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SYMBOLS

D dlam. of parabolic spindle

F F-function (Whitham)

K

L, L model length (see Fig. 1 and Fig. k)

M1 Mach number ahead of shock wave at probe apex

M^ free-stream Mach number

V velocity ahead of shock wave at probe apex

V free-stream velocity

d sting diameter

p static pressure

p total pressure ahead of shock wave at probe apex
1 1 1

p. - total pressure measured behind normal shock wave at
' probe apex (pitot pressure)

r radial distance from model centerline

u velocity component in main flow direction

v velocity component in radial direction

x ,y ,z Cartesian coordinates for model

x »y »z Cartesian coordinates of pressure probe (Fig. 5 and Fig. 6)

y characteristics coordinate

a angle of incidence of model axes relative to free-stream

K ratio of specific heats

0 potential

e angle of downwash

a angle of sidewash

6 meridian angle

symbols with this index are defined on p. 8



1. INTRODUCTION

To test some of the more important results of the second order

theory of Landahl et al [l], an experimental investigation has

been carried out in the FFA-TVM wind tunnel. One of the conclu-

sions reached in the theory is that the non-linear effects are to

lowest order confined to the very near field. This simplifies the

experimental verification considerably, since it is not necessa-

ry to measure the flow field at very large distances from the

model, obviating in particular the need to test with very small

models. For the introductory experiments, a body of simple shape,

a parabolic spindle, was selected. The investigation was conduc-

ted at Mach number 3- In a following set of experiments, a wing-

body model, proposed by Ferri, was used, at a Mach number of

2,7-

A careful mapping of the supersonic flow field in the vicinity of

the body was carried out. The streamline deviation was measured for

several streamlines starting on a cylindrical tube placed around

the model, having the axis parallel to the wind, and at small dis-

tances from the axis. In the experiments performed, the distance

is smaller than the length of the model. For the wing-body model,

the deviation of each streamline of this tube was measured locally

in several meridian planes. Two angles were measured: one gives

the deviation in the meridian plane, and the second gives the de-

viation on the cylinder normal to the meridian plane.

Whltham [2], in his paper on the flow pattern of a supersonic

projectile, developed a method for calculating the pressure field

of the body, and gave some simple formulae for the far field. The

second order theory by Landahl et al [1] shows however, that cer-

tain terms should be added in Whitham's formulae for the F-func-

tion and the characteristics coordinate y. These terms can be cal-

culated by means of the near field measurements [3]- Some calcula-

tions have been made to show the intensity and position of the

shock waves.
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2. MODEL AND APPARATUS

The parabolic spindle with the diameter D = 4O mm and the length

L = 282,84 mm (the theoretical length LQ = 339,4 mm) was construc-

ted of brass, and has pressure orifices over the whole length in

one section. The model, its coordinates and the coordinates for

the pressure orifices are shown in Fig. 1 and 2.

The three-dimensional model, as suggested by Ferri, is shown in

Fig. 3- The wing is swept back at 72°. The wing profile has 2 %

thickness and is a symmetrical circular arc profile. The fuse-

lage shape has a circular cross section; detailed dimensions of

the fuselage area as a function of the distance are given in

Table 1 .

The construction of the model has required some modification on

the wing leading edge and fuselage front tip, and on the rear

part of the fuselage . The modification introduced at the leading

edge fe required in order to avoid local, separation. The modifica-

tion at the rear part of the fuselage is required because of the

pressure of the support.

The support increases the equivalent area in the rear part of the

vehicle. In order to eliminate this effect, the equivalence bet-

ween lift and cross-sectional area has been utilized, and a cor-

rection on the planform of the wing has been introduced. The area

of the wing has been reduced in the region where the fuselage

cross section is different from the theoretical design. The design

of the model is shown in Fig. 4.

The hemispherical differential pressure yaw meter employed for

pressure measurements is shown in Fig. 7 and 8. The pressure probe

has a diameter of 3»5 mm. Four static-pressure orifices are located

circumferentially 90 apart on the hemispherical surface and four

on the cylindrical surface. A pitot-pressure orifice is located

at the probe apex. The static-pressure orifice diameters are 0,5 mm

and the pitot-pressure orifice diameter is 1,0 mm.
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The tunnel total pressure was sensed in the settling chamber, and

the reference pressure in the test section with two 7^ psia Fox-

boro 611 EM transducers. The probe and model pressure were measu-

red with high-sensitivity pressure devices. For the model pressure

and the four static pressures on the hemispherical surface pressure

scanners were used. The pressure scanner for the model.pressure

was located in the movable sting, and the transducers and scanners

for the probe were located outside the wind tunnel. A schematic de-

sign is shown in Fig. 9-

3. TEST CONDITIONS AND ACCURACY

The investigation was conducted in the Trisonic Tunnel FFA-TVM 5OO.
2

The tunnel has a square test section of 50 x 50 cm with perfora-

ted walls for the transonic speed range and a flexible wall nozzle,

which allows the Mach number to be varied continously between 1

and k. It is a blow-down tunnel, which may be operated with a stag-

nation pressure up to 12 atmospheres and a stagnation temperature

range 300°K - UOO°K.

Pressure measurements were performed on the parabolic model at 0
angle of incidence and at three positions along the tunnel axis. In

addition,the supersonic flow field along a line parallel to the
flow direction was measured as the model moved kOO mm along the tun-

nel axis. For the three-dimensional model measurements were made at
2,6 and 3,2 incidence at two positions along the tunnel axis. The

flow field measurements were conducted at two radial distances from

tine model axis. These distances are r/L = 0,375 and 0,228 for the

parabolic spindle, r/L e 0,558 and 0,271 for the wing-body model.

For the latter model the measurements were made in meridian planes
spaced at 5° intervals from the plane of symmetry in the range bet-

ween 0° and 90°. The meridian planes are defined by the angle 6 with
respect to the plane of symmetry. The pressures were recorded al-

most simultaneously, since the time between the individual measure-

ments wae 1-10" sec. Schlieren photographs were taken of the

flow field generated by the model and the pressure probe.



The absolute level of accuracy of the results is very difficult

to establish, because of the combined effects of the many possible

sources of error. A number of precautions were taken, however,

to reduce the magnitude and probability of significant errors. The

facility instrumentation consists primarily of high-sensitivity

pressure measurement devices 'for determining both stagnation and

reference pressures. These pressures were calibrated carefully

preceding the investigation. The free-stream properties are con-

sidered accurate within the following limits:

Pt,« t 0.1

The precision with which local flow quantities can be determined

is estimated to be as follows

Errors at M =3,0
CD

M + 0.0?

p + 1 .0 *t, i

e + 0,°10

CT - 0,°10

The values of the errors in angles quoted here do not include the

influence of the nonuniform flow on the probe. The interaction of

the shock with the subsonic flow in front of the probe produces

locally large errors; therefore, such a measurement is not

accurate there. In addition there is some influence due to Mach

number gradients (Ae ~ 0, 1).

4.. EXPERIMENTAL RESULTS

Local flow field parameters for the parabolic spindle, determined

from the probe-measured pressures, are presented in Figs. 10 to 17-

The pressure distribution on the surface of the model is shown in

Fig. 1O for three positions along the tunnel centerline. Local
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velocity ratio V./V̂ , downwash angle e and sidewash angle a for

r/L = O,375 are shown in Figs. 11 to 13 and for r/L = 0,228 in

Figs. 14 to 16. In order to test repeatability several different

traverses were made at the probe locations of r/L = O,375 and

r/L = 0,228. Hence, the different graphs in the figure series

11 - 13 represent results from four different runs at the location

r/L = 0,375. A schlieren j

probe is shown in Fig. 17.

r/L = 0,375- A schlieren photograph of the model and the pressure

The experimental data for the three-dimensional model are presen-

ted in Figs. 18 to 29. Fig. 18 presents the measured values of e

at r/L = 0,271 for different values of 9, while Fig. 19 gives

the values of a for the conditions. Figs. 20 and 21 show the same

quantities for the distance r/L = 0,558. For several values of 0,

measurements are available for more than one position of the model

along the axis of the tunnel. Figs. 22 and 23 present the result

for 6=0 and r/L = 0,271 and 0,558 for the different positions.

The figures indicate that the change of position does not affect

the experimental results, giving an indication of the uniformity

of the flow. The results mentioned are for ot = 2, 6. Similar re-

sults for a and e at the -two distances but for.a = 3, 2 are given

in Figs. 2k to 27.

In addition, schlieren pictures are available for all of these

conditions. Figs. 28a and 28b give the photographs at 0 = 0 and

6 = 90°, for a = 2,°6, and Figs. 29a and 29b for a = 3,°2. The

photographs give the possibility to locate the position of the

shocks, and therefore help in the interpretation of the experimen-

tal results.

j. CALCULATIONS

With the definition of symbols adopted here, the second order

theory gives the intensity and position of the shock wave from the

formulae:



F 2. ° r d*
=— W + +

+ KF Vsar + \M - /0 + Kry = x-0

2

0 = 0 - Kr TT- ; v = \1 + •=- e l+ 7 «/v
o p o p

X

0 . - i $ « (*) <tet r0 • r d - | •)

For the derivative dj/dS only approximate values can be obtained,

as a is measured as a function of x at constant 3, and A6 is not

small (A9 = 5°). In the shock area a line cannot be drawn accurately

through the experimental e points. Thus, for the wing-body model

two alternatives have been investigated at r/L = 0,558. One has

two shocks in the wing area, and a comparison will be made with the

corresponding flow picture at r/L = 0,271. The other has only one

shock as an approximation at the wing. In the latter case it will

be investigated how the F-curve and the pressure distribution are

changed, when a different number of terms are included in the F-

formula. Only results for 9=0° are given.

Fig. 30 shows the F-curve for the parabolic spindle. Experimen-

tal points from the two different radial distances give an almost

identical curve. With the measured values inserted in Whitham's

simple formulae, the agreement is less good, and the location

changed. A third set has been calculated analytically from the equi-

valent area of the body.

The chosen s-curves, wing-body model, for r/LQ = 0,558 and 0,2?1,

respectively, are shown in Fig. 31 and Fig. 32. The corresponding

F-function from the second order theory is yesented in Figs. 33

and 34. Before the pressure distribution at a certain distance

from the body is calculated by the Whitham method, those parts of

the F-curve should be modified (see Ferri [4]), which have a posi-
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tive inclination for diminishing F, when the curve is followed

in a direction corresponding to increasing x. This can be done

through vertical lines, cutting off equal area segments, see Fig1.

35 and Fig. 36. The finally obtained F-curves are compared to

each other in Fig. 37- They do not coincide but the agreement is

good.

The relative pressure rise Ap/P in the main flow direction has

been calculated at a distance o:

Whitham's formula will suffice:

been calculated at a distance of r/L = 200. In the far field

<f

At reflecting surfaces (ground) a factor is often added to the

right side (a common numerical value is 1,8). In Figs. 38 and 39

the final shock position has been drawn. Cutting lines have the
r o "I 1 /o

inclination J,L /(2K pr) r . Evidently, at this distance the two

shocks from the wing have combined with each other, but not with

the front shock wave..The pressure distribution is presented in

Fig. 40. The values from the case r/L = 0,558 and from the case

r/L = 0,271 give practically identical curves,
o

For r/L = 0,558 also an alternate form of the e distribution has

been considered. It is shown in Fig. 41 . The F-curve has been cal-

culated with one, two or three terms, that is, approximately the

simple Whitham formula, ditto including fi and finally ditto inclu-

ding the influence of the angle CT. The derivative is approximated

as in Fig. 42. It is zero until 3O mm behind the wing shock

wave (x=550)• Its value has been chosen zero for x > 6?O, too, be-

cause experimental points are missing.

Fig. 43 shows the F-function. Vertical cuts (see for instance

Fig. 44) appear at y = 250, 243 and 226 mm respectively. Figs, h'j

and 46 yield the conclusion that wing and front shocks have combined

at a distance r/L = 200, when only one or two terms are considered,
o

When three-dimensional effects are included, however, it .is evident

from Fig. 4? that there are still two separate shocks. The corre-

sponding pressure distribution is presented in Fig. 48.
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From the foregoing examples it is clear that small variations

of the chosen e distribution and shock positions do not have a

great influence on the F-curve, and much less so on the pressure

distribution. Here, only the case 9=0 has been considered. At

other values of 6 the shock configuration may be more complicated.

Further, it is changing fast with varying 6. However, by means of

schlieren pictures, close measuring points and considering Edney's

[5] investigation of shock-influenced pressure measuring sonds,

a satisfactory e-curve can be obtained. It is important that the

angle a is measured with small enough errors, so da/d9 can be

calculated accurately. This derivative has a direct influence on

F. It has a direct as well as an indirect influence on y. In the

latter case these two effects always operate in the same direction.

6. CONCLUSION

The second order theory of Landahl et al, complemented with ex-

perimentally measured values of some components in the near field,

gives an appropriate method for calculation of the F-function -

and hence the strength and position of the shock waves - at an

arbitrary distance from a body with complicated geometry.
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number
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3
4
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183.70

197.70

210.70

orifices
number
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14
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,16

17
18
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20
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22

23
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25
26

z mm

223.70
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239.70

244.70

249-70
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259.70

264.70

269.70

274.70

279.70

169.70

169.70

169.70

Fig 2 Coordinates of the pressure orifices
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Fig 7. Photograph of model and probe
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Fig. 17 Schlierenphotograph of model and probe
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Fig UU. Modifying of F-curce (3 terms)
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