it

| | N74 10043
NASA TECHNICAL - NASA TM X-71456
MEMORANDUM ~

NASA TM X-71456

REFAN PROGRAM

# PHASE I - SUMMARY REPORT

/

by Eldon W. Sams and Donald L. Bresnahan -
Lewis Research Center o
Cleveland, Ohio 44135

- October, 1973



'I_Jhis'information is being published in prelvimi-'-
nary form in order to expedite its early release.

<N\

.



1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA TM X-71456

4, Title and Subtitle 5. Report Date
REFAN PROGRAM September 1973

PHASE I - SUMMARY REPORT 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Eldon W. Sams and Donald L. Bresnahan
Refan Project Office E-7749
10. Work Unit No.

9. Performing Organization Name and Address

739-70

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio bLL135

11. Contract or Grant No.

13. Type of Report and Period Covered

12, Sponsoring Agency Name and Address

National Aeronautics and Space Administration Technical Memorandum

Washington, D. C. 20546 14. Sponsoring Agency Code

15, Supplementary Notes

16. Abstract
The Refan Program is aimed at a large reduction in aircraft approach and takeoff noise in the
vicinity of airports caused by the JT3D-powered T07's and DC-8's and the JT8D-powered 727's,
T37's and DC-9's. These aircraft represent a major part of the existing commercial fleet.

The noise reductions can be achieved by engine and nacelle modifications in the form of aircraft
retrofit kits. Engine turbomachinery noise is reduced by replacing the current two-stage fan
with & larger single-stage fan and by nacelle acoustic treatment. Jet noise is reduced by the
reduction in jet velocity caused by additional turbine work extraction to drive the larger bypass
fan. The predicted net effect of these modifications on installed performance is large noise
reductions on both approach and takeoff, increased takeoff thrust, decreased takeoff field length,
and maintained or improved aircraft range depending on the amount of acoustic treatment included.

The Refan Program is being conducted in two phases under contracts with one engine and two
airframe companies. Results of the Phase I work are summarized in this report which describes
the refan nacelle configurations studied, the airplane modifications required to install the
nacelles, and the resulting airplane performance and noise reductions predicted for all five
aircraft.

17. Key Words {Suggested by Author(s}) 18, Distribution Statement
Refan program; Refan engine/nacelle;

Acoustically-treated engine/nacelle;
Aircraft noise reduction.

19, Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22, Price®
Unclassified Unclassified 69

* For sale by the National Technical Information Service, Springfield, Virginia 22151

NASA-C-168 (Rev. 6-71)




CONTENTS

SUMMARY
INTRCDUCTION . e e e e i e e e e e s
REFAN PROGRAM « « « « + o« « o 0 v v v o oo o,
ENGINES

JT3D Refan Engine- - « . . . . . . o . . .

JT8D Refan Engine. . . . . . ,

JT3D-POWERED ATRCRAFT . . - .

TOT-320B Airplane. . : .
Refan Nacelle Conflguratlons.

Airplane Modifications. .
Airplane Performance. .
Noise Reduction . - . . .
Nacelle Selection

DC-8-61 Airplane . . . C e e e
Refan Nacelle Conflguratlons;

Airplane Modifications.

Airplane Performance. .
Noise Reduction . . . .
Nacelle Selection . . .

DC-8-63 Airplane .

Refan Nacelle Conflguratlons
Airplane Modifications,
Airplane Performiance,

Noise Reduction .

Nacelle Selection . |,

Noise Comparisons for JT3D-Powered Aircraft,

FAR-36 Levels .
Footprints. . . . ,

JT8D-POWERED ATRCRAFT . . . .

T27 Airplane . .
Refan Nacelle Conflguratlons .

Airplane Modifications.
Airplane Performance.
Noise Reduction -
Nacelle Selection . .

iii



T37 Alrplane. o o ¢ = ¢« o o « o ¢ o a2 e 0 e 4

Refan Nacelle Configurations . . . . . . .
Airplane Modifications . . . « « « « « . .
Airplane Performance . . « « « ¢ « « o o o
Noise Reduction. « « « o o o o o o o o « &
Nacelle Selection. « « « ¢ o ¢« « o o+ &

Adrplane . ¢ ¢« v v v v v e e e e e e e e e
Refan Nacelle Configurations . . . . . . .
Airplane Modifications . . « . « « . . . .
Airplane Performance . . « + o « o « o « &
Noise Reduction. « « « ¢ ¢ o« ¢ o v & o » &
Final-Phase I Refan Nacelle Configurations
Airplane Modifications . . .« . « + + o . .

Airplane Performance . . . . .+ « « « & .« .
Noise Reductione « « ¢ « o o « o o o s o =
Nacelle SelectiOne. « « « « ¢ « o o o « o =

Noise Comparisons for JT8D-Powered Aircraft . .

FAR-36 LevelSe « o o o « o o o o o o o o
Footprints . « ¢« « « o ¢ o ¢ ¢ o 0 0 e .
Noise Level Uncertainties.

PROGRAM STATUS . + v v « o o o o o o o o o o o o =

JT3D Program. « « o o o o o o o « s o 2 o o o s
JT8D PTrogram. « « o « o « o o o o o o v o o o &
REFERENCES &+ + ¢ ¢ ¢ ¢ o o o o o s o o s o o 2 o o o

iv

66



E-7749

REFAN PROGRAM
PHASE I - SUMMARY REPORT

by: Eldon W. Sams and Donald L. Bresnahan
Refan Project Office

Lewis Research Center

SUMMARY

The Refan Program is aimed at a large reduction in aircraft approach and takeoff
noise in the vicinity of airports caused by the JT3D-powered TOT7's and DC-8's
and the JT8D-powered 27's, T37's, and DC-9's. These aircraft represent a major
part of the existing commercial fleet..

The noise reductions are planned to be achieved by engine and nacelle modifica-
tions in the form of aircraft retrofit kits which will provide the desired noise
reductions, while retaining or improving airplane reliability, maintainability
and performance, all at an acceptable fleet retrofit cost.

The modifications are designed to reduce turbomachinery noise caused by engine
airflow interaction with rotating and stationary blade rows particularly in the
bypass fan, and exhaust jet noise generated aft of the nozzle where the high-
velocity jet interacts with the surrounding atmosphere. Turbomachinery noise

is reduced by replacing the current two-stage fan with a larger single-stage

fan with greater spacing between rotating and fixed blade rows, proper selection
of numbers of blades, and nacelle acoustic treatment to further reduce fan noise.
Jet noise is reduced by the decrease in Jjet velocity due to additional turbine
work extraction to drive the larger bypass fan.

These modifications will result in improvements in bare engine takeoff thrust
and cruilse thrust specific fuel consumption which are partially offset by

the increase in engine diameter, length and weight of the new acoustically-
treated refan nacelles and airplane modifications required to install the
nacelles. The above tradeoffs (including installation losses) are predicted to
result in increased takeoff thrust, reduced takeoff field length, large noise
reductions on both approach and takeoff, and maintained or improved aircraft
range depending on the amount of acoustic treatment incorporated. Various re-
fan nacelle treatment configurations are analyzed for each of the five aircraft.

The Refan Program is being conducted in two phases under contracts with one
engine and two airframe companies who serve as associate contractors under
direction of the Refan Project Office at NASA-Lewis Research Center. Phase I
includes engine/nacelle-and-airplane-integration definition studies, prelimi-
nary design studies, component or model tests for design confirmation, and
retrofit-economic studies. The detailed results are presented in the contrac-
tors Phase I reports for the five airplane/engine combinations.



During Phase I, total program funding curtailment forced cutback in the program
scope to one engine. Preliminary engine design work and nacelle/airplane defi-
nition and integration studies on the JT3D-powered aircraft had been completed
and showed the refanned JT3D to be a low-risk development with no significant
technical problems in refan retrofit of the TOT and DC-8 aircraft. However,
the joint NASA/DOT/FAA program management decision was to proceed with the JT8D
(72T, T3T7 and DC-9 aircraft) and terminate the JT3D (707 and DC-8 aircraft)
effort. The basic reason for this decision was that the JT8D-powered aircraft
would have the larger impact on airport noise exposure in the 1980's. :

Phase II, just beginning, will include final design of the refan engine/nacelles,
hardware fabrication, component and model. testing, ground testing of a T27
flightworthy refan nacelle, and flight demonstration testing of a refanned

DC-9 airplane. o

Results of the contractors Phase I efforts/reports are summarized in this
Phase I Summary Report with regard to the JT3D/JT8D refan engine definitions,
the refan nacelle configurations studied, the airplane modifications to in-
stall the nacelles, the resulting airplane performance, the noise reductions
predicted, and comments on nacelle selection for Phase IT work.



INTRODUCTION

One of the major problems confronting civil aviation today is public exposure
to noise generated by aircraft in the vicinity of airports. The nolsiest air-
craft in the current commercial fleet are the standard-bodied aircraft intro-
duced into service in the late 1950's and early 1960's. These aircraft consist
of the TOT's and DC-8's powered by JT3D turbofan engines and the T27's, T3T's
and DC-9's powered by JT8D turbofans. These aircraft comprise a large part

of the existing and projected fleet; so a significant reduction in their noise
levels would result in a major reduction in airport noise exposure.

Two source noise reduction schemes applicable to existing standard-bodied air-
craft are being studied. One scheme employs acoustic nacelle treatment only
and gives considerable noise reduction which principally affects landing
approach noise. Considerable effort has been applied to this scheme including
early NASA work on acoustic nacelles for the TO7 and DC-8 aircraft reported

in reference 1, as well as a current FAA program which includes all JT3D-
powered aircraft and the JT8D-powered 727 and DC-9 aircraft.

The other scheme. which is currently under study to determine its technical
feasibility and economic viability, employs acoustic nacelle treatment in
conjunction with engine modifications, mainly involving a larger single-stage
fan and engine bypass ratio, and is generally referred to as refan. This
scheme provides greater noise reduction potential than nacelle treatment only,
giving considerable reductions in both landing approach and tekeoff noise as
well as significant improvements in installed takeoff thrust and cruise thrust
specific fuel consumption.

The refan program is aimed at developing the engine and nacelle modifications
in the form of engine and airplane .retrofit kits for standard-bodied aircraft.
The obJjectives are'to demonstrate the noise reduction capability of these
modifications while retaining or improving engine reliability and maintaina-
bility, with no reduction in aircraft performance, and all at an acceptable
fleet retrofit cost.

The refan program is focused on significantly reducing the two main sources
of engine noise. These sources are turbomachinery noise generated by engine
airfiow interacting with rotating and stationary blade rows, principally in
the fan stage; and jet noise generated aft of the nozzle where the high-
velocity exhaust Jet mixes with the surrounding atmosphere.

Fan turbomachinery noise is reduced by use of a larger-diameter single-stage
fan with greater spacing between rotating and stationary stages than in the
current two-stage fan, by proper selection of numbers of rotor blades and
stator vanes for minimum noise propagation, and by nacelle acoustic treatment
to further reduce the remaining turbomachinery noise.



Jet noise is reduced by decreasing the Jet exhaust velocity through addi-
tional turbine work extraction to drive the larger-diameter single-stage
fan. The larger fan increases engine bypass ratio and increases engine
thrust while reducing exhaust Jjet velocity and noise.

This report describes the Refan Program, the refan engines, and the five
refanned JT3D/JT8D-powered aircraft with regard to refan nacelle configura-
tions, airplane modifications required to install the nacelles, and resulting
airplane performance and noise reduction predictions. Except where noted,
the information reported herein was compiled from contractor: reports
referenced at the end of the report (references 2 thru 15).



REFAN PROGRAM

The Refan Program was initiated in August 1972. The original program was a
3-year, $55 million program encompassing noise and smoke reduction for the
JT3D and JT8D engines. Phase I contracts were let for engine and nacelle
definition, preliminary design, and retrofit economics and program studies
with three major contractors: Pratt & Whitney Aircraft as the engine con-
tractor, and The Boeing Company and Douglas Aircraft Company as the airplane
contractors. Working under separate contracts, the three serve as associate
contractors under technical direction from the Refan Project Office at NASA-
Lewis Research Center. ©Small contracts were also let with United and American
Alrlines for consulting work to provide airlines supporting information and
to help assure that the modifications being considered incorporate as many
of the user airlines' requirements as possible.

Phase I work was initiated as an 8-month technical effort on both the JT3D
and JT8D engines to be completed in April 1973. In January 1973, total
program funding curtailment to $40 million forced cutback in the program
scope to one engine. The joint NASA/DOT/FAA program management decision
was to proceed with the JT8D (727, 737 and DC-9 aircraft) and terminate
the JT3D (707 and DC-8 aircraft) effort. The basic reason for this deci-
sion was that the JT8D-powered aircraft would have the larger impact on
airport noise exposure in the 1980's.

At the time of cancellation of the JT3D portion of the Refan Program, there
were no major technical problems encountered with refanning of the JT3D.

The refanned JT3D was basically a low risk development. The preliminary
engine design work and the preliminary nacelle/airplane definition and inte-
gration studies on the 707 and DC-8 had been completed and revealed no
significant technical problems in refan retrofit of these aircraft.

The refan program is divided into two phases. For the engine contractor,
Phase I consists of engine definition, preliminary engine design, component
tests for design confirmation, and program definition. Phase II will con-
sist of engine design, fabrication, and testing which includes both full
scale engine and component tests.

For the airplane contractors, Phase I includes nacelle and airplane integration
definition studies, retrofit and economic studies, model aerodynamic tests,
preliminary design and analysis, and program definition. Program adjustments
carried Phase I through June 1973 in order to better define the aircraft modi-
fications and nacelle selection before Phase IT was initiated. Phase IT will
include nacelle and airplane modification design, fabrication of test hardware,
model and component tests, nacelle ground tests, and flight demonstration tests
where funding permits.



This report summarizes the results of Phase I work by the engine and airplane
contractors on the JT3D/JT8D Refan Program. For the JT3D, it describes the
baseline turbofan engine and the refan engine modifications and characteris-
tics. Tt also describes for the 707 and DC-8 baseline airplanes, the refan
nacelle configurations for three acoustic suppression levels, the airplane
modifications to install and integrate these nacelles on the airplanes, and
the predicted airplane performance and noise reductions.

Similarly for the JT8D, this report describes the baseline turbofan engine,
the refan engine modifications and characteristics, the refan nacelle treat-
ment configurations, the airplane modifications, and the resulting predicted
airplane and noise reduction performance for the refan nacelles on the T2T,
737 'and DC-9 airplanes. '



ENGINES

JT3D Refan Engine

The JT3D-3B engine, selected as the baseline engine for the JT3D portion of
the Refan Program because of its predominance in the TOT and c-8 aircraft,
is shown in the upper half of Figure 1. It is a two-spool turbofan engine
with a can-annular combustor. The 1low pressure spool consists of a 2-stage
fan and 6-stage low pressure compressor driven by a 3-stage low pressure
turbine. The high pressure spool consists of a T-stage high pressure com-
pressor driven by a l-stage high pressure turbine.

The refan version of the JT3D-3B, designated the JT3D-9, is shown in the
lower half of Figure 1. The refan design provides a larger-diameter single-
stage fan and an additional supercharger stage in place of the current two-
stage fan. The fan modification includes elimination of the inlet guide
vanes, increased spacing between fan and stator blading, and optimum numbers
of fan and stator blades, all designed to reduce fan noise.

The increased turbine work to drive the larger fan requires replacement of
the fourth stage turbine blades and disk, and a new turbine shaft. The in-
creased turbine work produces a large reduction in primary Jet velocity
which is the key to effective reduction of externally-generated jet noise.

As noted in Table 1, the larger fan of the JT3D-9 increases the bypass ratio,
engine airflow and engine thrust, while reducing jet velocity from that of
the current JT3D-3B. The small increase in turbine inlet temperature and
fan tip speed are considered of no significant consequence to engine design
or operation. The increased engine length, diameter and weight, plus the
desire to acoustically treat the nacelle for further fan noise reduction,
necessitate a new refan nacelle and its installation and integration with
the airplane.

The refan benefits on uninstalled engine performance (lower part of Table 1)
include an increase in thrust at takeoff and maximum cruise, and a decrease
in TSFC at cruise conditions. These benefits will be traded off against the
penalties associated with larger engine diameter and weight in the airplane
performance studies discussed later.

A more complete description of the refanned engine and its comparison with
the baseline engine can be found in references 2 and 3.
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JT8D Refan Engine

The JT8D-9 engine selected as the baseline engine for refan studies and shown
in the upper half of Figure 2, is a two-spool turbofan engine. The low pres-
sure spool consists of a 2-stage fan and b-stage low pressure compressor
driven by a 3-stage low pressure turbine. The high pressure spool consists
of a T-stage high pressure compressor driven by a l-stage high pressure
turbine.

The refan version of the JT8D-9 baseline engine is designated the JT8D-109.
The refan desigh, shown in the lower half of Figure 2, provides a larger-
diameter single-stage fan and two additional low compressor stages to replace
the current two-stage fan. Inlet guide vanes are retained. Fan modifications
include increased spacing between fan and stator blades as well as between
fan and inlet guide vanes, and optimum numbers of fan and stator blades, all
designed to reduce fan noise.

The increased turbine work extracted to drive the larger fan increases the
turbine rotor exit swirl. To reduce swirl, the engine fourth-stage (i.e.
low-spool, third-stage) turbine vanes are opened up, the fourth-stage blades
are replaced, and the four turbine-exhaust-case struts are recambered with
four additional struts added. A new low pressure turbine shaft is also re-
quired. '

Comparison of salient parameters of the JT8D-9 and -109 is shown in Table 2.
The larger fan is seen to increase bypass ratio, engine airflow, and engine
thrust levels with a minor decrease in turbine-inlet temperature; and there
is a significant increase in fan tip speed. The increased turbine work pro-
duces a large reduction in primary Jjet velocity which is the key factor in
Jjet noise reduction.

The benefits of refan on uninstalled engine performance (lower part of Table
2) include an increase in thrust at takeoff and maximum cruise, and a decrease
in TSFC at cruise conditions. These benefits will be traded off against the
penalties associated with larger engine diameter and weight in the airplane
performance studies discussed later. '

A more complete description of the refanned engine and trade studies in-

volved in selection of the final engine cycle, as well as comparisons with
the baseline JT8D-9 engine can be found in reference L.

10
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JT3D-POWERED AIRCRAFT

Phase I of the Refan Program involves extensive nacelle and airplane integra-
tion definition (NAID) studies on the five standard-bodied aircraft to
evaluate nacelles with different acoustic treatment levels for the refanned
engines. These studies consider nacelle preliminary design, nacelle compo-
nent performance, nacelle subsystem changes, airplane performance, noise
reduction, etc. for the different refan nacelles on each of the baseline
alrplanes. Detailed results of these studies are reported in the NAID's

and summarized herein.

T07-320B Airplane

The T0T7-320B airplane with JT3D-3B engines was selected as the baseline con-
figuration for the TOT portion of the refan program. Complete results of

the 70T-320B refan nacelle and airplane integration definition (NAID) studies
of Phase I are given in references 5 and 6. The latter reference is the
engineering summary report submitted after JT3D program termination.

This section summafizes results of the T707-320B Phase I studies. It de-
scribes the refan nacelle configurations, airplane modifications required
to install the nacelles, airplane performance, and noise reductions.

Refan Nacelle Configurations - The refan nacelle configurations or
treatments studied in Phase I are shown in Figure 3. They consist of:

1) A minimum treatment nacelle (config. 1) which provides a treated-
wall inlet, short treated-wall fan ducts with & new simplified fan
thrust reverser, and a modified primary thrust reverser;

2) An intermediate treatment nacelle (config. 2) which provides a
treated-wall and l-ring inlet, treated-wall mid-length fan ducts,

a new target-type fan thrust reverser, and a modified primary thrust
reverser; and

3) A maximum treatment nacelle (config. 3) which is identical to
configuration 2 except that it has a 2-ring inlet.

: The nacelle designated configuration L4 was dropped early in the program
because of the additional funding and testing needed to develop the thrust
reverser; this configuration is not considered further herein.

Airplane Modifications - The airplane modifications required to install
and integrate these nacelles on the T0T7T-320B baseline airplane consist basi-
cally of airframe and nacelle subsystem modifications.

The extent of required airplane structural modifications is primarily
dependent on whether or not the nacelle must be moved to insure adequate
flutter margins. Flutter characteristics of the TOT are sensitive to nacelle
aerodynamics, nacelle strut stiffness and nacelle mass properties. Flutter
characteristics are determined from flutter analysis and low-speed wind

13



tunnel tests which were completed after JT3D program termination. The tests
showed that with proper design attention to flutter—frequéncy limits on the
outboard nacelle struts of the T0T7T-320B (and to center-of-gravity location
limits in addition on the TO7-120B), these airplanes will be flutter-free to
certification requirements. Although evaluation of the strut changes are in-
complete, possibly the outboard nacelle strut would have to be replaced and
the inboard strut reinforced.

Directional control and minimum control speed of the airplane are affec-
ted by increased thrust from the refan engines. An estimated 15% increase in
rudder hinge moment will be required to maintain acceptable directional control
in the event of engine failure. The rudder and actuator attachment fittings
and basic airframe structure are adequate to accomplish this change.

Nacelle subsystems requiring some modification include: nacelle ventila-
ting and drain systems, fire detection and extinguishing systems, engine con-
trol and instrumentation systems, engine bleed air and starting systems, and
engine and nacelle inlet anti-icing systems. The existing turbo-compressor
system for cabin pressurization and ventilation would be replaced by a direct
engine bleed zir system. Also, the minimum treatment nacelle generally re-
tains existing accessory locations, while the intermediate and maximum
treatment would require some accessory relocation.

Airplane Performance - Predicted airplane performance, cost and noise
characteristics for the JT3D-3B baseline nacelle and the three refan nacelles
are shown in Table 3.

A change from baseline nacelle to the refan nacelles is seen to have the
following effects: Installed sea-level-static thrust and 150-knots takeoff
thrust incredsed for all three refan nacelles, varying with the degree of
treatment. Installed maximum cruise thrust and TSFC values improved for all
treatments, varying with the degree of treatment. Operational empty weight
(OEW), which reflects any change in engine, nacelle and ballast weights, in-
creased due to the larger refan engines and nacelles, and varies with treat-
ment level. The maximum brake release gross weights (MBRGW) shown are
limited by existing airplane fuel tank capacity. The required takeoff field
length decreased and climbout height above runway at 3.5 n.mi. increased due
to the increased takeoff thrust for the refan engines. The airplane range
with full-passenger-payload using the fuel-limited MBRGW's increased for all
refan nacelles. Direct operating costs (which include fuel, flight crew,
maintenance and insurance) and retrofit cost per airplane (which includes
installation), based on retrofit-economic study data of reference T, both
increased with increase in treatment level. A comparison of range values
at various payloads is shown in the payload-range curves of Figure b,

1h



Noise Reduction - The calculated noise reductions in terms of EPNL values
at the FAR-36 measuring points for the baseline and refan nacelle aircraft are
seen in Table 3 to include: a 15-21 EPNAdB decrease on approach, a 16-18 EPNAB
decrease on takeoff without power cutback, a 19-21 EPNAdB decrease on takeoff
with power cutback, and a 13-14t EPNAB decrease on sideline. The current FAR-36
limits are also shown.

A more meaningful measure of noise reduction benefit is the reduction in
footprint area from-baseline for the refan nacelles. The 90 EPNdB footprint
area reductions from baseline given in the NAID (reference 6) for the case of
3° approach/takeoff without cutback at MBRGW are: 84% decrease in area for
minimum treatmént, 87% decrease for intermediate treatment, and 89% decrease
for maximum treatment. '

Additional comparisons of FAR-36 noise levels and noise level contours
are shown later under 'Noise Comparisons for JT3D-Powered Aircraft" wherein
95 EPNdB footprints calculated on a consistent basis for the minimum- and
maximum-treatment refan nacelles and the current (baseline) nacelles are
compared .

Nacelle Selection - At the time of termination of the JT3D portion of
the program, trade studies had not been completed to select the optimum re-
fan nacelle configuration for the TOT. Configuration 1, or a variation
called 1A which adds a single acoustic inlet ring, appeared particularly--
promising. However, further trade studies and model tests would be neces-
sary to select the best level of acoustic treatment. The additional
acoustic benefits obtainable in going from minimum to intermediate treat-
ment must be weighed against increases in operating costs and the "initial
investment cost.
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FIGURE 4. - COMPARISON OF TOT-320B PAYLOAD-RANGE CURVES FOR REFAN NACELLES
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DC-8-61 Airplane

The DC-8-61 airplane with JT3D-9 engines was selected as the baseline con-
figuration for the DC-8-51 through -55 and -61 models which all feature the
short-duct pod and over-wing pylon. Complete results of the DC-8-61 refan
nacelle and airplane integration definition (NAID) studies of Phase I are
given in reference 8 which is the second-submittal NAID for the DC-8-61/
JT3D-9.

This section summarizes results of the DC-8-61 Phase I studies. It de-
scribes the refan nacelle configurations, airplane modifications to ia-
stall the nacelles, airplane performance, and noise reductions.

Refan Nacelle Configurations - The refan nacelle configurations studied
in Phase I are shown in Figure 5. They consist of:

1) A minimum treatment nacelle which provides a treated-wall inlet,
and treated-wall short bifurcated fan ducts which retain the current
side-cascade fan thrust reversers and clamshell-cascade primary thrust
reverser. These thrust reversers would be modified for the larger
refan engine;

2) An intermediate treatment nacelle which is basically the minimum
treatment nacelle with addition of a treated-ring in the inlet and a
treated-circumferential ring in the short fan ducts; and

3) A maximum treatment nacelle which provides a treated-wall and
l-ring inlet, treated-wall full-length bifurcated fan ducts, and a
scaled-up DC-8-53 target-type fan-primary thrust reverser.

Airplane Modifications - The airplane modifications required to install
and integrate these nacelles on the DC-8-61 airplane consist of airframe
structure and airframe system modifications.

The airframe structure modifications will include changes to the pylon
and wing. The pylon changes will consist of recontouring the apron, fair-
ings and skins for the modified pods and rerouting environmental systems.

Due to increased engine weight and center of gravity shift; some pylon struc-
tural reinforcements may be necessary. With the maximum treatment nacelle,
all structure below and aft of the main pylon structure box would be replaced
with a new unit including a translating thrust reverser stang.

The present wing has adequate static strength but, due to increased
engine weight, may require some structural reinforcing to maintain flutter
margins.

The only airframe system modification anticipated with the maximum

treatment nacelle is a new hydraulic system for the long-duct thrust re-
verser to replace the current short-duct pneumatic reverser systen.
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Airplane Performance - Predicted airplane performance characteristics for
the JT3D-3B baseline nacelle and the three refan nacelles are shown in Table L,

A change from baseline nacelle to the refan nacelles is seen to have a
number of significant effects: Installed sea-level-static thrust and sea-
level M=0.27 takeoff thrust increased for all refan nacelles (varying with
the degree of treatment). Installed maximum cruise thrust and TSFC at .
typical-cruise thrust improved for all three treatments. The increases in
operating empty weight (OEW) reflect the increase in engine and nacelle
weights for the larger refan engines. Maximum brake release gross weight
is held at the baseline value. Takeoff field length is decreased and height
above runway is increased for all treatments due to increased thrust of the
refan engines. Airplane range with full-passenger-payload is essentially
maintained, as is the 55%-full-passenger-payload (typical mission) range.
DOC costs, based on preliminary retrofit-economic study data of reference
9, and retrofit costs, based on retrofit-economic study data of reference
10, both increase with increase in nacelle treatment level. A comparison
of range values at various payloads is shown in Figure 6.

Noise Reduction - The noise reductions in terms of EPNL values at the
FAR-36 measuring points in changing from baseline to refan nacelles are
seen in Table L4 to include: a 13-21 EPNAB decrease on approach, a 9-1k4
EPNAB decrease on takeoff, a 14-19 EPNdB decrease on takeoff with power
cutback, and a 7-10 EPNdB decrease on sideline.

The 90 EPNdB footprint area reductions from baseline given in the NAID
(reference 8) for 3° approach/takeoff without cutback for a typical mission
(not given for MBRGW) are: 4% area decrease for minimum treatment, T8% de-
crease for intermediate treatment, and 83% decrease for maximum treatment.

Additional comparisons of FAR-36 noise levels and noise level contours
for the baseline and refan nacelles are shown later under Noise Comparisons
for JT3D-Powered Aircraft.

Nacelle Selection ~ As was the case for the TOT7-320B, trade studies on
nacelle configuration selection for the DC-8-61 were in progress at the time
of termination of the JT3D part of the program. Further trade studies and
model tests are needed to permit selection of an optimum refan nacelle. The
additional acoustic benefits obtainable with maximum treatment must be
weighed against increases in operating costs and initial investment cost.

20
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DC-8-63 Airplane

The DC-8-63 was the latest version of the DC-8 airplane in production and uses
JT3D engines installed in long-duct pods with undercut pylons. Hence it was
selected as the baseline configuration for the "long-pod" portion of the DC-8
refan program. Complete results of the DC-8-63 refan nacelle and airplane in-
tegration definition (NAID) studies of Phase I are given in reference 1l which
is the second-submittal NAID for the DC-8-63/JT3D-9.

This cection summarizes results of the DC-8-63 Phase I studies. It describes
the refan nacelle configurations, airplane modifications required to install
the nacelles; airplaneperformance, and noise reductions.

Refan Nacelle Configurations - The refan nacelle configurations studied
in Phase I are shown in Figure 7. Only two treatment configurations were
evaluated: .

1) A minimum treatment nacelle which provides a treated-wall inlet,
full-length partially-treated bifurcated fan ducts, and a modifica-
tion of the current target-type fan-primary thrust reverser; and

2) A maximum treatment nacelle which is basically the minimum treat-
ment configuration with the addition of an inlet treated-ring and
additional treatment in the fan ducts.

Airplane Modifications - The airplane modifications required to install
and integrate these refan nacelles on the DC-8-63 airplane consist of air-
frame structure modifications. The airframe structure modifications include
changes to the pylon and wing. The pylon changes consist of recontouring of
the apron, fairings and skins for the modified pods and rerouting environ-
mental systems. Due to increased engine weight, forward shift of the center
of gravity; and flutter considerations, some pylon structural reinforcements
may be necessary.

The present wing has adequate static strength but, due to increased engine
weight and center-of-gravity shift, it may require some structural reinforce-
ment adjacent to the pylon to maintain the required flutter margins.

Alrplane Performance - Predicted airplane performance characteristics for
the JT3D-3B baseline nacelle and the two refan nacelles are shown in Table 5.

A change from baseline nacelle to the refan nacelles is seen to have the
following effects: Installed sea-level-static thrust and sea-level M=0.27
takeoff thrust increased for both refan treatments. Installed maximum cruise
thrust and TSFC values at maximum-cruise and typical-cruise thrust were main-
tained or slightly improved for both treatments. The OEW increases are gbout
the same for both treatments and reflect engine and nacelle weight increases
for the refan pods. Maximum brake release gross weight is held constant at
the baseline value. Takeoff field length decreased and height above runway
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increased for both treatments due to increased refan thrust. Airplane range
for both full-passenger-payload and 55%-full-passenger-payload conditions
decreased slightly. DOC costs, based on data in reference 9, and retrofit
costs, based on data in reference 10, both increase with increase in nacelle
treatment level. A comparison of range values at other payloads is shown

in Figure 8.

Noise Reduction - The noise reductions in terms of EPNL values at the
FAR-36 measuring points in changing from baseline to refan nacelles are seen
in Table 5 to include: a 1h-18 EPNdB decrease on approach, an 11-12 EPNAB
decrease on takeoff, a 12-15 EPNAdB decrease on takeoff with cutback, and a
T-9 EPNAB decrease on sideline.

The 90 EPNAB contour area reductions from baseline reported in the NAID
(reference 11) for 3° approach/takeoff without cutback for a typical mission
(not given for MBRGW) are: T9% decrease in area for minimum treatment and
an 82% decrease for maximum treatment.

Additional comparisons of FAR-36 noise levels and noise level contours
for the baseline and refan nacelles are shown under "Noise Comparisons for
JT3D-Powered Aircraft" in the section that follows.

Nacelle Selection - At the time of fermination of this part of the pro-
gram, trade studies on the DC-8-63 had not progressed to the point of final
nacelle configuration selection, as was the case for the DC-8-61.
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Noise Comparisons for JT3D Powered Aircraft

In this section, as in a similar section later for the JT8D-powered aircraft,
the noise reduction benefits of refanned aircraft with various levels of
nacelle treatment over the current (baseline) aircraft are shown in terms of
FAR-36 noise levels and noise exposure contours (footprints).

FAR-36 Levels - Noise levels at the FAR-36 noise measurement conditions
(point measurements) for approach, takeoff with power cutback and sideline
are compared in Table 6 for both TOT-320B and DC-8-61 aircraft. The current
(baseline) aircraft values are calculated values corrected to actual-flyover
noilse measurements. The refanned aircraft values for various nacelle treat-
ments, taken from the NAID's, were similarly calculated with anticipated
actual-flyover corrections included. These values are all compared (¢ EPNdB's
given) with the FAR-36 standards which are values proposed by FAA to apply to
both new and existing standard-bodied aircraft after 1978.

The EPNL values relative to the FAR-36 standard show that a refanned
JT3D aircraft with a maximum treatment nacelle would be 5 to 13 EPNdB below
FAR-36.

These tabular values are presented in bar-graph form for approach and
takeoff in Figure 9. This visual comparison illustrates the potential bene-
fits of refan depending on treatment level.

Footprints - A more meaningful measure of noise-reduction benefits is
the reduction in noise footprint area which is representative of the number
of people exposed to high noise levels. Single-event noise exposure con-
tours (footprints) discussed in this section have been calculated at the
NASA-Lewis Research Center using a program developed by the DOT/NASA Joint
Office of Noise Abatement. The input data, consisting of EPNL versus
slant-range noise data, were supplied by Boeing and McDonnell-Douglas for
the various aircraft and refan nacelle treatments. Because of the sensi-
tivity of footprint areas to input data and calculational procedure, it
is important to compare footprints calculated in a consistent manner.
Relative changes in area are more significant than absolute areas. Because
of this, results of in-house-calculated footprints are presented herein
rather than comparisons between the numerous footprints presented in the
various contractor documents.

Figure 10 shows predicted 95 EPNAB footprint contours for the T7OT-320B
aircraft. The current (baseline) aircraft is compared with a refanned air-
craft with maximum and minimum treatment refan nacelles. Similar footprint
area comparisons are illustrated for the DC-8-61 in Figure 11. In both
figures, the footprints shown are for maximum takeoff gross weight conditions.
The table included on each figure illustrates the effectiveness of refan in
reducing both the approach and takeoff footprint areas. Area reductions
expressed in percent of current (baseline) noise exposure area show the
large improvement potential of the refan retrofit options.
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Since the new wide-body aircraft provides significant noise relief to
the near=airport community compared to the exposure of current standard-
bodied aircraft, it is of interest to compare wide-body footprints with
refan footprints. Such a comparison is made in Figure 12 for the T4T-200
and a refanned TOT-320B with maximum and minimum treatment. The potential
for (0T refan is to provide substantially less noise exposure than the
current W-engine wide-body aircraft on both the approach and takeoff por-
tions of the flight track.
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JT8D-POWERED AIRCRAFT

727 Airplane

The T27-200 airplane with JT8D-9 engines was selected as the baseline con-
figuration for the 727 portion of the refan program. Complete results of
the 727-200 refan nacelle and airplane integration definition (NAID) studies
of Phase I are given in reference 12 which is the second-submittal NAID for
the 727-200/JT8D-109.

This section summarizes results of the T27-200 Phase I studies. It describes
the refan nacelle configurations, airplane modifications required to install
the nacelles, airplane performance, and noise reductions.

Refan Nacelle Configurations - The refan nacelle configurations studied
in Phase I are shown in Figure 13. They consist of:

1) A minimum treatment nacelle (config. 1) which provides acoustic
treatment of inlet wall and bullet, treated-wall engine fan ducts
extending to the nozzle flange, a treated-wall nozzle, and a new
target-type thrust reverser for the confluent fan and primary flows;

2) An intermediate treatment nacelle (config. 2) which provides
treatment of inlet wall, bullet and ring; treated-wall fan ducts;
treatment of nozzle wall, fan-primary divider and tail plug; and
a new target-type reverser; and

3) A maximum treatment nacelle (config. 3) which is basically the

intermediate treatment configuration with the addition of a second

ring in the inlet and a fan-primary flow mixer instead of a divider
in the nozzle.

Airplane Modifications - The airframe modifications required to install
and integrate these nacelles on the T27-200 airplane are mostly in the aft-
body section in the engine attachment region and include: modifications to
the side-engine struts and engine mounts; modifications to the center-engine
mounts, mount supports, and horizontal and vertical firewalls due to the
larger engine; modifications to several aft-body frames and the pressure
bulkhead due to larger S-duct; a new center-engine S-duct; a new center-
engine inlet-to-vertical-fin-leading-edge fairing structure, and modifi-
cations to the tail skid, airstairs, etc. :

Tests on the new center-engine S-duct in Phase I showed that the re-
quired airflow was achieved with acceptable pressure recovery. The new
S-duct performance is comparable to that for the existing T27-200 center-
engine duct, and the installation of vortex generators provided capability
for substantial reduction of inlet pressure distortion.
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Nacelle subsystems requiring some modifications include: nacelle vent
and drain systems; fire detection and extinguishing systems; engine oil and
fuel systems; CSD-0il cooler and generator cooling systems; engine controls
and instrumentation systems; engine bleed air and starting systems; and en-
gine and nacelle inlet anti-icing systems. These modifications mainly
involve relocation or changes in minor components, bleed lines. hydraulic
lines, electrical lines, control cables and devices, etc. caused by in-
creased engine diameter and length.

Airplane Performance - Predicted airplane performance characteristics
for the JT8D-9 baseline and refan nacelles are shown in Table 7. A change
from baseline nacelle to refan nacelles is seen to have the following
effects: Installed sea-level-static thrust and sea-level 100-knots take-
off thrust increased for all three refan nacelles, varying with degree of
treatment. Installed maximum-cruise thrust and TSFC's were changed slightly
and varied with treatment. Operational empty weights, reflecting combined
changes in engine, nacelle and ballast weights, increased due to the larger
refan engines and vary with treatment. The maximum brake release gross
weight (MBRGW) increases shown for refan are limited by existing airplane
fuel tank capacity. The practical growth MBRGW's are achievable using an
existing airplane kit. Takeoff field length required decreased, and climb-
out height above runway increased due to greater takeoff thrust for the
refan engines. Airplane range with full-passenger-payload and baseline
MBRGW decreased. However, full-passenger-payload range at the practical
growth MBRGW's increased for all refan nacelles. DOC and retrofit costs,
based on preliminary retrofit-economic study data of reference 7, show the
increase in retrofit cost with nacelle treatment level. A comparison of
range values at other payloads is shown in the payload-range curves of
Figure 14,

Noise Reduction - The noise reductions in terms of EPNL values at the
FAR-3€—heasuring points in changing from baseline to refan nacelles are
seen in Table 7 to include: an 11-14 EPNAB decrease on approach, a 9-15
EPNdB decrease on takeoff without cutback, an 11-13 EPNAB decrease on take-
off with cutback, and a 9-15 EPNdB decrease on sideline.

The 95 EPNAB footprint area reductions from baseline given in the NAID
(reference 12) for 3° approach/takeoff with cutback at MBRGW are: a T9% de-
crease in area for minimum treatment, an 83% decrease for intermediate
treatment, and a 93% decrease for maximum treatment.

Additional comparisons of FAR-36 noise levels and noise level contours
for the baseline and refan nacelles are shown later under "Noise Comparisons
for JT8D-Powered Aircraft”.

Nacelle Selection - Trade studies are continuing on the T27 nacelle
selection. The mixer nozzle included in the maximum treatment nacelle re-
quires technology still in development stages and thus makes this configura-
tion undesirable for further consideration under this program. Thus, the
acoustic and airplane performance values given for this configuration should
be regarded as design goals only. Only the intermediste and minimum treat-
ment nacelles are still being actively pursued in the trade studies.
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737 Airplane

The 737-200 airplane with JT8D-9 engines was selected as the baseline con-
figuration for the 737 portion of the refan program. Complete results of
the T37-200 refan nacelle and airplane integration definition studies of
Phase I are given in reference 13 which is the preliminary NAID for the

737-200/3T8D-9.

This section summarizes results of the T37-200 Phase I studies. It de-
scribes the refan nacelle configurations, airplane modifications required
to install the nacelles, airplane performance, and noise reductions.

- Refan Nacelle Configurations - The refan nacelle configurations studied
in Phase I are shown in Figure 15. They consist of:

1) A minimum treatment nacelle (config. 1) which provides acoustic
treatment of inlet wall and bullet, treated-wall engine fan ducts,

a treated-wall nozzle, and a modified current target-type thrust re-
verser for the confluent fan and primary flow;

2) An intermediate treatment nacelle (config. 2) which provides
treatment of inlet wall, bullet and ring; treated-wall fan ducts
with additional surface treatment; treatment of nozzle wall, fan-
primary divider, and tail plug; and a target-type thrust reverser;
and

3) A maximum treatment nacelle (config. 3) which is basically the
intermediate treatment with addition of a second ring in the inlet
and a fan-primary flow mixer instead of a divider.

Airplane Modifications - The airplane modifications required to install
and integrate these refan nacelles on the 737-200 airplane consist of air-
frame structure modifications and changes to the airframe systems and
subsystems.

The agirframe structure modifications include: a new main landing gear
which is 12-inches longer to retain acceptable ground clearances for the
larger diameter refan nacelles; a new landing gear support beam and rein-
forced forward trunnion support fitting required for increased loads on tiae
extended main landing gear; changes in wing structure including a general
reinforcing of spars and supports in the area of the main landing gear,
trimming and recontouring of flaps to match the increased nacelle diameter,
and some new wing/nacelle fairings: also addition of one step to the aft
stairs and a longer aft evacuation slide resulting from the landing gear
extension-
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Some airframe systems and subsystems requiring minor modifications in-
clude: air conditioning, instrumentation, hydraulics and controls. These
changes mainly involve relocation of minor components, ducting, electrical
lines, hydraulic lines, control cables, etc. due to 1ncreased engine dia-
meter.

Airplane Performance - Predicted airplane performance characteristics
for the JT8D-9 baseline nacelle and three refan nacelles are shown in Table
8. A change from baseline nacelle to refan nacelles is seen to have the
following effects: Installed sea-level-static thrust and sea-level 100-knots
takeoff thrust increased for all three refan nacelles, varying with degree
of treatment. Installed maximum-cruise thrust and TSFC values showed small
improvements, varying with treatment. Operational empty weights increased
due to the larger refan engines and varies with treatment. Maximum brake
release gross weight (MBRGW) increases shown for the refans represent the
practical growth MBRGW's achievable using an existing airplane kit. Take-
off field length required decreased and height above runway increased due
to increased takeoff thrust for the refan engines. Airplane range with
full-passenger-payload at baseline MBRGW decreased, but full-passenger-
payload at the practical growth MBRGW increased for the refan nacelles,
varying with degree of treatment. DOC and retrofit costs, based on pre-
liminary retrofit-econcomic study data of reference T, show an increase with
refan treatment. A comparison of range values at other payloads is shown
in Figure 16.

Noise Reduction - The noise reductions in terms of EPNL values at the
FAR-36 measuring points in changing from baseline to refan nacelles are
seen in Table 8 to include: a 9-14 EPNAB decrease on approach, an 8-1b
EPNdB decrease on takeoff without cutback, a 10-12 EPNdB decrease on
takeoff with cutback, and a 9-15 EPNdB decrease on sideline.

The 95 EPNAB footprint area reductions from baseline given in the NAID
(reference 13) for 3° approach/takeoff without cutback at MBRGW are: an 82%
decrease in area for minimum treatment, an 84% decrease for intermediate
treatment, and a 91% decrease for maximum treatment.

Additional comparisons of FAR- 36 noise levels and noise level contours
for the baseline and refan nacelles are shown later under "Noise Comparlsons
for JT8D-Powered Aircraft'.

Nacelle Selection - As was the case for the 727, the maximum treatment
nacelle for the 737 is not a practical refan option because of the unproven
nature of the mixer nozzle. The intermediate and minimum treatment nacelles
are considered to be more suitable configurations. Further trade studies
would be required to make a final selection.
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DC-9 Airplane

The DC-9-32 airplane with JT8D-9 engines was selected as the baseline con-
figuration for the DC-9 portion of the refan program. Complete results of
the DC-9-32 refan nacelle and airplane integration definition (NAID) studies
of early Phase I are given in reference 1L which is the preliminary NAID
for the DC-9-32/JT8D-109.

This section summarizes results of the DC-9-32 Phase I studies. It de-
scribes the refan nacelle configurations, airplane modifications required
to install the nacelles, airplane performance, and noise reductions.

Refan Nacelle Configurations - The refan nacelle configurations studied
in early Phase I are shown in Figure 17. They consist of:

1) A minimum treatment nacelle which provides a treated-wall and
treated-bullet inlet; treated-wall engine fan ducts extending to
the nozzle flange; a treated-wall nozzle; and a target-type thrust
reverser for the confluent fan and primary flows;

2) An intermediate treatment nacelle which provides a treated-wall
and one-ring inlet; treated-wall fan case ducts; a treated-wall noz-
zle with treated-wall centerbody; and a modified target-type reverser;
and

3) A maximum treatment nacelle which provides acoustic treatment of
the inlet wall, bullet and ring; treated-wall fan ducts? treatment
of nozzle wall, centerbody and ring; and a target-type reverser.

Airplane Modifications - The airplane modifications required to install
and integrate these refan nacelles on the DC-9-32 airplane basically consist
of airframe modifications and nacelle subsystem changes.

The airframe modifications will include: new shorter pylons including
relocation of pylon firewall to the fuselage wall; new engine mounts and
vibration isolators due to increased engine weight; some reinforcement of
fuselage frames and skin adjacent to pylons for increased loads and to pro-
vide a firewall; and some reinforcement of keel caps near the landing gear
wells.

Nacelle subsystems that require some modification include: nacelle
ventilation and drain systems, fire detection and extinguishing systems,
engine o0il and fuel systems, CSD/oil cooler and generator cooling systems,
engine control and instrumentation systems, engine bleed air and starting
systems, and engine and nacelle inlet anti-icing systems. These changes
mainly involve relocation or changes in minor components. bleed lines,
hydraulic lines, electrical lines, control cable and devices, etc. caused
by increased engine diameter and length.

L6



Airplane Performance - Predicted airplane performance characteristics
for the JT3D-9 baseline nacelle and the three refan nacelles are shown in
Table 9. A change from baseline nacelle to the refan nacelles is seen to
have the following effects: 1Installed sea-level-static thrust and sea-
level M=0.27 takeoff thrust generally increased for the three refan nacelles,
varying with the degree of treatment. Installed maximum cruise thrust
generally decreased and TSFC's increased, varying with treatment. Opera-
tional empty weight (OEW), which reflects the combined changes in engine,
nacelle and ballast weights, increased due to the larger refan engines and
varies with treatment. Maximum brake release gross weight (MBRGW) was held
constant at the baseline value. Takeoff field length required decreased
and height above runway generally increased, both varying with treatment.
Airplane range with full-passenger-payload of 20,000-1bs. and range with
typical-mission-payload of 15,000-1bs. both decreased, varying with treat-
ment; the latter range decreased 1.4% for minimum treatment. DOC costs,
based on data in reference 9, and retrofit costs, based on data in refer-
ence 10, both increase with increase in nacelle treatment level. A
comparison of range values at other paylcads is shown in the payload-range
curves of Figure 18.

Noise Reduction - The predicted noise reductions in terms of EPNL values
at the FAR-36 measuring points in changing from baseline nacelle to refan
nacelles are seen in Table 9 to include: a 6-11 EPNAB decrease on approach;
an 11-12 EPNdB decrease on takeoff without cutback, a 9-10 EPNdB decrease on
takeoff with cutback, and an 8-10 EPNdB decrease on sideline.

The 90 EPNAB footprint area reductions from baseline given in the NAID
(reference 14) for 3° approach/takeoff without cutback at MBRGW are: a T9%
decrease in area for minimum treatment, an 83% decrease for intermediate
treatment, and an 84% decrease for maximum treatment.

The relatively small increase in area reduction for the intermediate
and maximum treatment nacelles over that obtainable with minimum treatment
"~ does not appear to justify the increased retrofit costs, maintenance costs,
and performance losses for the intermediate and maximum treatments.

As a result of these studies, two additional refan nacelle treatments
were evaluated late in Phase I which were generally designed to provide
noise reductions greater than the intermediste treatment with performance
and economic penalties less than the intermediate treatment through elimi-
nation of any treated-ring or treated-bullet in the inlet as well as any
treated-centerbody or treated-ring in the nozzle; instead inlet and nozzle
lengths were increased for additional treatment surface area:

Final-Phase I Refan Nacelle Configurations - Complete results of the
NAID studies for these two additional refan nacelle configurations (minimum
and maximum treatments) are given in reference 15 which is the second-sub-
mittal (or final Phase I) NAID for the DC-9—32/JT8D-109, These two final-
Phase I configurations are compared with the baseline nacelle in Figure 19
and include:

b7



1) A minimum treatment nacelle which provides a treated-wall 63-inch
length inlet, treated-wall engine fan ducts, a treated-wall T3-inch
length nozzle, and a target-type thrust reverser. For comparison, the
inlet and nozzle lengths on the early-Phase I intermediate treatment
were 39-inch and T5-inch, respectively, versus 63-inch and T3-inch for
the final Phase I minimum treatment; and

2) A maximum treatment nacelle which provides a treated-wall 75-inch
length inlet, treated-wall engine fan ducts, a treated-wall 110-inch
length nozzle, and a target-type thrust reverser. ’

Airplane Modifications - The airplane modifications required to install
and to integrate these refan nacelles on the DC-9-32 airplane are essentially
those described for the early-Phase I refan nacelles.

Airplane Performance - Predicted airplane performance and characteris-
tics for the JTS8D-9 baseline nacelle and the two final-Phase I refan nacelles
are shown in Table 10. A change from baseline nacelle to the refan nacelles
is seen to have the following effects: Installed sea-level-static thrust and
sea-level M=0.27 takeoff thrust increased for both refan nacelles, varying
slightly with treatment. Installed maximum cruise thrust and typical-cruise
thrust TSFC changes were minor. Operational empty weight increased due to
the larger refan engines and nacelles. Maximum brake release gross weight
was held constant at the baseline value. Takeoff field length decreased
and height above runway increased due to increase in takeoff thrust for the
refan engines. Airplane range with full-passenger-payload of 20,000-1bs.
and range with typical-mission-payload of 15,000-1bs. both decreased,
varying with treatment. DOC costs, based on data in reference 9, and
retrofit costs, based on data in reference 10, both increase with increase
in nacelle treatment level.

»

Noise Reduction - The predicted noise reductions in terms of EPNL values
at the FAR-36 measuring points in changing from baseline nacelle to refan
nacelles are seen in Table 10 to include: a T-8 EPNAB decrease on approach,
a 14 EPNdB decrease on takeoff without cutback, a 12 EPNAB decrease on take-
off with cutback, and an 11 EPNAB decrease on sideline.

The 95 EPNdB footprint area reductions from baseline given in the NAID
(reference 15) for 3° approach/takeoff without cutback at MBRGW are: an 85%
area decrease for minimum treatment and an 86% decrease for maximum treatment.

Additional comparisons of FAR-36 noise levels and noise lével contours
for the baseline and refan nacelles are shown under "Noise Comparisons for
JT8D-Powered Aircraft" in the section that follows.



Nacelle Selection - The minimum and maximum treatment nacelles studied
late in Phase I showed improvements in both acoustic and airplane perfor-
mance over the minimum (with treated-bullet) and intermediate (with treated
inlet ring and treated-nozzle centerbody) configurations, respectively,
studied in early-Phase I. However, the need for an inlet splitter ring
and/or additional tailpipe acoustic treatment has not been fully evaluated
as yet. Further trade studies are continuing and will result in a refan
nacelle configuration selection before commitment is made for the DC-9
flight test configuration.
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Noise Comparisons for JT8D-Powered Aircraft

FAR-36 Levels - Tabular listings of noise levels for JT8D-powered air-
craft are given in Table 11. As was done previously for the JT3D-powered
aircraft, noise level comparisons are made between the current (vaseline)
aircraft and various refan options. The viable refan options for the T2T,
namely minimum and intermediate treatment, reduce noise levels 5-T7 EPNdB
below FAR-36 on approach, about 9 EPNAdB at takeoff, and about 1k-15 EPNAB on
sideline. Improvements for the 2-engine aircraft (737 and DC-9) are some-
what less than for the 3-engine T27; however, they are still substantial
with noise levels well below the FAR-36 standard.

Bar-chart visualization of these FAR-36 measurement point values is
shown in Figure 20 for the approach and takeoff points. This shows the
potential benefits of refan depending on the nacelle treatment level.

Footprints - A better comparison of noise reduction benefits is ob-
tained by comparing noise exposure contours (footprints) rather than FAR-36
point measurements. 95 EPNdB single-event footprints are shown in Figure
21 for the intermediate-treatment refanned and current (baseline) 727 air-
craft at maximum takeoff gross weight. The refan nacelle with an intermediate
level of acoustic treatment provides significant area reductions at both
approach and takeoff as also noted by the table in the figure. Refan treat-
ment reduces the baseline footprint by 82%.

Similar footprint comparisons follow in Figures 22 and 23 for the IC-9
and 737 for levels of refan acoustic treatment which appears most likely at
this time. ,

The footprint of a wide-body DC-10 is shown in Figure 24 and is com-
pared to a 727 with intermediate acoustic treatment. Thus refan technology
applied to the T27 can result in an airplane comparing favorably with the
DC-10 from a noise exposure viewpoint.

Noise Level Uncertainties - The previous predictions of noise level
and aircraft performance are the best engineering estimates available from
Phase I studies. Future studies, testing, and development in Phase II will
naturally mature these estimates until a final product is delivered.

An area of uncertainty exists with respect to prediction of the low
frequency core noise component of refanned engine noise. Current predic-
tions are based on extrapolations from indirect measurements on existing
engines. Takeoff with power cutback has been identified as the flight
condition where low frequency core noise level is highest relative to
other engine noise source levels. A core noise contribution of 1 to 2
EPNAB to the total JT8D refanned engine noise is estimated for power cut-
back. Lesser or no contribution 1s expected at approach or takeoff.
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Core noise levels have been estimated only for the JT8D-powered aircraft
since the JT3D program was terminated before the acoustic analysis was exten-
ded to include core noise estimates. Boeing did not include the low frequency
core noise component in the refanned 727 and 737 noise levels in the Phase T
NAID's. Accordingly, the refan EPNL values at FAR-36 takeoff with cutback
given in Table 11 and Figure 20 include an increase of 1.5 EPNdB to the NAID
values to allow for core noise for these aircraft. Douglas estimates for
the DC-9 already include the low frequency core noise estimates in the NAID
values.

The sensitivity of community noise exposure to uncertainties in source
noise levels is illustrated in Figure 25, using the T27 aircraft as an ex-
ample. Footprint area is given as a function of the EPNAB contour of Iinterest.
For example, the 95 EPNAB contour for the current production aircraft en-
closes 9.5 sq. miles. The refan curve shown is for an intermediate level
of treatment and represents inputs of noise data based on the best design
estimates available. If further testing proves that these estimates are
incorrect by * 2 EPNdB, the footprint area curves would change as shown.

For the 95 EPNAB contour, the refan area reduction from the current area
could be from 87 to 77%.

Again, it should be stressed that the sensitivity of footprint calcu-
lations to input data and calculational procedure must be recognized in any
attempt to compare footprints discussed herein with those shown in the con-
tractor documents or with those from other sources. The most current noise
data and aircraft flight profiles were used in the footprints shown. The
relative benefits of various refan options (acoustic treatment levels) are
believed to be well represented.
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PROGRAM STATUS

JT3D Program

As noted earlier, the JT3D portion of the Refan Program was terminated in
January 1973. At that time, the JT3D final engine definition and prelimi-
nary design were complete and preparations underway for some design-
confirmation component-tests on the single-stage fan, #1 bearing, etc.

These tests were terminated but the final engine layout design was continued
to completion.

As for the nacelle and airplane integration design (NAID) studies at that
time, the preliminary and second-submittal NAIDS were complete. The final
summary reports of both airframe contractors, as well as the retrofit-
economic study reports have since been received and included in the results
herein. Design-confirmation model-tests were terminated except for the TOT
flutter tests and DC-8 long-duct refan interference drag tests which have
since been reported. No significant problems in refan of these aircraft
were found. :

JT8D Program

The JT8D program will be continued into Phase II. The Phase I work, ori-
ginally scheduled for completion in April 1973, was extended through June
1973 when Phase II started. The time extension was used to complete the
various Phase I studies and reports by the contractors, to finalize Phase
II negotiations with the contractors, and to further evaluate the refan
nacelles to be designed, fabricated and tested in Phase II.

Phase IT work for the engine contractor will consist of engine detail de-
sign, fabrication. and testing which includes both full-scale engine and
component tests. Some component tests are now in progress and the Phase
IT program is underway.

Phase IT work for the two airframe contractors will include final selection
of refan nacelles, final nacelle and airplane modifications design, fabri-
cation of nacelle and modification hardware, and ground or flight testing
depending on the funding available.

The 727 refan nacelle to be selected for Phase II design, fabrication and
testing will consist of either the intermediate or minimum treatment nacelle
or some combination of the two. Due to funding limitations, Phase II will
culminate in a ground test of the refan engine using a flightworthy side-
engine nacelle and using the same nacelle fitted with a non-flightworthy
center-engine S-duct inlet.



Similar refan nacelle treatments would probably be selected for the 737
airplane. However, efforts on the T37 will not be continued into Phase
IT due to limited funding.

The DC-9 refan nacelle to be selected for Phase II design, fabrication
and testing will most likely consist of the late-Phase I minimum treat-
ment nacelle with possibly some additional tailpipe treatment. Phase
IT will culminate in flight testing of a refanned DC-9-32 airplane.
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