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PREFACE 

This document is the Detailed Technical Report submitted 

by the Donald W. Douglas Labollatories, Richland, Washington, 

under Contract NAS8-28639 (DCN 1-2-50-23615) and covers 

the period 28 June 1972 to 12 August 1973. 

This program was monitored by the National Aeronautics 

and Space Administration1s Marshall Space Flight Center, 

Huntsville, Alabama. 
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Section 1 

INTRODUCTION AND SUMMARY 

Thermal control of electronic hardware and experiments on many of NASA I s 

planned future space vehicles is critical to proper functioning and long life. 

Thermal conditioning panels (cold plates) are a baseline control teLI-:l:.lique in 

current conceptual studies. Heat generating components mounted on the panels 

are typically cooled by fluid flewing through in1·,. ral channels within the panel. 

Replacing the pumped fluid coolant loop within the panel with heat pipes offers 

attractive advantages. 

A heat pipe consists basically of a closed chamber with a capillary wick struc

ture on the inner wall and a working fluid. Heat is transferred by evaporating 

the working fluid in a heating zone and condensing the vapor in a cooling zone. 

Circulation is completed by return flow of the condensate to the evaporation 

zone through a capillary structure. Heat pipes are nearly isothermal becaus e 

the only tempera,ture drops occur through the wall and wick in both the 

evaporator and condenser. Proper choice of materials yields a minimum 

temperature differential in the evaporator and condenser. For thermal condi

tioning panel applications, heat pipes provide high conductance for heat trans-

fer to the panel edges where the heat can be rejected to a relatively modest and 

compact heat exchanger. The heat pipe offers a high degree of isothermalization, 

high reliability because of redundant heat pipe network design, light weight, 

and pas sive operation. 

The cbjective of this program was to develop and verify a heat pipe thermal 

conditioning panel satisfying a broad range of future thermal control system needs 

on NASA spacecraft. From an initial study of spacecraft thermal requirements, 

design specifications were developed for a 30 x 30 in.(0.76xO.76m)heatpipe panel. 

Program goals included fabrication andperformance verification of two heatpipe 

thermal conditioning panels satisfying or exceeding all thermal and mechanical 

constraints identiHeil. iI11;he},JASA spacecraft study. The fundamental constraint 

was a maxin-~urn 15°F (8.33°K) gradient from source to sink at 300 w input and 
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a flux density of 2 w/in, 2 (0.31 w/cm2 ). The first prototype panel constructed 

met mechanical constraints but did not meet the des ign goal thermal gradient. 

However, modifications indicated by performance of the first panel were suc

cessfully integrated into the sl"'!cond panel; all design goals were met. Measured 

gradients were 10 ° to 15° F (5. 55 ° to 8.33 OK). Ultimate capacity of the panel 

is approximately 1 kilowattat.6.T= 20°F (ll.lOOK) and 2w/in.2 (0.31 w/cm2 ). 

Panel weight is less than 20 Ib (9.08 kg), and the panel will accept 100 Ib 

(45.4 kg) of equipment with a 8g acceleration factor, 

2 
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Section 2 

DESIGN APPROACH 

Several key features were identified in developing a thermal conditioning panel 

for spacecraft. An optimum design will satisfy thermal requirements of panel 

conductance arrd heat transport capacity while maintaining satisfactory mechanical 

strength, low weight, high reliability, and low fabrication cost. All factors 

were considered in the panel design. Figure 2. 1 shows the thermal conditioning 

panel in an installation with mounted equipment modules and a heat exchanger 

attached along one edge. 

To establish specific system constraints for panel design and mounting, and 

definition of general and detail specifications, equipment cooling requirements 

for a number of future NASA spacecraft were surveyed. Included in the study 

were Space Shuttle, Space Station, Space Tug, RAM, and SOAR. 

2. 1 SPACE SHUTTLE 

The space shuttle is a transportation system for carrying personnel, cargo, 

and scientific payloads to and from low earth orbit. 

The orbiter avionics system implements guidance and navigation, flight controls, 

data management, comrnunications and navaids, avionics displays and controls, 

and software functions. A coolant fluid loop is required to absorb heat generated 

by a sign,ificant number of these electronic components, therefore requiring 

cold plates and/or cold rails. Components mounting on temperature controlled 

surfaces is similar to the methods used on previous space vehicles and aircraft. 

2.2 SPACE STATION 

NASA's space station program is designed to support earth surveys and the 

sciences of astronomy, astrophysics, biomedicine, biology, and space physics, 

as well as developing technology for space systems and operations. The space 

3 
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L-SHAPED 
MOUNTING BRACKET AND/OR 

I 
HEAT EXCHANGER 

MOUNTING 
BOLTS 

30 IN_ --------~ 

~L-SHAPED 
HEAT EXCHANGER/MOUNTING 
BRACKET 

Figure 2-1. Heat Pipe Thermal Conditioning Panel Mounting Concept 

station program supports these objectives by providing a long-lasting general

purpose facility in earth orbit. Dominating its design is the need to accommodate 

scientific personnel performing a broad range of experimental activities that 

may change lnarkedly ove r the years. The des ign, the refore, emphas,izes 

versatility for multipurpose use. 

Present baseline equipment cooling is a book- shelf concept basically consisting of 

equipment racks with plug-in book-like modules. Equipment cooling is provided by an 

integral T - shaped cold plate which is part of the rack structure. Standardization of 

module sizes and materials is maintained to achieve relatively easy equipment 

installation and maintenance. A family of module sizes is provided to accom

m.odate individual subsystem functional requirem.en ts; howeve r, a bas ic 

module size 1. 25 in. wide x 9. 0 in. deep x 8.0 in. high (0. 032 x 0.229 x 0.203 m) 

satisfies the majority of subsystem packaging requirements. 

The heat dissipation limit for each basic module is 20 watts, with an average 

dens i ty of O. 4 w / in. 3 lO. 024 w / cm3 ). Heat flux to the cold plate from each basic 
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module is 1. 77 w / in. 2 (0. 28 w / cm
2

). If each book-like module were backed by 

a heat pipe thermal panel, a higher basic-module power density can be tolerated 

without exceeding critical centerline temperatures. 

2.3 SPACE TUG 

The space tug is the third stage of NASA's space shuttle vehicle and is designed 

to be delive red to low earth orbit in the shuttle payload bay. It will either 

deploy or retrieve earth orbiting payloads. Space tug is a highly efficient stage 

compatible with the shuttle orbiter and a variety of payloads and mission 

requiremen ts. The space tug/ space shuttle cornprise the space transportation 

system (STS). 

The principal source of heat which must be accommodated by the thermal 

control system for space tug is the fuel cell. The present baseline utilizes a 

radiator / condenser concept with pumped-loop distribution. Five sq it (0.46 m 2 ) 

of radiator are required to provide coolant at 115° ±15°F (319° ±8. 33°K) at the 

inlet to the fuel cells. 

2.4 RESEARCH AND APPLICATION MODULES (RAM) 

The research and application module system is a family of payload carrie I' 

modules that can be delivered to and retrieved from earth orbit by the space 

shuttle. RAM payload carriers will be capable of supporting diverse 

technological and scientific investigations and practical applications, primarily 

in areas requiring personnel participation for orbital performance, calibration, 

servicing, and updating. The experiment, mission, and programmatic require

ments led to the evolution of three basic RAM system elements: pressurized 

RAMs, unpressurized RAMs, and free-flying RAMs. The overall objective 

of the RAM project is to provide versatile and economical payload carriers as 

laboratory and observatory facilities to compliment and supplement the space 

station and space shuttle in earth orbital research and applications activity. 

2. 5 SOAR 

The shuttle orbital applications and requirements (SOAR) definition study 

identified shuttle mission applications, with emphasis on interface and design 

accomm.odation analyses for a representative range of shuttle-com.patible 

payloads. The applications include a payload that remains attached to the 
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shuttle payload bay througho:'lt the mission. During the in-orbit phase, with 

the payload bay doors opep., the shuttle radiator is deployed and the payload 

is operating. There is negligible heat exchange between the shuttle and payload 

structure. The heat to be controlled and dissipated is the heat generated by 

the operating equipmen in the payload. The payloads have heat loads proportional 

to the power each dissipates. The majority of the heat generated is rejected 

to the coldplates incorporated in the payload thermal control system. Potential 

thermal condi tioning panel applications have been identified for pallet payloads 

and manned support modules (MSM). A coldplate thermal load totaling approx

imately 1300 watts is representative of the majority of the identified SOAR 

missions. 

2.6 SUMMARY OF COLD PLATE REQUIREMENTS 

Equipment cooling and mounting requirements for shuttle orbiter, space station, 

RAM, SOAR, and space tug have been identified and categorizzd. Representative 

panel load and sizing requirements for these applications are summarized in 

Table 2-1. Of these requirements, those for the shuttle orbiter are the most 

readily defined, the depth of design being most complete on this vehicle. The 

requirements established for shuttle are based on the MDAC design; however, 

these should be representative of the selected NAR design. 

Table 2-1 

THERMAL CONDITIONING PANEL SIZING REQUIREMENTS 

Cold plate 
Contact Area Thermal Ther;P2al Elux No., Panel Size 

Application (in.2 ) (m2 ) Load (w) (wI in.-) (wi cm 2 ) Panels (m.) (m) 

Shuttle 
Orbiter 260 (1.68) 269 1.0 (0. 16) 17x 17 (0.43 x O. "Ul 

1569 (10.1) 1285 0.82 (0.13) 5 18 x 18 (0.46xO.461 

199 (1.28) 132 0.66 (0. 10) 1 15 x 15 (0.38xO.:38) 

RAM 9504 (61. 3) 7226 O. 76 (0.12 ) 25 20 x 20 (0.51xO.51) 

SOAR 1807 (11. 7) 1288 0.71 (0.11) 5 19 x 19 (0.48xQ.48) 

Space Tug 144 (0.93 ) 290 2.01 (0.31 ) 1 8x 8 (0.20 x 0,20) 

Space 
Station 11 (0.07) 20 1. 81 (0.28) Qx1.25 (0.23xO.03) 

6 
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2 . .., 
• I CONDITIONING PANEL CONCEPTS 

Among design concepts utilizing heat pipes to transfer heat and isothermalize, 

there are two fundam(:;ntal approaches. In the vapor chamber approach, 

thermal conditioning panel facepL:ztes not only transfer heat and nl.ount 

components, but also contain the working fluid and vapor inside the paneL 

In the other approach; the working fluid/vapor system is contained within 

separate heat pipes within the panel and the faceplates transfer heat and 

mount components. 

Although a vapor chamber system has thermal advantages in less interfaces 

and maintains a high degree of isothermality because of the open structure, 

the gene rally disadvantages are reliability, weight, and cost. 

For any panel configuration to be considered as a possible design, it must have 

proven reliability, performance, ease of fabrication, andsucces sful operation. 

The vapor chamber inherently requires simultaneous assembly of many parts 

for bi-directional heat transfer. It is difficult to use reliable current

technology techniques to fabricate such a paneL With the large number of 

equipment mounting bosses required, it -is difficult~o fabricate a continuous 

wicking system and ensure the many leak-tight joints requIred in sUch-a 

design. Althoughthe concept of a vapor chamber has been explored for years, 

it has not been reduced to practice in a panel of this size. With high-pressure 

working fluids, vapor chambers are often excessively heavy because the 

inherent weaknes s of a rectangular pres sure ves sel neces sitates thicker 

faceplates to obtain reasonably flat mounting surfaces. 

A preliminary investigation was made with ammonia working fluid, evaluating 

the relative weight of a 30 x 30 in. (0.76 x o. 76 m) vapor chamber and a com

posite panel (i. e., separate heat pipes and face plates). Total panel weight for 

the vapor chamber was calculated, as sumillg pres sure containment was the con

trolling factor on faceplate thickness. Figure 2-2 shows the weight and face-plate 

thicknes s of a 30 x 30 in. (0. 76 x o. 76 m) vapor chamber as a function of the 

distance between supports. To stay within O. 010 -in. (0. 025 cm) TIR design goal 

on surface flatness, 0.005-in. (0.013 cm) outward bulging from internal pressure 

was allowed. On a weight basis, an 18-lb (8.16 kg) composite panel satisfying 

thermal requirements is equal to a vapor chamber which must have coupling 

bars at less than I-in. (2.54 cm) intervals. That is, to satisfy dimensional 
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Figure 2-2. Vapor Chamber Weight and Face-Sheet Thickness 

3499 

goals, a crossbar must firmly connect the two faces at less than I-in (2.54 em) 

intervals across the panel width. In addition, there is little allowance for 

excursions in temperature resulting from exponential vapor pressure dependence 

on temperature, whereas the compos ite panel has been proof-pre s sure tested 

to 1500 psig (10,353,168.21 n/m
2 ). 

In summary, the vapor chamber suffers from a weight problem if am.lTIonia 

or other high-pressure fluids are to be used (or if the panel is subjected to 

high ter .. 1.pe rature s), and appea.rs to be more unreliable and costly in a panel 

such as this. The composite panel is a much more flexible design and was 

chosen as the best candidate design to meet the thermal ~onditions in Table 2-2. 
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Table 2-2 

THERM.AL PANEL GENERAL SPECIFICATIONS 

Size of Panel 

Thermal Load 

Mounting Boxes 
Max. Density 
Max. Total per Panel 

Mounting Surface 
Temperature 

Temperature Gradient 

Acros s load areas 
Between panel surface 
points at source and sink 

Available Sink Temperature 

Bolt Pattern 

Component Mass 

Original 
Specification 

30 x 30 in. 
(0. 76 x o. 76 m) 

lOw 2 2 
5 w/in. (0.78 w/cm ) 
300 w 

32° to 77° F 
(273° to 298°K) 

5°F (2. 77°K) 

15°F (8.33°K) 

32° to 70 ° F 
(273° to 294°K) 

4 x 4 in. 
(0. lOx O. 10m) centers 

100 Ib 
(45. 4 kg) ma,x 

9 

Application Study 
Recommendation 

30 x 30 in. 
(0. 76 x o. 76 m) 

lOw 2 2 
2 w/in. (0.31 w/cm ) 
300 w 

32 ° to 85 ° F 
(273° to 303°K) 

5°F (2.77°K) 

15°F (8.33°K) 

32° to 85 ° F 
(273° to 303°K) 

Adaptable 

100 Ib (45.4 kg) max 
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Section 3 

DETAILED DESIGN ANA LYSIS 

Deta.iled design of the two thermal conditioning panels constructed is discussed 

in this section. Section 3.1 considers factors in the design and selection of heat 

pipe wicking and working fluid; Section 3.2 presents detailed thermal models 

used i,n evaluating heat pipe configurations for the thermal conditioning panels. 

3. 1 HEAT PIPE MATERIALS EVA LUA TION 

Independent of geometrical factors concerning heat pipe configuration within 

the panel, consideration waG given to optimizing the heat pipe. This optimization 

included heat transport capacity, thermal gradients, and materials compatibility. 

Anhydrous ammonia was selected as the best working fluid to use on the basis 

of high Figures of Merit':', high thermal conductivity, and most extensive com

patibility data with both aluminum and stainles s steel (Table 3 -1). The only 

disadvantage with ammonia is toxicity, which precludes its use in manned areas. 

Table 3 -2 presents toxicity information on various working fluids. Ammonia 

is very toxic, while the Freons, which have low Figures of Merit and thermal 

conductivity, are relatively non-toxic. The fabrication of a Freon working-fluid 

panel prototype for manned missions would however be desirable. Ammonia is 

an excellent working, luid with which to demonstrate the basic feasibility of a 

heat pipe thermal conditioning panel, and there are many future unmanned missions 

for which an ammonia panel may be desirable or necessary because of high heat 

transport demands, the necessity of minimizing temperature differentials, or 

operating at temperatures below 32°F (273°K). 

A luminum was chosen for the heat pipe because of high thermal conductivity and 

availability in a variety of extruded forms. The wicking material selected was 

Type 304 stainless steel. Stainless-steel screen is compatible with ammonia 

and is available in a fine mesh which provides maximizing capillary pumping. 

(T'pH
f 

':'Thermal Figure of Merit= g 
f.1 

Pumpir'Lg Figure of Merit = 
__ (T'_ 

p 
11 
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Table 3-1 

LONG-TERM COMPATIBILITY TEST COMBINATIONS 

Fluid Material Temperature Time (hr) Test Mode 
( 0 F) ( 0 K) 

f Meth?slol Stainless Steel 175 352 30, 000 Reflux 
.. , 

Water Copper 175 352 30, 000 Reflux 

Ammonia Aluminum/Stainless 120 322 8,350 Accelerated life 
....... Ammonia Aluminum/Stainless 60 289 43, 800 PAC/OSO-G I\) 

(ground + in-flight) 

Ammonia Alum inum/ S ta inle s s 70 294 43, 600 Static 

Ammonia Aluminum /Stainles s -120/100 200/311 8,350 Eclipse simulation 

Freon-22 Aluminum/Stainless 130 327 130 Reflux 

Water Copper 100 311 15, 050 Reflux 

>. ~ 
l 

--~. -·---------------_ ..... ~~ .... ,,_'~~_:,~':"'r:!!;.>'::;._<~lW"'~_' .... r,'~.,.H"I'_.t~."'''''"''' __ ,-''.n'~' 



II 
" 

! 
1 

1 , 
i 

I 
j 

1 
j 
I 
I 
! 

~ : 
-;'j 

, ' 

Table 3-2 

TOXICITY OF FLUIDS 

Fluid 

Pyridine 

Ammonia 

Methanol 

Acetone 

5 

50 

200 

1000 

1000 

1000 

Ethanol 

Freon-21 

Freon-22 Comparatively non-toxic; exposure 
limit of 1000 ppm is generally 
accepted. 

TLV':<: Threshold Limit Value, ~pm of air by volume at 25°C (298°K) and 
1 atm (1. 0132 x 105 n/m ) 

3.2 WICKING CONSTRUCTION 

The transfer of heat in a heaL pipe is limited by rnaximum axial heat flow and 

maximum radial heat flux. For low ternperature heat pipes such as those for 

spacecraft thermal control, the most important limitation on maximum axial 

heat flow is the capillary pumr.ing limit. This limit is a function of fluid 

properties, and is given, for perfect wetting, by 

2K A 
P w 
r 

c 
(w -Cln) (3. 1) 

The multiple artery wicking arrangement used in the thermal conditioning panel 

heat pipes is shown in Figure 3 -1. A large screened tube is closely packed with 

a nUl11.ber of smaller screened tubes. Each small tube acts as an artery with 

high axial permeability; the bundling of tubes provides high redundancy. If a 

section of one artery is blocked by noncondensable gas, the remaining arteries 

shunL fluid to the evaporator. In empirical te s Hng of the se structure s in the 

presence of noncondensable gas, re -priming after emptying was very good. 

The permeability K (Reference 1) of this arterial structure is 
p 

K "" 1 [R! -nt (2 r i -t l ]2 
p 8 Ra + n(2 ri-t) 

13 
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HEAT PIPE WALL 

SCREEN TUBE 

ARTERY 

OUTER WICK 

Figure 3·1. Multiple Artery Wick System 

For the 5- and 7-tube arteries in the first and second panels, respectively, the 

transport capacities of an individual heat pipe (Equation 3. 1), are 2500 and 1200 

w-in. (6350 and 3048 w-cm). Additional tubes in the second panel artery bundle, 

within the same bundle diameter, reduce capacity while increasing fluid trans

port redundancy. Because the maximum demand on a single heat pipe in either 

panel is about 500 w-in. (1270 w-cm), there is a considerable operating safety 

margin. 

The circumferential wicking on the heat pipe wall is also stainless screen; the 

minimum capillary pumping radius r is approximately 0.0025 in. (0. 0064 cm). 
c 

Circumferential wicking thickness is approximately 0.011 in. (0.028 cm). 

3.3 DETAILED THERMAL MODELING 

Configurations for the two thermal conditioning panels are shown in Figure s 3-2 

and 3-3. Configuration selection is discussed in Sections 3.4 and 3.5. 

The thermal gradients within the heated area are shown by the model in Figure 3 -4. 

In cross -section, a thermal cell is fl + .e2 + w wide and fs long. Maximum 

14 
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surface temperature occurs at a cell boundary. Thermal resistances from a 

boundary to the heat pipe vapor core consist of 2 skin ATs, (AT s 1 and AT s2) 

a contact resistance AT cr' and a heat pipe AThp ' 

AT = AT 1 + ~T 2 + ~T + ATh max s s cr p (3. 3) 

Assuming at any x-position the panel face, t, and heat source face, t', are at a 

uniform temperature and composition, then the skin thermal drop ~Ts1 is 

obtained by solving the one-dimensional differential heat conduction equation with 

the following conditions 

1. dt/dx = 0, x = ° 
Heat injection rate = Q 2. 

3. 
a 

-K d
2

T/dx
2 = Q /(t + t') 

m a 

The gradient ~Ts 1 is given by 

ATS1 
2 = Qa 11 /2Km (t + t') 

(3.4) 

If uniform heat rejection is as sumed over the heat pipe contact width w, then a 

similar analysis yields 

ATS2 

Through the adhesive -fiUed gap of thicknes s t , gradient AT 1S 
g cr 

AT 
cr 

21'1 t 
= Q

a 
(l + __ )--1L 

w K 
g 

(3. 5) 

(3.6) 

The predominant temperature drops in a heat pipe occur through the fluid films 

covering the wall in the evaporator and condenser sections. Using the heat 

conduction law, the evaporator film temperature drop for a saturated wick is 

2 Qa11 (1+~~)(t£,n) 

TIl<: D 
(3. 7) 

The effective thermal conductivity K of the fluid film is often close to the bulk 

fluid conductivity because wicking often has high porosity and Low conductivity. 
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Therefore, to minimize ~T for the panel, a fluid with high conductivity is 

desirable. The film thickness t
f 

is nominally equal to the wicking thickness in 

both the condenser and evaporator because the modest capillary demand on the 

multiple artery condensate return structure. However, other thermal tests show 

inhomogeneities in wick thickness and extrusion gradients give an effective film 

thickness factor n of 1.18. 

Condenser film drop is evaluated taking the total heat transferred, Q, and 

dividing by the total length of condenser-intercepted heat pipe. The unit-length 

heat dissipation factor Qp is substituted into the heat" conduction equation to give 

(3. 8) 

Within the condenser sections, ~T sl and ~T s2 can generally be disregarded 

because heat exchanger mass and thermal characteristics overwhelm surface 

effects. 

To verify modeling validity, calculated values of the thermal gradient for the 

second panel are compared in Table 3 -3 with experimental values for configuration 

C2 and the sublimator heat s ink at 300 watts and 2 w / in. 2 at 60 ° F (0.31 w / cd 

at 289 ° K). Configurational details are given in Section 3. 7. 1. 

Table 3-3 

CALCULA TED AND EXPERIMENTAL THERMA L GRADIENTS 

~Tsl + ~Ts2 + ~T + ~Thp = ~T(calc) ~T(exp) 
cr 

Evaporator 0.64 0.28 1. 42 3.88 6. 22 OF 

Condenser 2. 14 5.84 7.98 

Total 14. 2°F (7. 89°K) 14.1°F (7. 83°K) 

A greement is satisfactory. The bond -line thicknes s for the second panel was 

nominally 0.0035 in. (0.0089 cm), but 250/0 of the panel gradient appears across 

the Deltabond 154 adhesive. Table 3 -4 summarizes thermal conductivities for 

various bonding agents. The bonding agent for the second panel has the relatively 

high conductivity, compared with other common industrial adhesives. 
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Table 3-4 

THERMAL CONDUCTIVITIES OF THERMAL JOINT COMPOUNDS 

Compound 

Eccobond 56-C (unpolymerized) 

Eccobond 56 -C (polymerized) 

Devcon F (AI putty) 

DC-340 Heat Sink Compound 

Dow Corning 732 R TV 

30o/r 732 RTV/70% Cu Powder 

Dow Corning Vacuum Grease 

30% Dow Corning Vacuum Grease/70% Cu Powde:t 

Honeywel.l. Heat Conducting Compound No. 107408 

Thermon T -5 (John H. Marvin Co., Inc.) 

AF 126-2 

Del.tabond 154 

Eccobond 285 

3.4 INITIAL PANEL DESIGN 

Thermal Conductivity 
(Btu/hr-ft-OF) (w/cm/oK) 

1. 04 O. 0180 

0.44 0.0076 

0.50 O. 0087 

0.43 0.0074 

0.14 0.0024 

0.45 O. 0078 

0.11 0.0019 

0.45 O. 0078 

0.23 0.0040 

0.19 O. 0033 

O. 10 O. 001 7 

0.67 0.0116 

0.87 0.0151 

Several heat pipe configurational patterns for the panels were evaluated to obtain 

a de sign with high conductance, multidirectional heat transfer capability, and 

functional redundancy. Figure 3 -2 shows the design selected for the first heat 

pipe thermal conditioning panel. U-shaped heat pipes from sides A and B inter

mesh to form a redundant network of thermal s inks through the panel width. 

If anyone heat pipe fails in this configuration, heat pipes on both sides of the 

failed pipe take up the load. Header heat pipes around the edges of the panel 

transfer heat from the array pipes (oriented from A to B) to cold rails mounted 

on any panel edge s. Nine heat pipes were used, with O. 063 -in. (0. 16 cm) 

face sheets and aluminum honeycomb between heat pipes. Honeycomb was used 

for additional rigidity because of the large open spaces between adjacent heat 

pipes. The heat pipe extrusion is shown in Figure 3 -5. 

The first panel did not meet the design goal because of excessive temperature 

gradients at maximum power and flux density. E}::tensive tests and calculations 

establi.shed that the cause of this high gradient was contact resistance between 

the heat p{pes and faceplates and the header and array heat pipes. Using an 
20 
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Figure 3·5. Panel No. 1 Extrusion 

F; 
0.20 IN. 
TYPICAL 

0.100 -1 
IN. 1 

::1500 

0.040 IN. NOMINAL 

0.500 IN. 

t 

eddy-current detector, which senses gaps between metallic surfaces, it has been 

established that large areas of the panel have gaps from O. 001 to O. 010 in. (0. 003 

to 0.025 cm) filled with AF 126-2 low-conductivity bonding agent between the 

heat pipes and the plates. From the heat conduction equation, O. OOl-in. (0.003 cm) 

of epoxy adhe s lve produces a 7° F (3. 89 ° K) temperature gradient at rated power. 

In confirmation, heat sources placed on various sections of the panel substantiate 

eddy-current measurements by indicating larger gradients over large-gapped 

areas. A high thermal drop across the DC-340 heat sink compound used in 

mounting heat sour"ces and sinks must be discounted because small exposed areas 

of the panel near the source and sink centers indicate within 1°F (0. 56°K) of the 

temperatures on the source and sink surfaces. Analytical calculations show that 

the gradient is much too large to attribute to fluid film within the heat pipe. All 

evidence, analytical, thermal, and non-thermal, indicates inadequate contact 

as the source of the high gradient. 
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3.5 FINAL PANEL DESIGN 

The design of the second panel (Figure 3 -3) reflects changes to generally improve 

thermal performance and minimize contact resistances. Header heat pipes have 

been eliminated so that heat transfer is dLrectly from heat source to heat sink. 

Some freedom in placement of the cold rails has been sacrificed to achieve 

thermal gradient improvements, because cold rails in this design are placed 

on edges A and B to intercept as many heat pipes as possible. However, this is 

not a severe constraint. A general comparison of the two panels is given in 

Table 3 - 5. 

For both mechanical and thermal reasons, the extrusion used on panel No. 1 

has been replaced with a square extrusion with O. 50 -in. (1. 27 cm) faces 

(Figure 3 -6). The square extrusion does not twist as much on forming, and the 

contact area per heat pipe increases because the square extrusion has a contact 

face twice as wide as the extrusion used in panel No. 1. To further increase 

contact area, the array spacing has been modified to halve the pipe-to-pipe 

spacing. This decreased spacing allows the use of a thinner O. 040 in. (0. 102 cm) 

facepla te which compensates for the heavier square extrus ion. 

-,..-----

0.500 IN. 

O.MO IN. 

1-01'1------- 0.500 IN. ------J 
0.090 IN. R 
(2 PLACES) 

_lL~~'~ ____ -+ ____ ~ 
t 

Figure 3-6,. Panel No. 2 Extrusion 

0.Q20 !N., R 
(2 PLACES) 
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The interaction of heat pipe spacing, thermal gradient, panel stiffness, and panel 

weight is shown in Figure 3 -7. A computer program was written to solve the 

thermal equations discussed in Section 3.3 for panel weight and stiffness as a 

function of he?,t pipe spacing, with thermal gradient held lee s than or equal to 

some maximum value. As heat pipe spacing is increased, panel weight first 

decreases, then increases rapidly because of increased faceplate thickness to 

compensate for the increased skin ~T and higher heat fluxes at each heat pipe. 

Minimum weight follows the lower curve in Figure 3 -7. For example, at 

~T = 12. 5°F (6. 94°K) a heat pipe spacing of 1. 16 in. (0.029 m) is possible with 

only a 13. 5-lb (61. 29-·kg) panel. For smaller pipe-to-pipe spacings, the ~T 

is less than 12.. 5°F (6. 94°K) but the weight is higher because of more extrusion. 

To maintain a 12. 5°F (6. 94°K) gradient at spacings larger than 1.16 in. (0.029 m) 

faceplate thickne s s must increase very rapidly to maintain the gradient below 

that value because heat pipe and contact resistances are the dominant gradients, 

as shown in Table 3 -3. This creates a rapid weight increase as shown by the 

steep vertical curve. While it is desirable to minimize weight, the minimum 

weight panel also has the lowest rigidity. Moment of the inertia is defined by 

J Z2 dA about the centroidal axis, where Z is the distance normal to the panel 

faces measured from the extrusion equator, and dA is the elemental area. The 

rigidity of a panel is rapidly increased as a faceplate thickness increases 

(broken curve, Figure 3 - 7), because the faceplates are far from the extrusion 

equator, in analogy with the horizontal members of an I-beam. 

For the second panel, a thermal-mechanical compromi.se was required to satisfy 

thermal requirements and provide adequate rigidity so that epoxy-bond stress 

levels are within safe limits and deflection under load is not objectionable. Center

to-center heat pipe spacing is approximately 1.3 in. (0. 033 m), gradients are 

below 15°F (8.33°K), and panel rigidity (0.24 in.4; 9.99 cm
4

) is slightly higher 

than for an equivalent solid extruded panel (0.23 in.4; 9.57 cm
4

). That is, the 

sti£fnes s of this composite panel is somewhat higher than the stiffnes s of a panel 

where the center -to- center spacing is O. 5 in. (1. 27 cm), implying no gap between 

heat pipes and the utilization of sixty O. 50-in. (1. 27 c.n) extrusions of the type 

shown in Figure 3 -6. This panel strength results principally from the I-beam 

effect of the O. 040 in. (0. 102 cm) facesheets. 
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3.6 FABRICATION TECHNIQUES 

Poor thermal performance of the first panel is related in part to fabrication 

techniques. Excessively thick bondlines, attributable to fit-up of the heat pipes 

against the facesheets, was the major problem. The poor contact results in 

part from extrusion thickness increases produced during bending and forming, 

which increase extrusion height 0.005 in. (0.0127 cm) on the inside of bend radii. 

The problem was compounded during bonding. The importance of maintaining 

surface flatness was underestimated. In addition, extrusion thickness varies 

with position, and it appea.rs that the honeycomb material used in the first panel 

may have been limiting compression of the facesheets against the heat pipes. 

The decision was therefore made on the second panel to use a more dimensionally 

stable extrusion, eliminate the honeycomb if pos sible, lap the heat pipe fa c:es to 

ensure optimum contact, and use a higher conductivity adhesive for bonding. 

Sections 3.6.1 and 3.6.2 discuss manufacture of the second heat pipe thermal 

conditioning panel. 

3. 6.1 Heat Pipe Manufacturing 

All nece s sary material and finished component parts for heat pipe fabrication were 

purchased from MDAC qualified source s. Upon receipt, each was inspected. All 

purchase records and inspection results were maintained for complete material 

traceability. 

For the thermal conditioning panel heat pipes, Type 6063 aluminum alloy extru

sions were first cut to length, prepared for welding, and cleaned. A Type 304 

stainless-steel wick was then draw'linto the extrusion and trimmed to length. 

Each heat pipe was then bent to shape. The heat pipes received a final cleaning 

followed by a check for nonvolatile residue. End plugs were then fitted into the 

heat pipes and a TIG weld made at each end to complete the heat pipe. Welds 

were made in compliance with MIL-W -8604 by certified welding personnel. Each 

weld was radiographically inspected in at. least two orientations in accordance 

with MIL-STD-453. 
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Heat pipes were then worked to remove any twists and lar.ge sinusoidal variations 

from flatness, as indicated on a surface ta.ble. One face of each heat pipe was 

lapped using 220- and 600-mesh (7 and 2.8 x lO-5f.Lm) carbide abrasive slurry 

on a piece of 5/16 -in. (0. 794 cm) £load glas s mounted on the surface table. 

Lapping was terminated when the heat pipe face was flat within O. 0015 in. (0.0038 

cm), as indicated by a flat feeler gage. Extrusion thickness was measured and 

recorded. After lapping, each pipe was proof-pressure tested to 1500 psig 

(1. 04 x 10
6 

n/m
2

) and a helium leak test was performed at 10-
8 

std ml/sec sensitivity. 

Heat pipes passing all quality assurance tests were evacuated, flushed with a 

purge charge of ammonia, and filled with a precise charge of high-purity ammo

nia. After charging, the filler tube was cold crushed followed by a, TIG seal 

weld. at the feathered edge. The pinch-off closures were radiographically checked 

and leak tested for ammonia evolution to 10-
6 

std rn1/sec. 

3.6. 2 Panel Fabrication 

One face sheet and all fastener blocks were chemically cleaned in accordance 

with MDAC specifications and bonded in place using Delta-Bond 154 aluminum

filled epoxy and hardener type C, which allows a 4-hr use time. The epoxy was 

polymerized at 150 ° F (339 ° K) for 15 hours. The heat pipe s and face sheet were 

ag2 in chemica lly cleaned and the heat pipe s were s imilarily bonded. Surface 

flatne ss was ensured by use of a vacuum frame which pres sed the face -plate -heat 

pipe assembly against a surface table. Total force on the panel was about 1800 Ib 

(8172 kg). After bonding of the heat pipe array to 'che first face, the unbonded 

6 -5 faces were lapped as an assembly with 220 and 00 mesh (7 and 2.8 x 10 f.Lm) 

abrasive in the same way as the individual pipes were lapped. Lapping continued 

until all surfaces were flat and parallel within 0.0015 in. (0.0038 cm) TIR. The 

average amount of material removed on each heat pipe face was O. 0020 in. 

(0. 0051 cm). 

The second facesheetwas bonded using identical materials and techniques as the 

first side except that a 0.062 in. (0.157 cm) rubber blanket was placed between 

the facesheet and table to ensure,good contact. After curing at 150 OF (339°K) for 

15 hours, the panel was checked dimensionally. 
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ALl dimensions were within specifirations. The adhesive bond thickness varies 

from O. 002 to O. 005 in. (0. 005 to O. 013 cm) over the panel; nominal bond thick

ness is about 0.0035 in. (0.0089 cm). 

3.7 ACCEPTANCE TESTING 

The heat pipe thermal conditioning panel was tested with a variety of heat SOurce 

and mounting configurations. Heat source and sink configurations selected for 

testing reflect variations in component and heat sink mounting. 

3.7.1 Heat Sources and Sinks 

Heat sources used in testing are shown in Figure 3 -8. Each of the larger sources 

has a surface area of 150 in. 
2 

(0.9675 m
2

) and at 2 w/in. 2 (0.31 wlc:m 2 ), 300 Vi' 

are applied to the panel. The smaller spot heat source is used at a flux density 

of 2. 75 w/in. 2 (0.43 w/cm
2

) to simulate a single high-flux source. To maintain 

uniform heat injection, the heater elements are O. 094 in. (0. 239 cm) wide Inconel 

flat resistance wires spaced 0.15 to 0.175 in. (0.38 to 0.445 cm) center-to-center 

on 1/16 in. (0.159 cm) sheet aluminum. The heat rejection systems, a simulated 

-,-- 3427 
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Figure 3·8. Heat Source Profiles 
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water sublimator, and cold rails, are shown in Figures 3 -9 and 3 -10. Figure 3 -10 

also shows placement of the cold rails and sublimator on the thermal conditioning 

panels. The first panel was tested with the 5 x 21 in. (0.127 x O. 533 m) sublimator 

simulator and two of the cold rails shown in Figure 3 -9. Each cold rail extended 

about 3.0 in. (0.076 m) onto the panel at edges A and B, on t-::p and bottom of the 

panel. The second panel had one cold rail 6. 1 in. wide and 3 O. 0 in. long (0. 155 x 

O. 76 m) on one side of edge A only, leaving the other surface free for component 

mounting. Although panel width intercepted by the second cold rail is only slightly 

more than the sum of rail widths for the first panel, lower contact resistances 

within panel No. 2 eliminated the need for both top and bottom rails. 

Figure 3 -1 0 shows seven heat input configurations (C1 through C7) selected for 

rigorous thermal characterization. Configuration Cl through C5 are noted for 

300 w at 2 w/in. 2 (0.31 w/cm
2

) while C6 is used at a spot heat source up to 

5 w/in. 2 (0.78 w/cm
2

); C7 is a distributed heat source at 2/3 w/in. 2 (0.1 w/cm
2

). 

Tests were also run at elevated and reduced temperatures, as well as vertical 

and horizontal orientations, to obtain a complete thermal representation of the 

panels. In general, the thermal panel gradient has been characterized at three 

inputs, 100, 200, and 300 ¥latts for each heat source configuration Cl through 

C5. For each heat source configuration the heat sinks used are summarized 

in the text and figures of section 3. 7.3. 
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Because only one rail was used on the second panel, some tests could be made 

more severe, that is, the heat source could be placed further from the heat sink. 

Test configurations (C2; C3; and C5') for the No.2 panel only are also shown in 

Figure 2 -1 O. For thermal testing, a minimum covering of 2 in. (0. 051 m) of 

fiberglass insulation was used over all source, sink, and panel surfaces. 

3.7.2 Data Reduction 

Figures 3-11 through 3-17 present data on the two panels as a function of con

figuration, orientation, sink conditions, and sink temperature. Thermal gradients 

plotted as a function of heat input are mean gradients, that is, the average source 

panel surface temperature has been subtracted from the average panel temperature 

under the heat sink. The heat sinks had small holes with thermocouples embedded 

in contact with the panel at three positions over the length of the sink. No sink 

temperature corrections were nece s sary except for configuration C3, where two 

sink thermocouples monitored coolant inlet temperature and only the thermo

couple directly in line with C3 responded. In that case, only the one sink thermo

couple was considered indicative of surface temperature at a heat rejection zone. 

The heat sources had only one thermocouple in contact with the plate. The re

mainder were on the heat source surface. It was empirically determined that 

at 2 w / in. 2 (0.31 w / cm 2), there was a 1°F (0. 56 ° K) average gradient between 

the source surface and panel surface. Average panel surface temperature was 

obtained by averaging source surface temperatures, minus the contact LlT, with 

the one surface contact temperature. There was generally 5 to 10 therm.ocouples 

on the heat source. 

The gradient across the heat source was taken as the maximum difference between 

heat source surface temperatures. Nominal values at 2 w / in. 2 (0.31 w / cm
2

) 

and 300 watts were from 3° to 5°F. 

3.7.3 Thermal Test Results 

The effect of configuration on performance is shown in Figures 3 -11 and 3 -12 

for the first and second panels. Gradients associated with 150 sq in. (0.968 sq m) 

sources are grouped together for panel No.2; the spot heat source C6 and 

extended heat source C7 are identified separately. The gradients associated with 

panel No. 1 are quite high, indicative of the contact resistance problems already 

discussed. 
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Figure 3-11. Effect of Configuration on Performance of Panel No.1 
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Grouped sources for panel No. 2 have a mean ~T of 13.5 ° '±l. 25 ° F 

(7.50° ±O. 69°K) at 300 watts, for an effective thermal resistance of O. 045°F/w 

(0.025°K/w). The high flux density source (C6) specification was 2.75 w/in. 2. 

(0.43 w/ cm
2

) and at 5 w/in. 2 (0.78 w/ em?") the original NASA guideline for 

the spot source, the gradient was still within the 15° F (8. 33°K) specification at 

~T = 11.1 ° F (6. 17°K). The source C7, which models a panel with a disturbed 

array of power-dissipation electronic modules, had a ~T of 9.5' F (5. 28°K) 

at 300 watts, for an effective thermal resistance of O. 032°F/w (0. 018°K/w). 

The thermal gradient for an equal-weight aluminum panel is also shown for 

configuration C5 1
• The aluminum plate has a thermal resistance 15 times higher 

than the heat pipe thermal conditioning panel. 

The effect of panel orientation is shown in Figures 3 -13 and 3 -14. Because of the 

heat pipe orientation, the panel operate s well in the vertical pas ition when the 

heat pipes are essentially horizontal but operation suffers when the pipes are 

vertical and fluid drains to the bottom of the pipes. As is typical of a screen 

wick heat pipe, adverse tilting of the heat pipes one inch from hori?ontal pro

duce s little effect on performance. 

~ 
o 
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TS = 60°F 

(COLD RAILS) 

60~----+-----~-----+----~--~--r-----r-----~ 

50 
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~ 
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2. VERTICAL - HEAT PIPES VERTICAL 
~, 1-IN. TI LT· HEP.T PIPES HOR IZONTAL 

10 ~---+--f-7~"'---+------+--- 4. >,IN. TI LT. HEJI.T PIPES TI L TED 
HORIZONTAL 

O~----~----~-----L----~----~~--~~--~~ o 50 100 150 200 

HEAT TRANSFERRED (WI 

Figure 3·13. Effect ()If Panel Orientation on Panel No.1 Performance (C11 
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Figure 3-14. Effect of Panel Orientation on Panel No.2 Performance (C1) 
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The effect of sink conditions on performance is shown in Figure 3 - 15. With 

source C2 I, the D.T with one cold rail or one sublimator is from 13.5 0 to 14 0 F 

(7.50 to 7. 78°K) at 300 watts. Use of the cold rail and sublimator decreases 

the ~T to 10. 3 0 F (5. 72 OK). Similarly, use of one cold rail with the C7 source 

produces a ~T = 9.5 ° F, and two cold rails (one 6 in. wide and one of 5 in. wide 

(15.24 x 12.70 cm) on the opposite edge) decreases the ~T to 6. 3°F (3. 50 0 K) 

at 300 watts. 

This behavior is entirely consistent with calculations in Section 2.3 for the C2 

configuration. The use of a sublirnator and cold rail effectively doubles the 

heat rejection area or halves the condenser ~T because the cold rail and sub

limator aJ.-e quite similar for the second panel. If this is factored into the values 

calculated and tabulated, the ~T with two sinks is 10. 2°F (6. 21°F + 7·i8),OT 5.67"1<i<1 

good agreement with measurement. A similar argum,ent can be made for the C7 

configuration, which changed by 1/3 when the second rail wo.s added. 
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50 
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3. SUBLIMATOR (C1) 
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40 
6. 

PANEL NO.2 

ONE COLD RAIL 
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20 

J.::::=-+---r-----r-..:.;. -10 

o~----~------~------~----~--o 50 100 150 200 250 300 350 

HEAT TRANSFERRED (W) 

Figure 3·15. Effect of Sillk Conditions on Panel Performance (C2 and C2') 

The effect of sink or panel temperature is shown in Figure 3 -16 over the design 

goal operating range. From 32° to 80°F (273° to 300 0 K), the AT decreases 

by about 1 ° F (0. 56°K) for panel No.2, and approximately by the same percentages 

(5% to 10%) for panel No.1 

Considerable excess transport capacity is designed into the panel. By exceeding 

the AT requirements, burnouts were attempted (Figure 3 -1 7). Panel No. 1 burned 

out at 700 watts, or more than double the de sign goal. Panel No. 2 exceeded 

capacity of the coolant supply used at 900 watts, without burnout. A conservative 

estimate of burnout capacity is well over one kilowatt. Even at one kilowatt, if 

two cold rails 5 to 6 in. (0. l27 to 0.152 m) wide were used, the AT is on the 

O;·d . .!'T of 20°F (IrK) for configuration C7. Table 3-6 summarizes general 

I.hermal properties of the thermal conditioning panel. 

36 



60 

50 

A PANEL NO.1 

8. SUEs LIMA TOR 

40 ~-

-~ 
PANEL NO.1 -

SUBlIMATOR AND COLD RAILS ~-

20 . 

-~ SUBlIMATOR 
A-

-G 
PANEL NO.2 

.A_ 
SUBlIMATOR AND RAIL 10 

o 
o 5 10 15 20 25 

SINK TEMPERATURE (DC) 

Figui'~ 3-16. Effect of Sink Temperature on Panel Performance (C1 at 300 w) 

LL 
o 

120,------,-------.----------------------,-------,------, 

100~------~------~-----

PANEL NO.1 

PLATE-CENTER 
DEPRIMING (C5) 

80~-----4------_+------~~----~------+_------r_----~ 

60~-----4------_+-r/----r_----~------_+------_r----~ 

40r_-----4---.~-+------_t_ 

PANEL NO.2 

C5'-EXCEEDED 
HEATER CAPACITY 

0- C7 EXCEEDED 
-' COOLING CAPACITY 

20~----~~------~~~--~~~--+_------

O~~ __ _J ______ ~ ______ _L ______ ~----~~------~----~ 

o 200 400 600 800 1000 1200 1400 

THERMAL CAPACITY (W) 

Figure 3-17. Panel Burnout Capacity 
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3. 8 MECHANICAL CHARACTERISTICS 

To identify a thermal conditioning panel load limitation, an experiment was per

formed which used a single 30 in. (0.76 m) long U-shaped heat pipe extrusion bonded 

between two 0.40 in. (0. 102 cm) facesheets, lOin. wide and 30 in. long 

(0.254 x o. 76 m) the edges of the U were 8 in. (0.203 m) apart. The panel section 

was set on parallel 1/ 2-in. (1. 27 cm) diameter bars, 28 in. (0. 71 m) apart, a 

line load was applied perpendicular to the panel top face half-way between the 

supports, and deflection of the panel face was measured as a function of load. 

At each load, the bond line was examined for failure at the points of maximum 

stress. No failure was observed with loads to 200 Ib (908 kg) although centerline 

deflection was over 0.20 in. (0.508 cm). By allowing for the difference in flexural 

rigidity of this specimen and the thermal panel, the thermal panel will not fail 

with a static 800-lb (3632 kg) line load at the panel center with support available 

at the panel edges perpendicular to the heat pipe axes. 

Panel strength was not measured with line support on opposite edges parallel 

to the heat pipes, and the absence of any continuous metal members in that 

orientation places more stres s on the adhesive bond s. Therefore, for heavy 

component applications, it is recommended that the panel be mounted on sides 

A and B to take advantage of inherent strengths in the panel. In addition, if a 

rigid cross-member ran under the panel, limiting panel deflection to some 

small amount such as 0.02.0 in. (0.508 cm) or less, panel strength is significantly 

enhanced as many adhesive bond failures are directly attributable to excessive 

deflection. Mounting the panel rigidity along edges A and B also inhibits failure 

by limiting deflection under load. Table 3-7 summarizes mechanical properties 

of the thermal conditioning panels. 
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Dimensions 

Table 3-5 

PANEL COMPARISON 

Panel No. 1 

30 x 30 x 0.625 in. 

Panel No.2 

30 x 30 x O. 583 
(0.76 x 0.76 x 0.016 m) (0.76 x 0.76 x 0.015 m) 

Number of heat pipes 

Extrusion 

Total length of heat pipe 

Center- to- center heat 
pipe spacing 

Total extrusion weight 

Face ... plate thicknes s 

Mounting inserts 

Honeycomb 

Bonding agent 

Nominal panel weight 

Nominal gradients at 
300 watts 

9 

Figure 3-5 

44.8 ft (13.66 m) 

2.75 in. (0.070 m) 

4.5 Ib (20.43 kg) 

0.062 in. (0.157 cm) 

62 

Yes 

AF 126-2 

18. 3 Ib (83. 082 kg) 

40. 0° F (22.22 OK) 

Table 3-6 

11 

Figure 3- 6 

52 .. 0 ft (15.85 m) 

1. 66 in. (0. 042 m) 

7.81b (35.41 kg) 

0.040 in. (0.102 cm) 

64 

No 

Deltabond 154 

17.61b (79.904 kg) 

THERMAL PERFORMANCE CRITERIA 

Maximum component heat load 

Panel surface tempe rature 
gradient from source-to-sink 
at 2.0 w / in-z. 2 and 300 w 
(0.31 wi crn ) 

Maximum gradient between load 

Panel surface temperature 
gradient from source-to- s ink at 
spot flux of 2.75 w/in. 2 
(0.43 wi cm2 

Design goal Panel No. 1 Panel No.2 

300 w 

5°F 
(2.77°K) 

15°F 
(8.33 OK) 

700 w 900 w 

10° to 15 ° F 
(5.55to8.33) 

12. 5 of 11. 1 at 5 w I in. 2 
(6. 94°K) (6. 17°K at 0.78 wI cm2 ) 

Mounting surface temper a ture 32° to 85 ° F 0 ° to 120 ° F 0° to 120 ° F 

Startup time to 900/0 of final 
~T at 200w input 

):~N. S. = Not Spe cified 

(273<> to 303°K) (255° to 322°K) (255° to 322°K) 

N.S. 
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Table 3-7 

STRUCTURAL PERFORMANCE CRITERIA 

Panel size 

Bolt pattern 

Fasteners 

Surface flatnes s 

Top 

Botton'} 

Component loading 

Static g-load 

Panel weight 

Centerline deflection 
uniform load, supported 
at edges A and B only 

Simple supported 

Fixed edges 

Flexural rigidity (EI) 

Insert strength 

Tension 

Torque 

':'N. S. = Not Specified 

Design goal 

30x30in. 
(0.76 x 0.76 m) 

4 x 4 in. 
(0.10 x 0.10 m) 
centers 

1/4-28 UNF -2B 
thread s 

0.010 in. 
(0.025 cm) TIR 

0.020 in. 
(0. 050 cm) TIR 

1001b (45.4 kg) 

8 g 

15 lb (6.81 kg) 

N. S. 

N.S. 

40 

Panel No. 1 

30 x 30 
x O. 625 in. 
(0. 76 x 0.76 
xO.016m) 

Panel No.2 

30 x 30 
x 0.583 in. 
(0. 76 x o. 76 
xO.015m) 

4 x 4 in. 4 x 4 in. 
(0.10xO.10m) (O.lOxO.lOm) 
eente rs centers 

1/4-28 UNF Helicoil in 
O. 75 in. dia x 0.5 in. 
(1.43 cm dia x 1.27 cm) spool 

0.010 in. 
(0. 025 em) TIR 

0.009 in. 
(0.02 cm) TIR 
(0. 003 in. 
(0.008 cm) TIR avg) 

0.020 in. 0.012 in. 
(0.050 cm) TIR (0.030 em) TIR 

100Ib (45.4kg) 100 lb (45.4 kg) 

8 g 8 g 

18.3 lb (8.31 kg)17. 6 lb (7.99 kg) 

0.0106 in. /100 lb 
(0.0269 em/ 45.4 kg) 

0.0021 in. /100 lb 
(0.0053 em/ 45.4 kg) 

2.68 (10
6 ) lb-in. 2 

(7,84 (l06)kg_cm2 ) 

2l60lb (548.64 kg) 

>90 ft-lb (122 j) 
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Section 4 

CONCLUSIONS 

The feasibility of a heat pipe thermal conditioning panel has been demonstrated 

conclusively. All thermal design goals as identified by future NASA space 

needs have been met or exceeded. Thermal gradients at rated power and 

thermal flux density are 10° to 15°F (S. 54 to 8. 33°K) for most configurations, 

and as low as 6. 3°F (3. 54°K) with a uniformly distributed load of 300 watts at 

213 wi in. 2 (0.1 wi cm
2

). The ultimate thermal capacity of the heat pipe panel 

is estimated to exceed 1 kilowatt at a gradient of about 20° F (11. 08°K). 

Panel capability exceeded the heat rejection capacity of laboratory coolant 

systems at 900 watts. 

Mechanical strength of the panel is adequate to withstand over 8 g acceleration 

with a 100-lb (45.4 kg) uniform component load. Securing panel edges to a rigid 

frame enhances rigidity of the panel and improves ability to withstand 

acceleration. 

Surface flatness of the final panel top face-plate is within 0.003 in. (0.0076 cm) 

average and 0.009 in. (0.023 cm) maXImum. Surface flatness of the lower face 

is within 0.012 in. (0.031 cm) TIR. Both surfaces allow effective mounting of 

electronic components, experiments, and heat exchangers. 
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