
User Microprogrammable Processors for High
Data Rate Telemetry Preprocessing

CASE F I L E
COP v

James H. Pugs ley
E. P. O1 Grady

DEPARTMENT OF
ELECTRICAL ENGINEERING

UNIVERSITY OF MARYLAND

COLLEGE PARK. MARYLAND 20742

DEPARTMENT OF ELECTRICAL ENGINEERING UNIV. OF MARYLAND

July 1973

User Microprogrammable Processors for High
Data Rate Telemetry Preprocessing

Final report prepared under Grant NGR 21-002-355 £rom the
National Aeronautics and Space Administration

, James H. Pugsley
E. P. O'Grady

Tiie task of this project was to investigate the use
of microprogrammable processors for the preprocessing of
high data rate satellite telemetry. The major conclusions
of the project are summarized below.

I) Existing commercially available user micropro-
grammable minicomputers were surveyed and an assessment
made of their usefulness for such high data rate telemetry
preprocessing. These processors offer a significant
improvement in performance over non-micreprogrammable
processors* but come nowhere close to meeting the target
data rate of 30 megabits per second. Writable control
storage (i.e.* the ability of the user'to change the micro-
programs in control memory) increases the speed of telemetry
preprocessing programs.by a factor of from 5 to 15 over
that for ordinary microprogrammable processors* since the
algorithms needed are, in general simple enough for the
entire program to be executed from control memory without

the heed for main memory access.
*

I.I II) Considerably higher data rates would be possible
if the minicomputers used had a few special microinstructions
available that were tailored to the bit manipulations
needed in telemetry preprocessing. Examples of such micro-
instructions are end for end reversal of the bits in a
word and various bitwise logical and shift operations*
possibly controlled by a mask register.

Ill) Even with the special microinstructions indicated
above the current execution:>speeds (c. 2CO nsec per micro-
instruction) of computers do not allow preprocessing at
30 megabit data rates. To achieve such rates will require
the use of multiple-computer configurations or special
purpose computers. The use of large scale computers rather
than minicomputers makes very little difference in the data

rates that can be achieved since the large computers are
superior to the minicomputers mostly in the areas of
arithmetic accuracy and speed of arithmetic operations*
neither of which constitute significant portions of the
telemetry preprocessing problem. An investigation was
begun of the problems in using a network of several mini-
computers to achieve the target data rates. With a special
purpose multiplexer on the front end and a matching demulti-
plexer at the outputs a parallel connection of minicomputers
can theoretically achieve any desired data rate. In practice
problems of control and system reliability appear to dictate
a structure other than a simple parallel connection. It
appears that a minicomputer network could in practice handle
data rates of up to possibly 100 megabits per second* but
this is a tentative conclusion and further studies of system
configuration* control* and communications problems are
needed.

Each of the areas mentioned above is discussed in the
following pages* along with supporting studies made in the
course of the project. Significant among the latter was
a study of the use of simulation -techniques in the design
and evaluation of minicomputer systems. The results of this
study* which compared FORTRAN, APL, and a special purpose
simulation language CDL (1), indicate that for the class of
systems under consideration for telemetry preprocessing
AFL is the best choice for the simulations. A brief report
on this study is presented in Appendix A.

I. Evaluation of commercial microprogrammable minicomputers
for telemetry preprocessing tasks.

To get some quantitative answers on what data rates
were achievable certain of the data formats from OAO-A2
were selected as providing a representative mix of the formats
likely to be encountered in high data rate observatories. In
particular we considered the DD (direct digital)» SD (status
data)> CM (command memory), and ED (experimenter data)
formats. Our assumption is that while the absolute data
rates will change> these data formats will remain repre-
sentative and that the relative data rates of these various

"data"formats on OAO-A2 will "still be correct for forthcoming
high data rate satellites.

An investigation of commercial minicomputers indicated
that the microinstruction sets of the available computers
are similar enough so that there was little difference from
one computer to another in the complexity of-the programs
for telemetry preprocessing tasksi as long as the computer
had general purpose registers. Detailed consideration was
given to the Microdata 800> the Hewlett Packard 2100i the
Burroughs D-Machinei and the Standard Computer MLP-900. In
addition more limited investigation was made (limited by the
~data available') of the Varian 73 and the Interdata 80.""""'
Detailed comparisons of three of the computers studied are
_given in Appendix B.

The computers surveyed"were" also "very" similar" in the '"
time required to execute a single microinstruction. In
view of these facts all examples actually programmed were
for the Microdata 800» for which software documentation
^was^rgadily available_tP_us.. .
7~~ . Accordingly we investigated some of the" algorithms
for preprocessing of these telemetry formats and the imple-
mentation of these algorithms on available minicomputers.
Many of the formats require primarily the separating of.
the incoming data stream words •••(which differ in length)

into uniform length computer words. For example the ED
format contains a mixture of 8-bit> 12-bit* and 2^-bit
words. Such separation into computer words is readily
performed by shift operations in the computers investigated*
and is not the-, most..severe constraint on_the__data rate__
attainable. More severe constraints are imposed by formats
such as the OAO-A2 DD format* and for this reason the DD
format was chosen as typical of the high data rate pre-
processing problems. While other formats were programmed
during the investigation* the remainder of this report will
juse .the DD format as an example.
~'r"" in this format the telemetry data words are eight bits

 r

long* identical to the 8-bit word length of the Microdata 800.
The data words represent light intensity values from the SAO
(Smithsonian Astrophysical Observatory}'-experiment aboard
the spacecraft. These values are packed 2^1 per telemetry
frame* and 2^6 such frames make up a picture with a
television-like scan. The major preprocessing needed on
each data word in this format is to reverse the word end
for end* so that the most significant bit becomes the,least
significant bii * and vice versa* and to complement the
second* fourth* and sixth bits of the resulting worcl.
(Clearly the complementation can be done before* after* or
during the bit' for bit reversal.) The optimum microprogram
to perform these operations on a MICRODATA 800 requires
20 microinstructions including I/O. The microinstruction
execution time for this machine is 220 nsec per micro-
instruction* but a figure of 200 nsec will be used in timing
computations as more representative of the state of the art
in commercially available minicomputers."4" This gives a time
of 4.0 v.sec required to process each eight bit data word*
corresponding to a data rate of 2 megabits per second.

"*" The range of microinstruction execution times for the

computers surveyed was 196-220 nsec.

The availability of writable control memory in the
computer is critical to the data rate achievable. If the
computer has to fetch instructions from main memory each
instruction fetch will require on the order of 1 visec and
the time required to process each data word will be increased
by a factor of about six. The program actually written for
the OAO-A2 DD format on the MICRODATA 800 ran entirely in
control storage and made no use whatever of the main memory
of the computer. This type of operation is essential to
the real time preprocessing of data at rates in the megabits
per second range» and is achievable in practice because the
telemetry preprocessing algorithms are rather simple in
nature. The typical control store for a user microprogram-
mable minicomputer has from 2^6 to 2048 words (micro-
instructions) of control memory. Certainly at the upper
end of this range enough control storage is available to
contain'"microroutines for each of the formats for most
satellites. In this sort of operation the main memory
_wpuld be used chiefly for swapping microprograms when

shifting from one satellite or format to another.
The relationship between data word length and computer"

word length has an obvious effect on the maximum processing
rate* the worst situation being when the data words are one
bit longer than the computer words. The microinstruction
sets of the computers surveyed do not seem to be appreciably
better or worse than the instruction set of a typical non-
microprogrammed computer at handling this sort of problem.
The availability of the "special" microinstructions discussed
in section II of this report would be helpful in those cases
where the data and computer word lengths are badly mismatched.

II. Microinstruction sets for telemetry preprocessing.

. In writing microroutines to perform the desired format
translations on the various OAO-A2 formats some processing
steps or subalgorithms came up repeatedly* and among
these were a few that were relatively time consuming. The
designers of available minicomputers did not have in mind
the type of bit manipulations needed in telemetry pre-
processing when determining the microinstruction repertoire
of the computer. Consequently the implementation (in
hardware) of a very few "special" microinstructions in a
minicomputer that was otherwise quite standard would sig-
nificantly increase the data rate capabilities of the-
computer. Recommendations for such special microinstructions
are discussed in this section. A table of existing
microinstructions in commercial minicomputers is given in
Appendix B.

One of the chief culprits in consuming time for
format translation is the necessity in many formats for
reversing the order of the bits in each data word. Such
an operation is awkward on almost every computer> involving
successive shift> test> and load instructions. We have
yet to find a computer* whether microprogrammed or not*
whose instruction set makes this transformation quick or
simple. For example* of the 20 microinstructions needed
for the OAO-A2 DD data word format translation* 15 are
due to the need to reverse the bits in the word. The
implementation in hardware of a single microinstruction
to perform this operation would significantly reduce the
time required and consequently, raise the maximum data

rate that can be accomodated in real time. If a single
200 nsec reversal instruction were available the time to
process a DD format data word would drop to 6 x 200 nsec
= 1.2 y.sec> corresponding to a telemetry data rate of 6.6?
megabits per second.

Next in order of importance are operations such as
selectively complementing certain bits in each data word.
In some existing minicomputers this requires a micro-
instruction execution for each bit that must be complemented
and a number of shift operations. In other microcomputers
the microinstruction repertoire is rich enough to allow
a single instruction to complement the desired bits. For
this reason care should be taken in the selection of a
minicomputer for telemetry preprocessing* to insure, the
existence of at least some general purpose registers in which
to store the pattern of bits to be complemented* and the
availability of logical operations such as a register to
accumulator bitwise exclusive-OR operation in the micro- .
instruction set. Setting I1s in the mask register in the
positions where the bits are to be complemented and then
exclusive-Or'ing the mask register with the data word will
produce the desired result in the accumulator. The
MICRODATA 800, has such an instruction and the resulting
microprogram to perform the desired format translation on
each OAO-A2 DD format intensity value word has the form:

START INPUT TO AC
REVERSE WORD

. EXOR MASK TO AC •

OUTPUT PROM AC

INCREMENT COUNT AND SKIP IF 0

JUMP TO START.

Of.course the MICRODATA does.not have a single instruction
to perform the REVERSE WORD operation. The register used
to count the 2^1 data words in a frame must be set to -2̂ 0
at the start of each frame* and other segments of microcode
are needed to do this! and to take care of the processing

8

needed on the 32-bit frame sync pattern and the single 8-bit
line number word that appear in each frame. The processing
steps that must be performed on the frame sync and line number
bits are less complex than those for theidata. A typical
format (DD) has four bytes of FSP to 2^2 bytes of data» so
the influence of the FSP processing time will certainly not
be major. It seems safe to assume that the FSP and bookkeeping
portions of the preprocessing programs will not cause
appreciable reductions in the maximum data rates attainable.

i

The gain in speed available from user microprogrammed
computers is due to the fact that the programs are in faster
memory. There are very few arithmetic operations required
for telemetry preprocessing algorithms. Consequently the
set of rather :elementary operations available at -the micro-
instruction level is as well suited for the implementation of
these algorithms as are the machine language instruction sets
of conventional computers. As computer main-memories get
faster user microprogramming may lose some of its advantage>
but at present it appears to offer the most promising path
to high data rate telemetry preprocessing.

If some specifications can be imposed" on the micro-
instruction repertoire» it would be desirable to include
some powerful shift operations> which could cut processing
times for some formats. The available minicomputers have
only single "bit shift and single bit rotate instructions}
whereas many larger computers have single-instruction shift-
by-n operations available. It is certainly within the
current state of the art to include shift and rotate by n
microinstructions within the microinstruction repertoire
of a minicomputer* with n being the value in one of the
general registers. The obvious choice is to implement in
hardware the set of microinstructions

' SHIFT AC RIGHT BY (R)

SHIFT AC LEFT BY (R)

ROTATE AC RIGHT BY (R)

. ROTATE AC LEFT BY (R)

where (R) denotes the contents of one of the addressable
general registers. The logic design of a gate network to
implement these four operations and the reversal of the "bits
in the word was carried out to insure that implementation of
such instructions was feasible. The entire network required
approximately 65~gates» and even with standard TTL logic
the delays through the network were compatible with a 200
nsec microinstruction cycle time.

In summaryi the use of a user microprogranmable mini-
computer will allow real time preprocessing of telemetry
data with data rates in the range of from one to possibly
five or six megabits per second. The data rates at the
upper end of this range are not achievable with commercially
available minicomputers but would require the hardware
implementation of some special microinstructions. Chief
among the special instructions that would be valuable,are
the reversal of the" order of the bits in the word and
multibit shift and rotate instructions. Implementation
of these instructions in a user microprogrammable mini-
computer is feasible if they are included during the design
phase* and should not increase the cost of the computer
appreciably. .

10

III. The use of multiple minicomputers to achieve high
data rate processing.

The problem in attaining 30 to 100 megabit data rates
with real time processing does not lie in the use of mini-
computers. While typical large scale computers may have
multibit shift and rotate instructions* most such computers
.are not user microprograminable. The programs for telemetry
preprocessing on such machines therefore must be stored in
and executed from main memory. This actually results in
longer execution times than can be obtained with a user
microprogrammable minicomputer. The greater word length
and fast arithmetic hardware of the large computer are of
virtually no benefit in most -telemetry preprocessing problems

These observations lead directly to the consideration
of a multiple-minicomputer system of some sort as a can-
didate in the high data rate situation. A variety of con-
figurations are possible> and some of the salient features
of several are discussed below.

The "classical" configurations are the pipeline and the
fully parallel structures* representing opposite ends of
the spectrum in interconnection topology. Considering first
a pipeline connection of minicomputers} the structure would
be that of Figure 1. With a 200 nsec microinstruction cycle

Figure 1. Pipeline configuration.

11

time for each of the processors this configuration is not
attractive for achieving the data rates in question. At
least an input instruction and an output instruction must
be executed.by each processor for each data word. No
minicomputers appear to be available which are capable of
simultaneous input and output> so at best two instruction
cycles are required for each data word. This limit is
achievable only if the computer has the ability to treat
the input bus as though it were a register and combine the
input of the data word with part of the processing in a
single instruction. For most computers> and for some data
formats no matter what computer is chosen» three instructions
is the minimum value for a single processor. Even this
assumes that the preprocessing algorithm can be broken
down into single-instruction blocks, '•'•'his results in very
inefficient use of the processorsi since each processor
executes only a single computational instruction. It would
be better to replace the minicomputers with" special purpose
hardware to perform the instruction in question if a pipeline
structure is actually used. In any case three instruction
cycles per processor yields data rates corresponding to
5 x 200 nsec per data word. For eight-bit data words this
is a rate of only 13-5 megabits per second. In view of
this figure no further consideration was given to pure
pipeline organizations.

A purely parallel organization^ as illustrated in
Figure 2> could in theory provide any desired data rate.

Figure 2. Parallel configuration.

12

As long as the demultiplexer at the front end can keep
up with the incoming data it requires merely providing
enough processors to handle the entire computation load
in the available time. If* for example* processors similar
to the MICRODATA 800 were used» with a single-processor
data rate capability of 2 megabits per second* then it would
require paralleling 15 such processors to achieve a 30
megabit data rate. The chief problems in such an inter-
connection of processors lie in the areas of timing and
control. Some way of synchronizing the various processors
must be used since interrupts and subroutine jumps in
response to them are orders of magnitude too slow for the
target data rates. Probably a single master clock for all
processors will be required. The demultiplexer and multi-
plexer must be capable of operation at the data rate of the
input telemetry stream. Unfortunately more needs to be . i

done than just segment the incoming data stream into equal
length words. The various telemtry formats .used on a given
spacecraft often have different word lengths and data- rates.
In addition there is sometimes a status word within the data
to indicate which format the current frame is using. This
will require that the front end demultiplexer have consider-
able computation and decision-making ability of its own; in
fact a computer is needed here. The decision algorithms
to identify the format of the incoming data are comparable
in complexity to the format translation algorithms for the
data words. If a computer could keep up with the decision-
making for a 30 megabit input data rate* then a similar
processor could handle the format translation and a two-
processor pipeline could achieve the desired data rate. The
problem is that processors with such speeds are not currently
available* as pointed out in the earlier sections of this
report. In addition* unless the control memory of each
processor is large enough to hold all of the microprograms
needed for all of the formats from a given satellite* it
will be necessary to swap microprograms from main memory.

13

This certainly cannot be done within the available amount
of time. The solution to these problems involves missing
the first frame or two of data when'a _shift in format occurs»

making use of the resulting time for the decision-making
process and any needed swapping of microprograms. With
this approach a minicomputer of the sort envisioned for
the parallel processors can be used to control the demulti-
plexer.

With the parallel configuration of Figure 2j and
ignoring the problems involved with the ends of a frame*
data words are sent successively to different processors
until the first processor has had time to complete processing
of the previous word it received. This round robin distri-
bution of data words is thus strongly dependent on the
amount of time per data word required by each processor
and on the number of processors. Adding another processor
to such a system* or changing the microprogramsi would
require extensive changes in the program to"control the
demultiplexer. -

A configuration which shows some promise from the
viewpoint both of flexibility and of reliability is a
distributed network illustrated in Figure 3- In such a

ty/fy//jj/j/
A

V fl1//////
B » » *

"U"!)/////z
K

Figure 3- Distributed configuration.

network each computation task is not addressed to a
particular processor but is put on a common communications

link along with, identifying information. Part of this
identifying information indicates what processing needs

to be done on the accompanying data. Hardware (possibly
using associative memory techniques) in each processor

checks to see if the processor is able (and free) to
perform the required operations. The processor then either
removes the data from the link and processes it> or ignores
the message if it cannot perform the operation. In this
latter case the message proceeds along the communications
link until it encounters a processor than can accomodate
it.

This configuration has the advantage that depending
on the programming of the front end processor that is
deciding what processing is required on each data word the .
system can behave like a parallel networki a pipeline
network* or anything in between. The feasibility of such
a system* as with any computer network» is extremely
dependent on the choice of effective communications pro-
tocols. Some preliminary investigations have been made
in this area» but it is hot yet clear either what the
protocols should be or what the details are of the optimum
structure for the network. One possibility on structure
is to form a "ring" of processors* as illustrated in Figure
4. This gives a system similar to the DCS system of Farber
(2) which is valuable in telemetry preprocessing chiefly

K
//////>
A1-

« « . c
\LU^A

Figure 4. Ring configuration,

because it gives a more richly connected networks with
resulting greater opportunities for continued operation
in the face of failure of a processor.

Our preliminary studies indicate that the use of a
network of minicomputers for telemetry preprocessing is
promising. More work is needed on possible structures
of the network» but the leading candidates at the present
are the distributed and ring configurations. Many questions
concerning the intercommunications between the processors
remain to be answered» but the network approach seems to
offer the best liklihood of achieving a general purpose
telemetry preprocessor that will accomodate 30 to 100
megabit data rates in real time.

16

REFERENCES

1. Y. Chu, "An ALGOL-like Computer Design Language," CACM,
vol. 8, October 1965, pp. 607-615.
2. D.J. Farber and K.C. Larson, "The System Architecture
of the Distributed Computer System-The Communications
System," presented at the Symposium on Computer Networks,
The Polytechnic Institute of Brooklyn, April 19?2.

. '* • A-l

S APPENDIX A

SIMULATION OF SMALL MICROPROGRAMMED PROCESSORS

At the outset of the project it was anticipated that we

would derelop a microprogram simulator to check and compare

different microprogram approaches. It is now out opinion

that writing such a.simulator would be a waste of effort.

Any simulation program general enough to cope with eren the

spectrum of microprogrammed minicomputers now arailable would

hare to be as complex as existing languages. The power and

flexibility of existing programs and languages* such as CDL

and APL i are at least the equal of any special simulation

language that we-could reasonably develop.

With these facts in mind we have attempted to determine

|what the efforts and costs for simulation of small processors

typically are. To get comparisons we selected one particular

microprogrammed minicomputer and set up three different simu-

lations of this same machine. These simulations represent

three rather different approaches to the problem of simulating

a minicomputer. The three techniques compared were: 1) a

simulation of the specific minicomputer written in FORTRAN;

2) a simulation of the minicomputer using CDL; and 3) anAPL

simulation of the mini. Each of these approaches is discussed

briefly below. The -minicomputer chosen was the MICRODATA 800.

Factors affecting this choice were that our investigations

.had shown it attractive for the telemetry format translation

ptoblem and the availability of a FORTRAN assembler and

simulator for this machine.

The FORTRAN simulator used was written by (or at least

for) the Microdata Corporation» and is supplied by them to

users of the MICRODATA 800. It is written,in ANSI FORTRAN

and consists of approximately 5000 FORTRAN statements.
l ?

CDL is a computer design and simulation language

developed by Dr. Y. Chu at the University of Maryland. CDL

compilers exist £or several machines> including the Univac
1108. To simulate a minicomputer in CDL it is not necessary

A-2

to write a complete simulation program» but only to describe

the computer's architecture in CDL and specify the output

desired from the simulator.

A simulation of the MICRODATA 800 in APL was developed.

This approach* like the use of FORTRAN, requires writing a

complete simulation program for each system to be simulated.

The power and flexibility of APL makes the job much easier

and faster in APL than in FORTRAN* however. Our experience

indicates that it actually requires less effort to write a

complete simulation program in APL than to prepare the

necessary data to describe a minicomputer in CDL.

To provide a basis for comparison* two specific programs

for the MICRODATA 800 were (investigated:. One was an 8 bit

by 8 bit multiply routine, and the other was a program to

translate an 8 bit word in OAO-A2 direct digital telemetry

format. This format translation requires reversing the word

(from Isb first to msb first) and complementing three specific

bits within the word. Each of the two programs was run on

each of the three simulators* and the average execution time

results are given in Table II. All of the computer runs' were

made on the University's Univac-1108.

Table I gives comparative data and estimates on the

simulation programs themeselves.

FORTRAN CDL APL

f statements
or cards
Number of statements C.QOO A-SO^ 80

Time to produce ^ man-months 3 man- 2 1/2 man-
simulation ' weeks weeks

Table I. Simulator Characteristics.

A In this case the .4̂ 0 represents the number of cards needed
to describe the MICRODATA architecture in CDL, not the size of

theCDL program itself.

A-3

Multiply routine
(11 instructions)

MICRODATA
800

15

Simulators
FORTRAN CDL APL

0.71 sec 101 sec 18 sec

format translation
program (18 instr.) 21 V-sec 1.04 sec 232 sec 21.1 sec

Table II. Execution Times.

The figures given in the tables above represent preliminary
and in some cases estimated data. The "time to produce simula-
tion" figure in Table I for CDL represents the actual time
required to prepare the input and get the simulation running
correctly> and does not reflect any of the development time
for CDL itself. The 5 man-month figure for the FORTRAN simulator
is an estimate based on the length and complexity of the program.
All of these figures in Table I assume that the person doing
the work is familiar with both the language in question and
with the structure of the minicomputer to be simulated.

The execution time results of Table II were somewhat
surprising. Our expectation had been that CDL would be faster
in execution than APL but slower than FORTRAN. On the basis
of our experimental data* we would conclude that CDL is not
an appropriate language for this sort of simulation. The
choice then, is between FORTRAN and APL. For a fixed computer
architecture* where the problem is program development* the
execution time advantage of the FORTRAN simulation would be
likely to more than make up for the longer program development
time. On the other hand, for investigating computer structures
and architecture, the flexibility of APL and the ease of
changing parts of the computer structure in the simulation
would probably outweigh the approximately 20/1 execution

time penalty relative to FORTRAN. We feel that the results

A-4

obtained in this study are typical, in that similar results

would be obtained in the simulation of any computer-like

system of comparable size and complexity to a microprogrammed

minicomputer.

References ~~

1. Y. Chu, "An ALGOL-like Computer Design Language," CACM,

Tol. 8, October 19&5> pp.607-15.

2« CDL-Users' Manual for the UNIVAC-1108, Computer Science

Centeri University of Maryland, August, 1070.

B-l

Appendix B

EXAMPLES OF MICROPROGRAMMED PROCESSORS '

Three microprogrammed processors are described in this section. The

Microdata MICRO 800 which is used in the examples in this report is a byte-

oriented minicomputer which does not employ writable control store. The
2 • 3Hewlett-Packard HP 2100A and the Burroughs Interpreter (D-Machine)̂ are

increasingly sophisticated 16-bit processors which employ writable control

store. The following sections briefly describe the three processors.

The microprogrammed arithmetic and logic operations of the three machines

are compared in Table B-l.

MICRO 800. The MICRO 800 is an 8-bit, byte-oriented minicomputer with

main memory cycle time of 1.1 microseconds and microinstruction cycle time

of 220 nanoseconds. It contains 15 general purpose registers (file regis-

ters) plus a number of internal processor registers. The control store

consists of up to four modules of 256-word by 16-bit read only memory.

Three microinstruction formats, reminiscent of the machine language

instructions found in most small computers, are used. They" are illustrated

in Fig. B-l. A four-bit op code in Bits 15-12 is used to distinguish

various microinstructions. Op codes 1 to 6 (hexadecimal) designate literal

commands in which a literal (i.e., a constant) stored in Bits 7-0 of the

command is loaded into various processor registers, used as a bit con-

figuration of data value in comparisons (tests) with file registers, or

added to the contents of a file register. Bits 11-8 designate the register

used in the literal command. Op codes 7 to F designate operate commands

which control the flow of data in or out and through the machine and per-

form arithmetic and logic operations. The arithmetic and logic operations

consist of the following: Add, Subtract, Or, Exclusive Or, And, and Shift.

Op code 0 designates an execute command which provides a means of modifying

a microinstruction before execution.

•$
Other computers employing writable control store include: Interdata

Model 80, Nanodata Corporation Model QM-1, Varian 73, Burroughs B1700,

and Standard Computer MLP-900 (formerly IC-9000). In addition, a number

of models of the. IBM 360 and 370 computer families contain writable con-

trol store which cannot normally altered by the user.

B-2

Table B-2: Arithmetic, Logic, and Shift Operations Available

MICRO 800 HP 2100A D-Machine

Arithmetic

X-V1 *
X+ Y x

X 4 Y * 1 x

X -Y (2's C) x

X - Y (I1 a C) x~

X - 1

X -f (XvY)

X + (XY)

Logic

X x

Y x

XY x

XY x

XY

XY

XvY x

XvY x

XvY •

XvY

XYvXY x

XYvXY

Shift

Left 1 x

Right 1 x

Left h

Arbitrary

x x

X X

X X

X X

X X

X

X

X

X X

X X

X X

X

X

X X

X X

X

X

X

x . x

X

X X

X X

X X

X

B-3

Literal Commands: OP f/r Literal

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Operate Commands: OP f c
*

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execute Command: 0 f/r Literal

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

or
0 f c

*
r

IS 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure B-l. MICRO 800 microinstruction formats. The notation is as follows.

OP—op code
f —file register designator
r —control register designator
c —control option bits
* —inhibits transfer of result to f
0 —op code of 0000

23J22 21 20

R-Bui

|
|

{

19 18 17

S-Buj

16J15 14 13

Function

8

12 11 10 9 8 | 7 6 5

\
| Stor» ! Special

1 1
i i

-li-L 2 1 0

i i
i skip

OR

9 .Jump Target

OR

Constant

Figure B-2. HP 2100A microinstruction format.

B-U

HP 2100A. The HP 2100A is a 16-bit-word-length computer with main

memory cycle time of 980 nanoseconds and microinstruction cycle time of

196 nanoseconds. It contains 8 hardware registers; (four of which are

scratch pad) plus a programm counter. It is not a totally micropro-

grammed computer as some of the controls for input/output operations and

for skip instructions are hardware generated.

The control store consists of up to four modules of 256-word by

2li-bit memory. The modules can include a combination of read-only memory

and writable control store. Writable control store modules are installed

in standard input/output slots and thus can be modified dynamically using

standard input/output operations. Microinstructions implementing the

machine operations considered to be the basic HP 2100A instruction set

are normally stored in module 0. Modules 1, 2, and 3 are available for

user-specified micprograms.

The microinstruction format for the HP 2100A consists of six fields.

It is illustrated in Fig. B-2. Typical functions specified by each field

are as follows.

R-Bus Field—specifies a register as one of the inputs to the arith-

metic and logic unit (ALU).

S-Bus Field—specifies a register as one of the inputs to the ALU.

Function Field—specifies ALU function or other control function.

Store Field—specifies a register as destination of the ALU output.

Special Field—specifies a main memory read or write cycle.

Skip Field—specifies a condition for a possible microinstruction

skip decision.

Burroughs Interpreter. The Burroughs Interpreter, also referred to

as the D-Machine, is a 16-bit-word-length, general purpose, micprogrammable

processor designed for use as a hardware building block in larger multi-

processing systems. The processor contains 3 general purpose registers and

a number of internal registers. The architecture of the D-Machine is

determined by its microprogrammed instruction set.

The control store is separated into two parts called the microprogram

memory (MPM) and the nanomemory (NM). The MPM contains 16-bit micro-

instructions in blocks of 6k words, expandable to 1*096 words. The KM con-

Main
Memory (16-bit)

Microprogram
Memory (16-bit)

Nanomemory
(56-bit)

Mt-n

LDA Zoo

ADD SMZ
STA 112.

MM I

MM 2

NM4
NM23
\

MM I

MrVU

N M 3

W M 4

O t i C - ' • • • • • I 1 O I Qo

1 1 (3 1 <0 1 M 00

I OO O M O 1 O0

o o t i - - • • o o ocoo
(I I I I (0 I 06

1 t O I • • • •• 1 l<3 loo

1 •

A LU. Co/tJTGOL>,

ETC.

Figure B-3. Relationship among Main Memory, Microprogram Memory (MPM),
and Nanomemory in D-Machine.

Table B-2: Nanoinstruction Fields in D-Machine

Nano-Bits Function

1-4 Select conditions
5 Selects true or complement of condition;
6 Specifies conditional or unconditional LU

operation.
7 Specifies conditional or unconditional '

external operation (memory or DDP).
8-10 Specify set/reset of condition.

11-16 Microprogram address controls (wait, skip,
step, etc.).

17-26 Selects A, B, and Z.
27 Carry control

28-31 Select Boolean and basic arithmetic operations.
32-33 Select shift operation.
34-36 Select inputs to A registers.
37-40 Select inputs to B register.

41 Enables input to MIR.
42 Enables input to AMPCR.

43-43 Enable and select input to address registers
and counter (MAR, BR!,BR2,CTR).

49-50 Select SAR preset.
51-54 Sciect external operations (read, write, lock,

etc.).
55-56 Not assigned.

B-6

tains 56-bit nanoinstructions in blocks of 6k words, expandable to

k096 words. Figure B-3 illustrates the relationships among-main memory,

MPM,. and NM. If instructions stored in main memory are referred to as

machine instructions, each type of machine instruction provides an

entry address into MPM where a sequence of microinstructions for executing

the machine instruction is stored. Most of the microinstructions call for

execution of a nanoinstruction in NM. Use of two levels of memory (MPM

and NM) in the control store provides the powerful microoperation com-

binations associated with a long (56-bit) microinstruction word while

minimizing the total number of memory bits required. An effective micro-

instruction cycle time of about 200 microseconds is possible using fast

semiconductor memory.

Microinstructions are of two types. Type I instructions contain an

address which specifies a location in NM from which a nanoinstruction is

fetched and executed. Type I instructions are executed in two phases

(Phase 1 and Phase 3), each requiring a single clock cycle. When two

Type I instructions are executed in sequence, execution of Phase 3 of one

instruction and Phase 1 of the following instruction is overlapped.

Type II instructions contain literal data which are transferred to internal

registers. Type II instructions are executed in a single clock cycle.

Of primary interest in this study are the operations which can be

controlled by execution of a 56-bit nanoinstruction. Table B-2 illustrates

the fields present in each nanoinstruction; The fields can be classified

into four groups according to the time interval during which they exercise

control. The time intervals and nanoinstruction bits for each group are

as follows.

1. During Phase 1. Bits 1-5 specify a condition which is to be tested to

determine the course of subsequent operations. Bits 6 and 7 specify whether

the subsequent operation is to be an ALU operation or an external operation

such as a main memory read or write.

2. At the end of Phase 1. Bits 11-16 specify how the next MPM address is

to be determined. If an external operation has been specified, Bits 8-10

specify a condition which is to be altered and Bits 5l-5k initiate a specific

external operation.

B-7

3. During Phase 3. An ALU operation is executed. Bits 17-19 specify

one input source to the ALU. Bits 20-26 specify a second input source to

the ALU. Bit 27 allows or inhibits carry propogation between bytes.

Bits 28-3! specify the arithmetic or logical operation to be executed by

the ALU. Bits 32-33 specify the type of shift operation, if any, to be

performed on the output of the ALU. It should be noted that the result

of an ALU operation controls some of the processor conditions which are

tested by the Phase 1 portion of the next instruction.

li. At the end of Phase 3. The result of an ALU operation is transferred

to a number of destination registers. The destination registers and the

types of transfer are specified by the fields in Bits 3li-50 of the nano-

instruction.

References

1. Microprogramming Handbook, 2nd Editionj Microdata Corporation, 1972.

2. Microprogramming Guide for Hewlett-Packard Model 2100 Computer,

Hewlett-Packard Company, 1972.

3. Davis, R. L., and S. Zucker,"Structure of a Multiprocessor Using
Microprogrammable Building Blocks", National Aerospace Electronics

Conference, 1971.

