This annual supplement to Heat Pipe Technology continues the work begun with the publication of the "Cumulative Volume" in March of 1971. Contained in this supplement are abstracts of documents and patents identified and added to the Heat Pipe Information Office collection during 1971. Also included is a review of the year's highlights in heat pipe development prepared by the technical editor, Dr. K. T. Feldman, Jr.

It is intended that a supplement such as this will be published at the end of each calendar year. In addition, a quarterly update service is available to those who need to keep current on new applications and developments between supplements.

This volume is in large part based on the efforts of Eugene Burch, Director of the Heat Pipe Information Office and Frank A. Baczek II, Staff Engineer, who devoted a vast amount of time and energy in its preparation. Our gratitude also goes to Dr. Feldman of the College of Mechanical Engineering for his assistance, encouragement and guidance. A number of individuals contributed foreign material to this collection, and in particular, the continued cooperation of Dr. C. A. Busse of EURATOM is gratefully accepted and appreciated.

This publication was further made possible by the Technology Utilization Program of NASA, from which the Technology Application Center derives the major portion of its support and by the close cooperation of the College of Engineering of the University of New Mexico.

William A. Shinnick
Director
Technology Application Center
University of New Mexico
Dear Reader:

This annual supplement of Heat Pipe Technology for 1971 includes 101 references with abstracts, and 47 patents. When combined with the cumulative volume released in March 1971, the two volumes of Heat Pipe Technology represent a valuable reference source for anyone interested in heat pipes. In addition to compiling and publishing this current bibliography, the Heat Pipe Information Office maintains an extensive library containing nearly all of these articles.

During 1971 the research and development work on heat pipes has shown steady growth, as evidenced by the publications and patents described in this volume. Significant contributions were made during the year on the following fundamental topics: variable conductance heat pipes, the transient analysis of heat pipe operation, the performance limits of steady heat pipe operation, and the dynamics of vapor flow in heat pipes. Experimental papers on artery and groove wicks and on rotating heat pipes were also notable. Heat pipe applications described in articles published during the year include cooling of gas turbines, temperature control of space craft, cooling of electric motors and electronic systems, heat transfer in thermionic and thermoelectric power generators, and heat transfer in cryogenic systems. From the number and diversity of these applications it is apparent that the heat pipe is gradually emerging from the laboratory into the industrial applications area.

Although a considerable effort has been made to insure that the bibliography is complete, readers are encouraged to report omissions to the Heat Pipe Information Office.

Sincerely,

K. T. Feldman, Jr.
Technical Editor
CONTENTS

A. GENERAL INFORMATION, REVIEWS, SURVEYS

B. HEAT PIPE APPLICATIONS
 B.1 General Applications
 B.2 Thermionic and Thermoelectric Converters
 B.3 Aerospace Oriented Applications
 B.4 Nuclear Systems
 B.5 Electronic Applications

C. HEAT PIPE THEORY
 C.1 General Theory
 C.2 Heat Transfer
 C.3 Condensation and Evaporation
 C.4 Fluid Flow

D. DESIGN, DEVELOPMENT, AND FABRICATION
 D.1 General
 D.2 Wicks
 D.3 Materials

E. TESTING AND OPERATION
CONTENTS

F. SUBJECT AND AUTHOR INDEX
 F.1 Bibliography
 F.2 Subject Index
 F.3 Author Index

G. HEAT PIPE RELATED PATENTS
 G.1 Patents
 G.2 Subject Index
 G.3 Author Index
 G.4 Patent Number Index
A. GENERAL INFORMATION, REVIEWS, SURVEYS

71047 THE HEAT PIPE - AN INTERESTING HEAT TRANSFER DEVICE
A description of the heat pipe, its design and operating characteristics is presented. Organizations actively engaged in heat pipe research are listed and a construction procedure for a simple heat pipe is given. A demonstration of the effectiveness of the heat pipe as compared to other heat transfer devices is outlined.

71048 COOLING WITH HEAT PIPES
The heat pipe principle is briefly discussed emphasizing low weight, high heat transport capability and wide range of operating temperature. A number of examples of the flexibility in heat pipe design and of its use as a part of a structure are given. The range of its application goes from heat transfer problems in the aerospace industry and cooling of electronic equipment to the Thermal Magic Cooking Pin.

71049 ADVANCES IN HEAT TRANSFER - THE HEAT PIPE
One of the five chapters of the book is devoted to the heat pipe. A brief survey of the historic development is followed by a description of the different types of heat pipes and the operating characteristics. An extensive literature survey covers the areas of general literature, material tests, operating characteristics, application, control and theory. A total of 170 references to heat pipe publication from both the United States and Europe is presented.

71050 LIQUID FIN - A NEW DEVICE FOR HEAT TRANSFER EQUIPMENT
The liquid fin, a system of pipes or loops filled with a liquid, is proposed for implementation in heat exchange systems. It transfers heat from a heat source to a heat sink that is located above the source through conduction and convection of the internal liquid. The operation depends on the gravitational field and the internal heat transport medium has to remain in liquid state over the entire range of operation. A theoretical analysis and experimental results are presented, and a number of applications are given such as high temperature recuperators. A comparison with the heat
pipe emphasizes the simplicity of the device and the fact that its operating pressure is independent of the operating temperature, while the effective thermal conductivity of the liquid fin was found to be substantially lower than that of the heat pipe.

71069 HEAT PIPES AND THEIR APPLICATIONS

Ninety-seven references are listed. They are arranged chronologically by year, covering the period 1964 to 1970, and alphabetically by author within each year. Most references are to general engineering and heat transfer studies, but a percentage involves heat pipes in nuclear systems. Reference is made to an abstract from each article.

71070 HEAT PIPES-DESIGN AND APPLICATIONS

The basic concept, design principles, and some practical aspects of heat pipes are reviewed. The underlying hydrodynamic theory is discussed. Special attention is devoted to pressure losses in the stream and liquid phases and to capillarity and gravity effects. Comparisons of theoretical predictions with experimental data are shown to be rather satisfactory in the case category of liquid metals. Thermal considerations, functional limits, and operating fluid selection criteria are examined. Technological problems posed by the choice of materials, capillary structure, and overall geometry are outlined, and the merits of heat pipes in some space and ground applications are briefly reviewed.

71071 NIMROD OPERATION AND DEVELOPMENT QUARTERLY REPORT, 1 APR-30 JUN, 1970

The Nimrod beam was on for high energy physics research for 89% of HEP scheduled operating time. Four experiments were completed and seven continued through this quarter. A heat pipe transport system which increases the operation effectiveness of liquid hydrogen targets is described. The development of wire grid electrodes in electrostatic separators, resulting in very large reductions in conditioning times coupled with lack of sensitivity to contamination, is reviewed. Some preliminary notes are given on resonant extraction system tests on X3, Nimrod's third extracted proton beam.
NEW DIRECTIONS IN HEAT TRANSFER
Howard W. Markstein, Associate Editor, Electronic Packaging and Production, August 1971, Avail: TAC

The report covers methods of cooling electronic equipment when high heat transfer rates are called for, or when temperature stabilization is required. Cooling techniques reviewed are liquid heat exchangers, heat pipes, thermoelectric coolers, and forced air systems.
B. HEAT PIPE APPLICATIONS

B.1 General Applications

71051 "HOT ROD" FOR THE KITCHEN IS HOT NEW INVENTION
A practical application of the heat pipe, a device originally developed for space applications, is presented. The Thermal Magic Cooking Pin to be inserted for example into a roast, accelerates the cooking process by transporting heat from the hot oven atmosphere to the center of the meat. The cooking time can be decreased by more than 50 percent.

71052 LIQUID AND VAPOUR COOLING SYSTEMS FOR GAS TURBINES
The application of several types of liquid and vapor cooling systems to gas turbine blades is discussed. Emphasis is placed on systems suitable for continuous operation. The application of the heat pipe concept to stator blade cooling is discussed in some detail and a tentative design study presented.

71072 HEAT PIPE APPLICATIONS
The objective of heat pipe applications is to move heat without application of additional energy and with an uncommonly small temperature difference between source and sink. An application of heat pipes to the OAO as a structural isothermalizer is discussed. The fine-pointing accuracy required of OAO demands a passive thermal control, yet structural gradients have to be minimized. The heat pipe fulfills this need. Ring-shaped heat pipes were designed for removable installation within the experiment tube structure. Load analysis was derived from overall spacecraft thermal network analysis. Fitting of circular grooved pipes to the spacecraft was accomplished by shape facsimile transfer to preassembly fixtures. Experimental and acceptance testing confirmed design selections and performance predictions. Future applications of heat pipes for structural isothermalization call for integration of pipes into load-bearing structure. New design and fabrication technique will be required to accomplish this.
71073 CONSIDERATIONS ON PRECISION TEMPERATURE CONTROL OF A LARGE ORBITING TELESCOPE
Calculations relative to the problem of quantitative specification of temperature uniformity and constancy of a large orbiting telescope is discussed with considerations for being able also to specify telescope operating temperature, materials, environment and types of construction and operation. An idealized configuration of a large telescope tube has been studied in a radiation environment corresponding to synchronous and to near-earth orbits.

71074 TEMPERATURE STABILIZATION WITH HEAT PIPES
Heat pipes for changing heat fluxes can be used for controlling their temperatures if they are partly filled with rare gas. The experimental results of the change of temperature between heat fluxes of 0.5 and 1.0 KW are 0.5% for a self-controlled water-cooled heat pipe and 2.2% for a corresponding radiation-cooled heat pipe. The results also show that the temperature stabilization is strongly influenced by the change of the rare gas temperature during operation, especially when the partial vapor-pressure of the working fluid in this zone takes on a non negligible value.

71075 LARGE TELESCOPE EXPERIMENT PROGRAM VOLUME 1, PART 1
The design requirements for the telescope system are summarized and the various components of the system are described and illustrated. The primary objective of the program is to develop a three-meter monolithic diffraction-limited system from a precursor two meter system. The technological gaps to be overcome and the precursor mission profile are discussed.

71076 CHARACTERISTICS OF SIX NOVEL HEAT PIPES FOR THERMAL CONTROL APPLICATIONS
Description of the test results and design rationale for choosing the specific configuration of heat pipes developed for certain thermal control applications. The liquid-nitrogen working fluid heat pipe operated at 7.9 W/sq cm with its evaporator end elevated and could be stored safely at room temperature. A circuit-board heat pipe operated from -50 to +80°C with a maximum evaporator to condenser differential temperature of less than 10°C. The heat switching device could transfer a preset finite amount of heat at a predetermined temperature, and the flexible heat pipe could be operated in an infinite variety of shapes, including being tied into a knot. The transformer heat pipe, used to control the temperature of the windings of a high power density pulse transformer, had an electrical insulating center section. The controlled temperature heat pipe, which used multievaporator segments, was developed for dissipation of 25 to 175 W at a temperature of -6 to +3°C.

71100 RADIAL HEAT FLUX TRANSFORMER
A. Basiulis, R.J. Buzzard (Radio Corporation of America), NASA Pasadena Office Contract NPO-10828, August 1971

A radial heat flux transformer employs heat pipe principles to move heat radially from a small diameter shell to a larger diameter shell, or vice versa, with negligible temperature drop, making the device useful wherever heating or cooling of concentrically arranged materials, substances, and structures are desired.

71102 VARIABLE CONDUCTANCE WALL

A Variable Conductance Wall (VCW) is a device which can vary the thermal conductance of a wall or plate over a wide range. This device uses internal evaporation and condensation of a working fluid contained within the wall. The variation in heat transfer through the wall is obtained by mechanically disconnecting capillary wicks which are used to pump the working fluid from the condenser to the evaporator. In this way the heat flow can be turned "off" or "on" (i.e. the heat flow may be made relatively small or large), or the conductivity can be varied continuously.

A simplified analysis of the operation of the VCW was found to give agreement with experimental data. The experimental model was operated horizontally with heating at the upper surface, and it gave a range of
thermal conductivities which vary by a factor of over 100. The analysis also shows how this range may be extended further.

71103 INTERCELL PLANAR HEAT PIPE FOR THE REMOVAL OF HEAT DURING THE CYCLING OF A HIGH RATE NICKEL CADMIUM BATTERY

Two 22-A-hr Ni-Cd cells were continuously cycled at a 1 C charge rate and a 2 C discharge rate, with cooling provided by an intercell planar (rectangular cross section) heat pipe. For purposes of comparison, thermocouple measurements were also taken with an Al conduction fin substituting for the heat pipe. The Al fin and heat pipe were cooled, by room temperature forced air. Thermally insulated cells were also cycled at the same rates. Cell case temperatures were measured during cycling, and a maximum of 29°C with a 5°C thermal excursion was noted with the heat pipe under conditions of thermal equilibrium which were observed after 3 complete cycles. For the Al fin configuration a maximum of 42°C with a 7°C thermal excursion was obtained near thermal equil. after 5 complete cycles. The insulated configuration yielded a battery case temperature of 83°C after 5 cycles, and thermal equil. was never reached. Coulombic efficiency values for the heat pipe cooled battery were several percent greater than 95% which was recorded for the Al fin configuration. The sp. heat of the cells was 0.27 cal/g°C. From this and the measured values of the total heat generated per cycle, the effectiveness of the heat pipe in removing battery heat was calc'd to be 26% greater than the Al fin at or near equil. It is surmised that the significantly lower operating temperatures produced by the heat pipe should lead to an important lengthening of battery cycle life and an associated reduction of capacity degradation.

71104 SMALL AXIAL TURBINE STAGE COOLING INVESTIGATION

The report describes an investigation of advanced cooling concepts for the gas producer axial flow turbine of a small gas turbine engine. These con-
cepts were directed toward minimizing the engine performance penalties, especially at part power, associated with conventional air cooling of the turbine. The initial phase consisted of a conceptual analysis of five stator and five rotor cooling concepts. The coolants for closed systems included liquid metal, high pressure gas, two phase H2O, heat pipe (two-phase liquid metal), and superheated steam. Modulated compressor air for transpiration cooling was also studied. To return the heat to the cycle, heat exchangers used in conjunction with the closed coolant systems utilized compressor exit air of fuels. Heat transfer analyses and preliminary designs were conducted on two selected turbine cooling concepts. The concepts selected as the most feasible included the closed systems using liquid metal or high pressure air for the stator and liquid metal or superheated steam for the rotor. Compressor discharge air was used as the heat sink for these systems. The effects of these systems on engine performance were also evaluated.

71105 THERMAL DESIGN OF HEAT PIPE COOLED A-C MOTOR

A serious limitation in high power density electric motors results from ineffective transfer of thermal energy from the point of generation to an external location. In a conventional motor, the generated heat is transferred by conduction to the exterior of the motor. At these exterior locations, the heat is dissipated by forced convection to ambient air. Heat pipes can be employed to increase significantly the effectiveness of this energy transport.

A heat pipe cooled A-C induction motor was designed, constructed and tested. Heat pipes were employed in both the rotor and stator to transfer the heat from the point of generation to the ends of the motor. The condenser sections of the rotor heat pipes were used as a fan structure to supply coolant air to the finned condenser sections of both the rotor and stator heat pipes. The test results and an analysis of the thermal system demonstrated the applicability of heat pipes to rotational equipment cooling and the utility of the a priori design procedure.

B. 2 Thermionic and Thermoelectric Converters

71053 CONCEPTUAL DESIGN OF A 150 KWE OUT-OF-CORE NUCLEAR THERMIONIC CONVERTER SYSTEM
Nuclear-thermionic systems with the thermionic converters outside the reactor have been re-examined in the perspective of several recent technical advances: new high-temperature, corrosion-resistant, high-strength alloys; high-heat-flux heat pipes; improved thermionic converters; and lightweight, vapor-cooled radiators. These have been combined to yield a new look to the out-of-core approach. A versatile, compact reactor results; insulators are eliminated by the use of heat pipes as electrically resistive elements; and weights are reduced by combining vapor-cooled radiator, structural supports, and current leads into vapor-cooled radiator modules. The over-all design is also highly modular and thus provides high reliability and a reduction in development time and costs.

71054 A 5 kW(e) RADIOISOTOPE THERMIonic POWER SUPPLY FOR UNMANNED ELECTRIC PROPULSION

The preliminary design of a radioisotope thermionic power supply for unmanned electric propulsion missions to the outer planets is described. In this design, there are 69 independent modules consisting of a thermionic converter, an emitter heat pipe to collect and concentrate heat from the isotope source, and collector and radiator heat pipes to remove heat from the collector and radiate it to space. The 69 modules are electrically connected in a series-parallel network to produce 15 volts at 5 kW(e). The 52 kW(t) of Cm-244 radioisotope is contained in 136 cylindrical capsules which are arranged to form a compact heat source. Heat is transferred from the capsules to the emitter heat pipes by radiation. The heat source is protected by a package of safety equipment to prevent dispersal of the isotope in the event of accidents during launch and ascent. This safety equipment is designed to be jettisoned from the power supply after hyperbolic trajectory is reached and the danger of reentry into the earth's atmosphere has passed. The mass of the 5 kW(e)
power supply is 142 kg after jettison of the safety equipment and 426 kg before jettison. A launch escape system to remove the radioisotope power supply from the vicinity of a fire or explosion on the launch pad is estimated to have an additional mass of 290 kg, but can be jettisoned at low altitude and velocity where it will have little effect on the payload capability of the launch vehicle. The most important problems anticipated in the development of such a power supply are in aerospace nuclear safety and in the development of reliable components to meet the mission lifetime requirement of 72,000 hours.

The organic fluid capsule test system was constructed, the test installation was completed, the system was brought up to temperature, and endurance testing was started at 600°F on December 30, 1970. The heat pipe and associated test equipment for the thermoelectric heat transfer test were fabricated, the test installation was completed, and the shake-down tests were initiated. Some difficulty was experienced with overcooling of the condenser end of the heat pipe during the initial startup, but this was overcome by changing the startup procedure. The heat pipe was started up and operated satisfactorily during the last week of December. Analyses of the relative performance characteristics of iron and nickel heat block-shield assemblies have been completed. The study shows that nickel will be required if advanced thermoelectric materials become available and are to be operated with a hot junction temperature of 1350°F, but for the rest of the systems steel will be satisfactory. Nickel is generally superior to steel, but steel is adequate for the other applications. The cost and delivery time are, of course, much greater for nickel. The 4.10-in. diameter fuel capsule for the SrTiO₃ source has been evaluated and a detailed report validating the capsule design with a safety analysis has been prepared.

The results of various studies on five different thermionic reactor systems are reported. Information is
given on characteristic data of these devices as the amount of fissile material, power output, specific power, mass of components, total mass etc. Problems of power flattening, long time behaviour, integration of converters to the nuclear heat source as well as specific design features of the following types of thermionic reactors are discussed: 1) moderated incore thermionic reactor (TRIKT), 2) moderated double diode thermionic reactor (DD-TR), 3) fast incore thermionic reactor (SRIKT), 4) fast out-of-core thermionic reactor, emitter heated by heat pipes (WR-TR), 5) fast out-of-core thermionic reactor, emitter heated by thermal radiation (SRAKT-WR). Among the concepts considered the moderated incore thermionic reactor system (TRIKT) is the most attractive within a few ten to a few hundreds of kWₑₚ. In the lower power range the "Teilthermionikreaktor" (ITR) seems reasonable.

71106 DESIGN AND ANALYSIS OF A CASCADED THERMOELECTRIC GENERATOR

Description of the development and construction features of a cascaded generator using silicon-germanium (Si-Ge) thermoelectric elements as a first stage, coupled to a second stage of lead-telluride (Pb-Te) elements. A heat pipe is utilized as the interstage thermal coupling mechanism. The device operates between 1283 K on the hot side of the Si-Ge stage and 464 K on the cold junction of the Pb-Te stage. The design of the complete cascaded generator, including the interstage coupling, heater, and heat rejection system is described, as well as the details of the test equipment. A conversion efficiency of 8% or more at an electrical output of 200 W is predicted.

71107 PERFORMANCE EVALUATION AND LIFE TESTING OF THERMOELECTRIC GENERATORS AT THE JET PROPULSION LABORATORY

Ten generators have been, or are being, evaluated. Generators tested have included those of the SNAP-11 and SNAP-19-type, as well as cylindrical thermoelectric module generator mounted on a heat pipe. Results of testing show that thermoelectric generators are capable
of reliable long-time operation and are well suited for long-term space missions.

71108 DYNAMICS OF A POWER SUPPLY WITH A MODERATED THERMIONIC REACTOR.
E. Wolf, V. Speidel, Atomkernenergie Vol. 16, No. 1 1970, p. 19-28 in German, Avail: TAC

Dynamics of a power supply with a moderated thermionic reactor, (Zur Dynamik einer Energieversorgungsanlage mit einem moderierten Incore-Thermionikreaktor); E. Wolf (Universitaet Stuttgart, West Germany), V. Speidel; Atomkernenergie v 16 n 1 1970 p. 19-28. The dynamic behavior of a power supply for spacecraft comprising a moderated incore thermionic reactor (ITR) and a heat pipe radiator is studied from a self-stabilizing point of view. Under certain conditions the heat transfer characteristics of the thermionic converters show a statically unstable region located near the maximum power working point of the converters. If the converter parameters reach that region there will be a large fuel temperature rise which may result in a destruction of the thermionic fuel elements. The time lapse of this kind of fuel burnout is discussed.

B.3 Aerospace Oriented Applications

71056 THERMOPHYSICS, APPLICATIONS TO THERMAL DESIGN OF SPACECRAFT

The twenty-six papers in this collection are grouped under the following categories—experimental thermophysical properties, analytical predictions of thermophysical properties, and thermal design of spacecraft systems. The last section is obviously devoted to applications engineering problems and, among the more significant, are two papers on heat pipes.

71057 SPACE STATION DESIGN CONCEPTS

Optimum thermal control concept for the manned Space Station project is studied in terms of maximum reliability, minimum weight and power requirements, and elimination of
spacecraft attitude constraints imposed by temperature limitations. Two design concepts are considered. The first is a heat-pipe concept which exclusively uses heat pipes throughout the spacecraft for thermal measurement. The second is a semipassive/air-cooled concept which rejects a sizable heat load passively through the insulation with forced air cooling to control cabin and equipment temperatures. The two concepts are compared with the conventional fluid-loop concept. Additionally, a brief discussion of the baseline configurations used for this study and the mission profile is presented. Analyses show that both concepts are feasible and temperatures can be maintained during both the low and high heat load thermal environments.

71078 HEAT PIPES FOR THERMIonic SPACE POWER SUPPLIES

Heat pipes for thermionic space power supplies have to operate essentially in two different temperature ranges: around 700°C (collector cooling) and above 1500°C (emitter heating). Axial heat transfer capabilities of 7 respectively 15 kw/cm² have been obtained in these temperature ranges. Still much higher heat flux densities are theoretically possible. For collector heat pipes there is a rather wide variety of compatible material combinations. In heat pipes operating at emitter temperature corrosion plays an important role; nevertheless there is a number of material combinations, which under sufficiently clean conditions show good compatibility. For example, at 1600°C W-26Re/Li is a promising heat pipe system, which has already been operated without failure for 10,000 hours.

71079 ISOTHERMAL COVER WITH THERMAL RESERVOIRS
National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Ala., Ambrose W. Byrd, Inventor (To NASA). Issued 22 Dec. 1970 (Filed 30 Jul. 1969) 5 p. Cl. 165-105; Cl. 165-104; Cl. 165-133; Cl. 244-1; Cl. 219-378; Cl. 219-530; Int. Cl. F28d 15/00 (NASA-CASE-MFS-20355; US-Patent-3,548,930; U.S.-Patent-Appl.-SN-845974) Avail: TAC

An isothermal cover for a spacecraft is reported. The device is a double walled cylinder enclosing a number of containers of fusible material, mounted on struts inside the walls of the cylinder, for use as heat reservoirs. The inside surfaces of the cylinder and the outside surfaces of the containers and struts are covered with a wicking material. The cavity of the double walled cylinder also contains a heat transfer fluid. The device functions as a heat pipe in transferring heat from its sunlit to its other (dark) side. The
heat reservoirs store heat when the device is in sunlight and return the heat to the system when the device is in darkness.

71080 A LOW-POWER THERMIONIC REACTOR WITH EXTERNAL CONVERTERS AND HEAT-PIPE-COOLED COLLECTORS.
Avail: TAC

The design of a fast thermionic reactor as a power source for spacecraft is presented. Planar cesium converters are arranged around the cylindrical core. The emitters are heated by heat radiation from the core surface. The collectors are cooled by means of heat pipes. A beryllium reflector is attached to the converter section and leads to the desired power flattening in the axial direction. A part of the radial reflector is used for reactor control.

The design of the power plant and some problems of the series-parallel connections of the converters will be discussed. A survey of methods and results of the computations is given. The plant can be operated in a region below 15 kW. The respective mass is about 260 kg (shielding not included). The plant is characterized by simple structure and high reliability.

71081 STUDY OF APPLICATIONS OF HEAT PIPES TO TEMPERATURE CONTROL FOR EUROPEAN METEOROLOGICAL SATELLITE

Heat pipes for meteorological satellite temperature control are studied. Life tests were performed on the stainless steel and copper heat pipes with acetone, ethyl and methyl alcohols as heat carriers. It is concluded that stationary and periodical tests should be carried out in order to study the corrosion mechanism, formation of gas buffers, and endurance limit of the welds.

71082 EXPERIMENTAL HIGH PERFORMANCE HEAT PIPES FOR THE OAO-C SPACECRAFT.

Two circular heat pipes with an arterial wick were developed, featuring a high-heat transport capability combined with insensitivity to gravity and low overall thermal resistance. They will have a dual function on the spacecraft - i.e., to isothermalize its structure and to evaluate arterial heat pipes
in a flight experiment. The heat pipes were laboratory tested in both the arterial and conventional mode, and all performance criteria were met. Some difficulties were encountered, however, in reliably priming the artery under all conditions in the laboratory. In parallel with the development of the flight hardware, pressure qualification tests of aluminum-ammonia heat pipe samples were conducted, and a 3000-hr life test was completed.

71083 THERMAL CONTROL SYSTEMS DESIGN FOR SPACE STATION

An investigation, made to formulate the evaluate alternative concepts for space station thermal control systems, resulted in two advanced systems being designed and compared to the present pumped loop system. The advanced concepts are the air-cooled semipassive system, which features rejection of a large percentage of the load through the outer skin, and the heat pipe system, which incorporates heat pipes for every thermal control function. Both advanced systems show significant weight and power consumption advantage over the state-of-the-art pumped loop system. Thermal analyses demonstrated that all of the systems were capable of meeting the performance requirements under all design conditions. The design details presented in this paper demonstrate that advanced system hardware may be used to realize a potential 30 per cent weight savings over present techniques.

71109 OPTIMIZATION OF A SHIELD FOR A HEAT PIPE COOLED FAST REACTOR DESIGNED AS A NUCLEAR ELECTRIC SPACE POWER PLANT

A reactor shield optimization procedure based on the ASOP shield optimization computer code and the DOT radiation transport code was used to determine a minimum weight shield for a small fast reactor designed for a space nuclear electric power plant. The reactor, cylindrical in shape, is fueled with un and cooled by liquid K circulating through a matrix of stainless steel heat pipes embedded in the core; the design power is 450 kW(t). The surrounding shield is typically asymmetric, having the overall shape of a
truncated 90-degree cone whose thick base is positioned between one end of the reactor and the crew compartment. The heat pipes emerge from the opposite end of the reactor, penetrating through the apex of the shield. The dose constraints are three mrem/hr at all 100-ft radii falling within the shadow cast by the base of the cone and 300 mrem/hr at all other 100-ft. radii. The optimized shield consists of alternate layers of W and LiH, the thick bottom section extending out to a radius of 112 cm and the tapered side decreasing to a radius of 89 cm. The top heat pipe shield region consists of a 59-cm-thick inner layer of a stainless-steel-B_4C mixture and a 30.5-cm-thick outer layer of a BeO-B_4C mixture. The total shield weight is 25,589 lb. A partially optimized shield having a 45-degree cone angle and a higher dose constraint for positions outside the cone shadow (100 rem/hr) has a total weight of 14,708 lb. These shield weights include an allocation of 3.5 vol% of stainless structure in the LiH regions.

71110 POTASSIUM RANKINE CYCLE VAPOR CHAMBER (HEAT PIPE) RADIATOR STUDY

A structurally integrated vapor chamber fin (heat pipe) radiator is defined and evaluated as a potential candidate for rejecting waste heat from the potassium Rankine cycle powerplant. Several vapor chamber fin geometries, using stainless steel construction are evaluated and an optimum is selected. A comparison is made with an operationally equivalent conduction fin radiator. Both radiators employ NaK-78 in the primary coolant loop. In addition, the Vapor Chamber fin (VCF) radiator utilizes sodium in the vapor chambers. Preliminary designs are developed for the conduction fin and VCF design. Performance tests on a single vapor chamber were conducted to verify the VCF design. A comparison shows the conduction fin radiator easier to fabricate, but heavier in weight, particularly as meteoroid protection requirements become more stringent. While the analysis was performed assuming the potassium Rankine cycle powerplant, the results are equally applicable to any system radiating heat to space in the 900° to 1400°F temperature range.
The concept of splitting a heat pipe reactor for out-of-core thermionics into two identical halves and using the resulting center gap for reactivity control is described. Short Li-7-W reactor heat pipes penetrate the axial reflectors and form a heat exchanger with long heat pipes which wind through the shield to the thermionic diodes. With one reactor half anchored to the shield, the other is attached to a long arm with a pivot behind the shield and swings through a small arc for reactivity control. A safety shim prevents large reactivity inputs, and fueled control arm drive shaft acts as a power stabilizer. Reactors fueled with U-235C and with U-233C were studied.

B. 4 Nuclear Systems

71058 NUCLEAR POWER PLANT FOR A SPACE STATION
Peter Fiebelmann, Helmut Neu, Umberto Buzzi, to EURATOM. British Patent 1,220,554. 27 Jan 1971, Priority date 24 May 1968, Germany

Heat Pipes—design parameters for thermionic reactor shielding cooling.

Nuclear Auxiliary Power Systems—design parameters of thermionic reactor system with heat pipe cooling of radiation shield.

Shielding—cooling system for thermionic reactor, description of heat pipe for.

71059 NUCLEAR POWER PLANT FOR A SPACE STATION
Peter Fiebelmann, Helmut Neu, Umberto Buzzi, to EURATOM. British Patent 1,220,644. 27 Jan 1971, Priority date 24 May 1968, Germany

Heat Pipes—protection of, description of radiator plates for.

Nuclear Auxiliary Power Systems—design of thermionic reactor system with heat pipe protection by radiator plate.

Radiator—design parameter of plate type, for protection of heat pipes.

71060 NUCLEAR REACTOR WITH HEAT PIPES
Helmut Neu, Peter Fiebelmann, to EURATOM. British patent 1,220,553. 27 Jan. 1971. Priority date 21 May 1968, Germany.
Heat Pipes—design parameters of dual crossed axes, for thermionic reactors
Nuclear Auxiliary Systems—core configuration for thermionic reactor with dual crossed-axis heat pipe system.

71061 APPLICATIONS OF HEAT PIPES TO NUCLEAR REACTOR ENGINEERING
Monte Bryce Parker, Ames, Iowa; Iowa State Univ. 1970. 86p. University Microfilms Order No. 70-25,816.

A feasibility study was made of the use of heat pipes as reactivity control devices for a nuclear reactor. The heat pipes contain uranium tetrafluoride as the heat pipe working fluid. The evaporator section is within the reactor and the condenser section is outside the reactor. The reactor model used is based on a reactor used in rockets such as Nerva. Equations are derived relating the neutron flux and coolant temperature to the mass of fuel in the heat pipe evaporator section. The reactivity of the mass changes of the fuel is determined using a perturbation analysis. Other feedback effects are then added to the system and the time dependent behavior of the neutron density is determined for step and ramp reactivity inputs.

71062 HEAT PIPES FOR RECOVERY OF TRITIUM IN THERMONUCLEAR REACTOR BLANKETS

Controlled thermonuclear reactors, using deuterium—tritium as a fuel for the fusion reaction, require a means of regenerating tritium so that cycle continuity is maintained. A unique way for satisfying the tritium needs is suggested. It is proposed that heat pipes using sodium as a working fluid be used in tritium transporters in the blanket structure of a fusion reactor. The tritium produced by the reactions in the lithium moderator of the blanket would be diffused through the heat-pipe wall and transported within the heat-pipe body and then processed for recycling. Heat pipes are explained as heat-transfer devices and as gas handlers in a fusion reactor environment.

71084 HEAT PIPES AS A MEANS OF ENERGY REMOVAL FROM THERMONUCLEAR REACTOR VACUUM WALLS

Incident flux limits imposed by heat transfer considerations on vacuum walls of thermonuclear reactors are discussed. The use of heat pipes for energy removal indicates that fluxes of \(\sim 500 \text{ w/cm}^2 \) can be achieved as compared with \(\sim 250 \text{ w/cm}^2 \) for con-
ventional cooling. Limiting conditions for heat pipes are consid-
ered. Lithium is shown to be a good choice as a heat pipe fluid with sodium second.

71112 HEAT PIPE COOLED REACTOR AND HEAT EXCHANGER FOR BRAYTON-CYCLE POWER SYSTEMS

Description of a shielded reactor and heat exchanger design which can be coupled with three 10-
to-15-kWe Brayton B turbine generator units to provide a 30-to-40-kWe space power supply. The system is characterized by low weight and highly reliable and redundant components. Heat transfer from the reactor to the heat exchangers is accomplished by heat pipes in such a way that isolated failures of heat pipes, core cladding, the reactor vessel, or combinations thereof can be tolerated without necessitating shut-
down or resulting in significantly decreased longevity of the reactor. Space for anticipated fuel swelling is easily provided and fission products are doubly contained. Multiple heat exchangers and Brayton-
cycle engines provide additional system redundancy. No extrapolations of current technology have been assumed. Extended lifetimes of the order of five years should be readily attainable. The reactor concept is amenable to straightforward modification to obtain higher temperatures and higher power levels.

B. 5 Electronic Applications

71085 HIGH POWER LINEAR BEAM TUBE DEVICES

As compared to high power tubes for satellite-borne communications transmitters, tubes for a space power station have no requirements on bandwidth and linearity characteristics. For this reason, the travelling wave tubes, which are interesting for communications because of their ability to transmit wide frequency bands, would very likely be discarded for power generation, because of their lower efficiency, which would require a rather complicated depressed collector. Among the various types of klystrons, the electrostatically focussed tube would bring the advantage of a lower weight, but this tube has
to be improved to reach the efficiencies which have been demonstrated for magnetically focussed tubes. The discussion of a figure of merit in comparing various types of tubes for this particular application shows the importance, to reduce the overall weight, of operating the collector at as high a temperature as possible. This could be done with klystrons, where the heat dissipating electrode is well separated from the gun and the microwave structure. This high temperature operation of the heat radiators, together with a new technology based on an open structure and the extensive use of heat pipes should put the klystron in a good competitive position for the equipment of space power stations.

71086 DEVELOPMENT OF A 250 AMPERE TRANSCALENT RECTIFIER
S.W. Kessler, RCA Electronic Components, Lancaster, Pa.

During the investigation the water was frozen and its flow to the evaporator limited by the rate at which ice in the wick could be melted. External thermocouples on the heat pipes and the forward voltage of the junction were monitored to determine the transient thermal impedance of the transcalent rectifiers. The experiment was conducted by applying an average current of 250 amperes to the transcalent rectifiers in an ambient of -25C. The data was analyzed with respect to the thawing of the heat pipes. Two transcalent rectifiers were successfully cycled 55 times at their rated current before discontinuing the test. Each cycle was of sufficient length for the rectifiers to be in thermal equilibrium with their environment and consisted of 15 minutes on -15 minutes off. A summary of the 400 ampere RMS transcalent thyristor design which was initiated during the performance of this contract. The silicon chip design incorporates an insulated emitter gate junction structure which will be located inside the wall of the heat pipe so that the periphery of this junction can be cooled.
C. HEAT PIPE THEORY

C. 1 General Theory

71046 A SPACE APPLICATION OF A CRYOGENIC HEAT PIPE

The paper describes a cryogenic heat pipe proposed as the thermal link between the central refrigerator and the remotely located cryogenically cooled sensor platforms of a spacecraft. The heat pipes are part of the integrated cryogenic isotope cooling engine (ICICLE). The results of calculations using a theoretical model are compared with experimental data.

71063 STEADY STATE AND DYNAMIC BEHAVIOR OF HEAT PIPES (DAS STATIONARE UND INSTATIONARE BETRIEBSVERHALTEN VON WARMEROHREN)

Heat pipes are construction elements with an extremely high heat transport capability. The physical principles and mathematical methods for describing the steady state and the dynamic behavior of heat pipes are presented. The steady state performance is described by a pressure balance for the heat pipe. The dynamic behavior with fully developed vapor flow in the heat pipe is described with sufficient accuracy by a heat balance. Some of the many examples of heat pipe applications will be presented. The dynamic behavior for different variations of the heat input will be discussed and special regard is given to the performance limitations.

71064 APPLYING HEAT PIPES TO THERMAL PROBLEMS

The article briefly describes the principle of operation of a heat pipe emphasizing its basic components and material requirements. Calculated performances are listed for heat pipes with mercury, sodium, lithium, ammonia and water as heat transfer media as a function of operating temperature. The operating temperature ranges and the corresponding maximum power density are presented. The effect of gravity on the operation of a heat pipe is shown for different wick structures. Some limitation to the heat pipe operation such as maximum energy transport, maximum power density and sonic velocity of the vapor are listed. The results of heat pipe life tests for heat pipes of different materials using different heat transfer fluids are presented.
A preliminary investigation was made of the performance characteristics of cylindrical heat pipes with a view toward their incorporation as heat transport devices in nuclear electric space and undersea power plants, where reliable unattended operation is of prime importance. The basic operating principles of the heat pipe are summarized, together with an enumeration of the pertinent thermodynamic and transport fluid properties and a brief discussion of each. A number of capillary structures of both the simple and composite type is described and some of the advantages and disadvantages are delineated. The readily available heat pipe operating lifetime data are reviewed and are summarized in tabular form. The data show that the heat pipe is capable of the long-term reliability required for unattended operation. The theoretical bases for predicting several of the inherent heat pipe performance limits are reviewed and the resulting predictions compared with experimental data. The optimization of heat pipe geometry with respect to performance is shown for the situation where heat pipe output is not limited by compressibility or entrainment effects. The effects of several geometric and fluid parameters are examined primarily by means of the theoretical relations previously obtained.

The Grover "heat pipe" is a recent innovation which appears to have promising applications in space power plant designs, particularly for a thermionic system. Due to the complexity of the hydrodynamics involved in heat pipe operation, the theory is semi-empirical; and although a number of heat pipes have been successfully constructed and operated, little has been reported along the line of comparing theory and experiment. This note summarizes the theory of heat pipes as it presently exists, the main objective being the presentation of some working formulae and relationships for use in future system studies.
71089 TRANSIENT PERFORMANCE OF ELECTRICAL FEEDBACK-CONTROLLED VARIABLE-CONDUCTANCE HEAT PIPES

The authors investigated the effects of various system parameters on the transient response of a heat source whose temperature is regulated by an electrical feedback-controlled variable-conductance heat pipe. A closed-form analytic solution which can be used to evaluate the transient performance and provide preliminary design data is presented. Results obtained with an experimental model of an electrical feedback-controlled heat pipe are discussed and correlated using the closed-form solution. An optimum design of such a system depends on a trade-off between steady-state and transient considerations.

71090 THERMAL CONTROL OF ATS F AND G.

This paper presents Applications Technology Satellite (ATS) F and G thermal requirements, design and analysis. The analysis may be broken down into three general categories: heat pipe, louver, and system. The heat-pipe analysis includes design equations and curves, generated to determine optimum design, and culminates in a heat-transport capability vs transport-distance curve. The louver analysis outlines methods used to determine louver heat-rejection capability for various operating modes, orbital conditions, and solar heat inputs. A multi-node thermal model that is described was used to obtain detailed temperature maps for structure and components.

71113 DYNAMIC ANALYSIS OF SATELLITE HEAT PIPE FLUID ENERGY DISSIPATION

A described mathematical heat pipe model is shown to provide excellent agreement with observed
satellite dynamic characteristics and to confirm the estimated stability of a planned rescue approach configuration. It is felt that this model is sufficiently broad to support other heat pipe applications having varying pipe numbers and dimensions, fluid masses, geometries, and satellite inertial and dynamic parameters.

71114 THEORY AND DESIGN OF VARIABLE CONDUCTANCE HEAT PIPES: CONTROL TECHNIQUES

The second report on the research effort on a variable conductance heat pipe for spacecraft thermal control deals with theory and design practice relating to heat pipe control.

Most attention is given to passive gas-controlled heat pipes, be they cold or hot, wicked or non-wicked reservoir designs. However, for the sake of completeness, the report also deals briefly with active heated reservoir and feedback controlled systems since these will likely play an important role in spacecraft thermal control.

In addition, the subject matter includes discussions on other control schemes including (1) liquid flow control, (2) vapor flow control, and (3) the use of excess working fluid (rather than non-condensible gas) to effect condenser area variations.

71115 THEORY OF TWO COMPONENT HEAT PIPES

A theoretical framework for predicting the steady-state operational characteristics of two-component heat pipes is established. The laws of conservation of mass and energy as well as thermodynamic phase equilibrium relations are applied to the system and the governing relations between the various system parameters are specified. Measurements of the operational characteristics of a water-ethanol heat pipe indicate that complete separation into two pure components did not occur in any of the experiments. The observed degrees of separation and other operational characteristics agree well with the predictions.

71116 VARIABLE VAPOR VOLUME HEAT PIPES
R. Werner, (Lawrence Radiation Laboratory, University of California, Livermore), UCID-15621, August 9, 1966,
Design of a heat pipe which provides for a vapor volume which changes or adjusts as a function of input power is discussed. An illustrative example using steam is provided. The heat pipe as a temperature transducer is suggested.

71117 DYNAMIC BEHAVIOR OF HEAT PIPES

Based on a qualitative discussion of startup behavior of heat pipes with frozen heat carriers, a model was developed for describing this operational period. Typical startup behavior of heat pipes is discussed.

C. 2 Heat Transfer

71091 HEAT AND MASS TRANSFER IN THE VICINITY OF THE VAPOR-GAS FRONT IN THE GAS LOADED HEAT PIPE

An analysis is presented to axially conducting gas controlled heat pipes leading to a predictive capability for the heat and mass transfer along the heat pipe. In particular, it was found that axial heat conduction is of much greater importance than axial mass diffusion in establishing the wall temperature profiles and condenser heat transfer characteristics of gas loaded heat pipes. However, mass diffusion and, consequently, the choice of working fluid and control gas are of considerable importance in establishing the diffusion freeze-out rate if the potential exists for freezing of vapor which penetrates the gas-blocked portion of the condenser. It is believed that the analysis and associated computer program are useful tools for designing gas loaded heat pipes.

71118 MEASUREMENT OF THE MAXIMUM AXIAL HEAT FLUX OF A SODIUM OR POTASSIUM HEAT PIPE

The maximum axial heat fluxes of a heat pipe with Na or K as working fluid have been measured as a function of operating temperature and on the lift height. The transported heat was transferred to cooling water via a gas gap, the gas pressure of which could be varied. The theoretical heat fluxes have been computed according to existing calculation methods and have been compared with experimental results. Design calculation methods were found for dimensioning of heat pipes.
SONIC LIMIT IN SODIUM HEAT PIPES.

The results of an analytical study of the vapor dissociation-recombination and homogeneous vapor condensation phenomena in sodium heat pipes are described. It is shown that neither the dissociation-recombination reaction nor the vapor condensation process has much of an influence on the sonic limit heat transfer rate. The single most important factor is shown to be the wall shear stress in the heat pipe vapor passage. The friction effects control the location of the sonic point, determine if the flow in the condenser section will be subsonic or supersonic, and decrease the sonic limit heat transfer rate to values which can be substantially lower than those which are predicted from inviscid analyses.

THEORETICAL INVESTIGATIONS OF HYDROGEN, NITROGEN, AND OXYGEN HOMOGENEOUS AND ANNULAR WICK HEAT PIPES

In any heat pipe, the capillary pressure developed at the liquid-vapour interface balances the sum of the various pressure drops throughout the pipe. This study analyzes the different contributions to the pressure drop for both homogeneous wick and annular wick heat pipes operating at low temperatures. The pressure drop in the wick structure is of primary importance for a homogeneous wick heat pipe. The heat transfer capacity of an annular wick heat pipe, in addition, is strongly affected by the interphase pressure drop due to non-zero evaporation and condensation rates at the liquid-vapour interfaces. Theoretical heat transfer rates as functions of the vapour temperature have been computed for both homogeneous and annular wick structures of heat pipes utilizing hydrogen, nitrogen, and oxygen as working fluids. The heat transfer capacity of the annular wick design is more than an order of magnitude higher than that of the corresponding homogeneous wick design.

SURFACE HEAT FLUX FOR INCIPIENT BOILING IN LIQUID METAL HEAT PIPES

Conditions required for incipient boiling in liquid metal heat pipes are examined. It is shown that the heat flux for boiling in heat pipes can be larger
than that for pool boiling if thin capillary wicks are used with low fricitional resistance to liquid flow in the axial direction. Methods for calculating the heat flux for incipient boiling in heat pipes are derived. Data on nucleation site radii and interface heat transfer coefficients, needed for heat flux calculations, are available. An upper limit of 3 to 7 microns is determined for the nucleation site radius in sodium heat pipes.

C. 3 CONDENSATION AND EVAPORATION

71122 BOILING LIMIT IN ALKALI LIQUID METAL HEAT PIPES
The heat transport rate at which boiling is initiated in alkali liquid metal heat pipes is examined. Expressions are developed for the wick temperature drop necessary for the inception of boiling, the associated surface heat flux, and the associated axial heat flux. It is shown that the wick temperature drop for incipient boiling depends on the radius of curvature at the liquid-vapor interface as well as on the radius of vapor bubble nucleation sites, and that the heat flux at incipient boiling is in addition a function of heat pipe geometry. Information from which the boiling limit can be calculated is given for sodium, potassium, and cesium heat pipes over the temperature range of 1300 to 1700 F.

71123 STEADY AND MAXIMUM EVAPORATION FROM SCREEN WICKS
Heat transfer results are presented, for water at pressures near atmospheric in wicks formed of layers of stainless steel screen, both for complete submergence and for the evaporation into a surrounding vapor that occurs in a heat pipe. Maximum rates of evaporation are found and the "static rise" and permeability inferred therefrom are compared to values deduced from isothermal dynamical performance of the wick. Some results for evaporation performance and maximum evaporation at lower pressures are included.

71124 VAPORIZATION FROM CAPILLARY WICK STRUCTURES
In a vaporization system, coolant can be directed to specific locations by employing capillary flow produced by a wick structure. This flow control can augment the heat transfer procedure and produce a more effective total system. The combined experimental and analytical study presented herein facilitates the understanding of the fluid and heat transport phenomena necessary for the utilization of wick vaporization.

The system under study consisted of the capillary flow of a saturated liquid through a wick structure. As the liquid was "fed" through the wick, heat was uniformly applied beneath it, causing vaporization. Data was taken for several different wick configurations. Each wick was tested throughout a range of saturation pressures for varying wick thicknesses. The data for wick structures operating with non-metallic working fluids (water, freons, etc.) indicates that vaporization heat transfer coefficients as high or higher than those for smooth surface pool boiling are obtainable.

The experimental results define the thermal resistance of the vaporization phenomena and the dry-out point or limit of the operating heat flux range. An analysis is presented and experimentally verified which allows the dry-out point to be determined for thin wick structures.

71125 EXPERIMENTAL INVESTIGATIONS ON CAPILLARY EVAPORATION COOLING WITH WATER AS THE WORKING FLUID
Quast, Armin (Brunswick, Germany) Forsch. Ingenieurw, 1971, 37 (2), p. 52-55 in German, Avail: TAC

The properties of several capillary structures for heat pipes and capillary evaporation cooling were investigated in open air at 100°. Heat flux ds.≤ 70 W/cm² were obtained. No change in the mechanism of evaporation was caused by slanting the heating surface even if the vapor flowed off in the direction of gravity. An experimental circulating unit for evaporation cooling gave satisfactory results, however, only maximum loads of 20 W/cm² could be achieved on the heating surface.

C.4 Fluid Flow

71067 EFFECTS OF INTERPHASE TEMPERATURE DIFFERENCES AND WALL FRICTION IN HIGH-TEMPERATURE HEAT PIPES
From the analysis of a simple evaporation-heat-transfer system it is shown that the temperature drop required by the second law of thermodynamics occurs at the liquid-vapor interfaces. The temperature drop is estimated for conditions comparable to those in a 30-kW, 1800 K lithium heat pipe. A simple one-dimensional treatment of the fluid dynamics in a high-temperature heat pipe is used to predict pressure drops in such a pipe. The effects of evaporation and condensation on wall friction in turbulent flow are included in the analysis. The additional friction due to condensation is shown to reduce the pressure recovery by a factor of 2. Detailed calculations are presented for two 1800 K lithium heat pipes.

71068 THEORY AND DESIGN OF VARIABLE CONDUCTANCE HEAT PIPES — HYDRODYNAMICS AND HEAT TRANSFER
B. D. Marcus, TRW Systems Group, research rept. no. 1, April 1971, rept. no. 13111-6021-RO-00, Contract NAS2-5503, Avail: TAC

The first report on the research effort on a variable conductance heat pipe for spacecraft thermal control covers the results in the areas of hydrostatics, hydrodynamics, heat transfer, fluid selection and materials compatibility. A literature review is followed by theoretical developments and heat pipe design methods. The compatibility of aluminum, stainless steel, copper and nickel with water, ammonia, methanol, acetone, freon-21, freon-11, and freon-113 is investigated and presented in matrix form. A selected bibliography pertinent to spacecraft control is presented.

71092 INVESTIGATION OF THE HYDRODYNAMICS OF FLUID FLOW IN THE DUCT OF A HEAT PIPE.

The problem of calculating the flow of an isothermal fluid under the action of capillary forces in a heat pipe under zero-gravity conditions is analyzed. The duct is assumed to be formed by the pipe wall and parallel capillary plates. A relation between the rate of flow and the duct parameters is derived which can be used for selecting the dimensions of capillaries that are optimal with respect to the flow rate.

71126 OPTIMIZATION OF A HEAT PIPE WITH A WICK AND ANNULUS LIQUID FLOW
H. Hwang-Bo and W.E. Hilding, ASME No. 71-HT-V, Avail: TAC

An analytical model has been formulated for the parametric study of liquid flow characteristics in the
heat pipe, which consists of a porous tube, a closed outer container tube, and an annulus between them. The analytical model includes the effect of the rate of change of momentum, surface tension forces, the frictional forces in the body of wicking material and at the wall, as well as the axial variation of static pressure supporting the capillary meniscus at the liquid-vapor-wick interface in the vapor passage. The length of the condenser of the heat pipe was optimized as a function of the radial heat flux rate and the ratio of the liquid flow rate in the annulus to that within the wick, \(\frac{W_a}{W_w} \). The effect of pressure loss and recovery in the vapor passage of the heat pipe on the optimum length of condenser was investigated.

71127 INCOMPRESSIBLE LAMINAR VAPOR FLOW IN CYLINDRICAL HEAT PIPES

Solutions of the complete two-dimensional Navier-Stokes equations for the steady flow in circular heat pipes with various distributions of evaporation and condensation have been obtained by finite-difference methods. In addition to the numerical results, a new series solution for the slow motion case was obtained which is valid for arbitrary distributions of evaporation and condensation. The series solution confirms the numerical result in the limit of low Reynolds number.

The conditions in the evaporator section of the heat pipe are found to be adequately described by similar solutions in both limits, and the characteristic of the flow in the transition from low to high Reynolds number is completely determined by the evaporator Reynolds number. The evaporator section is very weakly coupled to the condenser. The conditions in the condenser section are decidedly more complex, and similar solutions are of value only for small Reynolds numbers for long tubes. The flow in the condenser depends upon the condenser Reynolds number, the evaporator Reynolds number and the condenser length to diameter ratio. Reverse flows occur for radial Reynolds numbers greater than 2 and occupy a substantial fraction of the condenser length.

Complete flow descriptions for symmetrical and asymmetrical heat pipes are presented, and practical results for the calculation of pressure losses in low speed heat pipe vapor flows are given.
The article discusses and presents ways of calculating the minimum meniscus radius for various types of heat pipe wicking materials. One of the major features in the transport processes inside a heat pipe is the wick capillary pumping action for the return of condensate from the condenser to the evaporator, the limit of this capillary pumping plays a most significant role in the design of the heat pipe. This pumping pressure is a function of the minimum meniscus radius.

Self-pumping evaporating and condensing devices can be made by utilizing surface-tension forces at porous and at ribbed surfaces. How well they would perform is, apparently, not known.

It might be useful to study this method of pumping by surface tension to see whether it has applications in space, where gravity may not be effective and pumps are undesirable.

A proposed design of a cooling device for electronic packages is presented and discussed.

A number of questions to which answers might usefully be sought are listed.
D. DESIGN, DEVELOPMENT, AND FABRICATION

D. 1 General

71093 STATUS OF EMITTER HEAT PIPE DEVELOPMENT AT ISPRA

The development work on heat pipes for operation around 1600°C is concentrated on Li systems mainly for two reasons: 1) Li has a very high heat transfer capability at moderate vapor pressures, 2) a W/Li heat pipe has shown the minimum corrosion in early screening tests of 15 heat pipe combinations comprising Nb-1Zr, Ta, CVD-W as wall material and Bi, Pb, Tl, Li, Ba as working fluids. Successful corrosion inhibition has been demonstrated in 1000 hour tests with Nb-1Zr/Li at 1500°C and Ta/Li at 1600°C by sufficient deoxidation. A W-26Re/Li heat pipe has passed 6000 hours of operation at 1600°C with an average heating rate of 100 w/cm² without showing any signs of deterioration.

For temperatures around 2000°C Ag heat pipes are being studied. A first test of a W-26Re/Ag heat pipe showed after 1000 hours at 2000°C with an average heating rate of about 150 w/cm² moderate mass transport of an unusual pattern, which can not yet be explained.

71094 VARIABLE VAPOR VOLUME HEAT PIPES

Design of a heat pipe which provides for a vapor volume which changes or adjusts as a function of input power is discussed. An illustrative example using steam is provided. The heat pipe as a temperature transducer is suggested.

71095 USER'S MANUAL FOR THE TRW GAS PIPE PROGRAM. A VAPOR-GAS FRONT ANALYSIS PROGRAM FOR HEAT PIPES CONTAINING NONCONDENSIBLE GAS.

A digital computer program is described which is useful in the design and analysis of heat pipes which contain noncondensible gases; either for temperature control or to aid in start-up from the frozen state. The program includes the effects of axial conduction and mass diffusion on the performance of such heat pipes and permits the calculation of the wall temperature profile along a gas loaded heat pipe; the amount of gas loading necessary to obtain a desired evaporator temperature at a desired
71130 A FLEXIBLE HEAT PIPE
P.L. Miller, R.E. Roberts, ASHRAE Semiannual Meeting,
Avail: TAC

Experiments have been conducted to determine the
possibility of constructing and operating a flexible
heat pipe which could have its configuration rearranged
after assembly and yet maintain proper operation. The
desired objective was accomplished with a water-filled
heat pipe having a woven glass-fiber wick. The flexible
portion of the unit was made of tygon and acted as an
adiabatic transition section between the heat input
and removal sections. The results obtained show that
no significant change of the operating characteristics
of the heat pipe could be traced to the bending of
the device.

71131 PRINCIPLES AND INDUSTRIAL APPLICATION OF HEAT
PIPES
67-84, in German, Avail: TAC

The design of heat pipes is reviewed and the
limits of their application are discussed. 22 refs.
heat load; the heat load versus the evaporator temperature for a
fixed amount of gas in the pipe; the heat and mass transfer along
the pipe, including the vapor-gas front region; the heat leak
when the condenser is filled with gas; freezing occurrence and
rate in the condenser; and the information required to size the
gas reservoir of gas controlled heat pipes. The program contains
numerous reservoir options which allow it to be used for hot or
cold reservoir passive control as well as heated reservoir active
control heat pipes. Additional input options permit its use for
parametric studies and off-design performance predictions as well
as heat pipe design.

D. 2 Wicks

71096 RESEARCH STUDY ON INSTRUMENT UNIT THERMAL CONDITIONING
PANEL FINAL REPORT
etal (AiResearch Mf. Co., Los Angeles, Calif.) (Contract NAS8-
Avail: TAC

A heat pipe panel 30 in. by 30 in. was designed, fabricated,
and tested to the design requirements of the Saturn 5 vehicle.
Investigations into wick materials, preservation of wick materials,
and porous plate sublimation was performed in conjunction with a
study of noncondensable hydrogen gas generator in 304 stainless steel heat pipes with water as the working fluid.

71132 DEVELOPMENT OF HIGH THERMAL POWER DENSITY AMMONIA HEAT PIPES

A totally metallurgically bonded heat pipe concept has been developed utilizing an advanced porous-grooved wick. This wick design features the combined advantages of low viscous losses due to reflux of working fluid which is characteristic of grooved wick designs, and the high capillary-pumping capability attributable to porous wick structures. As a result, this composite wick design provides significantly higher heat-transport capacities than otherwise possible with the individual wick concepts, viz, grooved or porous wicks. In addition, the metallurgically bonded heat pipe provides a high radial thermal conduction in the wick/container composite. The present paper describes the heat pipe design as well as the experimental results of 0.48-cm diameter by 18-cm long ammonia heat pipe. In these experiments, an ammonia heat pipe operated at radial thermal fluxes of up to 18 watts/in.² with less than a 9 K temperature difference between the evaporator and condenser.

71133 DESIGN AND DEVELOPMENT OF A PROTOTYPE STATIC CRYOGENIC HEAT TRANSFER SYSTEM

An analysis was conducted which verified the high performance capability of a nonwetting cryogenic capillary-pumped loop. As a result, an investigation was undertaken to determine the feasibility of obtaining a nonwetting cryogenic liquid/solid combination. Results of a literature search indicated that this was feasible for cryogenic liquids provided that low energy solid surfaces are used. Contact angle measurements of liquid nitrogen, oxygen, and Freon 13 on various low energy surfaces were made. The results of these measurements showed that all of the test samples were wet by the different cryogenic liquids; the highest contact angle measured was 30 degrees. However, for
a high-performance static cryogenic heat transfer system
the development of a heat pipe which utilized a wetting
arterial wick was pursued. An experimental model whose
artery design was optimized to facilitate start-up was
fabricated and tested. Nitrogen was used as the working
fluid. The experimental model has a heat transport
capability greater than 1500 watt-cm which is well in
excess of projected requirements for spacecraft appli-
cations employing cryogenic heat pipes.

D.3 Materials

71066 MATERIAL PROBLEMS AT HIGH TEMPERATURE HEAT PIPES
(WERKSTOFFPROBLEME BEI HOCHTEMPERATUR-WARMEROHREN)
Claus A. Busse, Forschung im Ingenieurwesen, vol. 37, no. 2,
1971, p. 38-43, 16 refs. In German, Avail:TAC

Mechanisms involved in the corrosion of the heat pipes
are discussed. One mechanism connected with the solubility
of the wall material in the heat carrier is responsible for
mass transfer from the cooling zone into the heating zone.
Another mechanism related to the accumulation of impurities
in the heating zone leads to corrosion attack at the wall
of that area. Approaches for avoiding heat zone corrosion
are described. An operational heat pipe life of 10,000 hr.
in a temperature range from 1500 to 2000 deg is thought possible.

71097 POROUS LININGS FOR HEAT PIPES
Gregor Gammel, Peter Batzies (Brown, Boveri and Cie, A-G) Ger.
Offen. 1,950,439 (Cl. C23C), 15 Apr. 1971, Appl. 07 Oct. 1969,
7pp. Avail: TAC

Porous linings with varying capillary structure for good
heat transfer were obtained in heat pipes by vapor-plating
volatile lining material under redn. or decompn., and sealing
the porous lining by a final dense layer.

71098 CORROSION MECHANISM IN TANTALUM-LITHIUM HIGH-TEMPERATURE
HEAT PIPES BY ION ANALYSIS
Didie Quataert (Ispra, Italy), Forsch. Ingenieurw. 1971, 37(2),
37-8. Avail: TAC

Samples of the stabilized-grain-size, Ta heat pipe material,
annealed in ultrahigh vacuum at 1600 deg showed that complete re-
crystn. took place in <15 min, that grain growth occurred, and
YO2pptd. at the grain boundaries. A heat pipe of Ta with Li
as the heat carrier was operated at 1600 deg for 2100 hr. In the
cooling zone, a YO2 depleted zone was noted at the inner side
of the heat pipe. In the heating zone, the pipe had failed by
perforation. A black deposit around the hole was examd. by
metallog. and an ion analyser. An intergranular corrosion
phase and the black deposit gave emission of O⁻,Y⁺,Li⁺, and
Ta+ ions. Platelets inside the grains in contact with the corrosion phase gave emission of Ta+, O-, and TaO2+, but no Li or Y. The dissolved Ta of the corroded zone was redeposited in the capillaries of the heating zone \(\sim 0.5\) mm above the corrosion zone.

71134 FABRICATION AND TESTING OF TUNGSTEN HEAT PIPES FOR HEAT PIPE COOLED REACTORS

The heat pipes described here were designed and fabricated with the following criteria in mind: operation at 1850 K in contact with nuclear fuel; axial heat flux greater than 7 kW/sq cm; and a configuration allowing direct coupling to a cross flow heat pipe exchanger. Chemically vapor deposited tungsten was used as the outer shell and lithium as the working fluid. Both annular and channeled wicks were investigated along with methods of wick fabrication using tungsten and tungsten rhenium. Calorimetric heat throughput measurements at various operating temperatures are presented.

71135 HEAT PIPE HAVING A ZERO CONTACT ANGLE WITH AN ALKALI METAL WORKING FLUID
Harold F. Webster (General Electric Company) U.S. 3,598,177 (Cl. 165/1; F 28d), August 10, 1971, Appl. October 29, 1968, 6 p., Avail: TAC

A heat pipe capable of operation at >900\(^\circ\) is described. The system is characterized by an alkali metal working fluid contained in a conduit having a crystal-face orientation only in selected planes to maximize the wetting between the sidewall and the working fluid. The conduit is provided with circumferentially-disposed inwardly-extending teeth overlayed with a thin wire mesh screen to define capillary passages for liquid transport. The surface of the passages contains the metal only in planes having work functions below a fixed value, e.g., 4.8 eV, for a Na working fluid with the desired orientation of the capillary passage surface being formed by an H reduction of a metal fluoride.

The zero contact angle between the working fluid and the conduit permits the initiation of operation of the heat pipe without prior warm-up, and eliminates localized hot spots destructive to the sidewall structure. Thus, a heat pipe having a 1/2-in. diameter, 40-mil thick Nb conduit can withstand an internal pressure of 6400 psi
(≈400 atm) of Cs, permitting Cs to be raised to 1100° without exceeding the tensile strength of the conduit.
E. TESTING AND OPERATION

71099 HEAT - TRANSFER APPARATUS (HEAT PIPE)

The authors review heat pipes classified in operating regions 1200-2000, 400-1200, and <400°K. The operation of heat pipes was analyzed math. An exptl. low-temp. (<400°K) pipe was constructed and tested with EtOH and H$_2$O. From test data for NH$_3$, H$_2$O, MeOH, EtOH, Me$_2$CO, H, He, and Freon-12, the most effective heat-transfer agents in the low-temp. heat pipe are NH$_3$ and H$_2$O. In the region of liq.-He temps., He II appears to be promising for use at <2°K.

71136 ISOTOPE KILOWATT PROGRAM QUARTERLY PROGRESS REPORT FOR PERIOD ENDING MARCH 31, 1971

The organic capsule test continued during the quarter without an interruption and has accumulated 2180 hours as of the end of March. The detail design of the 1/4 scale organic fluid evaluation loop was completed. The heat block forging has been procured and the specifications for the pumps are out for bids. A glass loop has been built to mock-up the 1/4 scale organic fluid test loop. Results of operation experience analyses indicate that good startup, fluid flow stability, and control precision characterize the loop. Both startup and operating tests at 1000 to 1500°F were made on the heat pipe. No performance data was obtained because of the failure of a differential thermopile. A new thermopile has been fabricated and calibrated. The heat pipe for the thermoelectric module was completed. Fabrication of the thermoelectric module was completed and testing was initiated. The test was stopped 9 hours after startup because of the failure of two nickel wire leads to the heaters. Subsequent examination of the loop and chemical analysis of sections of the wire showed that the lead broke because of embrittlement by sulfur and possibly cadmium contamination. The test was shut down pending analysis of scrapings and fillings taken from various parts of the system to determine the extent to which other parts might have been adversely affected. The assembly of the test section for the next series of tests on the aluminum wire screen insulation was completed. Aluminum alloy 1100 has been selected for the fusible insulation for the organic and low-temperature (PbTe) thermoelectric units and an order placed for the material. Tests were
started to determine the effective thermal conductivity of the aluminum screen insulation as a function of pressure. The design of the full-scale heat block-shield has been completed and the drawings have been sent out for bids.

71137 PERFORMANCE LIMITS, TECHNOLOGY, AND APPLICATION OF LOW-TEMPERATURE HEAT PIPES
Manfred Groll, Ortwin Brost, Helmut Kreeb, Klaus P. Schubert, Peter Zimmerman (Stuttgart, Germany) Forsch. Ingenieurw., 1971, 37 (2), 33-7 in German, Avail: TAC

The importance of degassing heat pipes by contact with other gases or in vacuum, or by ultrasonic treatment, is stressed. A tabulation shows the various fluids for use in the -200° to 550° temperature range, with the various pipe metals for which they are suitable, the individual temperature range, and the axial radial heat flow ds. The results of performance tests on 6 fluids over a period of 700-2100 hours are given in terms of drop in axial temperature in the cooling zone. Several examples of the application of low temperature heat pipes are given.

71138 THE FEASIBILITY OF ELECTROHYDRODYNAMIC HEAT PIPES

This first research report presents the results obtained to date in a study undertaken to explore the feasibility of the electrohydrodynamic heat pipe concept. The work has been divided into three research tasks involving theory of operation, design criteria, and evaluation of optional design features.

71139 PRELIMINARY TEST RESULTS OF HEAT TRANSFER/ THERMAL STORAGE TUBE DESIGN UNDER SIMULATED ORBITAL CONDITIONS

Heat-receiver tubes were tested as part of an investigation of a heat receiver for a solar Brayton-cycle power system. The tubes were designed to store excess solar energy during the orbital sunlit period and then to transfer the heat energy to the flowing gas during the orbital shade period. In this way constant thermal input to the Brayton system would be maintained over the entire orbit. The tubes utilized
the heat of fusion of lithium fluoride as the heat-storage medium and were designed to accommodate the 23 percent volume change of LiF during phase changes. The columbium 1% zirconium tubes operated under a simulated orbital condition for 2002 hours and 1251 sun shade cycles before going into a scheduled shutdown. Although there were no gross distortions of the convoluted LiF storage tubes, local distortions were detected. During operation, the gas discharge temperature varied from 30 degrees below nominal at the end of the shade period to 50 degrees above at the end of sunlit period. Surface temperatures along the tube ranged from 1410 F to 1670 F.

71140 PERFORMANCE CHARACTERISTICS OF ROTATING NON-CAPILLARY HEAT PIPES

A Nusselt-type analysis was performed for laminar film condensation on the inside of a rotating truncated cone with small half cone angles. This analysis included the interfacial shear between the vapor and condensate, the vapor pressure drop, the thermal resistance in the condenser wall, and the condenser outside cooling mechanism. An approximation of the analytical model made it possible to find a numerical solution for small half cone angles greater than zero. A non-capillary rotating heat pipe containing an evaporator, condenser, and distilled water as the working fluid was tested. It was rotated at 702 and 1404 RPM, and the heat transfer rates of the heat pipe were determined experimentally for different saturation temperatures corresponding to electrical power inputs ranging from 1 kW to 9 kW. The experimental results showed that the non-capillary rotating heat pipe was an effective heat transfer device. The approximate numerical solution conservatively predicted the heat transfer rate with a deviation of 18% at 702 RPM and 5% at 1404 RPM.

71141 ISOTOPE KILOWATT PROGRAM QUARTERLY PROGRESS REPORT FOR PERIOD ENDING JUNE 30, 1971

The organic capsule test continued during the quarter without interruption and has accumulated 4370 hours of operation as of the end of June. The design review of the one-quarter scale organic fluid decom-
position test loop was completed and the Quality Assurance Program plan was revised. The instrumentation application drawing was approved and drawings showing the electrical and instrumentation control systems were completed. Tests with the glass mockup of the quarter-scale organic test loop demonstrate that the boiler flow stability is excellent even with one boiler tube operating at zero power and the other two at full power. Similarly, tests covering a wide range of other highly unbalanced operating conditions have disclosed no undesirable characteristics. Procurement of hardware for the quarter-scale organic fluid evaluation test loop is underway. The heat block-shield unit has been completed, inspected, and loaded with SrTiO$_3$. Radiation dose rates as a function of position are being determined. Fabrication of the piping has been delayed but will begin in July as soon as the full complement of final approvals have been obtained. Heat pipe tests at ORNL under a wide range of power and attitude conditions indicate peculiarities in the performance characteristics. Several hypotheses that have been advanced to explain all of these peculiarities have been investigated. Nondestructive diagnostic tests to determine the reason for its unusual behavior have included radiographs (which revealed a gas bubble in the lower end of the pipe) and eddy current tests. The results indicate that the anomalous behavior of the heat pipe has been caused by one or more bubbles of a non-condensible gas other than hydrogen (probably argon) trapped between the wick and the outer tube. The potassium will be removed and, after a thorough bake-out, the pipe will be reloaded. The thermoelectric module test was restarted after replacing the heaters, but the hermetic seal at the base of the thermoelectric region failed. Tests of the original wire screen thermal insulation indicated that paint on the wire might increase its emissivity, thus increasing its effective thermal conductivity. New wire screen free of paint and with a sharper melting point was procured and tested, but showed no improvement. Thin (.002 in.) sheets of foil of alloy 5052 will be used in an effort to reduce the radiation loss in the next test. All of the components for the heat block-shield test are in various stages of procurement except for the screen insulation and vacuum tank. Delivery of the major item, the heat block-shield assembly, is scheduled for September 1, 1971. Fabrication of the screen and tank will not be started until the screen thermal conductivity values are obtained with the foil.
A heat pipe radiator consisting of 100 sodium filled, 1.91 cm (3/4 in) O.D., stainless steel heat pipes has been tested at temperatures up to 760 C (1400 F). These tests at the Jet Propulsion Laboratory were conducted on the heat pipe radiator which was designed and fabricated by RCA for the Air Force Aero Propulsion Laboratory at Wright Patterson AFB. This radiator was initially designed to have a heat pipe temperature of 740 C with a central coolant channel temperature of 771 C. The as-fabricated radiator heat pipe temperatures varied from 605 C to 700 C when the central coolant channel average temperature was 740 C. The heat pipes operated at 25 C to 110 C lower than expected temperatures resulting in a 43 kW heat rejection capability versus the 50 kW design goal and the 65 kW ultimate capability of the radiator. The 43 kW heat rejection yields a mass/heat rejection ratio of 0.182 kg/kWt which is good for this early state-of-the-art heat pipe radiator. An end-of-mission life specific weight of 0.154 kg/kW is apparently achievable with improvements in radiator fabrication and brazing techniques.

Dry-out limits of screen wicks vertically pumping against gravity above an acetone pool were determined in evaporation experiments. As the pumping height shortened, the increase in heat input at dry-out became less than that expected from a fully saturated wick layer. The receding of the evaporating boundary into a sublayer of the wick was postulated, based on the fact that the measured thermal resistance across the wick layer decreased as heat input increased. Such a recess seems to terminate at two layers above the heated wall. A new wicking model taking into account the receding of evaporation boundary could predict the experimental dry-out heat inputs within ten percent.

Experimental study of a nitrogen heat pipe
An experimental investigation is described concerning the operating characteristics of a nitrogen heat pipe, 33.25 inches long, with an adiabatic section of 13.25 and a diameter of 0.75 inches. The axial temperature distribution and the vapor pressure were measured for various power loads at different angles of inclination. The effective thermal conductivity, based on a section 17.25 inches long, decreased with increasing loads and with decreasing angle of inclination (evaporator below condenser). For the horizontal operating condition, the effective thermal conductivity varied between 10 and 5 times that of copper at the same average temperature, while the load varied between 10 and 110 watts. The results indicate that the thermal radial resistance at the evaporator section is the major factor limiting the maximum power load of such a heat pipe.

Tests were conducted on two cryogenic heat pipes using nitrogen as the working fluid. Both pipes are 1.27 cm in diameter. The first pipe is 141 cm long and uses longitudinal grooves in the aluminum wall as the wick structure. At an evaporator elevation of 0.19 cm, a heat transfer rate of 12.6 watts and a heat transport capability of 1650 watt-cm are obtained with a maximum ΔT along the length of the pipe of 9°C. The static elevation head is .72 cm. The second pipe is 91 cm long and has an arterial wick adjacent to the wall. In addition, circumferential screw threads are machined along the entire length of the inside pipe wall. At an evaporator elevation of 0.254 cm, a heat transfer rate of 25 watts and a heat transport capability of 1850 watt-cm are obtained with a maximum ΔT along the length of the pipe of 18°C. The static elevation head is 3.75 cm.

Both heat pipes primed with no difficulty in the horizontal position. Start-up after burn-out was obtained repeatedly. However, more testing is required to determine whether the artery pipe is as reliable as the grooved pipe with respect to priming.

Once primed, the artery heat pipe is much less sensitive to elevation than the grooved design, and consequently, offers a significant advantage with
respect to ground testing. Heat transfer characteristics of the two pipes were comparable, with both pipes achieving the initial goal of 1000 watt-cm of heat transport capability.

71146 TRANSIENT THERMAL IMPEDANCE OF A WATER HEAT PIPE

A silicon rectifying junction was used as a heat source to study the transient thermal impedance of water heat pipes. The temperature of the evaporator, the vapor space, and the condenser of the heat pipes were monitored. The operation of the heat pipes were observed during the time period of 8.3 ms to 1,000s. After 200s the heat pipes were operating in a steady-state mode. The heat pipes were successfully started with peak heat fluxes of 105 W/cm² with the working fluid frozen as well as in a liquid state. An analysis was made of both start-up conditions. The heat pipes were also pulsed to a power density of 2,500 W/cm².
HEAT PIPE TECHNOLOGY 1971 ANNUAL

00010 ARMALY B F
DUDMEKER J

EXPERIMENTAL STUDY OF A NITROGEN HEAT PIPE

00020 BACICALUPI R J

FABRICATION AND TESTING OF TUNGSTEN HEAT PIPES FOR HEAT PIPE COOLED REACTORS

00030 BANKSTON C A
SMITH H J

INCOMPRESSIBLE LAMINAR VAPOR FLOW IN CYLINDRICAL HEAT PIPES

00040 BASIULIS A
FILLER M

CHARACTERISTICS OF SIX NOVEL HEAT PIPES FOR THERMAL CONTROL APPLICATIONS
(HUGHES AIRCRAFT CO., TORRANCE, CALIF.). AMERICAN SOCIETY OF MECHANICAL ENGINEERS, SOCIETY OF AUTOMOTIVE ENGINEERS, AND AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS, LIFE SUPPORT AND ENVIRONMENTAL CONTROL CONFERENCE, SAN FRANCISCO, CALIFORNIA, JULY 12-14, 1971, ASME PAPER 71-AV-29. 9P. 9 REF. AVAIL: TAC

00050 BASIULIS A
BUZZARD R J

RADIAL HEAT FLUX TRANSFORMER
(RADIO CORPORATION OF AMERICA), NASA PASADENA OFF. CONTRACT NPO-10828, AUGUST 1971 AVAIL: TAC

00060 BEVANS J T

THERMOPHYSICS - APPLICATIONS TO THERMAL DESIGN OF SPACECRAFT

00070 BIENERT W B
BRENNAN P J

TRANSIENT PERFORMANCE OF ELECTRICAL FEEDBACK-CONTROLLED VARIABLE-CONDUCTANCE HEAT PIPES
(DYNATHERM CORP., COCKEYSVILLE, MD.) AMERICAN SOCIETY OF MECHANICAL ENGINEERS, SOCIETY OF AUTOMOTIVE ENGINEERS AND AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS, LIFE SUPPORT AND ENVIRONMENTAL CONTROL CONFERENCE, SAN FRANCISCO, CALIFORNIA, JULY 12-14, 1971, ASME PAPER 71-AV-29. 9P. 9 REF. AVAIL: TAC
00080 BIENERT W KROLICZEK E
EXPERIMENTAL HIGH PERFORMANCE HEAT PIPES FOR THE OAO-C SPACECRAFT.
(DYNAHERM CORP., COCKEYSVILLE, MD.) AMERICAN SOCIETY OF MECHANICAL ENGINEERS, SOCIETY OF AUTOMOTIVE ENGINEERS, AND AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS, LIFE SUPPORT AND ENVIRONMENTAL CONTROL CONFERENCE, SAN FRANCISCO, CALIFORNIA, JULY 12-14, 1971, ASME PAPER 71-AV-27, 9 P. AVAIL: TAC

00090 BRENANΝ P TRIMMER D
SHERMAN A CYGNAROWICZ
ARTERIAL AND GROOVED CRYOGENIC HEAT PIPES

00100 BUSSE C A
MATERIAL PROBLEMS AT HIGH TEMPERATURE HEAT PIPES
FORSCHUNG IM INGENIEURWESEN, VOL. 37, NO. 2, 1971, P. 38-43, 16 REFS. IN GERMAN. AVAIL: TAC

00110 BUSSE C A
HEAT PIPES FOR THERMIONIC SPACE POWER SUPPLIES
(THIRD INTERNATIONAL CONFERENCE OF SPACE TECHNOLOGY, 3-8 MAY 1971). 12 P. AVAIL: TAC

00120 BUSSE C A GEIGER F
QUAERT D
STATUS OF EMITTER HEAT PIPE DEVELOPMENT AT ISPRA
(PRESENTED AT 1970 THERMIONIC CONVERSION SPECIALIST CONFERENCE, 26-29 OCT. 70, MIAMI, FLORIDA.) 6 P. AVAIL: TAC

00130 CALLENS R A
A SPACE APPLICATION OF A CRYOGENIC HEAT PIPE
SCIENCE AND TECHNOLOGY ACCOMPLISHMENTS, 1969, NASA SP-251 PP. 244-248, AVAIL: TAC

00140 CARLISLE N
HCT ROD - FOR THE KITCHEN IS HOT NEW INVENTION
SCIENCE AND MECHANICS, NOV. 1970 3 P., AVAIL: TAC
HEAT PIPE TECHNOLOGY 1971 ANNUAL

00150 CHUN K R
SCME EXPERIMENTS ON SCREEN WICK DRY-OUT LIMITS
ASME WINTER ANNUAL MEETING, WASHINGTON, D.C., NOV 28-DEC 2, 1971. ASME No. 71-WA/HT-5. AVAIL-TAC

00160 CORMAN J C
MCLAUGHLIN W A
THERMAL DESIGN OF HEAT-PIPE COOLED A-C MOTOR

00170 CORMAN J C
WALMET G E
VAPORIZATION FROM CAPILLARY WICK STRUCTURES
ASME-AICHE HEAT TRANSFER CONFERENCE, TULSA, OKLA., AUGUST 15-18, 1971. 8P. ASME NO. 71-HT/35 AVAIL-TAC

00180 DAGBJARTSSON S
GROLL M
ZIMMERMANN P
A LOW-POWER THERMIonic REACTOR WITH EXTERNAL CONVERTERS AND HEAT-PIPE-COOLED COLLECTORS
(INSTITUT FUR KERNENERGETIF, UNIVERSITAT STUTTGART) JAN. 1969, 4 P. (IN GERMAN) AVAIL: TAC

00190 EHY R J
KELLY W H
KARAM R D
THERMAL CONTROL OF ATS F AND G.
(FAIRCHILD HILLER CORP., SPACE AND ELECTRONICS SYSTEMS DIV., GERMANTOWN, MD.), AMERICAN SOCIETY OF MECHANICAL ENGINEERS SOCIETY OF AUTOMOTIVE ENGINEERS, AND AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS, LIFE SUPPORT AND ENVIRONMENTAL CONTROL CONFERENCE, SAN FRANCISCO, CALIF., JULY 12-14, 1971, ASME PAPER 71-AV-28, 14 P. 10 REFS. AVAIL: TAC

00200 EDWARDS D K
FLEISCHMAN G L
MARCUS B D
USER'S MANUAL FOR THE TRW GAS PIPE PROGRAM: A VAPOR-GAS F-DNT ANALYSIS PROGRAM FOR HEAT PIPES CONTAINING NONCONDENSIBLE GAS.
TRW SYSTEMS GROUP, REDONDO BEACH, CALIF. APR. 1971. 88P. REF. (CONTRACT NAS2-5503) (NASA-CR-114306; TRW-13111-6072----00NC AVAIL: TAC

00210 EDWARDS D K
MARCUS B D
HEAT AND MASS TRANSFER IN THE VICINITY OF THE VAPOR-GAS FRONT IN THE GAS LOADED HEAT PIPE
(TRW SYSTEMS GROUP, REDONDO BEACH, CALIF., MATERIALS SCIENCE DEPT.,) CONTRACT NAS2-5503, NASA-CR-114300, JAN. 1971, 35
<table>
<thead>
<tr>
<th>Reference</th>
<th>Citation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00220</td>
<td>Edwards J P</td>
<td>71052</td>
</tr>
<tr>
<td>00230</td>
<td>Egegers P E, Serkiz A W</td>
<td>71132</td>
</tr>
<tr>
<td>00240</td>
<td>Engle W W, Childs R L, Mynatt F R, Abbot L S</td>
<td>71109</td>
</tr>
<tr>
<td>00250</td>
<td>Feldman K T Jr</td>
<td>71047</td>
</tr>
<tr>
<td>00260</td>
<td>Fiebelmann P, Neu H</td>
<td>71058</td>
</tr>
<tr>
<td>00270</td>
<td>Fiebelmann P, Neu H</td>
<td>71059</td>
</tr>
<tr>
<td>00280</td>
<td>Ffass A P, Samuels G</td>
<td>71141</td>
</tr>
<tr>
<td>00290</td>
<td>Frank T G, Grover G M</td>
<td>71112</td>
</tr>
</tbody>
</table>
HEAT PIPE TECHNOLOGY 1971 ANNUAL

ANDERSON R C SUTHERLAND
SWICKARD E O

BEAT-PIPE COOLED REACTOR AND HEAT EXCHANGER
FOR BRAYTON-CYCLE POWER SYSTEMS
(CALIFORNIA, UNIVERSITY, LOS ALAMOS, N. MEX.).
IN-SOCIETY OF AUTOMOTIVE ENGINEERS, INTERSOCIETY ENERGY
CONVERSION ENGINEERING CONFERENCE, BOSTON, MASS., AUGUST 3-5
1971. P472-477. 5 REFS. AVAIL-TAC

00300 GAMMEL G BATZIES P
POROUS LININGS FOR HEAT PIPES
(BROWN, BOVERI AND CIE, A-G) GER. OFFEN. 1,950,439 (CL.
C23C), 15 APR. 1971, APPL. 07 OCT. 1969, 7PP. AVAIL: TAC

00310 GERRELS E E KILLEM R E
PCITASSIUM RANKINE CYCLE VAPCR CHAMBER (HEAT PIPE)
RADIATOR STUDY
(GENERAL ELECTRIC COMPANY, PHILADELPHIA, PENN.)
(GESP-7047) AVAIL-TAC

00320 GEUE J
HEAT PIPES AND THEIR APPLICATIONS
(AUSTRALIAN ATOMIC ENERGY COMMISSION RESEARCH ESTABLISHMENT
LUCAS HEIGHTS). A BIBLIOGRAPHY, JAN. 1971, 17 P.
AUSTRALIAN. AVAIL: TAC

00330 GRAUMANN D W RICHARD C E
DUNCAN J D GIBSON J C
COE C S
RESEARCH STUDY ON INSTRUMENT UNIT THERMAL CONDITIONING
PANEL FINAL REPORT
(AIRESEARCH MF, CO., LOS ANGELES, CALIF.) (CONTRACT NAS8-
11291) (NASA-CR-103190; REPT.-71-7133) MAY 1971, 239P.
REFS. AVAIL: TAC

00340 GROLL M ZIMMERMANN P
STEADY STATE AND DYNAMIC BEHAVIOR OF HEAT PIPES
(STUTTGART, UNIVERSITAET, STUTTGART, WEST GERMANY). WÄRME-
UND STOFFÜBERTRAGUNG, VOL. 4, NO. 1, 1971. P. 39-47. 27
REFS. IN GERMAN. AVAIL. TAC

00350 GROLL M BROST O
KREEB H SCHUBERT K P
ZIMMERMANN P
PERFORMANCE LIMITS, TECHNOLOGY, AND APPLICATION
OF LOW-TEMPERATURE HEAT PIPES
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
<th>Available Through</th>
</tr>
</thead>
<tbody>
<tr>
<td>00360</td>
<td>High Power Linear Beam Tube Devices</td>
<td>Guenard P</td>
<td>71085</td>
<td>19</td>
</tr>
<tr>
<td>00370</td>
<td>Applying Heat Pipes to Thermal Problems</td>
<td>Harbaugh W E, Eastman G Y</td>
<td>71064</td>
<td>21</td>
</tr>
<tr>
<td>00380</td>
<td>Heath C A (5 kW(e) Radioisotope Thermionic Power Supply for Unmanned Electric Propulsion</td>
<td>Hemeier W G, Gietzen A J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00390</td>
<td>Optimization of a Heat Pipe with a Wick and Annulus Liquid Flow</td>
<td>Hwang-Bog H, Hilding W E</td>
<td>71126</td>
<td>29</td>
</tr>
<tr>
<td>00400</td>
<td>Variable Conductance Wall</td>
<td>Jeffries N P, Zerkle R D</td>
<td>71102</td>
<td>6</td>
</tr>
<tr>
<td>00410</td>
<td>The Feasibility of Electrohydrodynamic Heat Pipes</td>
<td>Jones T B</td>
<td>71138</td>
<td>39</td>
</tr>
<tr>
<td>00420</td>
<td>Considerations on Precision Temperature Control of a Large Orbiting Telescope</td>
<td>Katzoff S</td>
<td>71073</td>
<td>5</td>
</tr>
<tr>
<td>00430</td>
<td></td>
<td>Kemme J E</td>
<td>71088</td>
<td>22</td>
</tr>
</tbody>
</table>
HEAT PIPE TECHNOLOGY 1971 ANNUAL

OPERATING PRINCIPLES OF HEAT PIPES
LOS ALAMOS SCIENTIFIC LAB, NEW MEXICO, PROC. OF 4TH INTERSOCIETY ENERGY CONVERSION ENG. CONF., WASHINGTON, D.C., SEPT. 22-26, 1969, P. 14. AVAIL: BY AUTHOR ONLY.

00440 KESSLER S W
DEVELOPMENT OF A 250 AMPERE TRANSCALENT RECTIFIER
RCA ELECTRONIC COMPONENTS, LANCASTER, PA. REPT. NO. 3, 1 JUNE-31 DEC 70, FEB 71, 25 P. CONTRACT DAAK02-69-C-0609. AVAIL: TAC

00450 KESSLER S W
TRANSIENT THERMAL IMPEDANCE OF A WATER HEAT PIPE

00460 KIKIN G M PEELGREN M L
TEST OF 50-KW HEAT-P/IPPE RADIATOR

00470 KNOWLES G W
HEAT PIPE APPLICATIONS
IN: EDUCATION IN CREATIVE ENGINEERING; MIT SYMPOSIUM, MIT, CAMBRIDGE, MASS., APRIL 16-19, 1969, PROCEEDINGS P. 43-71 5 REFS. AVAIL: TAC

00480 LAVERNE M E
PERFORMANCE CHARACTERISTICS OF CYLINDRICAL HEAT PIPES FOR NUCLEAR ELECTRIC SPACE AND UNDERSEA POWER PLANTS
JAN. 1971, 75 P., REFS. (CONTRACT W-7405-ENG-26) (ORNL-TM-2803) AVAIL. TAC

00490 LAVOIE F J
COOLING WITH HEAT PIPES
MACHINE DESIGN VOL. 42, 86-91, AUG. 6, 1970. AVAIL. TAC

00500 LEVY E K CHOU S F
SCNIC LIMIT IN SODIUM HEAT PIPES

00510 MAHEFKEY E T KREITMAN M M
INTERCELL PLANAR HEAT PIPE FOR THE REMOVAL OF HEAT DURING THE CYCLING OF A HIGH RATE NICKEL CADMIUM BATTERY
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LIQUID FIN - A NEW DEVICE FOR HEAT TRANSFER EQUIPMENT</td>
<td>MADEJSKI J MIKIELEWICZ J</td>
<td>J. ELECTROCHEM. SOC. 1971, P 1382-1386, AVAIL-TAC</td>
</tr>
<tr>
<td>29</td>
<td>THEORY AND DESIGN OF VARIABLE CONDUCTANCE HEAT PIPES - HYDRODYNAMICS AND HEAT TRANSFER</td>
<td>MARCUS B D</td>
<td>TRW SYSTEMS GROUP, RESEARCH REPORT 1, APRIL 1971, REP TOR NO 13111-6021-R0-00, CONTRACT NAS2-5503, AVAIL-TAC</td>
</tr>
<tr>
<td>24</td>
<td>THEORY AND DESIGN OF VARIABLE CONDUCTANCE HEAT PIPES - CONTROL TECHNIQUES</td>
<td>MARCUS B D</td>
<td>TRW SYSTEMS GROUP, RESEARCH REPORT 2, JULY 1971, REPORT NO 13111-6027-R0-00, CONTRACT NO NAS 2-5503, AVAIL-TAC</td>
</tr>
<tr>
<td>2</td>
<td>NEW DIRECTIONS IN HEAT TRANSFER ELECTRONIC PACKAGING AND PRODUCTION</td>
<td>MARKSTEIN H W</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>A FLEXIBLE HEAT PIPE</td>
<td>MILLER P L ROBERTS R E</td>
<td>ASHRAE SEMIANNUAL MEETING, PHILADELPHIA, PENN., JAN., 26-28 1971, 5 P, AVAIL-TAC</td>
</tr>
<tr>
<td>17</td>
<td>NUCLEAR REACTOR WITH HEAT PIPES (TO EURATOM). BRITISH PATENT 1,220,553, 27 JAN 1971. PRIOR</td>
<td>NEU H FIEBELMANN P</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>PERFORMANCE CHARACTERISTICS OF ROTATING, NON-CAPILLARY HEAT PIPES</td>
<td>NEWMAN W H</td>
<td></td>
</tr>
</tbody>
</table>

52
HEAT PIPE TECHNOLOGY 1971 ANNUAL

61 P. AVAIL-TAC

00600 NIEDERAUER G LANTZ E
BREITWEISER R
SPLIT-CORE HEAT-PIPE REACTORS FOR OUT-OF-PILE THERMONIC POWER SYSTEMS
NASA, LEWIS RESEARCH CENTER, CLEVELAND, OHIO, 1971, 8P
PRESENTED AT THE AM. NUCL. SOC. WINTER MEETING.
OCT. 17-218 1971. AVAIL-TAC

00610 OFERN E A BADDELEY V
RAKOWSKE J E
DYNAMIC ANALYSIS OF SATELLITE HEAT PIPE FLUID ENERGY DISSIPATION
(NORTH AMERICAN ROCKWELL CORP., SPACE DIV., DOWNEY, CALIF.)
INTERNATIONAL ASTRONAUTICAL FEDERATION,
INTERNATIONAL ASTRONAUTICAL CONGRESS, 22ND
BURSSELS, BELGIUM, SEPT 20-25, 1971, PAPER, 21 &. AVAIL-TAC

00620 PARKER M B
APPLICATIONS OF HEAT PIPES TO NUCLEAR REACTOR ENGINEERING

00630 PAULUIS G LANG S D
THEORETICAL INVESTIGATIONS OF HYDROGEN, NITROGEN,
AND OXYGEN HOMOGENEOUS-AND ANNULAR-WICK HEAT PIPES.

00640 PAWLOWSKI P H
MEASUREMENT OF THE MAXIMUM AVAILABLE HEAT FLUX
OF A SODIUM OR POTASSIUM HEAT PIPE
FORSCH. INGENIEURW. 1971, 37(2), P47-51, IN GERMAN
AVAIL-TAC

00650 PITAPCV I F TSAGI Z U
INVESTIGATION OF THE HYDRODYNAMICS OF FLUID FLOW IN THE DUCT
OF A HEAT PIPE.
VOL. 1, NO. 3, 1970, P. 126-131. 6 REFS. IN RUSSIAN.
AVAIL-TAC

00660 PRUSCHEK R DAGBJARTSSON S
EMENDORFER D
HAUG W
ANGER H
GROLL M
RCHRBDORN E
WOLF E

53
RESULTS OF STUDIES ON VARIOUS FAST AND THERMAL THERMIonic REACTOR SYSTEMS
(INSTITUT FUR KERNENERGETIK UNIVERSITAT STUTTGART) 1968, 14 P. SECOND INT. CONF. ON THERMIONIC ELECTRICAL POWER GENERATION. AVAIL: TAC

00670 QUAST A
EXPERIMENTAL INVESTIGATIONS ON CAPILLARY EVAPORATION COOLING WITH WATER AS THE WORKING FLUID.
FORSCH. INGENIEURW. 1971, 37(2), P52-55. IN GERMAN AVAIL-TAC

00680 QLATAERT D
CORROSION MECHANISM IN TANTALUM-LITHIUM HIGH-TEMPERATURE HEAT PIPES BY IGC ANALYSIS
(ISPRA, ITALY), FORSCH. INGENIEURW. 1971, 37(2), 37-89 AVAIL: TAC

00690 RCUKLOVE P
DESIGN AND ANALYSIS OF A CASCADEd THERMoeLECTRIC GENERATOR
(CALIF. INST. OF TECH., JET PROPULSION LAB., PASADENA, CALIF.). IN-SOCIETY OF AUTOMOTIVE ENGINEERS,
INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE, AUGUST 3-5, 1971, PROCEEDINGS P 611-620. AVAIL-TAC

00700 RCUKLOVE P TRUScelLO V
PERFORMANCE EVALUATION AND LIFE TESTING OF THERMoeLECTRIC GENERATORS AT THE JET PROPULSION LABORATORY

00710 SCHLITT K R
TEMPERATURE STABILIZATION WITH HEAT PIPES
(COMMISSION OF EUROPEAN COMMUNITIES, JOINT NUCLEAR RESEARCH CENTRE - ISPRA EST. (ITALY), MATERIALS DEPT.- DIRECT ENERGY CONVERSION, LUXEMBOURG, MARCH 1971), 78 P. IN GERMAN. AVAIL: TAC

00720 SEBAN R A ADHAT A
STEADY AND MAXIMUM EVAPORATION FROM SCREEN WICKS

00730 SEMERIA R

54
HEAT PIPE TECHNOLOGY 1971 ANNUAL

HEAT PIPES-DESIGN AND APPLICATIONS
INSTITUTE OF FUEL, HEAT EXCHANGERS CONFERENCE, PARIS, FRANCE
JUNE 15-16, 1971, PAPER 23, 16P. 52 REFS. IN FRENCH.
AVAIL: TAC

00740 SILVERSTEIN C C
SURFACE HEAT FLUX FOR INCipient BOILING
IN LIQUID METAL HEAT PIPES
NUCLEAR TECHNOLOGY, VOL 12, SEPT. 1971, P56-62, 12 REFS
AVAIL-TAC

00750 SILVERSTEIN C C
BOILING LIMIT IN ALKALI LIQUID METAL HEAT PIPES
ASME WINTER ANNUAL MEETING, WASHINGTON, D.C., NOV 28-DIC 2,
1971. ASME NO. 71-WA/HT-10. AVAIL-TAC

00760 SIECKOL P M
EFFECTS OF INTERPHASE TEMPERATURE DIFFERENCES AND WALL
FRICTION IN HIGH-TEMPERATURE HEAT PIPES
NASA, LEWIS RESEARCH CENTER, CLEVELAND, OHIO, WASHINGTON
APR. 1971, 22 P. REFS. (NASA-TM-X-2268; E-6126) AVAIL. TAC

00770 STAPPENBECK A
DALTON T
WATTS H
SIEVERS A
SMALL AXIAL TURBINE STAGE COOLING INVESTIGATION
CONTRACT DAAJ 02-69-C-0064. 209P. AVAIL-TAC

00780 TAWIL M N
FERRARA A A
SPACE STATION DESIGN CONCEPTS
GRUMMAN AEROSPACE CORP., BETHPAGE, N.Y. AMERICAN INSTITUTE OF
AERONAUTICS AND AVSTRONAUTICS, THERMOPHYSICS CONF., 6TH,
TULLAHOMA, TENN., APR. 26-28, 1971, PAPER 71-431. 14 P. 5
REFS. CONTRACT NO. NAS 9-10436. AVAIL. TAC

00790 TAWIL M N
FERRARA A A
THERMAL CONTROL SYSTEMS DESIGN FOR SPACE STATION
(GRUMMAN AEROSPACE CORP., BETHPAGE, N.Y.) AMERICAN SOCIETY
OF MECHANICAL ENGINEERS, SOCIETY OF AUTOMOTIVE ENGINEERS,
AND AMERICAN INSTITUTE OF AERONAUTICS AND AVSTRONAUTICS, LIFE
SUPPORT AND ENVIRONMENTAL CONTROL CONFERENCE, SAN FRANCISCO
CALIF., JULY 12-14, 1971, ASME PAPER 71-AV-36. 20 P. 8
REFS. AVAIL: TAC

00800 TIEH I C L
ROHANI A R

55
THEORY OF TWO COMPONENT HEAT-PIPES

00810 TIEN C L
SUN K H
MINIMUM MENISCUS RADIUS OF HEAT PIPE WICKING MATERIALS
INT. JOURNAL OF HEAT AND MASS TRANSFER
VOL. 14, NO. 11, P 1853-1855. AVAIL-TAC

00820 TREFETHEN L
ON THE SURFACE-TENSION PUMPING OF LIQUIDS, OR,
A POSSIBLE ROLE OF THE CANDLEWICK IN SPACE EXPLORATION
(TUFTS UNIVERSITY, MEDFORD, MASS.) PREPARED FOR GENERAL
ELECTRIC CO., MISSILE AND SPACE VEHICLE DEPT., UNMANNED
SPACECRAFT SECTION, (NC. 61-SC-114) FEB. 1962, 19 P.
AVAIL-TAC

00830 VASIL'EV L L
KCIIEV S V
HEAT-TRANSFER APPARATUS (HEAT PIPE)
(INST. TEPL0-MASSOObMENA, MINSK, USSR). INZH-FIZ. ZH. 1971,
2C (3), 550-66 (RUSS).

00840 WARD J J
BREITWIESER R
WILLIAMS R M
CONCEPTUAL DESIGN OF A 150 KWE OUT-OF-CORE NUCLEAR
THERMI0NIC CONVERSION SYSTEM
NASA, LEWIS RESEARCH CENTER, CLEVELAND, OHIO. IN: INSTITUTE
OF ELECTRICAL AND ELECTRONICS ENGINEERS, ANNUAL THERMI0NIC
CONVERSION SPECIALIST CONF., 9TH, MIAMI BEACH, FLA., OCT.
26-29, 1970, CCNF., RECORD. (A71-25866 11-03) NEW YORK,
INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.,
1970, P. 179-184. 16 REFS. AVAIL. TAC

00850 WAITS J L
JANSSEN M A
HEAT PIPE THEORY
(CALIFORNIA UNIV. LIVERMORE, LAWRENCE RADIATION LAB), APRIL

00860 WEBSTER H F
HEAT PIPE HAVING A ZERO CONTACT ANGLE WITH
AN ALKALI METAL WORKING FLUID
(GENERAL ELECTRIC CO.) U.S. 3598177. AUG 10, 1971
APP. OCT. 29, 1968. 6 P. AVAIL-TAC

00870 WERNER R W
HEAT PIPES FOR RECOVERY OF TRITIUM IN THERMONUCLEAR REACTOR
<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pipes as a Means of Energy Removal from Thermonuclear Reactor Vacuum Walls</td>
<td>Werner R W</td>
<td>1970</td>
<td>18</td>
</tr>
<tr>
<td>Advances in Heat Transfer - The Heat Pipe</td>
<td>WINTER C R F</td>
<td>1971</td>
<td>1</td>
</tr>
<tr>
<td>Principles and Industrial Applications of Heat Pipes</td>
<td>Zimmerman P</td>
<td>1971</td>
<td>12</td>
</tr>
<tr>
<td>Principles and Industrial Applications of Heat Pipes</td>
<td>Pruschek R</td>
<td>1971</td>
<td>25</td>
</tr>
<tr>
<td>Design and Development of a Prototype Static Cryogenic Heat Transfer System</td>
<td>Dynatherm Corporation</td>
<td>1971</td>
<td>33</td>
</tr>
<tr>
<td>Design and Development of a Prototype Static Cryogenic Heat Transfer System</td>
<td>Isotope Kilowatt Program</td>
<td>1971</td>
<td>10</td>
</tr>
</tbody>
</table>
HEAT PIPE TECHNOLOGY 1971 ANNUAL

QUARTERLY PROGRESS REPORT FOR PERIOD ENDING DEC. 31, 1970
(CAK RIDGE NATIONAL LAB., TENN.) FEB. 1971. (CRNL-TM-3292)
CONTRACT W-7405-ENG-26. 26 P. AVAIL. TAC

00960 ISOTHERMAL COVER WITH THERMAL RESERVOIRS
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION. MARSHALL
SPACE FLIGHT CENTER, HUNTSVILLE, ALA. AMBROSE W. BYRD,
INVENTOR (TO NASA). ISSUED 22 DEC. 1970 (FILED 30 JUL.
1969) 5 P. CL. 165-105; CL. 165-104; CL. 165-133 CL. 244-1;
CL. 219-378; CL. 219-530; INT. CL. F28D 15/00 (NASA-CASE-
NFS-20355; US-PATENT-3,548,930; U.S.-PATENT-APPL.-SN-
845974) AVAIL: TAC

00970 ISOTOPE KILOWATT PROGRAM
QUARTERLY PROGRESS REPORT FOR PERIOD ENDING MARCH 31, 1971.

00980 LARGE TELESCOPE EXPERIMENT PROGRAM VOLUME 1, PART 1
PERKIN-ELMER CORP., NORWALK, CONN. OPTICAL GROUP. CONTRACT
NAS8-21497. (NASA-CR-102768; PEPT - 9800-VOL 1- PT.-1) 27A
PR 1970, 370 P. REF. AVAIL: TAC

00990 NIMROD OPERATION AND DEVELOPMENT QUARTERLY REPORT, 1 APR-30
JUN, 1970
GT. BRIT. NATIONAL INST. FOR RESEARCH IN NUCLEAR SCIENCE,
CHILTON, RUTHERFORD HIGH LAB. (RHEL/R-206) 14 P. AVAIL: TAC

01000 STUDY OF APPLICATIONS OF HEAT PIPES TO TEMPERATURE CONTROL
FOR EUROPEAN METEOROLOGICAL SATELLITE
TECHNISCHE HOCHENSCHULE STUTTGART (WEST GERMANY). INST. FUER
KERNENERGETIK, MAR 1971, 53 P. (CONTRACT ESTEC-10481/70-HP)
REFS. AVAIL: TAC

58
HEAT PIPE TECHNOLOGY 1971 ANNUAL

00310 M RANKINE CYCLE VAPOR CHAMBER (HEAT PIPE) RADIATOR STUDY# /U 71110 16
00830 HEAT-TRANSFER APPARATUS (HEAT PIPE)# 71099 38

00160 AL DESIGN OF HEAT-PIPE COOLED A-C MOTOR# THERM 71105 8
00900 E HEAT PIPE# ADVANCES IN HEAT TRANSFER – TH 71049 1
00750 # BOILING LIMIT IN ALKALI LIQUID METAL HEAT PIPES 71122 27
00860 A ZERO CONTACT ANGLE WITH AN ALKALI METAL WORKING FLUID# /G 71135 36
00230 OF HIGH THERMAL POWER DENSITY AMMONTA HEAT PIPES# /ELOPMENT 71132 34
00440 DEVELOPMENT OF A 250 AMPERE TRANSCALENT RECTIFIER# 71096 20

*AN * NOT INDEXED

00690 ELECTRIC GENERATOR/ DESIGN AND ANALYSIS OF A CASCADDED THERMOELECTRIC GENERATOR# 71106 11
00610 E FLUID ENERGY DISSIPATION AND APPLICATIONS OF SATELLITE HEAT PIPES 71113 23
00200 PE PROGRAM, A VAPOR-GAS FRONT ANALYSIS PROGRAM FOR HEAT PIPE 71095 32

*AN * NOT INDEXED

00860 AT PIPE HAVING A ZERO CONTACT ANGLE WITH AN ALKALI METAL WICK 71135 36
00630 N, AND OXYGEN HOMOGENEOUS-AND ANNULAR-WICK HEAT PIPES.#/ /GE 71120 26
00390 F A HEAT PIPE WITH A WICK AND ANNUAL LIQUID FLOW# /ZATION 71126 29
00830 HEAT-TRANSFER APPARATUS (HEAT PIPE)# 71099 38

*AN * NOT INDEXED

00130 T PIPE# A SPACE APPLICATION OF A CRYOGENIC HEAT EXCHANGER FOR HEAT PIPE 71046 21
00350 MANCE LIMITS, TECHNOLOGY, AND APPLICATION OF LOW-TEMPERATURE HEAT PIPES 71137 39
00620 NUCLEAR REACTOR ENGINEERING# APPLICATIONS OF HEAT PIPES TO NUCLEAR REACTOR ENGINEERING 71061 18
00930 PRINCIPLES AND INDUSTRIAL APPLICATIONS OF HEAT PIPES# 71131 33
01000 TEMPERATURE CONTROL/ STUDY OF APPLICATIONS OF HEAT PIPES TO TEMPERATURE CONTROL 71081 14
00600 CF SPACECRAFT THERMOPHYSICS – APPLICATIONS TO THERMAL DESIGN 71056 12
00470 HEAT PIPE APPLICATIONS# 71072 4
00730 HEAT PIPES-DESIGN AND APPLICATIONS# 71070 2
00320 HEAT PIPES AND THEIR APPLICATIONS# 71069 2
00040 EAT PIPES FOR THERMAL CONTROL APPLICATIONS# / OF SIX NOVEL HEAT PIPES FOR THERMAL CONTROL 71076 5
00370 PROBLEMS# APPLYING HEAT PIPES TO THERMAL CONTROL 71064 21
00990 EVOLUTION QUARTERLY REPORT, 1 APR-30 JUN, 1970# /ATION AND D 71071 2
00090 +EAT PIPES# ARTERIAL AND GROOVED CRYOGENIC HEAT PIPES 71145 43

*AN * NOT INDEXED

00190 THERMAL CONTROL OF ATS F AND G# 71090 23
00640 M/ MEASUREMENT OF THE MAXIMUM AVAILABLE HEAT FLUX OF A SODIUM F/ENETALL VELOCITY 71118 25
00770 INVESTIGATION* SMALL AXIAL TURBINE STAGE COOLING IN 71104 7
00510 OF A HIGH RATE NICKEL CADMIUM BATTERY# / DURING THE CYCLING 71103 7
00360 HIGH POWER LINEAR BEAM TUBE DEVICES# 71085 19
00340 STEADY STATE AND DYNAMIC BEHAVIOR OF HEAT PIPES# 71063 21
00920 DYNAMIC BEHAVIOR OF HEAT PIPES# 71147 25
00870 T IUM IN THERMONUCLEAR REACTOR BLANKETS# FOR RECOVERY OF TRITIUM 71062 18
00740 REFACE HEAT FLUX FOR INCIPIENT BOILING IN LIQUID METAL HEAT PIPES 71121 26
00750 METAL HEAT PIPES# BOILING LIMIT IN ALKALI LIQUID 71122 27
00290 ECTOR AND HEAT EXCHANGER FC RAYTON-CYCLE POWER SYSTEM 71112 19

*BY * NOT INDEXED

00510 CYCLING OF A HIGH RATE NICKEL CADMIUM BATTERY# / DURING THE CYCLING 71103 7
00820 S. ON A POSSIBLE ROLE OF THE CANDLEWICK IN SPACE EXPLORATION 71129 31
00670 EXPERIMENTAL INVESTIGATIONS ON CAPILLARY EVAPORATION COOLING 71125 28
00170 VAPORIZATION FROM CAPILLARY WICK STRUCTURES# 71124 27
00690 TORUS DESIGN AND ANALYSIS OF A CASCADDED THERMOELECTRIC GENERATOR 71106 11
00310 POTASSIUM RANKINE CYCLE VAPOR CHAMBER (HEAT PIPE) RADIATOR 71110 16
00480 HEAT PIPES FOR PERFORMANCE CHARACTERISTICS OF CYLINDRICAL HEAT PIPES 71065 22

59
<table>
<thead>
<tr>
<th>Document Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pipe Technology 1971 Annual</td>
<td>60</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON-CAPILLARY HEAT PIPE PERFORMANCE CHARACTERISTICS OF ROTATING, M.</td>
<td>7140</td>
</tr>
<tr>
<td>EAT PIPES FOR THERMAL CONTROL CHARACTERISTICS OF SIX NOVEL M.</td>
<td>71076</td>
</tr>
<tr>
<td>INVERTERS AND HEAT-PIPE-COOLED COLLECTORS WITH EXTERNAL COOLING</td>
<td>71080</td>
</tr>
<tr>
<td>THEORY OF TWO COMPONENT HEAT-PIPES</td>
<td>71115</td>
</tr>
<tr>
<td>SPACE STATION DESIGN</td>
<td>71057</td>
</tr>
<tr>
<td>OUT-OF-CORE NUCLEAR THERMION CONCEPTUAL DESIGN OF A 150 KWE</td>
<td>71053</td>
</tr>
<tr>
<td>SOUNDS IN INSTRUMENT UNIT THERMAL CONDITIONING PANEL FINAL REPORT</td>
<td>71096</td>
</tr>
<tr>
<td>DESIGN UNDER SIMULATED ORBITAL CONDITIONS AL STORAGE TUBE</td>
<td>71139</td>
</tr>
<tr>
<td>THEORY AND DESIGN OF VARIABLE CONDUCTANCE HEAT PIPES - CONTROL</td>
<td>71114</td>
</tr>
<tr>
<td>THEORY AND DESIGN OF VARIABLE CONDUCTANCE HEAT PIPES - HYDRO</td>
<td>71068</td>
</tr>
<tr>
<td>THERMAL CONTROL OF A LARGE ROTATING THERMIONIC HEAT PIPE</td>
<td>71073</td>
</tr>
<tr>
<td>THERMAL CONTROL SYSTEMS DESIGN FOR SPACE STATION</td>
<td>71083</td>
</tr>
<tr>
<td>IAELE CONDUCTANCE HEAT PIPES - CONTROL TECHNIQUES</td>
<td>71114</td>
</tr>
<tr>
<td>UT-OF-CORE NUCLEAR THERMIONIC CONVERTER SYSTEM A 150 KWE</td>
<td>71053</td>
</tr>
<tr>
<td>RMIONIC REACTOR WITH EXTERNAL CONVERTERS AND HEAT-PIPE-COOLED</td>
<td>71080</td>
</tr>
<tr>
<td>THERMAL DESIGN OF HEAT-PIPE COOLED A-C MOTOR</td>
<td>71105</td>
</tr>
<tr>
<td>G3 FOR BRAYTON-CY BEAT-PIPE COOLED REACTOR AND HEAT EXCHANGE</td>
<td>71112</td>
</tr>
<tr>
<td>STEN HEAT PIPES FOR HEAT PIPE COOLED REACTORS TING OF TUNG</td>
<td>71134</td>
</tr>
<tr>
<td>SMALL AXIAL TURBINE STAGE COOLING INVESTIGATION</td>
<td>71104</td>
</tr>
<tr>
<td>ES LIQUID AND VAPOR COOLING SYSTEMS FOR GAS TURBIN</td>
<td>71052</td>
</tr>
<tr>
<td>E IN CARILLARY EVAPORATION COOLING WITH WATER AS THE WORK</td>
<td>71125</td>
</tr>
<tr>
<td>LITHIUM HIGH-TEMPERATURE HEAT ISOTHERMAL COVER WITH THERMAL RESERVOIRS</td>
<td>71098</td>
</tr>
<tr>
<td>A SPACE APPLICATION OF A CRYOGENIC HEAT PIPE</td>
<td>71046</td>
</tr>
<tr>
<td>ARTERIAL AND GROOVED CRYOGENIC HEAT PIPES</td>
<td>71145</td>
</tr>
<tr>
<td>LCIMENT OF A PROTOTYPE CRYOGENIC HEAT TRANSFER SYSTEM</td>
<td>71133</td>
</tr>
<tr>
<td>RADIATOR POTASSIUM RANKINE CYCLE VAPOR CHAMBER HEAT PIPE</td>
<td>71110</td>
</tr>
<tr>
<td>HE REMOVAL OF HEAT DURING THE CYCLING OF A HIGH RATE NICKEL</td>
<td>71103</td>
</tr>
<tr>
<td>PERFORMANCE CHARACTERISTICS CYLINDRICAL HEAT PIPES FOR NUC</td>
<td>71065</td>
</tr>
<tr>
<td>ESSIBLE LAMINAR VAPOR FLOW IN CYLINDRICAL HEAT PIPES COMPRESSION</td>
<td>71127</td>
</tr>
<tr>
<td>LCIMENT OF HIGH THERMAL POWER DENSITY AMMONIA HEAT PIPES E</td>
<td>71132</td>
</tr>
<tr>
<td>DED THERMOELECTRIC GENERATOR DESIGN AND ANALYSIS OF A CASCA</td>
<td>71106</td>
</tr>
<tr>
<td>OTYPE STATIC CRYOGENIC HEAT PIPE DESIGN AND DEVELOPMENT OF A PR</td>
<td>71133</td>
</tr>
<tr>
<td>SPACE STATION DESIGN CONCEPTS</td>
<td>71057</td>
</tr>
<tr>
<td>THERMAL CONTROL SYSTEMS DESIGN FOR SPACE STATION</td>
<td>71083</td>
</tr>
<tr>
<td>E NUCLEAR THERMION CONCEPTUAL DESIGN OF A 150 KWE OUT-OF-COR</td>
<td>71053</td>
</tr>
<tr>
<td>NUCLEAR THERMIONIC HEAT PIPE DESIGN OF A 150 KWE</td>
<td>71057</td>
</tr>
<tr>
<td>E THERMAL DESIGN OF HEAT-PIPE COOLED A-C</td>
<td>71105</td>
</tr>
<tr>
<td>APPLICATION TO THERMAL DESIGN OF SPACECRAFT RMOPHY</td>
<td>71056</td>
</tr>
<tr>
<td>HEAT PIPES HYDRO THEORY AND DESIGN OF VARIABLE CONDUCTANCE</td>
<td>71062</td>
</tr>
<tr>
<td>HEAT PIPES CONT/ THEORY AND DESIGN OF VARIABLE CONDUCTANCE</td>
<td>71114</td>
</tr>
<tr>
<td>TRANSFER THERMAL STORAGE TUBE DESIGN UNDER SIMULATED ORBITAL</td>
<td>71139</td>
</tr>
<tr>
<td>STATUS OF EMITTER HEAT PIPE DEVELOPMENT AT ISPRA</td>
<td>71093</td>
</tr>
<tr>
<td>TIC CRYOGENIC HEAT PIPE DESIGN AND DEVELOPMENT OF A PROTOTYPE STA</td>
<td>71133</td>
</tr>
<tr>
<td>ANSCALENT RECTIFIER DEVELOPMENT OF A 250 AMPERE TR</td>
<td>71068</td>
</tr>
<tr>
<td>WER DENSITY AMMONIA HEAT PIPE DEVELOPMENT OF HIGH THERMAL PD</td>
<td>71132</td>
</tr>
<tr>
<td>APR-30 NIMROD OPERATION AND DEVELOPMENT QUARTERLY REPORT, I</td>
<td>71071</td>
</tr>
<tr>
<td>ID</td>
<td>TITLE</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>00520</td>
<td>LIQUID FIN - A NEW DEVICE FOR HEAT TRANSFER EQUIP.</td>
</tr>
<tr>
<td>00250</td>
<td>AN INTERESTING HEAT TRANSFER DEVICE</td>
</tr>
<tr>
<td>00360</td>
<td>HIGH POWER LINEAR BEAM TUBE DEVICES</td>
</tr>
<tr>
<td>00760</td>
<td>CTS OF INTERPHASE TEMPERATURE DIFFERENCES AND WALL FRICTION</td>
</tr>
<tr>
<td>00550</td>
<td>NEW DIRECTIONS IN HEAT TRANSFER</td>
</tr>
<tr>
<td>00610</td>
<td>ELLITE HEAT PIPE FLUID ENERGY DISSIPATION / ANALYSIS OF SAT</td>
</tr>
<tr>
<td>00150</td>
<td>ME EXPERIMENTS ON SCREEN WICK DRY-OUT LIMITS</td>
</tr>
<tr>
<td>00650</td>
<td>DYNAMICS OF FLUID FLOW IN THE DUCT OF A HEAT PIPE</td>
</tr>
<tr>
<td>00510</td>
<td>PIPE FOR THE REMOVAL OF HEAT DURING THE CYCLING OF A HIGH R</td>
</tr>
<tr>
<td>00610</td>
<td>HEAT PIPE FLUID ENERGY DISSIPATION / DYNAMIC ANALYSIS OF SATELLITE</td>
</tr>
<tr>
<td>00340</td>
<td># STEADY STATE AND DYNAMIC BEHAVIOR OF HEAT PIPES</td>
</tr>
<tr>
<td>00920</td>
<td># DYNAMIC BEHAVIOR OF HEAT PIPES</td>
</tr>
<tr>
<td>00910</td>
<td># A MODULATED THERMIONIC REACTOR</td>
</tr>
<tr>
<td>00760</td>
<td># ELECTRICAL FEEDBACK-CONTROLLED HEAT PIPE</td>
</tr>
<tr>
<td>00380</td>
<td># ELECTRIC POWER SUPPLY FOR UNMANNED ELECTRIC PROPULSION / THERMODYNAMICS</td>
</tr>
<tr>
<td>00480</td>
<td>DRICAL HEAT PIPES FOR NUCLEAR ELECTRIC SPACE AND UNDERSEA FC</td>
</tr>
<tr>
<td>00240</td>
<td>REACTORIZED AS A NUCLEAR ELECTRIC SPACE POWER PLANT / T</td>
</tr>
<tr>
<td>00100</td>
<td>VA / TRANSIENT PERFORMANCE OF ELECTRICAL FEEDBACK-CONTROLLED HEAT PIPES</td>
</tr>
<tr>
<td>00410</td>
<td># THE FEASIBILITY OF ELECTROHYDRODYNAMIC HEAT PIPES</td>
</tr>
<tr>
<td>00120</td>
<td>A1 ISPRA # STATUS OF EMITTER HEAT PIPE DEVELOPMENT</td>
</tr>
<tr>
<td>00280</td>
<td>LY PROGRESS REPORT FOR PERIOD ENDING JUNE 30, 1971 / QUARTER</td>
</tr>
<tr>
<td>00970</td>
<td>LY PROGRESS REPORT FOR PERIOD ENDING MARCH 31, 1971 / QUARTER</td>
</tr>
<tr>
<td>00610</td>
<td>CF SATELLITE HEAT PIPE FLUID ENERGY DISSIPATION / ANALYSIS</td>
</tr>
<tr>
<td>00880</td>
<td>EAR / HEAT PIPES AS A MEANS OF ENERGY REMOVAL FROM THERMOELECTRICITY</td>
</tr>
<tr>
<td>00620</td>
<td>HEAT PIPES TO NUCLEAR REACTOR ENGINEERING / APPLICATIONS OF</td>
</tr>
<tr>
<td>00520</td>
<td>NEW DEVICE FOR HEAT TRANSFER EQUIPMENT / LIQUID FIN - A</td>
</tr>
<tr>
<td>01000</td>
<td>ES TO TEMPERATURE CONTROL FOR EUROPEAN METEOROLOGICAL SATELLITE</td>
</tr>
<tr>
<td>00740</td>
<td>THERMODYNAMIC / PERFORMANCE EVALUATION AND LIFE TESTING OF</td>
</tr>
<tr>
<td>00670</td>
<td>L INVESTIGATIONS ON CAPILLARY EVAPORATION COOLING WITH WATER</td>
</tr>
<tr>
<td>00720</td>
<td>STEADY AND MAXIMUM EVAPORATION FROM SCREEN WICKS /</td>
</tr>
<tr>
<td>00230</td>
<td>-PIE COOLED REACTOR AND HEAT EXCHANGER FOR BRAYTON-CYCLE PD</td>
</tr>
<tr>
<td>00980</td>
<td>ART 1 # LARGE TELESCOPE EXPERIMENT PROGRAM VOLUME 1, P</td>
</tr>
<tr>
<td>00080</td>
<td>HEAT PIPES FOR THE DAO-C SPA / EXPERIMENTAL HIGH PERFORMANCE</td>
</tr>
<tr>
<td>00670</td>
<td>CAPILLARY EVAPORATION COOLING / EXPERIMENTAL INVESTIGATIONS ON</td>
</tr>
<tr>
<td>00010</td>
<td>EN HEAT PIPE / EXPERIMENTAL STUDY OF A NITROGEN</td>
</tr>
<tr>
<td>00150</td>
<td>-CUT LIMITS / SCRE EXPERIMENTS ON SCREEN WICK DRY</td>
</tr>
<tr>
<td>00820</td>
<td>LE OF THE CANDLEWICK IN SPACE EXPLORATION / R, A POSSIBLE RO</td>
</tr>
<tr>
<td>00180</td>
<td>POWER THERMIONIC REACTOR WITH EXTERNAL CONVERTERS AND HEAT-P</td>
</tr>
<tr>
<td>00190</td>
<td>THERMAL CONTROL OF ATS F AND G /#</td>
</tr>
<tr>
<td>00200</td>
<td>GAS PIPE PROGRAM / A VAPOR-GAS F-ONT ANALYSIS PROGRAM FOR HEA</td>
</tr>
<tr>
<td>00020</td>
<td>GENTHE HEAT PIPES FOR HEAT PIN / FABRICATION AND TESTING OF TUN</td>
</tr>
<tr>
<td>00660</td>
<td>RESULTS OF STUDIES ON VARIOUS FAST AND THERMIONIC REACTOR</td>
</tr>
<tr>
<td>00240</td>
<td>SHIELD FOR A HEAT-PIPE-COOL ED FAST REACTORIZED AS A NUCL</td>
</tr>
<tr>
<td>00410</td>
<td>AMIC HEAT PIPES / THE FEASIBILITY OF ELECTROHYDRODYNAMICS</td>
</tr>
<tr>
<td>00070</td>
<td>ENT PERFORMANCE OF ELECTRICAL FEEDBACK-CONTROLLED VARIABLE-C</td>
</tr>
<tr>
<td>00520</td>
<td>ANSFER EQUIPMENT / LIQUID FIN - A NEW DEVICE FOR HEAT TR</td>
</tr>
<tr>
<td>00330</td>
<td>IT THERMAL CONDITIONING PANEL FINAL REPORT / A NEW INSTRUMENT UN</td>
</tr>
<tr>
<td>00560</td>
<td>A FLEXIBLE HEAT PIPE /#</td>
</tr>
<tr>
<td>00030</td>
<td>INCOMPRESSIBLE LAMINAR VAPOR FLOW IN CYLINDRICAL HEAT PIPES</td>
</tr>
<tr>
<td>00650</td>
<td>OF THE HYDRODYNAMICS OF FLUID FLOW IN THE DUCT OF A HEAT PIPE</td>
</tr>
<tr>
<td>00390</td>
<td>ITH A Wick AND ANNULUS LIQUID FLOW / ZATION OF A HEAT PIPE</td>
</tr>
<tr>
<td>00610</td>
<td>ALYSIS OF SATELLITE HEAT PIPE FLUID ENERGY DISSIPATION / AN</td>
</tr>
<tr>
<td>00650</td>
<td>TION OF THE HYDRODYNAMICS OF FLUID FLOW IN THE DUCT OF A HEA</td>
</tr>
<tr>
<td>00670</td>
<td>NING WITH WATER AS THE WORKING FLUID / LARY EVAPORATION COOL</td>
</tr>
</tbody>
</table>

61
HEAT PIPE TECHNOLOGY 1971 ANNUAL

00860 WITH AN ALKALI METAL WORKING FLUID / G A ZERO CONTACT ANGLE 71135 36
00740 LIQUID METAL HE/ SURFACE HEAT FLUX FOR INCipient BOILING IN 71121 26
00640 OF THE MAXIMUM AVAILABLE HEAT FLUX OF A SODIUM OR POTASSIUM 71118 25
00050 RADIAL HEAT FLUX TRANSFORMER 71100 6

'FOR ' NOT INDEXED

00760 TEMPERATURE DIFFERENCES AND WALL FRICTION IN HIGH-TEMPERATURE H 71067 28

'FROM ' NOT INDEXED

00210 THE VICINITY OF THE VAPOR-GAS FRONT IN THE GAS LOADED HEAT P 71091 25
00190 THERMAL CONTROL OF ATS F AND G 71095 22
00210 OF THE VAPOR-GAS FRONT IN THE GAS LOADED HEAT PIPE / VICINITY 71091 25
00200 N-USER'S MANUAL FOR THE TRW GAS PIPE PROGRAM. A VAPOR-GAS 71095 32
00220 ND VAPOUR COOLING SYSTEMS FOR GAS TURBINES / LIQUID A 71052 4
00200 PE CONTAINING NONCONDENSIBLE GAS /SIS PROGRAM FOR HEAT PI 71095 32
00690 CF A CASCATED THERMOELECTRIC GENERATOR /DESIGN AND ANALYSIS 71106 11
00700 IFE TESTING OF THERMOELECTRIC GENERATORS AT THE JET PROPERTIES 71107 11
00090 ARTERIAL AND GROOVED CRYOGENIC HEAT PIPES 71145 43
00860 TH AN ALKALI METAL/ HEAT PIPE HAVING A ZERO CONTACT ANGLE 71135 36
00210 VICEITY OF THE VAPOR-GAS FRONT IN THE GAS LOADED HEAT P 71091 25
00510 THERMAL PIPE FOR THE REMOVAL OF HEAT DURING THE CYCLING OF A H 71103 7
00290 HEAT-PIPE COOLED REACTOR AND HEAT EXCHANGER FOR BRAYTON-CYC 71112 19
00740 IN LIQUID METAL HE/ SURFACE HEAT FLUX FOR INCipient BOILING 71121 25
00640 MENT OF THE MAXIMUM AVAILABLE HEAT FLUX OF A SODIUM OR POTAS 71118 25
00050 RADIAL HEAT FLUX TRANSFORMER 71100 6
00250 T TRANSFER DEVICE / THE HEAT PIPE - AN INTERESTING HEA 71047 1
00470 HEAT PIPE APPLICATIONS 71072 4
00200 NG OF TUNGSTEN HEAT PIPES FOR HEAT PIPE COOLED REACTORS /TI 71134 36
00120 LIGHT OF EMITTER DEPARTMENT AT ISRA 71093 32
00200 DYNAMIC ANALYSIS OF SATELLITE HEAT PIPE FLUID ENERGY DISSIPATION 71113 23
00510 HEAT PIPE FOR THE REMOVAL OF H 71103 7
00860 T ANGLE WITH AN ALKALI METAL/ HEAT PIPE HAVING A ZERO CONTACT 71135 36
00850 HEAT PIPE THEORY 71087 22
00810 MINIMUM MENISCUS RADIUS OF HEAT PIPE WICKING MATERIALS 71128 31
00390 LUS LIQUID/ OPTIMIZATION OF A HEAT PIPE WITH A WICK AND ANNU 71126 29
00650 OF FLUID FLOW IN THE DUCT OF A HEAT PIPE / THE HYDRODYNAMICS 71092 29
00900 VANCES IN HEAT TRANSFER - THE HEAT PIPE 71049 1
00010 EXPERIMENTAL STUDY OF A NITROGEN HEAT PIPE / THE HYDRODYNAMICS 71144 42
00560 A FLEXIBLE HEAT PIPE 71130 33
00450 THERMAL IMPEDANCE OF A WATER HEAT PIPE / TRANSIENT 71146 44
00130 CE APPLICATION OF A CRYOGENIC HEAT PIPE / A SPA 71046 21
00210 R GAS FRONT IN THE GAS LOADED HEAT PIPE / VICINITY OF THE VAPOR 71091 25
00640 OF A SODIUM OR POTASSIUM HEAT PIPE / THE HYDRODYNAMICS 71118 25
00530 DESIGN OF VARIABLE CONDUCTANCE HEAT PIPES / THE HYDRODYNAMICS 71068 29
00320 ONS 71069 2
00880 R REMOVAL FROM THERMONUCLEAR/ HEAT PIPES AS A MEANS OF ENERG 71084 18
00680 ALUM-LITHIUM HIGH-TEMPERATURE HEAT PIPES CONTAINING NONCONDEN 71095 32
00200 AS F-ONT ANALYSIS PROGRAM FOR HEAT PIPES CONTAINING NONCONDEN 71095 32
00202 ATION AND TESTING OF TUNGSTEN HEAT PIPES FOR HEAT PIPE CODEL 71134 36
00480 CARACTERISTICS OF CYLINDRICAL HEAT PIPES FOR NUCLEAR ELECTR 71065 22
00870 TIUM IN THERMONUCLEAR REACTOR/ HEAT PIPES FOR RECOVERY OF TRI 71062 18
00080 EXPERIMENTAL HIGH PERFORMANCE HEAT PIPES FOR THE CAO-C SPACE 71082 14
00110 E POWER SUPPLIES / HEAT PIPES FOR THERMIONIC SPAC 71078 13
00400 CHARACTERISTICS OF SIX NOVEL HEAT PIPES FOR THERMAL CONTROL 71076 5
00620 ENGINEERING APPLICATIONS OF HEAT PIPES TO NUCLEAR REACTOR 71061 18
01000 RCL/ STUDY OF APPLICATIONS OF HEAT PIPES TO TEMPERATURE CONT 71081 14

62
<table>
<thead>
<tr>
<th>Record Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00370</td>
<td>Applying Heat Pipes to Thermal Problems</td>
<td>71064</td>
</tr>
<tr>
<td>00920</td>
<td>Dynamic Behavior of Heat Pipes</td>
<td>71117</td>
</tr>
<tr>
<td>00630</td>
<td>Homogeneous-and Annular-Wick Heat Pipes / Oxygen, and Oxygen</td>
<td>71120</td>
</tr>
<tr>
<td>00540</td>
<td>Design of Variable Conductance Heat Pipes</td>
<td>71114</td>
</tr>
<tr>
<td>00730</td>
<td>Heat Pipes-Design and Applications of Heat Pipes</td>
<td>71070</td>
</tr>
<tr>
<td>00580</td>
<td>Nuclear Reactor with Heat Pipes</td>
<td>71060</td>
</tr>
<tr>
<td>00710</td>
<td>Temperature Stabilization with Heat Pipes</td>
<td>71074</td>
</tr>
<tr>
<td>00490</td>
<td>Cooling with Heat Pipes</td>
<td>71048</td>
</tr>
<tr>
<td>00500</td>
<td>Sonic Limit in Sodium Heat Pipes</td>
<td>71119</td>
</tr>
<tr>
<td>00410</td>
<td>Bility of Electrohydrodynamic Heat Pipes / The Feasi</td>
<td>71138</td>
</tr>
<tr>
<td>00430</td>
<td>Operating Principles of Heat Pipes</td>
<td>71088</td>
</tr>
<tr>
<td>00890</td>
<td>Variable Vapor Volume Heat Pipes</td>
<td>71116</td>
</tr>
<tr>
<td>00300</td>
<td>Porous Linings for Heat Pipes</td>
<td>71057</td>
</tr>
<tr>
<td>00340</td>
<td>State and Dynamic Behavior of Heat Pipes</td>
<td>71063</td>
</tr>
<tr>
<td>00100</td>
<td>Problems at High Temperature Heat Pipes / Material</td>
<td>71066</td>
</tr>
<tr>
<td>00090</td>
<td>Referral and Grooved Cryogenic Heat Pipes</td>
<td>71145</td>
</tr>
<tr>
<td>00750</td>
<td>Limit in Alkali Liquid Metal Heat Pipes / Boiling</td>
<td>71122</td>
</tr>
<tr>
<td>00930</td>
<td>NC Industrial Applications of Heat Pipes / Principles / A</td>
<td>71131</td>
</tr>
<tr>
<td>00330</td>
<td>Narrow Vapor Flow in Cylindrical Heat Pipes / Compressible Lam</td>
<td>71127</td>
</tr>
<tr>
<td>00740</td>
<td>Pient Boiling in Liquid Metal Heat Pipes / Heat Flux for Inci</td>
<td>71121</td>
</tr>
<tr>
<td>0230</td>
<td>Thermal Power Density Ammonia Heat Pipes / Development of High</td>
<td>71132</td>
</tr>
<tr>
<td>00760</td>
<td>Friction in High-Temperature Heat Pipes / References and Wall</td>
<td>71067</td>
</tr>
<tr>
<td>00590</td>
<td>Cs of Rotating, Non-Capillary Heat Pipes / Vce Characterist</td>
<td>71140</td>
</tr>
<tr>
<td>00709</td>
<td>Introlled Variable-Conductance Heat Pipes / Rical Feedback-Co</td>
<td>71089</td>
</tr>
<tr>
<td>00350</td>
<td>Application of Low-Temperature Heat Pipes / Technology, and A</td>
<td>71137</td>
</tr>
<tr>
<td>00990</td>
<td>Advances in Heat Transfer - the Heat Pip / T</td>
<td>71049</td>
</tr>
<tr>
<td>00250</td>
<td>He Heat Pipe - an Interesting Heat Transfer Device / T</td>
<td>71047</td>
</tr>
<tr>
<td>00520</td>
<td>Liquid Fin - a New Device for Heat Transfer Equipment / T</td>
<td>71050</td>
</tr>
<tr>
<td>00940</td>
<td>A Prototype Static Cryogenic Heat Transfer System / Ent of</td>
<td>71133</td>
</tr>
<tr>
<td>00570</td>
<td>Preliminary Test Results of Heat Transfer/Thermal Storage /</td>
<td>71139</td>
</tr>
<tr>
<td>00550</td>
<td>New Directions in Heat Transfer /</td>
<td>71101</td>
</tr>
<tr>
<td>00530</td>
<td>Eat Pipes - Hydrodynamics and Heat Transfer / Conductance H</td>
<td>71068</td>
</tr>
<tr>
<td>00460</td>
<td>Test of 50-Kw Heat-Pipe Radiator /</td>
<td>71142</td>
</tr>
<tr>
<td>00160</td>
<td>Thermal Design of Heat-Pipe Cooled A-C Motor /</td>
<td>71105</td>
</tr>
<tr>
<td>00600</td>
<td>Pile Thermonic P/ Split-Core Heat Pipe Reactors for Cut-Off-</td>
<td>71111</td>
</tr>
<tr>
<td>00180</td>
<td>With External Converters and Heat-Pipe-Cooled Collectors /</td>
<td>71080</td>
</tr>
<tr>
<td>00240</td>
<td>Ptimization of a Shield for a Heat-Pipe-Cooled Fast Reactor /</td>
<td>71109</td>
</tr>
<tr>
<td>00800</td>
<td>Theory of Two Component Heat-Pipes /</td>
<td>71115</td>
</tr>
<tr>
<td>00830</td>
<td>Pipe / Heat-Transfer Apparatus (Heat</td>
<td>71099</td>
</tr>
<tr>
<td>00890</td>
<td>The Oao-C Spa/ Experimental High Performance Heat Pipes /</td>
<td>71082</td>
</tr>
<tr>
<td>00360</td>
<td>Vices / High Power Linear Beam Tube</td>
<td>71085</td>
</tr>
<tr>
<td>00510</td>
<td>Heat During the Cycling of a High Rate Nickel Cadmium Battery /</td>
<td>71103</td>
</tr>
<tr>
<td>00760</td>
<td>References and Wall Friction in High-Temperature Heat Pipes /</td>
<td>71067</td>
</tr>
<tr>
<td>00680</td>
<td>Mechanism in Tantalum-Lithium High-Temperature Heat Pipes /</td>
<td>71098</td>
</tr>
<tr>
<td>00630</td>
<td>Yrogen, Nitrogen, and Oxygen Homogeneous-and Annular-Wick-H</td>
<td>71120</td>
</tr>
<tr>
<td>00140</td>
<td>Hot Rod - for the Kitchen is Hot New Invention /</td>
<td>71051</td>
</tr>
<tr>
<td>00140</td>
<td>For New Invention /</td>
<td>71051</td>
</tr>
<tr>
<td>00530</td>
<td>Aile Conductance Heat Pipes - Hydrodynamics and Heat Transfe</td>
<td>71068</td>
</tr>
<tr>
<td>00650</td>
<td>The Eu Investigation of the Hydrodynamics of Fluid Flow in</td>
<td>71092</td>
</tr>
<tr>
<td>00630</td>
<td>Theoretical Investigations of Hydrogen, Nitrogen, and Oxygen</td>
<td>71120</td>
</tr>
<tr>
<td>00450</td>
<td>Transient Thermal Impedance of a Water Heat Pipe / In * Not Indexed</td>
<td>71146</td>
</tr>
</tbody>
</table>
HEAT PIPE TECHNOLOGY 1971 ANNUAL

00640 INFLABLE HEAT FLUX OF A SODIUM/ MEASUREMENT OF THE MAXIMUM AVA 71118 25
00660 HIGH-TEMPERATURE H/ CORROSION MECHANISM IN TANTALUM-LITHIUM 71098 35
00810 DIFFUSION MATERIALS# MINIMUM MENISCUS RADIUS OF HEAT PIPE W 71128 31
00750 CILING LIMIT IN ALKALI LIQUID METAL HEAT PIPES# B 71122 27
00740 P INCIPIENT BOILING IN LIQUID METAL HEAT PIPES# HEAT FLUX FO 71121 26
00860 CONTACT ANGLE WITH AN ALKALI METAL WORKING FLUID# /G A ZERLO 71135 36
01000 PERFORMANCE CONTROL FOR EUROPEAN METEOROLOGICAL SATELLITE# /TEM 71081 14
00910 EPIES OF A POWER SUPPLY WITH A MODULATED THERMIONIC REACTOR# / 71108 12
00160 DESIGN OF HEAT-PIPE COOLED A-C MOTOR# THERMAL D 71105 8

NEW NOT INDEXED

00510 THE CYCLING OF A HIGH RATE NICKEL CADMIUM BATTERY# / DUR 71103 7
00990 NT QUARTERLY REPORT, 1 APR-30/ NIMROD OPERATION AND DEVELOPME 71071 2
00010 EXPERIMENTAL STUDY OF A NITROGEN HEAT PIPE# 71144 42
00630 L INVESTIGATIONS OF HYDROGEN, NITROGEN, AND OXYGEN HOMOGENEO 71120 26
00590 CHARACTERS OF ROTATING, NON-CAPILLARY HEAT PIPES# /NCE 71140 40
00200 RAM FOR HEAT PIPES CONTAINING NONCONDENSIBLE GAS.# /SIS PROG 71095 32
00040 ONTR/O CHARACTERS OF SIX NOVEL HEAT PIPES FCR THERMAL C 71076 5
00480 OF CYLINDRICAL HEAT PIPES FOR NUCLEAR ELECTRIC SPACE AND UND 71065 22
00240 LED FAST REACTOR DESIGNED AS A NUCLEAR ELECTRIC SPACE POWER P 71109 15
00270 E STATION# NUCLEAR POWER PLANT FOR A SPAC 71059 17
00260 E STATION# NUCLEAR POWER PLANT FOR A SPAC 71058 17
00620 APPLICATIONS OF HEAT PIPES TO NUCLEAR REACTOR ENGINEERING# 71061 18
00580 S# NUCLEAR REACTOR WITH HEAT PIPE 71060 17
00840 SIGN OF A 150 KWE OUT-OF-CORE NUCLEAR THERMIONIC CONVERTER S 71053 8
00080 ERFERIMENTAL HEAT PIPES FOR THE OAO-C SPACECRAFT.# /TAL HIGH P 71082 14

OF NOT INDEXED

00430 IPES# OPERATING PRINCIPLES OF HEAT P 71088 22
00990 TELY REPORT, 1 APR-30/ NIMROD OPERATION AND DEVELOPMENT QUAR 71071 2
00390 T A WICK AND ANNULUS LIQUID/ OPTIMIZATION OF A HEAT PIPE WI 71126 29
00240 HEAT-PIPE-COOLED FAST REACT/ OPTIMIZATION OF A SHIELD FOR A 71109 15

OR NOT INDEXED

00570 E TUBE DESIGN UNDER SIMULATED CRITICAL CONDITIONS# /AL STORAG 71139 39
00420 TEMPERATURE CONTROL OF A LARGE DRBITING TELESCOPE# /ESICION T 71073 5
00840 ONCEPTUAL DESIGN OF A 150 KWE OUT-OF-CORE NUCLEAR THERMIONIC 71053 8
00600 T-CORE HEAT PIPE REACTORS FOR OUT-OF-PILE THERMIONIC POWER S 71111 17
00630 NS OF HYDROGEN, NITROGEN, AND OXYGEN HOMOGENEOUS-AND ANNULAR 71120 26
00330 E NT UNIT THERMAL CONDITIONING PANEL FINAL REPORT# /N INSTRUM 71096 32
00980 EPERIMENT PROGRAM VOLUME 1, PART 1# LARGE TELESCOPE 71075 5
00590 ROTATING, NON-CAPILLARY HEA/ PERFORMANCE CHARACTERISTICS OF 71140 40
00480 CYLINDRICAL HEAT PIPES FOR / PERFORMANCE CHARACTERISTICS OF 71065 22
00700 E TESTING OF THERMOELECTRIC / PERFORMANCE EVALUATION AND LIF 71107 11
00080 CAD-C SPA/ EXPERIMENTAL HIGH PERFORMANCE HEAT PIPES FOR THE 71082 14
00350 , AND APPLICATION OF LOW-TEM/ PERFORMANCE LIMITS, TECHNOLOGY 71137 39
00070 ECK-CONTROLLED VA/ TRANSIENT PERFORMANCE OF ELECTRICAL FEED 71089 23
00280 PROGRESS REPORT FOR PERIOD ENDING JUNE 30, 1971.# 71141 40
00970 QUARTERLY PROGRESS REPORT FOR PERIOD ENDING MARCH 31, 1971.# 71136 38

PIPE NOT INDEXED

00650 UID FLOW IN THE DUCT OF A HEAT PIPE.# THE HYDRODYNAMICS OF FL 71092 29
00310 INE CYCLE VAPOR CHAMBER (HEAT PIPE) RADIATOR STUDY# /UM RANK 71110 16
00830 HEAT-TRANSFER APPARATUS (HEAT PIPE)# / 71099 38

PIPES NOT INDEXED

00920 DYNAMIC BEHAVIOR OF HEAT PIPES.# 71117 25
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Record Count</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00180</td>
<td>RS AN/ A LOW-POWER THERMIonic REACTor WITH EXTERNAL CONVERTEr</td>
<td>71080</td>
<td>14</td>
</tr>
<tr>
<td>00580</td>
<td>NUCLEAR REACTor WITH HEAT PIPes#</td>
<td>71060</td>
<td>17</td>
</tr>
<tr>
<td>00910</td>
<td>Y WITH A MODULATED THERMIonic REACTor# /ICS OF A POWER SUPpl</td>
<td>71108</td>
<td>12</td>
</tr>
<tr>
<td>00240</td>
<td>D FOR A HEAT-PIPE-COOLED FAST REACTorDESIGNED AS A NUCLEAR E</td>
<td>71109</td>
<td>15</td>
</tr>
<tr>
<td>00600</td>
<td>ICNIC P/ SPLIT-CORE HEAT-PIPE REACTors FOR OUT-OF-PILE THERm</td>
<td>71111</td>
<td>17</td>
</tr>
<tr>
<td>00200</td>
<td>AT PIPes FOR HEAT PIPE COOLED REACTors# /ING OF TUNGsten HE</td>
<td>71134</td>
<td>36</td>
</tr>
<tr>
<td>00870</td>
<td>UCLEAR REACTor/ HEAT PIPes FOR RECOVERY OF TRITIUM IN THERmCN</td>
<td>71062</td>
<td>18</td>
</tr>
<tr>
<td>00440</td>
<td>T OF A 250 AMPERE TRANSCENTAL RECTifier#</td>
<td>71086</td>
<td>20</td>
</tr>
<tr>
<td>00880</td>
<td>AT PIPes AS A MEANS OF ENERGY REMOval FROM THERmNUCLEAR REA</td>
<td>71084</td>
<td>18</td>
</tr>
<tr>
<td>00510</td>
<td>CELL PLANAR HEAT PIPE FOR THE REMOval OF HEAT DURING THE CYC</td>
<td>71103</td>
<td>7</td>
</tr>
<tr>
<td>00330</td>
<td>NIT THERMAL CONDITIONING PAN/ RESEARCH STUDY ON INSTRUMENT U</td>
<td>71096</td>
<td>33</td>
</tr>
<tr>
<td>00960</td>
<td>ISOThermal COVER WITH THERmal RESerVOirs#</td>
<td>71079</td>
<td>12</td>
</tr>
<tr>
<td>00570</td>
<td>AL STORAGE / PRELIMINARY TEST RESULTS OF HEAT TRANSFER/THERm</td>
<td>71139</td>
<td>39</td>
</tr>
<tr>
<td>00660</td>
<td>FAST AND THERMAL THERMIonic / RESULTS OF STUDIES ON VARIOUS</td>
<td>71077</td>
<td>10</td>
</tr>
<tr>
<td>00140</td>
<td>E W INVENTION#</td>
<td>71051</td>
<td>4</td>
</tr>
<tr>
<td>00820</td>
<td>Ng OF LIQUIDS, OR, A POSSIBLE ROLE OF THE CANDLEWICK IN SPAC</td>
<td>71129</td>
<td>31</td>
</tr>
<tr>
<td>00590</td>
<td>ERFORMANCE CHARACTERISTICS OF ROTATING, NON-CAPILLARY HEAT P</td>
<td>71140</td>
<td>40</td>
</tr>
<tr>
<td>00610</td>
<td>GY DISSI/ DYNAMIC ANALYSIS OF SATELLITE HEAT PIPE FLUID ENER</td>
<td>71113</td>
<td>23</td>
</tr>
<tr>
<td>01000</td>
<td>L FOR EUROPEAN METEOROLOGICAL SATELLITE# /TEMPERATURE CONTROL</td>
<td>71081</td>
<td>14</td>
</tr>
<tr>
<td>00150</td>
<td>SOME EXPERIMENTS ON SCREEN WICK DRY-OUT LIMITS#</td>
<td>71143</td>
<td>42</td>
</tr>
<tr>
<td>00720</td>
<td>AND MAXIMUM EVAPORATION FROM SCREEN WICKS#</td>
<td>71123</td>
<td>27</td>
</tr>
<tr>
<td>00240</td>
<td>FAST REACT/ OPTIMIZATION OF A SHIELD FOR A HEAT-PIPE-COOLED</td>
<td>71109</td>
<td>15</td>
</tr>
<tr>
<td>00570</td>
<td>MAL STORAGE TUBE DESIGN UNDER SIMULATED ORBITAL CONDITIONS# /</td>
<td>71139</td>
<td>39</td>
</tr>
<tr>
<td>00040</td>
<td>AL CONTROL/ CHARACTERISTICS OF SIX NOVEL HEAT PIPes FOR THERm</td>
<td>71076</td>
<td>5</td>
</tr>
<tr>
<td>00770</td>
<td>ING INVESTIGATION#</td>
<td>71078</td>
<td>13</td>
</tr>
<tr>
<td>00500</td>
<td>SONIC LIMIT IN SODIUM HEAT PIPE#</td>
<td>71119</td>
<td>26</td>
</tr>
<tr>
<td>00640</td>
<td>IMM Available HEAT FLUX OF A SODIUM OR POTASSIUM HEAT PIPE#</td>
<td>71118</td>
<td>25</td>
</tr>
<tr>
<td>00500</td>
<td>ES#</td>
<td>71119</td>
<td>26</td>
</tr>
<tr>
<td>00480</td>
<td>AT PIPes FOR NUCLEAR ELECTric SPACE AND UNDERSEA POWER PLANT</td>
<td>71065</td>
<td>22</td>
</tr>
<tr>
<td>00130</td>
<td>IC HEAT PIPE#</td>
<td>71046</td>
<td>21</td>
</tr>
<tr>
<td>00820</td>
<td>BLE ROLE OF THE CANDLEWICK IN SPACE EXPLORATION# /</td>
<td>71129</td>
<td>31</td>
</tr>
<tr>
<td>00240</td>
<td>DESIGNED AS A NUCLEAR ELECTric SPACE POWER PLANT# / T REACTorD</td>
<td>71109</td>
<td>15</td>
</tr>
<tr>
<td>00110</td>
<td>HEAT PIPes FOR THERMIonic SPACE STATION DESIGN CCNCEPTS#</td>
<td>71057</td>
<td>12</td>
</tr>
<tr>
<td>00780</td>
<td>NUCLEAR POWER PLANT FOR A SPACE STATION#</td>
<td>71058</td>
<td>17</td>
</tr>
<tr>
<td>00270</td>
<td>NUCLEAR POWER PLANT FOR A SPACE STATION#</td>
<td>71059</td>
<td>17</td>
</tr>
<tr>
<td>00790</td>
<td>AL CONTROL SYSTEMS DESIGN FOR SPACE STATION#</td>
<td>71083</td>
<td>15</td>
</tr>
<tr>
<td>00080</td>
<td>ANCE HEAT PIPes FOR THE CAC-C SPACECRAFT# /TAL HIGH PERFORM</td>
<td>71082</td>
<td>14</td>
</tr>
<tr>
<td>00600</td>
<td>ICATIONS TO THERMAL DESIGN CF SPACECRAFT# /ROMOPHYSICS - APPL</td>
<td>71056</td>
<td>12</td>
</tr>
<tr>
<td>00600</td>
<td>FOR OUT-OF-PILE THERMIonic P/ SPLIT-CORE HEAT-PIPE REACTors</td>
<td>71111</td>
<td>17</td>
</tr>
<tr>
<td>00110</td>
<td>TEMPERATURE STABILIZATION WITH HEAT PIPes#</td>
<td>71074</td>
<td>5</td>
</tr>
<tr>
<td>00770</td>
<td>SMALL AxIAL TURBINE STAGE COOLING INVESTIGATION#</td>
<td>71104</td>
<td>7</td>
</tr>
<tr>
<td>00340</td>
<td>HEAT PIPes#</td>
<td>71063</td>
<td>21</td>
</tr>
<tr>
<td>00940</td>
<td>ND DEVELOPMENT OF A PRTOTYPE STATIC CRYOGENIC HEAT TRANSFER</td>
<td>71132</td>
<td>34</td>
</tr>
<tr>
<td>00780</td>
<td>SPACE STATION DESIGN CONCEPTS#</td>
<td>71057</td>
<td>12</td>
</tr>
<tr>
<td>00270</td>
<td>CLEAR POWER PLANT FOR A SPACE STATION#</td>
<td>71059</td>
<td>17</td>
</tr>
<tr>
<td>00260</td>
<td>CLEAR POWER PLANT FOR A SPACE STATION#</td>
<td>71058</td>
<td>17</td>
</tr>
<tr>
<td>00790</td>
<td>TROL SYSTEMS DESIGN FOR SPACE STATION#</td>
<td>71083</td>
<td>15</td>
</tr>
<tr>
<td>00120</td>
<td>VELOPMENT AT ISPRA#</td>
<td>71093</td>
<td>32</td>
</tr>
<tr>
<td>00720</td>
<td>FROM SCREEN WICKS#</td>
<td>71123</td>
<td>27</td>
</tr>
<tr>
<td>00340</td>
<td>ICR OF HEAT PIPes#</td>
<td>71063</td>
<td>21</td>
</tr>
<tr>
<td>00570</td>
<td>ULTS OF HEAT TRANSFER/Thermal STORAGE TUBE DESIGN UNDER SIMU</td>
<td>71139</td>
<td>39</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEAT PIPE TECHNOLOGY 1971 ANNUAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORIENTATION FROM CAPILLARY WICK STRUCTURES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERMAL THERMIONIC / RESULTS OF STUDIES ON VARIOUS FAST AND TH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPERIMENTAL STUDY OF A NITROGEN HEAT PIPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIPES TO TEMPERATURE CONTROL/ STUDY OF APPLICATIONS OF HEAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL CONDITIONING PAN/ RESEARCH STUDY ON INSTRUMENT UNIT THERM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAMBER (HEAT PIPE) RADIATOR STUDY / M Rankine cycle vapor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES FOR THERMIONIC SPACE POWER SUPPLIES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADIOISOTOPE THERMIONIC POWER SUPPLY FOR UNMANNED ELECTRIC P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONIC REA/ DYNAMICS OF A POWER SUPPLY WITH A MODULATED THERM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T BOILING IN LIQUID METAL HE/ SURFACE HEAT FLUX FOR INCIPRIEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIDS, OR, A POSSIBLE / ON THE SURFACE-TENSION PUMPING OF LIQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TATIC CRYOGENIC HEAT TRANSFER SYSTEM / ENT OF A PROTOTYPE S**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUCLEAR THERMIONIC CONVERTER SYSTEM / A 150 KWE OUT-CF-CORE**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON# THERMAL CONTROL SYSTEMS DESIGN FOR SPACE STATI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQUID AND VAFOUR COOLING SYSTEMS FOR GAS TURBINES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUT-OF-PILE THERMIONIC POWER SYSTEMS / AT-PIPE REACTORS**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANGER FOR BRAYTON-CYCLE POWER SYSTEMS / REACTOR AND HEAT EXCH**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ND THERMAL THERMIONIC REACTOR SYSTEMS / ES ON VARIOUS FAST A**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URE H/ CORRISION MECHANISM IN TANTALUM-LITHIUM HIGH-TEMPERAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUCTION HEAT PIPES- CONTROL TECHNIQUES / GN OF VARIABLE CO**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCO-TEM/ PERFORMANCE LIMITS, TECHNOLOGY, AND APPLICATION OF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLUME 1, PART 1# LARGE TELESCOPE EXPERIMENT PROGRAM V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL OF A LARGE DREITEN TELESCOPE# /ESICION TEMPERATURE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONSIDERATIONS ON PRECION TEMPERATURE CONTROL OF A LARGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPLICATIONS OF HEAT PIPES / TEMPERATURE CONTROL FOR EUROPE**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL FRH/ EFFECTS OF INTERPHASE TEMPERATURE DIFFERENCES AND WA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATERIAL PROBLEMS AT HIGH TEMPERATURE HEAT PIPES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEAT PIPES# TEMPERATURE STABILIZATION WITH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR# TEST OF 50-KW HEAT-PEPE RADIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THERMAL STORAGE / PRELIMINARY TEST RESULTS OF HEAT TRANSFER/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORMANCE EVALUATION AND LIFE TESTING OF THERMEOLECTRIC GENE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOR HEAT PI/ FABRICATION AND TESTING OF TUNGSTEN HEAT PIPES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE ' NOT INDEXED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEIR ' NOT INDEXED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROGEN, NITROGEN, AND CXYG/ THEORETICAL INVESTIGATIONS OF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONDUCANCE HEAT PIPES- CONT/ THEORY AND DESIGN OF VARIABLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONDUCANCE HEAT PIPES - HYD/ THEORY AND DESIGN OF VARIABLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPES# THEORY OF TWO COMPONENT HEAT-P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEAT PIPE THEORY#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH STUDY ON INSTRUMENT UNIT THERMAL CONDITIONING PANEL FIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S OF SIX NOVEL HEAT PIPES FOR THERMAL CONTROL APPLICATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT-PIPE REACTORS FOR OUT-OF-PILE THERMIONIC POWER SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S ON VARIOUS FAST AND THERMAL THERMIONIC REACTOR SYSTEMS# / E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HEAT PIPE TECHNOLOGY 1971 ANNUAL

00180 AL CONVERTERS AN/ A LOW-POWER THERMIONIC REACTOR WITH EXTERN 71080 14
00910 POWER SUPPLY WITH A MODULATED THERMIONIC REACTOR# /ICS OF A 71108 12
00110 S# HEAT PIPES FOR THERMIONIC SPACE POWER SUPPLIES 71078 13
00700 VALUATION AND LIFE TESTING OF THERMOELECTRIC GENERATORS AT T 71107 11
00690 GN AND ANALYSIS OF A CASCATED THERMOELECTRIC GENERATOR# /ESI 71106 11
00870 ES FOR RECOVERY OF TRITIUM IN THERMONUCLEAR REACTOR BLANKETS 71062 18
00880 MEANS OF ENERGY REMOVAL FROM THERMONUCLEAR REACTOR VACUUM W 71084 18
00060 O THERMAL DESIGN OF SPACECRA/ THERMOPHYSICS - APPLICATIONS T 71056 12

00440 DEVELOPMENT OF A 250 AMPERE TRANSSCALEAT RECTIFIER# 71086 20
00900 ADVANCES IN HEAT TRANSFER - THE HEAT PIPE# 71049 1
00250 AT PIPE - AN INTERESTING HEAT TRANSFER DEVICE# THE HE 71047 1
05020 D FIN - A NEW DEVICE FOR HEAT TRANSFER EQUIPMENT LIQUI 71050 1
00210 E VAPOR-GAS FR/ HEAT AND MASS TRANSFER IN THE VICINITY OF THE 71091 25
00940 DT TYPE STATIC CRYOGENIC HEAT TRANSFER SYSTEM# /ENT OF A PR 71133 34
00570 LIMINARY TEST RESULTS OF HEAT TRANSFER/ THERMAL STORAGE TUBE 71139 39
00550 NEW DIRECTIONS IN HEAT TRANSFER# 71101 2
00530 IPES - HYDRODYNAMICS AND HEAT TRANSFER# / CONDUCTANCE HEAT P 71068 29
00050 RADIAL HEAT FLUX TRANSFORMER# 71100 6
00070 RICAL FEEDBACK-CONTROLLED VA/ TRANSIENT PERFORMANCE OF ELECT 71089 23
00450 A WATER HEAT PIPE# TRANSIENT THERMAL IMPEDANCE OF 71146 44
00870 O/ HEAT PIPES FOR RECOVERY OF TRITIUM IN THERMONUCLEAR REACT 71062 18
00200 GAS F-/ USER'S MANUAL FOR THE TRW GAS PIPE PROGRAMS A VAPOR- 71095 32
00570 HEAT TRANSFER/ THERMAL STORAGE TUBE DESIGN UNDER SIMULATED CR 71139 39
00360 HIGH POWER LINEAR BEAM TUBE DEVICES# 71085 19
00020 I/ FABRICATION AND TESTING OF TUNGSTEN HEAT PIPES FOR HEAT P 71134 36
00770 ATION# SMALL AXIAL TURBINE STAGE COOLING INVESTIG 71104 7
00220 APCR COOLING SYSTEMS FOR GAS TURBINES LIQUID AND V 71022 4
00800 THEORY OF TWO COMPONENT HEAT-PIPEC# 71115 24
00570 R/ THERMAL STORAGE TUBE DESIGN UNDER SIMULATED ORBITAL CONDIT 71139 39
00480 OR NUCLEAR ELECTRIC SPACE AND UNDERSEA POWER PLANTS# /IPES F 71065 22
00330 RESEARCH STUDY ON INSTRUMENT UNIT THERMAL CONDITIONING PANE 71096 33
00380 E THERMIONIC POWER SUPPLY FOR UNMANNED ELECTRIC PROPULSION# / 71054 9
00200 PIPE PROGRAM A VAPOR-GAS F-/ USER'S MANUAL FOR THE TRW GAS 71095 32
00880 AL FROM THERMONUCLEAR REACTOR VACUUM WALLE# /OF ENERGY REMOV 71084 18
00010 ATCRE/ THERMOELECTRIC GENERATOR# VAPOR CHAMBER (HEAT PIPE) RADI 71110 16
00030 PIPE/ INCOMPRESSIBLE LAMINAR VAPOR FLOW IN CYLINDRICAL HEAT 71127 30
00890 VARIABLE VAPOR VOLUME HEAT PIPES# 71116 24
00200 R THE TRW GAS PIPE PROGRAM# A VAPOR-GAS F-ONT ANALYSIS PROGR 71095 32
00210 ANSFER IN THE VICINITY OF THE VAPOR-GAS FRONT IN THE GAS LOCA 71091 25
00170 CK STRUCTURES# VAPORIZATION FROM CAPILLARY W 71124 27
00220 TURBINES# LIQUID AND VAPOR CLOTHING SYSTEMS FOR GAS 71052 4
00400 VARIABLE CONDUCTANCE WALL# 71102 6
00540 S- CONT/ THEORY AND DESIGN OF VARIABLE CONDUCTANCE HEAT PIPE 71114 24
00530 S- HYD/ THEORY AND DESIGN OF VARIABLE CONDUCTANCE HEAT PIPE 71068 29
00890 ES# VARIABLE VAPOR VOLUME HEAT PIPE 71116 24
00070 ELECTRICAL FEEDBACK-CONTROLLED VARIABLE-CONDUCTANCE HEAT PIPE 71089 23
00660 ICNIC / RESULTS OF STUDIES ON VARIOUS FAST AND THERMAL THERM 71077 10
00210 HEAT AND MASS TRANSFER IN THE VICINITY OF THE VAPOR-GAS FROM 71091 25
00890 VARIABLE VAPOR VOLUME HEAT PIPES# 71116 24
00980 TELESCOPE EXPERIMENT PROGRAM VOLUME 1/ PART 1# LARGE 71075 5
00760 E TEMPERATURE DIFFERENCES AND WALL FRICTION IN HIGH-TEMPERAT 71067 28
00400 VARIABLE CONDUCTANCE WALL# 71102 6
00880 THERMONUCLEAR REACTOR VACUUM WALLE# /OF ENERGY REMOVAL FROM 71084 18

69
HEAT PIPE TECHNOLOGY 1971 ANNUAL

00670 LARRY EVAPORATION COOLING WITH WATER AS THE WORKING FLUID*# / 71125 28
00450 TRANSIENT THERMAL IMPEDANCE OF A WATER HEAT PIPE# TRA 71146 44
00390 IZATION OF A HEAT PIPE WITH A WICK AND ANNULUS LIQUID FLOW# / 71126 29
00150 SOME EXPERIMENTS ON SCREEN WICK DRY-CUT LIMITS# 71143 42
00170 VAPORIZATION FROM CAPILLARY WICK STRUCTURES# 71124 27
00810 MENISCUS RADIUS OF HEAT PIPE WICKING MATERIALS# MINIMUM 71128 31
00720 XIMEN EVAPORATION FROM SCREEN WICKS# STEADY AND MA 71123 27

*WITH ' NOT INDEXED

00670 ICON COOLING WITH WATER AS THE WORKING FLUID*# /LARY EVAPORAT 71125 28
00860 CT ANGLE WITH AN ALKALI METAL WORKING FLUID# /G A ZERO CONTA 71135 36
00860 ALI METAL/ HEAT PIPE HAVING A ZERO CONTACT ANGLE WITH AN ALK 71135 36
00990 DEVELOPMENT QUARTERLY REPORT, 1 APR-30 JUN, 1970# /ATION AND 71071 2
00980 OFE EXPERIMENT PROGRAM VOLUME 1, PART 1# LARGE TELESC 71075 5
00980 RIMENT PROGRAM VOLUME 1, PART 1# LARGE TELESCOPE EXPE 71075 5
00840 ERMO/ CONCEPTUAL DESIGN OF A 150 KWE OUT-OF-CORE NUCLEAR TH 71053 8
00990 UARTELY REPORT, 1 APR-30 JUN, 1970# /ATION AND DEVELOPMENT Q 71053 8
00970 T FOR PERIOD ENDING MARCH 31, 1971.# /ARTERLY PROGRESS REP 71136 39
00280 RT FOR PERIOD ENDING JUNE 30, 1971.# /ARTERLY PROGRESS REP 71141 40
00440 ER# DEVELOPMENT OF A 250 AMPERE TRANSCALIENT RECTIFI 71086 20
00280 REPORT FOR PERIOD ENDING JUNE 30, 1971.# /ARTERLY PROGRESS 71141 40
00970 EPORT FOR PERIOD ENDING MARCH 31, 1971.# /ARTERLY PROGRESS 71136 38
00380 C POWER SUPPLY FOR UNMANNE/ A 5 KW(E) RADISOOTOPE THERMI 71054 9
00460 TEST OF 50-KW HEAT-PEPE RADIATOR# 71142 42
00290 EAT EXCHANGER FOR BRAYTON-CY/ HEAT-PIPE COOLED REACTOR AND H 71112 19
<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Page No</th>
<th>Line No</th>
</tr>
</thead>
<tbody>
<tr>
<td>00240</td>
<td>ABBOT L S</td>
<td>71109</td>
<td>15</td>
</tr>
<tr>
<td>00720</td>
<td>ABBAT A</td>
<td>71123</td>
<td>27</td>
</tr>
<tr>
<td>00290</td>
<td>ANDERSON R C</td>
<td>71112</td>
<td>19</td>
</tr>
<tr>
<td>00010</td>
<td>ARMALY B F</td>
<td>71144</td>
<td>42</td>
</tr>
<tr>
<td>00020</td>
<td>BACIGALUPI R J</td>
<td>71134</td>
<td>36</td>
</tr>
<tr>
<td>00610</td>
<td>BADDELEY V</td>
<td>71113</td>
<td>23</td>
</tr>
<tr>
<td>00300</td>
<td>BANKSTON C A</td>
<td>71127</td>
<td>30</td>
</tr>
<tr>
<td>00900</td>
<td>BARSCH W D</td>
<td>71049</td>
<td>1</td>
</tr>
<tr>
<td>00040</td>
<td>BASIULIS A</td>
<td>71076</td>
<td>5</td>
</tr>
<tr>
<td>00050</td>
<td>BASIULIS A</td>
<td>71100</td>
<td>6</td>
</tr>
<tr>
<td>00300</td>
<td>BATZIES P</td>
<td>71057</td>
<td>35</td>
</tr>
<tr>
<td>00060</td>
<td>BEVANS J T</td>
<td>71056</td>
<td>12</td>
</tr>
<tr>
<td>00080</td>
<td>BIENERT W</td>
<td>71082</td>
<td>14</td>
</tr>
<tr>
<td>00070</td>
<td>BIENERT W D</td>
<td>71099</td>
<td>23</td>
</tr>
<tr>
<td>00600</td>
<td>BREITWEISER R</td>
<td>71111</td>
<td>17</td>
</tr>
<tr>
<td>00840</td>
<td>BREITWIESER R</td>
<td>71053</td>
<td>8</td>
</tr>
<tr>
<td>00090</td>
<td>BRENNAN P</td>
<td>71145</td>
<td>43</td>
</tr>
<tr>
<td>00070</td>
<td>BRENNAN F J</td>
<td>71089</td>
<td>23</td>
</tr>
<tr>
<td>00350</td>
<td>BRESTO D</td>
<td>71137</td>
<td>39</td>
</tr>
<tr>
<td>00230</td>
<td>BURSE J R</td>
<td>71132</td>
<td>34</td>
</tr>
<tr>
<td>00110</td>
<td>BUSSE C A</td>
<td>71078</td>
<td>13</td>
</tr>
<tr>
<td>00100</td>
<td>BUSSE C A</td>
<td>71066</td>
<td>35</td>
</tr>
<tr>
<td>00120</td>
<td>BUSSE C A</td>
<td>71092</td>
<td>32</td>
</tr>
<tr>
<td>00050</td>
<td>BUZZARD R J</td>
<td>71100</td>
<td>6</td>
</tr>
<tr>
<td>00270</td>
<td>BUZZI U</td>
<td>71059</td>
<td>17</td>
</tr>
<tr>
<td>00260</td>
<td>BUZZI U</td>
<td>71058</td>
<td>17</td>
</tr>
<tr>
<td>00130</td>
<td>CALLENS R A</td>
<td>71046</td>
<td>21</td>
</tr>
<tr>
<td>00140</td>
<td>CARLisle N</td>
<td>71051</td>
<td>4</td>
</tr>
<tr>
<td>00240</td>
<td>CHILDS R L</td>
<td>71109</td>
<td>15</td>
</tr>
<tr>
<td>00500</td>
<td>CHOU S F</td>
<td>71117</td>
<td>26</td>
</tr>
<tr>
<td>00150</td>
<td>CHU N K R</td>
<td>71143</td>
<td>42</td>
</tr>
<tr>
<td>00330</td>
<td>CEC C S</td>
<td>71096</td>
<td>33</td>
</tr>
<tr>
<td>00160</td>
<td>CORMAN J C</td>
<td>71105</td>
<td>8</td>
</tr>
<tr>
<td>00170</td>
<td>CORMAN J C</td>
<td>71124</td>
<td>27</td>
</tr>
<tr>
<td>00090</td>
<td>CYGNAROWICZ</td>
<td>71145</td>
<td>43</td>
</tr>
<tr>
<td>00180</td>
<td>DAGBJARTSSON S</td>
<td>71080</td>
<td>14</td>
</tr>
<tr>
<td>00660</td>
<td>DAGBJARTSSON S</td>
<td>71077</td>
<td>10</td>
</tr>
<tr>
<td>00770</td>
<td>DALTON T</td>
<td>71104</td>
<td>7</td>
</tr>
<tr>
<td>00010</td>
<td>DUDHEKER J</td>
<td>71144</td>
<td>42</td>
</tr>
<tr>
<td>00330</td>
<td>DUNCAN J D</td>
<td>71056</td>
<td>33</td>
</tr>
<tr>
<td>00940</td>
<td>DYNATHERM CORPORATION</td>
<td>71133</td>
<td>34</td>
</tr>
<tr>
<td>00370</td>
<td>EASTMAN G Y</td>
<td>71064</td>
<td>21</td>
</tr>
<tr>
<td>00190</td>
<td>EBY R J</td>
<td>71090</td>
<td>23</td>
</tr>
<tr>
<td>00200</td>
<td>EDWARDS C K</td>
<td>71095</td>
<td>32</td>
</tr>
<tr>
<td>00210</td>
<td>EDWARDS D K</td>
<td>71091</td>
<td>25</td>
</tr>
<tr>
<td>00220</td>
<td>EDWARDS J P</td>
<td>71052</td>
<td>4</td>
</tr>
<tr>
<td>00230</td>
<td>EGGERS P E</td>
<td>71132</td>
<td>34</td>
</tr>
<tr>
<td>00660</td>
<td>EMENDORFER D</td>
<td>71077</td>
<td>10</td>
</tr>
<tr>
<td>00240</td>
<td>ENGLE W W</td>
<td>71109</td>
<td>15</td>
</tr>
<tr>
<td>00250</td>
<td>FELDMAN K T JR</td>
<td>71047</td>
<td>1</td>
</tr>
<tr>
<td>00780</td>
<td>FERRARA A A</td>
<td>71057</td>
<td>12</td>
</tr>
<tr>
<td>00790</td>
<td>FERRARA A A</td>
<td>71083</td>
<td>15</td>
</tr>
<tr>
<td>00260</td>
<td>FIEBELMANN P</td>
<td>71058</td>
<td>17</td>
</tr>
<tr>
<td>00270</td>
<td>FIEBELMANN P</td>
<td>71059</td>
<td>17</td>
</tr>
<tr>
<td>Name</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIEBELMANN P</td>
<td>71060</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILLER M</td>
<td>71076</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLEISCHMAN G L</td>
<td>71095</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAAS A P</td>
<td>71114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRANK T G</td>
<td>71112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAMMEL G</td>
<td>71097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEIGER F</td>
<td>71093</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERRELS E E</td>
<td>71110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEUE J</td>
<td>71069</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIBSON J C</td>
<td>71096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIEBEN A J</td>
<td>71054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAU MAN D W</td>
<td>71096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROLL M</td>
<td>71137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROLL M</td>
<td>71063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROLL M</td>
<td>71080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROLL M</td>
<td>71077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROVER G M</td>
<td>71112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUENARD P</td>
<td>71085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARBAUGH W E</td>
<td>71064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAUG W</td>
<td>71077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEATH C A</td>
<td>71054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HILDING W E</td>
<td>71126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEMEY W G</td>
<td>71054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HWANG-BD H</td>
<td>71126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISOTOPE KILOWATT PROGRAM</td>
<td>71136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JANSEN W A</td>
<td>71027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JEFFRIES N P</td>
<td>71102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JONES T B</td>
<td>71138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KARAN R D</td>
<td>71090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KATZOFF S</td>
<td>71073</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KELLY W H</td>
<td>71090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEMME J E</td>
<td>71088</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KESSLER S W</td>
<td>71086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KESSLER S W</td>
<td>71146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIKIN G M</td>
<td>71142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KILLEM P E</td>
<td>71110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNOWLES G W</td>
<td>71072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KONEV S V</td>
<td>71099</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KREEB H</td>
<td>71137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KREITMAN M M</td>
<td>71103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KROLCZEK E</td>
<td>71082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANG S D</td>
<td>71120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANTZ F</td>
<td>71111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAVERNE M F</td>
<td>71065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAVOIE F J</td>
<td>71048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEVY E K</td>
<td>71119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MADEJSKI J</td>
<td>71050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAHEFKEY E T</td>
<td>71103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARCUS B C</td>
<td>71068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARCUS B D</td>
<td>71091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARCUS B D</td>
<td>71114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARCUS B C</td>
<td>71095</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARKSTEIN H W</td>
<td>71101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCLAUGHLIN M A</td>
<td>71105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Last Name</td>
<td>First Name</td>
<td>Initials</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>00520</td>
<td>MIKIELEWICZ</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>00560</td>
<td>MILLER</td>
<td>P L</td>
<td></td>
</tr>
<tr>
<td>00770</td>
<td>MOSKOWITZ</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>00240</td>
<td>MYNATT</td>
<td>F F</td>
<td></td>
</tr>
<tr>
<td>00570</td>
<td>NAMKCONG</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>00580</td>
<td>NEU</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>00260</td>
<td>NEU</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>00270</td>
<td>NEU</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>00590</td>
<td>NEWTON</td>
<td>W H</td>
<td></td>
</tr>
<tr>
<td>00660</td>
<td>Niederauer</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>00610</td>
<td>Ochern</td>
<td>E A</td>
<td></td>
</tr>
<tr>
<td>00620</td>
<td>Parker</td>
<td>M B</td>
<td></td>
</tr>
<tr>
<td>00630</td>
<td>Pauluis</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>00640</td>
<td>Pawlowski</td>
<td>P H</td>
<td></td>
</tr>
<tr>
<td>00460</td>
<td>Peeglren</td>
<td>M L</td>
<td></td>
</tr>
<tr>
<td>00650</td>
<td>Potapov</td>
<td>I F</td>
<td></td>
</tr>
<tr>
<td>00930</td>
<td>Pruschek</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>00660</td>
<td>Pruschek</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>00670</td>
<td>Quast</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>00680</td>
<td>Quataert</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>00120</td>
<td>Quataert</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>00610</td>
<td>Rakowske</td>
<td>J E</td>
<td></td>
</tr>
<tr>
<td>00330</td>
<td>Richard</td>
<td>C F</td>
<td></td>
</tr>
<tr>
<td>00560</td>
<td>Roberts</td>
<td>R E</td>
<td></td>
</tr>
<tr>
<td>00800</td>
<td>Rchani</td>
<td>A R</td>
<td></td>
</tr>
<tr>
<td>00660</td>
<td>Rchrborn</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>00700</td>
<td>Rouklove</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>00690</td>
<td>Rouklove</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>00280</td>
<td>Samuels</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>00710</td>
<td>Schlitt</td>
<td>K R</td>
<td></td>
</tr>
<tr>
<td>00350</td>
<td>Schubert</td>
<td>K P</td>
<td></td>
</tr>
<tr>
<td>00720</td>
<td>Seban</td>
<td>R A</td>
<td></td>
</tr>
<tr>
<td>00730</td>
<td>Semeria</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>00230</td>
<td>Serkiz</td>
<td>A W</td>
<td></td>
</tr>
<tr>
<td>00090</td>
<td>Sherman</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>00770</td>
<td>Sievers</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>00750</td>
<td>Silverstein</td>
<td>C C</td>
<td></td>
</tr>
<tr>
<td>00740</td>
<td>Silverstein</td>
<td>C C</td>
<td></td>
</tr>
<tr>
<td>00030</td>
<td>Smith</td>
<td>H J</td>
<td></td>
</tr>
<tr>
<td>00760</td>
<td>Sockol</td>
<td>F M</td>
<td></td>
</tr>
<tr>
<td>00910</td>
<td>Speidel</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>00770</td>
<td>Stappenbeck</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>00810</td>
<td>Sun</td>
<td>K H</td>
<td></td>
</tr>
<tr>
<td>00290</td>
<td>Sutherland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00290</td>
<td>Swickard</td>
<td>E D</td>
<td></td>
</tr>
<tr>
<td>00780</td>
<td>Tawil</td>
<td>M N</td>
<td></td>
</tr>
<tr>
<td>00790</td>
<td>Tawil</td>
<td>M N</td>
<td></td>
</tr>
<tr>
<td>00810</td>
<td>Tiem</td>
<td>C L</td>
<td></td>
</tr>
<tr>
<td>00800</td>
<td>Tiem</td>
<td>C L</td>
<td></td>
</tr>
<tr>
<td>00820</td>
<td>Treifferent</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>00090</td>
<td>Trimmer</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>00700</td>
<td>Truscillo</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>00650</td>
<td>Tsagi</td>
<td>Z U</td>
<td></td>
</tr>
<tr>
<td>00660</td>
<td>Unger</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VASIL’EV L L</td>
<td>71099</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WALMET G E</td>
<td>71124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARD J J</td>
<td>71053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WATTS H</td>
<td>71104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WATTS J L</td>
<td>71087</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEBSTER H F</td>
<td>71135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WERNER R</td>
<td>71116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WERNER R W</td>
<td>71062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WERNER R W</td>
<td>71084</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WILLIAMS R M</td>
<td>71053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WINTER E R F</td>
<td>71049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOLF E</td>
<td>71108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZERKLE R C</td>
<td>71077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZIMMERMAN P</td>
<td>71137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZIMMERMAN P</td>
<td>71131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZIMMERMAN P</td>
<td>71117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZIMMERMANN P</td>
<td>71063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZIMMERMANN P</td>
<td>71080</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

74
00009 ZLBER N ET AL
VAPORIZING HEAT TRANSFER DEVICE
U.S. PATENT 3392781
JULY 16, 1968

00010 KUN L C ET AL
SURFACE FOR BOILING LIQUIDS
U.S. PATENT 3454081
JULY 8, 1969

00011 FINKIN E
INTERNALLY COOLED MOTION CONTROL SYSTEM - HEAT PIPE BRAKES
U.S. PATENT 3481439
DEC 2, 1969

00012 GRITTON E C PINKEL B
GASEOUS-FUELED NUCLEAR REACTORS FOR ELECTRICAL POWER PRODUCTION
U.S. PATENT 3558935
JAN 26, 1971

00013 NUE H FIEBELMANN P
NUCLEAR REACTOR WITH HEAT PIPES
BRIT PATENT 1220553
JAN 27, 1971

00014 FIEBELMANN P NEU H BUZZI U
NUCLEAR POWER PLANT FOR A SPACE STATION
BRIT PATENT 1220554
JAN 27, 1971

00015 FIEBELMANN P NEU H BUZZI U
NUCLEAR POWER PLANT FOR A SPACE STATION
BRIT PATENT 1220644
JAN 27, 1971

00016 BAER S C
HEAT PIPE CONDENSATE RETURN
U.S. PATENT 3561525
FEB 9, 1971

00017 BASIULIS A
HEAT PIPE HAVING IMPROVED DIELECTRIC STRENGTH

75
HEAT PIPE RELATED PATENTS 1971 ANNUAL

U.S. PATENT 3563309
FEB 16, 1971

00018 HARBAUGH W E
HEAT PIPE
U.S. PATENT 3568762
MARCH 9, 1971

00019 EDWARDS R N
UNDERWATER HEAT EXCHANGE SYSTEM
U.S. PATENT 3572426
MARCH 23, 1971

00020 TREAT D S
HEAT PIPE
U.S. PATENT 3576210
APRIL 27, 1971

00021 BASIULIS A
HEAT PIPE HAVING A SUBSTANTIALLY UNIDIRECTIONAL THERMAL PATH
U.S. PATENT 3587725
JUNE 28, 1971

00022 MILTON R M
HEAT EXCHANGE SYSTEM WITH POROUS BOILING LAYER
U.S. PATENT 3597730
JUNE 28, 1971

00023 BECKER R A
THERMIONIC CONVERTER CELLS FOR NUCLEAR REACTOR
U.S. PATENT 3590286
JUNE 29, 1971

00024 LEFFERT C B
DISC BRAKE COOLING
U.S. PATENT 3592297
JULY 13, 1971

00025 LEFFERT C B HAFSTAN L R
BRAKE HEAT PIPE COOLING
U.S. PATENT 3592293
JULY 13, 1971

00026 MCHUGH K L
ORGANIC FLUIDS FOR HEAT PIPES
U.S. PATENT 3595304
JULY 27, 1971

00027 WEBSTER H F
CONDUIT HAVING A ZERO CONTACT ANGLE WITH AN ALKALI WORKING
FLUID AND METHOD OF FORMING
U.S. PATENT 3598177
AUGUST 10, 1971

00028 SLAWE F W
HEAT PIPE
U.S. PATENT 3598178
AUGUST 10, 1971

00029 MCCRE R D
HEAT TRANSFER SURFACE STRUCTURE
U.S. PATENT 3598180
AUGUST 10, 1971

00030 BUSSE C A
FUEL ELEMENTS FOR USE IN THERMIONIC NUCLEAR REACTORS
U.S. PATENT 3601638
AUGUST 24, 1971

00031 KRAFT G POTZSCHKE M
BUSSE C A GEIGER F
HEAT TRANSFER TUBE ASSEMBLY
U.S. PATENT 3602257
AUGUST 31, 1971

00032 SASSIN W
PIPE SYSTEM FOR LOW-TEMPERATURE FLUIDS
U.S. PATENT 3602630
AUGUST 31, 1971

00033 LEVEDAHL W J FRANK S
VALVED HEAT PIPE
U.S. PATENT 3602429
AUGUST 31, 1971

00034 FELDMAN K T KUSIANOVICH J D
HEAT PIPES
U.S. PATENT 3604503
SEPTEMBER 14, 1971
00035 KESSLER S W HESS J L
FLEXIBLE HEAT PIPE
U.S. PATENT 3604504
SEPTEMBER 14, 1971

00036 FREDDENS R A HARRBAUGH W E
ELECTRICAL CONNECTOR ASSEMBLY HAVING COOLING CAPABILITY
U.S. PATENT 3605074
SEPTEMBER 14, 1971

00037 COLEMAN J B
HEAT PIPE WITH VARIABLE EVAPORATOR
U.S. PATENT 3605878
SEPTEMBER 20, 1971

00038 LAZARIDIS L J
GLASS FURNACE WITH HEAT PIPE MELTING
U.S. PATENT 3607209
SEPTEMBER 21, 1971

00039 LEFFERT C B
DRUM BRAKE HEAT PIPE COOLING
U.S. PATENT 3610377
OCTOBER 15, 1971

00040 HALL W B BLOCK F G
CONSTANT TEMPERATURE OUTPUT HEAT PIPE
U.S. PATENT 3613773
OCTOBER 19, 1971

00041 FELDMAN K I
FLAT PLATE HEAT WITH STRUCTURAL WICKS
U.S. PATENT 3613778
OCTOBER 19, 1971

00042 COLEMAN J B WELSCH J P
DUAL TUBE HEAT PIPE AND MEANS FOR CONTROL THEREOF
U.S. PATENT 3614981
OCT. 26, 1971

00043 ELSEE C
HEAT TRANSFER DEVICE
U.S. PATENT 3616660
NCV. 9, 1971
HEAT PIPE RELATED PATENTS 1971 ANNUAL

00044 FRANK S
VEHICLE-HEATING SYSTEM EMPLOYING A CRITICAL POINT HEAT PIPE
U.S. PATENT 3616954
NOV. 9, 1971

00045 SCERVILLE R H BAKKER L P
CONTINUOUS HEAT PIPE AND ARTERY CONNECTOR THERE FOR
U.S. PATENT 3620298
NOV. 16, 1971

00046 LEFFERT C B
CONTROL SYSTEM FOR HEAT PIPES
U.S. PATENT 3621966
NOV. 23, 1971

00047 REIMERS E
CAPACITOR ENERGY STORAGE IMPROVEMENT BY MEANS OF HEAT PIPE
U.S. PATENT 3622846
NOV. 23, 1971
HEAT PIPE RELATED PATENTS 1971 ANNUAL

00027 HAVING A ZERO CONTACT ANGLE WITH AN ALKALI WORKING FLUID AND METHOD OF FORMING

00027 ND M/ CONDUIT HAVING A ZERO CONTACT ANGLE WITH AN ALKALI WORKING FLUID AND ARTERY CONNECTOR THERE FOR

00036 ELECTRICAL CONNECTOR ASSEMBLY HAVING COOLING CAPABILITY

00031 HEAT TRANSFER TUBE ASSEMBLY

00022 HEAT EXCHANGE SYSTEM WITH POROUS BOILING LAYER

00010 SURFACE FOR BOILING LIQUIDS

00024 DISC BRAKE COOLING

00025 BRAKE HEAT PIPE COOLING

00039 DRUM BRAKE HEAT PIPE COOLING

00011 D MOTION CONTROL SYSTEM - HEAT PIPE BRAKES INTERNALLY COOLED

00036 L CCNNECTOR ASSEMBLY HAVING COOLING CAPABILITY

00047 EY MEANS OF HEAT PIPE CAPACITOR ENERGY STORAGE IMPROVEMENT

00023 THERMIONIC CONVERTER CELLS FOR NUCLEAR REACTOR

00016 HEAT PIPE CONDENSATE RETURN

00027 WITH AN ALKALI WORKING FLUID AND M/ CONDUIT HAVING A ZERO CONTACT ANGLE

00036 PABILITY ELECTRICAL CONNECTOR ASSEMBLY HAVING COOLING CAPABILITY

00045 CONTINUOUS HEAT PIPE AND ARTERY CONNECTOR THERE FOR

00040 CONSTANT TEMPERATURE OUTPUT HEAT PIPE

00027 FLUID AND M/ CONDUIT HAVING A ZERO CONTACT ANGLE WITH AN ALKALI WORKING FLUID AND M/ CONDUIT HAVING A ZERO CONTACT ANGLE

000011 INTERNALLY COOLED MOTION CONTROL SYSTEM - HEAT PIPE BRAKES

00046 CONTROL SYSTEM FOR HEAT PIPES

00042 DUAL TUBE HEAT PIPE AND MEANS FOR CONTROL THEREOF

00023 THERMIONIC CONVERTER CELLS FOR NUCLEAR REACTOR

00011 PIPE BRAKES INTERMEDIATE COOLED MOTION CONTROL SYSTEM - HEAT PIPE BRAKES

00036 ELECTRICAL CONNECTOR ASSEMBLY HAVING COOLING CAPABILITY

00039 DRUM BRAKE HEAT PIPE COOLING

00024 DISC BRAKE COOLING

00025 BRAKE HEAT PIPE COOLING

00044 VEHICLE-HEATING SYSTEM EMPLOYING A CRITICAL POINT HEAT PIPE

00043 HEAT TRANSFER DEVICE

00009 VAPORIZATION HEAT TRANSFER DEVICE

00017 HEAT PIPE HAVING IMPROVED DIELECTRIC STRENGTH

00024 DISC BRAKE COOLING

00039 DRUM BRAKE HEAT PIPE COOLING

00042 NTROL THEREOF DUAL TUBE HEAT PIPE AND MEANS FOR Controlling HEAT TRANSFER DEVICE

00036 COOLING CAPABILITY ELECTRICAL CONNECTOR ASSEMBLY HAVING ELECTRICAL POWER PRODUCTION

00012 CASEOUS-FUELED NUCLEAR REACTORS FOR ELECTRICAL POWER PRODUCTION

00030 AR REACTORS FUEL ELEMENTS FOR USE IN THERMIONIC NUCLEAR REACTORS

00046 # VEHICLE-HEATING SYSTEM EMPLOYING A CRITICAL POINT HEAT PIPE

00047 OF HEAT PIPE CAPACITOR ENERGY STORAGE IMPROVEMENT BY MEANS

00037 HEAT PIPE WITH VARIABLE EVAPORATOR

00022 LAYER HEAT PIPE WITH VARIABLE EVAPORATOR

00019 UNDERWATER HEAT EXCHANGE SYSTEM

00041 SYSTEM FLAT PLATE HEAT WITH STRUCTURAL WICK

00035 FLEXIBLE HEAT PIPE

00027 CONTACT ANGLE WITH AN ALKALI WORKING FLUID AND METHOD OF FORMING ORGANIC FLUIDS FOR HEAT PIPES

00026 PIPE SYSTEM FOR LOW-TEMPERATURE FLUIDS

80
HEAT PIPE RELATED PATENTS 1971 ANNUAL

'FOR ' NOT INDEXED

00027 ALKALI WORKING FLUID AND METHOD OF FORMING /ZERO CONTACT ANGLE WITH AN ALKALI WORKING FLUID AND METHOD OF FORMING /ZERO CONTACT ANGLE WITH AN ALKALI WORKING FLUID AND METHOD OF FORMING /ZERO CONTACT ANGLE WITH AN ALKALI WORKING FLUID AND METHOD OF FORMING /ZERO CONTACT ANGLE WITH AN

00030 NUCLEAR REACTORS# GLASS FURNACE WITH HEAT PIPE MELTING# GLASS FURNACE WITH HEAT PIPE MELTING# GLASS FURNACE WITH HEAT PIPE MELTING# GLASS FURNACE WITH HEAT PIPE MELTING#

00012 AL POWER PRODUCTION# GASEOUS-FUELED NUCLEAR REACTORS FOR ELECTRIC POWER PRODUCTION#

00038 GLASS FURNACE WITH HEAT PIPE MELTING# GLASS FURNACE WITH HEAT PIPE MELTING#

00013 NUCLEAR REACTORS WITH HEAT PIPES# NUCLEAR REACTORS WITH HEAT PIPES#

00046 HEAT PIPE BRAKES# HEAT PIPE BRAKES# HEAT PIPE BRAKES# HEAT PIPE BRAKES# HEAT PIPE BRAKES#

00034 HEAT TRANSFER DEVICE# HEAT TRANSFER DEVICE# HEAT TRANSFER DEVICE# HEAT TRANSFER DEVICE# HEAT TRANSFER DEVICE#

00047 CAPACITOR ENERGY STORAGE IMPROVEMENT BY MEANS OF HEAT PIPE CAPACITOR ENERGY STORAGE IMPROVEMENT BY MEANS OF HEAT PIPE CAPACITOR ENERGY STORAGE IMPROVEMENT BY MEANS OF HEAT PIPE CAPACITOR ENERGY STORAGE IMPROVEMENT BY MEANS OF HEAT PIPE CAPACITOR ENERGY STORAGE IMPROVEMENT BY MEANS OF HEAT PIPE

00009 VAPORIZING HEAT TRANSFER DEVICE# VAPORIZING HEAT TRANSFER DEVICE# VAPORIZING HEAT TRANSFER DEVICE# VAPORIZING HEAT TRANSFER DEVICE# VAPORIZING HEAT TRANSFER DEVICE#

00017 HEAT PIPE HAVING IMPROVED DIELECTRIC STRENGTH# HEAT PIPE HAVING IMPROVED DIELECTRIC STRENGTH#

00010 SURFACE FOR BOILING LIQUIDS# SURFACE FOR BOILING LIQUIDS# SURFACE FOR BOILING LIQUIDS# SURFACE FOR BOILING LIQUIDS# SURFACE FOR BOILING LIQUIDS#

00022 EXCHANGE SYSTEM WITH POROUS BOILING LAYER# EXCHANGE SYSTEM WITH POROUS BOILING LAYER#

00032 PIPE SYSTEM FOR LOW-TEMPERATURE FLUIDS# PIPE SYSTEM FOR LOW-TEMPERATURE FLUIDS#

00047 CAPACITOR ENERGY STORAGE IMPROVEMENT BY MEANS OF HEAT PIPE CAPACITOR ENERGY STORAGE IMPROVEMENT BY MEANS OF HEAT PIPE CAPACITOR ENERGY STORAGE IMPROVEMENT BY MEANS OF HEAT PIPE CAPACITOR ENERGY STORAGE IMPROVEMENT BY MEANS OF HEAT PIPE CAPACITOR ENERGY STORAGE IMPROVEMENT BY MEANS OF HEAT PIPE

00011 TEMPERATURE CONTROL SYSTEM - HEAT PIPE BRAKES# TEMPERATURE CONTROL SYSTEM - HEAT PIPE BRAKES#

00014 NUCLEAR POWER PLANT FOR A SPACE STATION NUCLEAR POWER PLANT FOR A SPACE STATION

81
HEAT PIPE RELATED PATENTS 1971 ANNUAL

00015 TCN# NUCLEAR POWER PLANT FOR A SPACE STATION
00013 NUCLEAR REACTOR WITH HEAT PIPES#
00021 THERMIONIC CONVERTER CELLS FOR NUCLEAR REACTOR#
00012 R PRODUCTION# GASEOUS-FUELED NUCLEAR REACTORS FOR ELECTRICAL POWER
00030 FULL ELEMENTS FOR USE IN THERMIONIC NUCLEAR REACTORS#
00026 ORGANIC FLUIDS FOR HEAT PIPES#
00047 PIPE CAPACITOR ENERGY STORAGE IMPROVEMENT BY MEANS OF HEAT
00041 HEAT PIPE HAVING A CRITICAL POINT HEAT PIPE#

000016 HEAT PIPE CONDENSATE RETURN#
00028 HEAT PIPE#
00035 FLEXIBLE HEAT PIPE#N
00033 VALVED HEAT PIPE#
00040 CONSTANT TEMPERATURE OUTPUT HEAT PIPE#
00018 HEAT PIPE#
00020 HEAT PIPE#
00024 HEAT PIPE#
00029 HEAT TRANSFER SURFACE STRUCTURE#
00044 HEATING SYSTEM EMPLOYING A CRITICAL POINT HEAT PIPE# VEHICLE-HEATING SYS
00046 CONTROL SYSTEM FOR HEAT PIPES#
00034 HEAT PIPES#
00026 ORGANIC FLUIDS FOR HEAT PIPES#
00013 NUCLEAR HEACTOR WITH HEAT PIPES#
00015 NUCLEAR POWER PLANT FOR A SPACE STATION#
00014 NUCLEAR POWER PLANT FOR A SPACE STATION#
00041 FLAT PLATE HEAT WITH STRUCTURAL WICKS#
00044 HEATING SYSTEM EMPLOYING A CRITICAL POINT HEAT PIPE# VEHICLE-
00022 HEAT EXCHANGE SYSTEM WITH POROUS BOILING LAYER#
00014 NUCLEAR POWER PLANT FOR A SPACE STATION#
00015 NUCLEAR POWER PLANT FOR A SPACE STATION#
00012 LED NUCLEAR REACTORS FOR ELECTRICAL POWER PRODUCTION# GASEOUS-FUE
00012 CLEAR REACTORS FOR ELECTRICAL POWER PRODUCTION# GASEOUS-FUELED NU
00013 NUCLEAR REACTOR WITH HEAT PIPES#
00023 THERMIONIC CONVERTER CELLS FOR NUCLEAR REACTOR#
00012 THERMIONIC CONVERTER CELLS FOR NUCLEAR REACTOR#
00030 FULL ELEMENTS FOR USE IN THERMIONIC NUCLEAR REACTORS#
00016 HEAT PIPE CONDENSATE RETURN#
00015 NUCLEAR POWER PLANT FOR A SPACE STATION#
00014 NUCLEAR POWER PLANT FOR A SPACE STATION#
00014 NUCLEAR POWER PLANT FOR A SPACE STATION#
00015 NUCLEAR POWER PLANT FOR A SPACE STATION#
00047 PIPE CAPACITOR ENERGY STORAGE IMPROVEMENT BY MEANS OF HEAT
00017 HEAT PIPE HAVING IMPROVED DIELECTRIC STRENGTH#
00041 FLAT PLATE HEAT WITH STRUCTURAL WICKS#
00029 HEAT TRANSFER SURFACE STRUCTURE#

82
HEAT PIPE RELATED PATENTS 1971 ANNUAL

00021 FATH# HEAT PIPE HAVING A SUBSTANTIALLY UNIDIRECTIONAL THERMAL SURFACE FOR BOILING LIQUIDS#
00010 HEAT TRANSFER SURFACE STRUCTURE#
00011 INTERNALLY COOLED MOTION CONTROL SYSTEM - HEAT PIPE BRAKES#
00044 AT PIPE# VEHICLE-HEATING SYSTEM EMPLOYING A CRITICAL POINT HE
00046 CONTROL SYSTEM FOR HEAT PIPES#
00032 PIPE SYSTEM FOR LOW-TEMPERATURE FLUIDS#
00022 HEAT EXCHANGE SYSTEM WITH POROUS BOILING LAYER#
00019 UNDERWATER HEAT EXCHANGE SYSTEM#
00032 PIPE SYSTEM FOR LOW-TEMPERATURE FLUIDS#
00040 CONSTANT TEMPERATURE OUTPUT HEAT PIPE#
00045 NCLS HEAT PIPE AND ARTERY CONNECTOR THEREOF# CONTI
00042 UEE HEAT PIPE AND MEANS FOR CONTROL THEREOF# DUAL T
00021 VING A SUBSTANTIALLY UNIDIRECTIONAL THERMAL PATH# HEAT PIPE HA
00023 AR REACTOR# THERMIONIC CONVERTER CELLS FOR NUCLE
00030 FUEL ELEMENTS FOR USE IN THERMIONIC NUCLEAR REACTORS#
00043 HEAT TRANSFER DEVICE#
00009 VAPORIZING HEAT TRANSFER DEVICE#
00029 HEAT TRANSFER SURFACE STRUCTURE#
00031 HEAT TRANSFER TUBE ASSEMBLY#
00031 HEAT TRANSFER TUBE ASSEMBLY#
00042 THEREOF# DUAL TUBE HEAT PIPE AND MEANS FOR CONTROL DUAL T
00019 UNDERWATER HEAT EXCHANGE SYSTEM#
00021 HEAT PIPE HAVING A SUBSTANTIALLY UNIDIRECTIONAL THERMAL PATH#
00030 FUEL ELEMENTS FOR USE IN THERMIONIC NUCLEAR REACTORS#
00033 VALVED HEAT PIPE#
00009 VAPORIZING HEAT TRANSFER DEVICE#
00037 HEAT PIPE WITH VARIABLE EVAPORATOR#
00044 CRITICAL POINT HEAT PIPE# VEHICLE-HEATING SYSTEM EMPLOYING A C
00041 FLAT PLATE HEAT - WITH STRUCTURAL WICKS#
00027 A ZERO CONTACT ANGLE WITH AN ALKALI WORKING FLUID AND METHOD OF FORMING#
00027 WORKING FLUID AND M/ CONDUIT HAVING A ZERO CONTACT ANGLE WITH AN ALKALI WC
HEAT PIPE RELATED PATENTS 1971 ANNUAL

WFLSCH J P
ZUBER N ET AL
<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1220553#</td>
<td>BRIT Patent</td>
</tr>
<tr>
<td>1220554#</td>
<td>BRIT Patent</td>
</tr>
<tr>
<td>1220644#</td>
<td>BRIT Patent</td>
</tr>
<tr>
<td>3392781#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3454081#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3481439#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3558935#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3561525#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3562309#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3568762#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3572426#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3576210#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3587725#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3587730#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3590236#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3592297#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3592298#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3595304#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3598177#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3598179#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3598180#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3601638#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3602257#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3602429#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3602630#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3604503#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3604504#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3605074#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3605878#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3607209#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3610377#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3613773#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3613777#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3614981#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3618660#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3618854#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3620298#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3621906#</td>
<td>U.S. Patent</td>
</tr>
<tr>
<td>3622846#</td>
<td>U.S. Patent</td>
</tr>
</tbody>
</table>