Zeros of cross products of the derivatives of Bessel functions of fractional order of the form

\[J_\nu(x) Y_\nu(\lambda x) - J_\nu(\lambda x) Y_\nu(x) \]

are needed in problems related to mathematical physics and engineering acoustics. Higher zeros of such cross products, that is, higher values of \(x \) for which the cross product vanishes, may be calculated by McMahon's expansion, but lower zeros, which are of interest in engineering applications are not calculable by any known method.

Using Bessel functions of order \(\nu = n + \frac{1}{2} \), \(n = 0, 1, 2 \ldots \), which are characterized by closed form solutions, a set of zeros was obtained for a range of parameter \(\lambda \).

Interpolation between the values given in the table is permitted provided that a curve is traced between at least three values from the table. The zeros have been obtained on a digital computer and the results were rounded off to the fourth decimal point. The table can also be used to give by interpolation zeros \(\nu \) for any given \(x \) and \(\lambda \), that is, values of \(\nu \) for which the cross product vanishes.

Notes:
1. Zeros of the cross product of the derivatives of Bessel functions of fractional order have application in the area of acoustics.
2. Further information is available in the following report:
 NASA TM-X-2698 (N73-15705), Propagation of Waves of Acoustic Frequencies in Curved Ducts
 Copies may be obtained at cost from:
 Aerospace Research Applications Center
 Indiana University
 400 East Seventh Street
 Bloomington, Indiana 47401
 Telephone: 812-337-7833
 Reference: B74-10012
3. Specific technical questions may be directed to:
 Technology Utilization Officer
 Lewis Research Center
 21000 Brookpark Road
 Cleveland, Ohio 44135
 Reference: B74-10012

Source: W. A. Rostafinski
Lewis Research Center
(LEW-12221)