has

begun: Also, after finding {6u}, the same considerations obtain in

determining the corresponding stress increments.
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We have preferred to reassemble [A] fully for each load step,

rather than to modify a retained and originally elastic version of

this array. While there is no unanimity over this point among

practitioners in this sort of analysis, it is pertinent to note certain

bases of our preference. Fresh reassembly of [A] for each load step

is not, in our experience, costly in time; the core storage allocated

to [A] may be overwritten for temporary purposes once {6u} is determined;

the more complex bookkeeping needed to modify [A] from step to step

is avoided and the overall code is thereby more compact; and this choice

directly admits multi-cycle loading in that different types of boundary

conditions may be imposed from one step to the next.

Subsequent steps follow the pattern outlined above, and the

computation nominally continues to whatever termination point has been

set. Because, however, unloading either locally or globally may occur

during any load step, we insert an additional procedure prior to finaliza-

tion of the results for each step. Once increments in displacements,

strains, and stresses are found, the solution is regarded as having

only a candidate status. The program checks to determine whether

the candidate solution implies an increase in T at all points currently

yielding. If so, the candidate solution is accepted and the program

moves on to completion of the load step.

If not, then [A] is reassembled with elastic constants in those

positions corresponding to material points where elastic unloading

seems to be in process. The degree of yield at which unloading is
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(tentatively) first detected is stored, and an iteration within the

increment is begun until there is internal consistency between the

presumed and actual behavior at each material point. Once such

consistency is achieved, whether or not iteration is required, the

increment in plastic octahedral strain is computed via

6so o o

and the plastic work is obtained through simple trapezoidal quadrature

at those points where yield continues.

Where unloading has occurred, T is traced so that when it

again reaches the level where unloading began, the elasto-plastic flow

rule is again used for computation of [A] , and plastic strain continues

to accumulate.

With this additional procedure, unloading on any scale may be

incorporated into the analysis. Experience has shown that the iteration

rarely requires more than one cycle for internal consistency to be

achieved. We may also remark that the present computer programs

exclude Bauschinger effects largely as a matter of convenience. Had

we the requisite data, we should be able to program not only this

effect but cyclic stress -strain behavior as well. We recognize,

however, that obtaining such data is itself a difficult task.

Automatic Loading: The procedure outlined above works well

with smooth stress-strain curves, i.e., those with a gradually changing

slope all the way from initial yield to high strain levels. In other
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situations such as that of a bilinear curve, additional steps are

needed. The reason, of course, is that there is every chance for

overshooting the curve at its knee when load progression is externally

specified.

We thus introduce the option of what is termed automatic loading.

The analyst merely prescribes unit load steps, and the actual load

increment level is internally scaled, once the solution is beyond the

stage of candidacy. The scheme, operative for displacement, force,

or mixed loading in any order, works as follows.

Once the candidate solution, based on unit loading, is found

acceptable, two potential scale factors are determined. One is found

so that just one material point yields (or re-yields), and the other

so that the increment in total octahedral strain nowhere exceeds a

small fraction of its current value. The lesser of these two factors

is selected and all incremental quantities are scaled by its value.

In this manner, the stress-strain curve is tracked with no little

precision. It may be noted, however, that the cost of solving a given

problem is greater using automatically rather than externally determined

load step size, since many increments are very small compared to what

the analyst might otherwise have set.

This method is especially useful in multi-cycle excitation in

which progression of one system of loads is interrupted and another

takes over in such a fashion as to force, local unloading and perhaps
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reloading. That the procedure is admissible is a direct result of the

quasilinear nature of our original formulation; the programs in hand

merely exploit this feature.

An Alternate Approach: The foregoing discussion has all been

in the context of converting differential equations to algebraic

increment equations such as (48). While this time-honored progression

is certainly viable, one might inquire whether an alternate procedure

might be used whereby a functional is to be extremized. Again, the

quasilinear nature of the formulation proves useful, for we may

utilize such an approach in conjunction with any of the four integral

theorems outlined above. Indeed, Jones [4] has shown that, with a

suitable choice of minimization method, such an approach proves

efficacious in solving elasto-plastic problems. Incorporation of

the procedures described above, e.g. , checking for local unloading,

gives a method for problem solving that is especially useful in

treating cases that Involve plates and shells which perforce include

both an elastic core and a variable position of the neutral surface.

Much of the advantage that is realized follows from the fact that

the results of the kth increment are an excellent estimate for the

behavior in the (k+l)th increment, and convergence of the minimization

algorithm is quite rapid.
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Remark on Infinite Domains: From a research standpoint, one of

the limitations on numerical methods for solving problems is that the

analyst is constrained to treat problems in a finite domain. It is

almost truistic, however, that analytical results against which he or

she would compare numerical data are for infinite domains. As a

result, such comparisons are not always on a equal basis and

evaluation of numerical findings is sometimes impeded.

Riccardella has recently suggested a means for overcoming this

limitation. Recapitulating (19)-(21) we have the (incremental)

stress-strain relations and differential equations in the form

(19)

(20)

Subject to boundary conditions on 6u. and/or

6ti =

Let us suppose now that the problem at hand involves an infinite

domain with some sort of localized feature such as a cut-out or

perforation. We then decompose the original problem into two parts.

The first is the infinite domain with no local feature but sub j ect to

remote loading. The solution to such a problem is normally described

in a simple manner, and we denote its solution in terms of the quantities
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6u. and Sa . . . In many cases of interest, the first problem is fully

elastic and may thereby be represented analytically.

The second problem is the residual problem for which (20) becomes

or, if

then

]•• CO

6u. = 6u. -6u.i 1 1

In (49), it is important to bear in mind that E. ., « depends in a

complicated and nonlinear fashion on the stress field for the

full problem; E. ., » is not therefore subject to simple decomposition.

Recognizing, however, that there is a value of E. ., n pertinent to the

first problem, we may rewrite (19) as

6X* + EijU

or, since we define E. . £ by

CO 00 00

= Eijk£6uk,£

we have

./2y = EM pSuT „ + E. ., ,,6Hc,£ ijk£

It follows that (21) leads to
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The second problem is thus described by the differential equation

r r(49) subject to local boundary conditions such that 6u. and/or 6t.'
00 00

annihilate the residuals of 6u. and/or 6t . . The second problem

nominally involves an infinite domain; inasmuch, however, as the

residual stresses and displacements die off quickly with distance

from the local feature, a large but finite domain may be adequate

for analysis.•

We have not in fact used this procedure to date. It may be

observed, however, that the formulation is altogether straightforward

and follows that often used in elasticity for problems of this type,

i.e., where there is a local disturbance in an otherwise uniform

field. The one complexity for elasto-plastic flow — as opposed to

elasticity — is the manner in which the generalized modulus E . . , „

is decomposed.

Results: A variety of results has been obtained with this

approach, most dealing with planar crack problems. Early work in

plane stress [23] and subsequent effort in plane strain [18] was

directed toward overall characterization of elasto-plastic response

of cracked bodies. Concern since has focussed on deformed crack

shapes in stretching [15,19] and bending [4]. Considerable effort

has been directed toward the question of physical fidelity of computed

results, and the finding is in the main satisfactory [16,17]. There
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is significant sensitivity to the accuracy with which material data

are represented [10], and some work has been directed toward reconciling

experimental measurements with material response [13]. This issue is

far from resolved and, indeed, remains as one of the primary technological

questions of mechanics.
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CONCLUDING REMARKS

We have sought in this report to provide an overview of the theory

of elasto-plastic flow without becoming deeply involved in the great

array of detail that perforce accompanies its implementation and use.

Our emphasis has been largely on three main aspects which deserve

restatement at this point. First, the theory has an extensive scope.

It can accommodate a broad variety of flow rules which reflect

work-hardening, plastic compressibility, anisotropy, small or large

deformations, and so on; the choice of all these resides with the

analyst. Next, the theory is mathematically complete and coherent,

and the analyst need have no concern for, say, the conditions under

which it will 'work' or not. Finally, the theory is straightforward

to use and gives results that are physically realistic insofar as we'

have been able to judge.

It should also be mentioned that the theory is economical to use.

The codes now in hand, although refined over a period of some years,

consume only modest amounts of computer storage and time, as a few

examples will show. Using a Univac 1108, our planar codes for finite

elements will accommodate up to 600 degrees of freedom but need less

than 45,000 words of storage. Running times for 242 degrees of freedom

are about 4 seconds per load step and for 436 degrees of freedom, under

13 seconds per load step. Costs for up to 102 load steps are thereby

within reach for many purposes. Indeed we have on occasion run problems

consisting of 35 to 40 steps for classroom use.
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The approach then is attractive in a variety of respects, and we

look forward to its use by more people. At the same time, there are

several items worthy of attention that should be mentioned. We

believe that solution methods other than simple finite elements and the

boundary-integral technique should be explored as potential vehicles

for solving problems of elasto-plastic flow. We have looked at finite

differences, but the context of that effort made statement of boundary

conditions awkward. Yet there is reason to suppose that some classes

of problem would-be tractable in finite differences. More complex

finite elements, including special elements as might be used to

examine locally singular behavior, merit study and possible development.

We suggest that the breadth of the theory is in need of exploration.

Such features as anisotropy and plastic compressibility are natural

extensions of work done to date. Any effort along these lines, however,

should be coupled with careful experimentation so that extraction of

material properties precedes in parallel with development of a

capability for solving problems.

In addition to the features noted above, we believe that the

economies attainable with this approach make study of cyclic loading

especially attractive. Two important technological processes, fatigue

response of structures and the Bauschinger effect, are thereby accessible

to study, and we look for renewed analytical efforts along these lines.
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The theory is also amenable to purely analytical treatments such

as the important results reported recently by Budiansky [24], The

availability of solutions to non-trival problems provides both insight

into the process of plastic flow and 'check problems' for developers

of computer programs. Such work is usually inexpensive to perform

but has far-reaching value.

Finally, we urge the technical community to use this method.

Even without further develppment and extension, it offers considerable

advantage at reasonable cost and it provides information that may in

some circumstances prove valuable to have. Thus incorporation of the

theory of elasto-plastic flow into more general structural programs

is warranted and we urge such effort upon the technical community.
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