
N 7 4 1 0 1 7 7

Final Report

Covering the Period 1 June 1971 to 31 July 1973

RESEARCH IN ADVANCED FORMAL
THEOREM-PROVING TECHNIQUES

By: B. RAPHAEL, R. FIKES. and R. WALDINGER

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
HEADQUARTERS
600 INDEPENDENCE AVENUE, S.W.
ROOM 607
WASHINGTON, D.C. 20546
Attention: MR. CHARLES PONTIOUS

STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 • U.S.A.

STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 • U.S.A.

Final Report

Covering the Period 1 June 1971 to 31 July 1973

August 1973

RESEARCH IN ADVANCED FORMAL
THEOREM-PROVING TECHNIQUES

By: B. RAPHAEL, R. FIKES, and R. WALDINGER

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
HEADQUARTERS
600 INDEPENDENCE AVENUE, S.W.
ROOM 607
WASHINGTON, D.C. 20546

Attention: MR. CHARLES PONTIOUS

CONTRACT NASW-2086

SRI Project 8721

Approved by:

B. RAPHAEL, Director
Artificial Intelligence Center

BONNAR COX, Executive Director
Information Science and Engineering Division

Copy No. ...t?r.O...

ABSTRACT

This report summarizes the results of a three-year project aimed at

the design and implementation of computer languages to aid in expressing

problem solving procedures in several areas of artificial intelligence

including automatic programming, theorem proving, and robot planning.

The principal results of the project have been the design and implementa-

tion of two complete systems, QA4 and QLISP, and their preliminary ex-

perimental use. QA4 has been documented in detail in a previous techni-

cal report. x This report contains a description of how both QA4 and

QLISP have been used; the Preliminary QLISP Manual is attached as an

appendix.

*
References are listed at the end of this report

iii

CONTENTS

ABSTRACT iii

TABLE OF CONTENTS v

LIST OF ILLUSTRATIONS vii

ACKNOWLEDGMENTS ix

I INTRODUCTION . 1

A. Background 1

B. New Programming Languages for AI Research 2

C. Overview of the Project 4
4

II APPLICATIONS OF QA4 AND QLISP 5

A. A Deductive Retrieval System 5

B. A General Tree Searching Package 8

C. A Hierarchical Robot Planning and Execution System . 10

D. Program Verification 12

REFERENCES 19

APPENDIX 21

ILLUSTRATIONS

1 Simplified Flow Chart for Perform 13

vii

ACKNOWLEDGMENTS

No useful programming system can be developed without the coopera-

tion of users who are willing to exercise each new experimental release,

thereby helping to debug the system and provide valuable criticism to help

in designing the next improved version. In addition to the authors of

this report and its appendix, the following people helped us by using

various undebugged versions of QA4 and QLISP: J. F. Rulifson, N. J.

Nilsson, K. Levitt, B. Elspas, C. C. Green, I. Greif, M. Stickel, D.

Lenat, D. Shaw, T. Garvey, and A. E. Robinson. The research applications

for which QA4 and QLISP have been used are supported at SRI by the' fol-

lowing sources: ARPA, under contracts DAHC04-72-C-0008 and DAHC04-72-

C-0009; NSF, under grant GJ-egl46; and ONR, under contract N00014-71-C-

0294.

ix

I INTRODUCTION

A. Background

During the late 1960s the SRI Artificial Intelligence Center was

engaged in a variety of research projects in the areas of automatic

theorem proving,2 question answering,3 problem solving,4 and robot

systems.5 One of the themes of this collection of projects was the use

of a theorem proving system, QA3,6 as the single deductive mechanism appli-

cable to a range of other project goals. This approach had obvious ap-

peal: Isolating the deductive component as an identifiable module

simplified the conceptual structure of the various systems, and one

could hope that improvements to the theorem proving module could cause

the performance of all the other systems to improve simultaneously.

In practice, our approach had limited success. We did indeed develop

demonstration systems for question answering and robot planning that were

at least comparable in ability to any others in existence at the time.

However, these systems could not be extended easily to handle larger,

more realistic problem domains. A major bottleneck seemed to be the

limited expressive power of first-order predicate calculus, the formal

language used in our theorem proving system, for encoding the complex

knowledge needed by the computer to solve harder problems.

In June, 1970, we began work for NASA on advanced formal theorem

proving techniques. Our original plan was to develop a richer logical

calculus to substitute for our QA3 system. We quickly discovered, however,

that the problem of developing an automatic theorem prover for a system

of logic—such as a higher-order predicate calculus that has the expres-

sive power needed for interesting artificial intelligence research—

1

is itself a difficult problem of artificial intelligence (AI). Moreover,

we decided that work on this class of problems was severely handicapped

by inadequacies of the then-existing programming systems. Just as list-

processing languages freed AI programmers from a mass of bookkeeping de-

tails and enabled a spurt of major research results a decade ago, we felt

that new languages with a variety of novel built-in features we were just

beginning to understand could promote a major step forward in AI progress

today. Therefore, the NASA supported effort quickly turned from the

study of theorem proving techniques per se to the development of software

systems that we felt were prerequisites for major research progress in a

broad spectrum of AI activities.

This report describes the results of three years' work on the de-

velopment and experimental use of new programming languages for AI

research.

B. New Programming Languages for AI Research

A new. generation of programming languages is now becoming available.

These languages, which have many features in common, were developed more

or less simultaneously by several AI research laboratories, in response

to largely independently-discovered needs. A tutorial review of some

of these languages is given in Ref. 7.

The special features common to most of these languages can be de-

scribed under the following headings.

(1) Data Types and Memory Management. In addition to the now

familiar symbolic data types, lists and strings, the new

languages allow manipulation of such constructs as sets,

trinary associations, and formal theorems. They also

usually provide large, permanent data stores, with effi-

cient built-in storage and retrieval procedures.

(2) Control Structures. The major innovations are automatic

backtracking, programmable changes of control environment

("contexts"), pseudoparallel processes, and automatic

condition monitoring devices ("demons").

(3) Pattern Matching. Complex pattern matching functions can

be used for verifying the structure of the data, binding

variables to subexpressions of the data, and selecting

appropriate programs to execute.

(4) Deductive Mechanisms. Built-in search and default

inference procedures are useful features of these systems.

(5) Special Operating Environment. Opportunity for intimate

on-line interaction and powerful debugging facilities

greatly enhance the effectiveness of a programming sys-

tem.

The following languages are t<he major representatives of this new

generation.

(1) SAIL,8 a combination of ALGOL and an associative informa-

tion retrieval system called LEAP, extended to meet the

needs of the Stanford AI Laboratory.

(2) PLANNER^ a language developed at MIT in connection with

the concept of procedural representation of knowledge.

(3) CONNIVER,10 a successor of PLANNER that gives the program-

mer more direct control and responsibility with respect

to program direction.

(4) POPLAR,11 an extension of the POP2 language developed at

the University of Edinburgh School of AI.

(5) QA4 and QLISP, the languages developed at SRI under the

project reported here.

3

We believe that QLISP contains most of the desirable features of

this new generation of languages in a well designed system framework,

and that it has an excellent chance of becoming the most important soft-

ware tool for the next few years' AI research.

C. Overview of the Project

During the first year of this project, 1970-71, our ideas about

needed language features were crystallizing. These ideas were documented

in a variety of memos and papers that are summarized in an annual report.12

The second year, 1971-72, was primarily devoted to the implementation, re-

finement, and initial use of a -major new programming language, QA4. That

system, along with its motivation, philosophy, and uses, was documented

in a 360-page technical report submitted in November of 1972 . -1

Since late 1972, our primary activity has been the development of

a second generation of our new language. The resulting system, called

QLISP, will contain all the desirable features of QA4; but, they will

be packaged in a much more efficient and more usable framework. We ex-

pect QLISP to be the major programming system for AI research at SRI for

years to come.

Although QLISP still needs some significant modifications, a pre-

liminary version is now operational. The Preliminary QLISP Manual is

attached as an appendix to this report. We plan to make this manual

available separately as a Technical Note in order to promote experimen-

tation with the system.

Even though QA4 and QLISP are still incomplete experimental systems,

we have already used them effectively for substantive research, partially

supported by other projects, in the general areas of robot planning, the-

orem proving, and 'automatic programming. The next section of this report

describes some of these applications.

II APPLICATIONS OF QA4 AND QLISP

During the past year QA4 and QLISP have been used as tools in the

exploration of design ideas. With the aid of QA4 and QLISP we have found

it much simpler to create trial implementations of ideas and to run ex-

periments with those implementations than we have in the past. QA4 and

QLISP contain the pattern matching, expression manipulation, modeling,

and control that are common to much of our work, and therefore a new

program design idea can be quickly implemented without having to expend

large amounts of effort rebuilding these basic mechanisms. Some of these

implementations and features of QA4 or QLISP that were particularly use-

ful are discussed below. This discussion assumes that the reader is

familiar with the basic QA4 notations, such as inverse quote mode, and

concepts, such as the use of "demons." These notations and concepts are

described extensively in Ref. 1.

A. A Deductive Retrieval System

In our work with robot planning and more recently in our work with

a system for providing guidance to a man doing some maintenance task,

our programs need to maintain a model of the physical environment in which

the robot activity or maintenance operation is taking place. Our plan-

ning, monitoring, and advice-giving programs ask questions of this model

to determine how they should proceed. Hence, we need a question answer-

ing subsystem that can interface with the model. This subsystem should

provide a deductive capability for dealing with questions whose answers

are not explicitly stored in the model but whose answers can be deduced

from information that is in the model. A new design for such a subsystem

was tested during the last year with an implementation in QA4.

This design is an augmentation of the QA4 model retrieval statements

EXISTS and INSTANCES. These statements retrieve from the model one or

all true instances of a given expression containing variables (i.e.,

a pattern). For example, the statement (EXISTS (ON -X DESK1)) could re-

trieve from the model one object that is on DESK1, and the statement

INSTANCES (ON «-X DESK1)) could retrieve all objects that are on DESK1.

Now, consider as another example the statement (EXISTS (TOP:CLEAR DESK1)).

This statement will look in the model for the expression (TOP:CLEAR DESK1)

to indicate that no objects are on DESK1. If that expression does not

have value TRUE in the model then the query will fail even though a

simple deductive process that looked in the model for expressions of the

form (ON *-X DESK1) could determine an answer to the query. The new

design attempts to make it easy to add such deductive processes to the

system and thereby turn the retrieval mechanism into a question answer-

ing mechanism.

The design allows the user to associate with each predicate in the

system (e.g., ON, TOP:CLEAR, IN:ROOM) a list of deductive programs that

will be called whenever true instances of an expression containing the

predicate are being searched for in the model. Hence, one could asso-

ciate a deductive program with the predicate TOP:CLEAR that would perform

as described in the previous paragraph.

One common use of these deductive programs is to determine that an

expression is false based on uniqueness properties of the predicate. For

example, if there is a query asking whether OBI is in room RM1, i.e.,

(EXISTS (IN:ROOM OBI RM1)), a deductive program could look in the model

for any true expression of the form (IN-.ROOM OBI *-X) . If such a true

expression is found and the room name that matched with <-X is not RM1,

then the deduction can be made that OBI is not in RM1.

Standard deduction programs are included in the system for NOT,

AND, and OR. These programs allow one to ask questions such as: "Find

6

a desk in either room RM1 or RM2 whose top is clear." The QA4 form of

that query might be (EXISTS (AND (TYPE -X DESK) (OR (IN:ROOM -X RM1)

(INrROOM -X RM2)) (TOP:CLEAR -X))). To answer this query an AND deduc-

tive program is first called. It would ask for an object of type DESK

from the model. If one is found, say Dl, then it asks if (OR (INrROOM

Dl RM1) (IN:ROOM Dl RM2)) is true. This query calls an OR deductive

program which might in turn call an IN:ROOM deductive program that

could determine which room Dl is in by asking the model for the location

of Dl. If Dl is found to be in either room RM1 or RM2, then the AND pro-

gram will ask if (TOP:CLEAR Dl) is true. This might cause a TOP:CLEAR

deductive program to be called that would ask the model for any objects

X for which (ON «-X Dl) is true; if no such objects are found, then Dl is

returned as a desk that satisfies the conditions in the original query.

This question answering process makes use of the QA4 backtracking

capabilities when there is a need for more than one answer to a query.

For instance, if our example query had been to find all the desks in

either room RM1 or RM2 with clear tops, then each time such a desk was

found it would be saved in a set and the answering process would be

backtracked to a point in the deductive programs where alternative choices

were available. In this example, control would return to the search

for objects of type DESK, and, if another desk were found, the process

would proceed as before to check the room the desk is in and whether

its top is clear. Each desk would be checked in this manner to form the

desired set.

The backtracking mechanism is also used within the answering process

when, for example, a desk that is found by the (TYPE -X DESK) query is

not in either RM1 or RM2. In that case the OR deductive program returns

FALSE to the AND deductive program and control is backtracked into the

(TYPE <-X DESK) query to find the next desk.

B. A General Tree Searching Package

A set of programs was implemented in QA4 that provides a conceptual

framework and executive program for conducting heuristic tree searches.

The package assumes that there is an initial node of the tree given and

that the task is to find a path through the tree from that initial node

to a node that satisfies a given goal test. Whenever the search reaches

a node in the tree for the first time, and evaluation number is computed

for the node. This evaluation number indicates to the search executive

the desirability of the node for further consideration. At each step the

executive selects the node with the best evaluation number, generates an

offspring node of- the selected node, computes an evaluation-number for the

new node, and tests whether the new node satisfies the goal test. If the

goal test fails, then node selection occurs again and the process repeats.

This search package can be applied to a particular task domain by

providing the programs for node evaluation, goal testing, and offspring

generation. For example, it has been used to compute multiroom paths for

a robot system, where each node in the tree represents a room to which

the robot has traveled, and each offspring node of a given node represents

an adjacent room. Hence, if the initial node represents the room in

which the robot begins, then a path through the tree represents a room-to-

room route that the robot can travel to reach a goal room. For any appli-

cations, including the robot path-finder, we wish the search to find the

shortest path from the initial node to the goal. In such cases one often

uses a node evaluation scheme that computes for a node an estimate of

the length of the shortest path from the initial node to a goal-satisfying

node passing through the' node being evaluated. This evaluation scheme

estimates that the node with the smallest evaluation number is on the

shortest path to the goal and therefore should be the one considered by

the searcher.

By using QA4 to implement this search package we obtained clear ad-

vantages for the user with regard to flexibility, power, ease of use, and

search efficiency. Each node in the search tree 'is represented by a QA4

dynamic context. The search executive proceeds by growing a tree of

contexts where the offspring of a given node is formed by doing a context

push operation on the node; hence, any variable values and model infor-

mation that were true in the parent node are automatically true in the

offspring node.

The executive assumes that each node has associated with it a node-

evaluation function, a goal-test function, and an offspring-generating

function. If these functions are to be the same for each node in the

tree, as is the case for the robot path-finding example, then they merely

need to be attached to the initial node and all other nodes will "inherit"

them automatically (via the context mechanism) from their common ancestor,

the initial node. But, if the problem domain is such that nodes in dif-

ferent parts of the tree should be evaluated, generated, and tested in

different ways, then the nodes can be assigned their individualized

functions as they are generated.

The evaluation, generation, and goal testing functions are called

by the search executive in the dynamic context of the node being consi-

dered; hence, when these functions access model information or variable

values, they are given the values that are current at the node. This

design frees the writer of these functions from being burdened with

concerns about obtaining the correct set of values for the node and

handles much of the bookkeeping required in passing information from pa-

rent to offspring node.

When a node is selected by the search executive, the node-generation

function for that node is used to produce an offspring of the node. The

first time any given node is selected by the executive its offspring-

generating function is transformed into a QA4 process. The executive

assumes that each time this process is resumed it will form a new off-

spring and then suspend itself. This implies that the values of local

variables in the generating function will be saved between generations

so that the function can be written to determine the order in which off-

spring are generated and thereby significantly affect the amount of

searching required to find a solution. For example, the offspring-

generating function used in the robot path finder computes the distance

from the goal room to an adjacent room before using that adjacent room

to create an offspring. If the adjacent room is farther from the goal

than the current room, then the room is put on a rejects list and con-

sidered again only after the offspring for all the adjacent rooms closer

to the goal have been generated. For many problems this computationally

inexpensive ordering algorithm virtually eliminates consideration of nodes

that are not on a path to a solution.

C. A Hierarchical Robot Planning and Execution System

A robot control program consisting of a hierarchically organized

plan generation and execution system was designed and tested with a QA4

implementation. The usually sharp distinction between robot plan genera-

tion and execution was intentionally blurred in this system in that plan-

ning and execution phases occur intermixed at various levels of the

hierarchy. What was desired was a system that could generate plans at

various levels of detail and monitor the execution of these plans in a

manner well integrated with the planner.

The system models its world with a collection of assertions called

WORLD-MODEL. Assertions in the WORLD-MODEL are customarily made or

deleted by those actions that actually move the robot in the world, and

are not subject to removal by QA4 backtracking. When the system is

10

generating a plan, it does so with reference to a PLANNING—MODEL. When

it is set up, the PLANNING-MODEL is conceptually a copy of the present

WORLD-MODEL. However, the QA4 context mechanism allows the PLANNING-

MODEL to be formed without the necessity of doing any copying operations.

All proposed actions are allowed to have their effect on the PLANNING-

MODEL. These effects can be backtracked if an alternative plan needs to

be considered.

The fundamental building unit of the hierarchical robot system is

the ACTION. Each ACTION is a piece of program, together with its

arguments; when it is run it produces some or all of three important

effects. The first is simply an effect on the world, such as a robot

motion. Secondly, an ACTION may produce or add to a PLAN. A PLAN

is an ordered list of ACTIONS. An ACTION may call another ACTION as a

subroutine. In such a case the subordinate ACTION may add components to

some PLAN that the main ACTION is producing. Thirdly, an ACTION may

make changes to various models of the world that the robot system main-

tains. If the ACTION has an effect on the world, it records this effect

in the WORLD-MODEL. If the ACTION produces a.PLAN, the predicted effects

of running this plan are recorded in a PLANNING-MODEL that has been spe-

cially set up before running the ACTION routine.

All planning and executions are diffused throughout the entire sys-

tem in such ACTION programs; there is no special top-level planning

program that produces plans to be executed by a top level executive.

Through the use of the QA4 GOAL statement, planning that requires "search"

can also be done by the system. QA4 takes care of such search processes

automatically through its backtracking mechanism.

EXECUTIVES are the programs that execute PLANs. Each EXECUTIVE is

run as a QA4 process that creates offspring EXECUTIVE processes. At

any given time, there may be several EXECUTIVE processes set up and

11

waiting to run. The argument of an EXECUTIVE program is a PLAN (i.e.,

an ordered list of ACTIONs). The EXECUTIVE program can be described sim-

ply as an ordered application of a program called PERFORM to each ACTION

in/the PLAN. Figure 1 shows how PERFORM works.

The system uses QA4 demons to deal with the happy kind of surprise

that signals that some goal is satisfied before the robot expected it

would be. In this case, the system should abandon all work toward making

that goal true and get on with the rest of the task. A QA4 demon spec-

ifies a "watch-for" condition and a program to be run whenever the con-

dition being watched is met. This system stores on the property list of

a PLAN that particular assertion that the PLAN is supposed to achieve.

Then, just before an EXECUTIVE process is created to run the PLAN, a

demon is set up to watch the WORLD-MODEL for the occurrence of the asser-

tion. Whenever this assertion occurs, either as a direct result of the

robot's efforts or through serendipity, the demon interrupts whichever

process is running and transfers control to the EXECUTIVE process that

originally set up the demon. In this way, the next step in the next-

higher level PLAN will be executed. This program makes use of many of

the features of QA4; in particular, it relies heavily on pattern directed

function invocation, automatic backtracking, processes, retrieval and

storage of expressions in the QA4 net, associational property lists with

expressions, and demons.

D. Program Verification

One major application of QA4 has been program verification. A

theorem prover has been constructed to prove the verification conditions

necessary to certify the correctness of programs.13'14 The QA4 language

was found to be quite well suited for this domain. The theorem prover

is concise, readable, and easy to extend and modify. It embodies a good

12

ACTION

Set up a PLANNING-MODEL to be
used by ACTION in case it has to
do any planning. The PLANNING-
MODEL is simply a copy of the
existing WORLD-MODEL.

Run ACTION
(It may produce a PLAN.)

Create a new EXECUTIVE process and
run it on the PLAN just produced.

SA-1187-2

FIGURE 1 SIMPLIFIED FLOW CHART FOR PERFORM

13

deal of knowledge about numbers, equality, ordering relations, arrays,

lists, and other programming concepts. This information is expressed by

more than one hundred small QA4 functions. Pattern directed function in-

vocation, and in particular the goal mechanism, is used to call the

functions appropriate to solve a given problem. We will look at some of

these functions to see why QA4 is an appropriate vehicle for this applica-

tion.

One function, EQSIMP, represents the tactic that "to prove an ex-

pression of the form X=Y, try to simplify X, and then prove that the

simplified X is equal to Y: "

EQSIMP = . ' - . . -

(LAMBDA (EQ --X -Y)

(PROG ()

(SETQ «-X ($SIMPONE $X)

(GOAL $EQRULES (EQ $X $Y)))

(BACKTRACK)).

The bound variable part, (EQ «-X «-Y), expresses what sort of goal

this tactic is relevant to. SIMPONE is the name of the simplifier, and

EQRULES is the class of functions, including EQSIMP itself, applicable

to proving equalities.

Notice that this one rule can be used to prove the right side of an

equality as well as the left; the predicate EQ has been declared to take

a set as its argument. Thus (EQ «-X <-Y) is an abbreviation for (EQ

(SET -X -Y)). Furthermore, EQSIMP specifies the BACKTRACK option. When

applying EQSIMP to an expression of form (EQ A B) (i.e. (EQ (SET A B))),

the pattern matcher will chose an arbitrary match, of (EQ (SET «-X <-Y))

to (EQ (SET A B)), binding X to A and Y to B, for instance. If SIMPONE

should be unable to simplify A, it will fail; the system will backtrack

to the point at which the match was chosen, to B, and will select the

14

alternative binding, X to B and Y to A. EQSIMP will be executed again

with the new binding, simplifying B instaad of A. Thus, the backtracking

mechanism combined with the set data structure allows us an unusually

concise representation of this sort of rule.

A common operation in theorem proving is simplification. In the

theorem prover, each simplification rule is represented as a separate

QA4 function. When an expression is to be simplified, the appropriate

rules are summoned by means of the pattern-directed function invocation

mechanism. One such rule expresses the fact that X + O = +X:

PLUSZERO =

(LAMBDA (PLUS <—X 0)

('(PLUS $$X))) .

Note that doubly-prefixed variables represent a fragment, a sequence of

elements rather than a single element, and that PLUS has been declared

to take a "bag" as its argument.

Thus (PLUS X O) is an abbreviation for (PLUS (BAG X O)), and this

rule can simplify

0 + A into +A

or even

A + B + O + C + D ' + E inoo A + B + C + D + E

The use of bags combined with fragments provides an unusual conciseness

here.

The QA4 special relations handler was especially applicable to the

program verification domain. This system stores and accesses information

about equality and inequality in a way consistent with the particular

properties of these relations, such as transitivity and symmetry, asym-

metry or antisymmetry. For instance, if one asserts

15

A < B and

B < C,

the system will know immediately that

A < C.

If one asserts

A < B and

A ± B,

the system will know

A < B.

If one asserts

A ^ B < C ^ D s A ,

the system will be able to ascertain the functional relationship

(F U B V) = (F U C V)

This sort of processing is built into the system and need not be represented

by QA4 functions.

Although most of the deductions performed by the theorem prover pro-

ceed backward from a goal, some reasoning progresses forward from asser-

tions. This reasoning is carried out by demons. These demons are

triggered off by assertions and denials. For instance, one demon,

whenever an assertion of the. form X + Y ^ X + Z i s made, will assert

Y <, Z. The formal specification for this demon is:

(WHEN EXP (LTQ (PLUS *-X «-Y)

(PLUS -X -Z))

INDICATOR MODELVALUE

THEN (ASSERT (LTQ $Y $Z)))

Another demon—applicable only to the integer domain—will conclude,

whenever an expression of the form X < Y is asserted, that X + 1 < Y:

16

(WHEN EXP (LT <-X »-Y)

INDICATOR MODELVALUE

THEN (ASSERT (LTQ (PLUS $X 1) $Y))).

For example, these two demons, working with the special relations handler,

will, after the user has asserted

A < B

and

B < A + 1,

enable the system to conclude that

A = B.

The modular design of the theorem prover makes it easy to incorporate

information about new subject domains: new functions may be defined by

an educated user, the new functions will be invoked by means of the

goal mechanism when appropriate, and the addition of new information does

not noticeably degrade the behavior of the system when it is applied to

problems that do not need that information.

The theorem prover has been translated from QA4 into QLISP with

appreciable improvement in running speed.

It is expected that future work on program verification and auto-

matic programming at SRI will be done in QLISP. QLISP is being used in

a current project at SRI on interactive program synthesis. Work on

automatic programming directed by Professor Cordell Green at Stanford uses

QLISP as the implementation language. Two programs related to this

project now exist in QLISP, one generating programs from formal specifi-

cations and the other generating programs from sample inputs and outputs.-.

17

REFERENCES

1. J. F. Rulifson, J. A. Derksen, and R. J. Waldinger, "QA4: A

Procedural Calculus for Intuitive Reasoning," Technical Report,

Contract NASW-2086, SRI Project 8721, Stanford Research Institute,

Menlo Park, California (November 1972) .

2. R. A. Yates, B. Raphael, and T. P. Hart, "Resolution Graphs," Arti-

ficial Intelligence, Vol. 1, No. 4, pp. 257-289 (1970).

3. C. C. Green and B. Raphael, "The Use of Theorem-Proving Techniques

in Question-Answering Systems," Proc. 23rd National Conf., ACM,

pp. 169-181 (1968).

4. C. C. Green, "Application of Theorem Proving to Problem Solving,"

Proc. International Joint Conference on Artificial Intelligence,

pp. 219-239 (The MITRE Corp., Bedford, Mass., 1969).

5. B. Raphael, "Programming a Robot," Proc. IFIP Congress 68, Vol. 2,

pp. 1575-1581 (1969) .

6. T. D. Garvey and R. E. Kling, "User's Guide to QA3.5 Question-

Answering System," Technical Note 15, Artificial Intelligence

Group, Stanford Research Institute, Menlo Park, California

(December 1969) .

7. D. G. Bobrow and B. Raphael, "New Programming Languages for AI Re-

search," Technical Note No. 82, Artificial Intelligence Center,

Stanford Research Institute, Menlo Park, California (August 1973).

8. D. Swinehart and B. Sproull, "SAIL," Operating Note No. 57.2,

Stanford Artificial Intelligence Project, Stanford University,

Stanford, California (January 1971) .

9. C. Hewitt, "PLANNER: A Language for Proving Theorems in Robots,"

Proc. IJCAI, pp. 295-301 (The MITRE Corp., Bedford, Mass., 1969).

10. D. V. McDermott and G. J. Sussman, "The CONNIVER Reference Manual,"

MIT AI Memo No. 259, Massachusetts Institute of Technology, Cambridge,

Massachusetts (May 1972) .

19

11. D. Davies and M. Julian, "POPLER 1-5 Reference Manual," TPU Report

No. 1, University of Edinburgh, Edinburgh, Scotland (May 1973).

12. / J. F. Rulifson, "Research in Advanced Formal Theorem-Proving Tech-

niques," Final Report, Contract NASW-2086, SRI Project 8721,

Stanford Research Institute, Menlo Park, California (June 1971) .

13. B. Elspas, K. N. Levitt, and R. J. Waldinger, "An Interactive

System for the Verification of Computer Programs," Final Report,

SRI Project 1891, Stanford Research Institute, Menlo Park,

California (in preparation).

14. R. J. Waldinger and K. N. Levitt, "Reasoning about Programs,"

Technical Note, Artificial Intelligence Center, Stanford Re-

search Institute, Menlo Park, California (in preparation).

20

Appendix

A PRELIMINARY QLISP MANUAL

Page Intentionally Left Blank

ABSTRACT

A preliminary version of QLISP is described. QLISP permits free

intermingling of QA4-like constructs with INTERLISP code. The

preliminary version contains features similar to those of QA4 except

for the backtracking of control environments. It provides several new

features as well.

This preliminary manual presumes a familiarity with both INTERLISP

and the basic concepts of QA4. It is intended to update rather than

replace the existing documentation of QA4.

23

I INTRODUCTION

QLISP brings together in a natural fashion the control structures,

*ipattern matching, and net storage mechanisms of QA4 , and the versatility,

programming ease, and interactive features of INTERLISP2 (formerly called

BBN-LISP). The system permits free intermixing of QA4, CLISP3, and the

INTERLISP code so that, for example, users may write programs or type

expressions for evaluation in LISP, CLISP, or QA4, or in a mixture of

all three.

QLISP has been implemented by means of the error correction facility

in INTERLISP. A valid LISP expression will never be seen by the QLISP

processor. Thus, programs that do not use QA4 constructs will run as

fast in QLISP as in LISP. When the LISP interpreter encounters an ill-

formed expression, it calls an error routine that in turn invokes the

error analyzer. If the form is recognized as a QA4 construct, it is

translated to an equivalent LISP form that is returned to the interpreter

for evaluation; if the expression is a valid CLISP construct, a similar

translation takes place.

In either case, the translation is stored with the original QLISP

expression so that the analysis and translation are done only once.

Since QLISP allows QA4 operations to be embedded directly in LISP,

the new system does not require the QA4 interpreter or stack mechanism.

Furthermore, QLISP programs are stored as standard LISP functions rather

than as expressions in the QA4 discrimination net, thus reducing the search

time required for associative retrievals as well as for function calls.

*
Superscripts denote references listed at the end of the report.

25

A preliminary version of QLISP is now available. It provides fea-

tures similar to those of QA4 except foT the backtracking of control

environments. It provides several new features as well.

The major differences between this version of QLISP and the current

QA4 are:

• QLISP functions are defined and stored in the same way as
LISP functions . Functions are stored as values of net vari-
ables in QA4.

• The: QA4 data-type SET has been renamed CLASS, and a new
data-type VECTOR has been added.

• The QA4 SETQ and SETQQ statements have been renamed MATCHQ
and MATCHQQ. In addition, QLISP provides a MATCH state-
ment (the pattern-matching equivalent of the LISP function
SET) .

• The QA4 statement EXISTS has been renamed IS, and a corres-
ponding statement ISNT has been added.

• The syntax of the net storage and retrieval statements has
been modified.

• "Demons" have been replaced by "teams" of functions that may
be applied by any net storage or retrieval function.

• Tuples are now equivalent to LISP lists. The external form
of (TUPLE a a ... a) is now (a a ... a) rather than
(TUPLE a a ... a). The internal form of (a a .,. a)
is now (TUPLE a a" ... a) rather than (APPL a (TUPLE

1 2 n 1
a a . . . a)) .
2 3 n

• Processes are not currently available.

• Backtracking out of the scope of a single statement, e.g.,
backtracking to a previous IS, MATCH, or GOAL statement is
not currently possible. However, as a temporary expedient,
the effect of backtracking to an IS can be simulated by using
BIS ("Backtrack IS").

This is a preliminary QLISP manual. It is intended to update rather

than to replace the existing documentation of QA4. It presumes a famil-

iarity with both INTERLISP and QA4.

26

We are convinced that QLISP can be the most usable of the recent

generation of AI languages. With this in mind, the authors hereby elicit

and encourage feedback from the user community.

A sample QLISP program is given in Annex A. The syntax of QLISP

statements is given in Annex B. .

27

II THE QLISP LANGUAGE -

A. QLISP Expressions

QLISP provides complete freedom in intermingling LISP expressions

with those that provide net storage and retrieval, pattern matching, and

control structure manipulation. As an example, consider the ARE-COUSINS

program:

(QLAMBDA (_PERSON1 -PERSON2)

(IS (FATHER $PERSON1 - F))

(IS (UNCLES $PERSON2 <— U))

(IF (MEMB $F $U)

THEN (PRINT (' ($PERSON1 AND $PERSON2 ARE COUSINS)))

ELSE (PRINT (' ($PERSON1 AND $PERSON2 ARE NOT COUSINS)))))

When this program is executed, two associative retrievals from the

discrimination net will obtain the father of the first person and the

uncles of the second person. If the father of the first person is among

the uncles of the second, we proclaim the two persons to be cousins.

B. The QLISP Discrimination Net

QLISP provides data base storage and retrieval facilities similar

to those of QA4. Data of type TUPLE, VECTOR, BAG, or CLASS may be stored

in a discrimination net and accessed by associative retrieval.

A tuple is equivalent to a LISP list. The form (fa a ... a)
A. £ n.

will be stored internally as (TUPLE fa a ... a) unless f is declared
1 2 n

to take a VECTOR, BAG, or CLASS as its argument. Such a declaration is

performed by evaluating DEFTYPE[f;type], where f is a function or predi-

cate name and type is VECTOR, BAG, or CLASS.

A vector is similar to a tuple, that is, it contains an ordered

29

sequence of elements. The treatment of tuples and vectors differs only if

they are evaluated. The value of a tuple is the result of applying

the function specified by its first element to the values of the rest of

its elements; the value of a vector is simply a vector of the values of

its elements. Thus a tuple is useful for representing an evaluable form

containing a function and its arguments, whereas a vector is useful

for representing an argument list alone.

A bag is a collection of unordered elements, and the elements may

be duplicated, that is (BAG A A B C) is EQ to (BAG A C B A).

A class is a collection of unordered elements, without duplication,

that is, (CLASS A B C A) is EQ to (CLASS C B A).

C. Constructing QLISP Expressions

The QLISP functions TUPLE, VECTOR, BAG, and CLASS cause an expression

of the appropriate type to be built and dropped into the discrimination

net. For example, (BAG F A B) will create a bag with elements A, B, and

F. Similarly, (TUPLE F A B) will create the tuple (F A B) regardless of

whether F was DEFTYPEd.

The construction of new expressions is simplified by the use of the

STRIP operator(I). The STRIP operator causes a level of parentheses to

be stripped from its argument (and thus is meaningless at the top level).

For example, (VECTOR (!(VECTOR A B))(!(VECTOR B C))) will cause the

vector (VECTOR A B B C) to be built.

Note that (! $X) is equivalent to $$X.

D. Inverse Quote Mode, Evaluation, and Instantiation

Statements for net storage and retrieval, pattern matching, and con-

trol structure manipulation are interpreted in inverse quote mode. That

30

is, atoms that are not otherwise identified are treated as constants.

Variables are indicated by a prefix character or characters.

These statements normally instantiate their arguments rather than

evaluate them. To instantiate an expression is simply to replace its net

variables by their values. For example, if the variable $X is bound to

B, then the QLISP statement (ASSERT (FOO A $X)) will assert the expression

(FOO A B), not the result of evaluating (FOO A B).

The "at" sign (@) is used to force evaluations of the following ex-

pression. For example, (ASSERT (@ (FOO A $X))) will assert the result

of evaluating (FOO A B).

The quote mark(') is used to force instantiation where evaluation

would normally take place. For example, (PRINT ('(THIS EXPRESSION WILL

$X INSTANTIATED))) will cause (THIS EXPRESSION WILL B INSTANTIATED) to

be printed.

The colon prefix (:) is used to prevent the instantiation of a $

variable when it occurs in an expression to be instantiated. For example,

(PRINT ('(THE VALUE OF :$X IS $X))) will cause (THE VALUE OF $X IS B) to

be printed.

E. QLISP Functions

QLISP functions are of three varieties: LAMBDA and NLAMBDA, as in

INTERLISP, and QLAMBDA, which is equivalent to the QA4 LAMBDA and has a

pattern as its bound variable part. QLAMBDA expressions admit "implicit

PROGNs" just as LAMBDAs and NLAMBDAs do.

F. . Declaring Local Variables

The QPROG statement is an analog of the LISP PROG feature. It

allows the declaration of net variables in the local context as well as

31

local LISP variables. The format of the QPROG statement is:

(QPROG args e . . . e) .
1 n

LISP variables are denoted in the args list exactly as in the LISP

PROG statement . Net variables are denoted by prefixing them with a left

arrow (<-) .

The expressions e. are arbitrary QLISP expressions.

For example, the statement

(QPROG (U-V (W 0) («-X (TUPLE)))

will cause local variables U,V,W, and X to be declared. U and W will

be LISP variables. V and X will be net variables. U will have an

initial value of NIL, V's initial value will be NOSUCHPROPERTY W will

be bound to 0, and X will be bound to the empty tuple.

Both PROG arid QPROG should be exited by either of the functions

RETURN or QRETURN-. QRETURN is similar to the LISP RETURN, except that

it instantiates its argument rather than evaluating it.

G. QLISP Backtracking

The side effects of QLISP computations may be undone (in the INTER-

LISP sense) by the use of the QLISP failure mechanism. A statement that

invokes pattern matching will fail if no match exists or if all matches

have been exhausted. Other statements may be caused to fail by the use

of the FAIL statement which is described below.

A failure will cause a return to some backtrack point and undo all

undoable computations performed since the backtrack point was established

Manipulation of expressions in the net is undoable unless it is

32

done with respect to the context ETERNAL, or one of its descendants.

Manipulation of list structures is undoable if it is done by means of

"/ functions."4 In addition to the functions provided by INTERLISP,

QLISP has a /SETQ function as well.

Backtrack points are established within all net storage and retrieval

statements and within QLAMBDA expressions that have the BACKTRACK option.

Failures may be caused explicitly by executing the FAIL statement.

Its format is (FAIL name).

If name is absent or NIL, FAIL causes a failure.

If name is CALLER, FAIL causes the last net storage or retrieval

statement to fail.

If name matches the NAME of a net storage or retrieval statement,

FAIL causes the named statement to fail. (Assignments of NAMEs

to statements and examples of the use of the FAIL statement will

be discussed in the following section.)

H. Statements of the QLISP Language

A full listing of the syntactic form of each non-LISP statement

appears in Annex B. New statements and those that differ significantly

from their old QA4 counterparts are discussed below.

In the syntactic forms to follow, braces ({}) indicate an optional

clause. The. ordering of options is arbitrary.

The net storage and retrieval statements have a new common syntax.

First, the syntax will be discussed in general, and then each of these

statements will be described.

1. Syntax of Net Storage and Retrieval Statements

The general form of a QLSIP net storage and retrieval statement

is:

33

(statement-type p-exp [APPLY team] [WRT ctx] [NAME name]

{ind prop . . . ind prop })
1 1 n n

The statement-type is one of the following:

QPUT
QGET
ASSERT

DENY

IS
ISNT

BIS

INSTANCES
GOAL

CASES

DELETE

p-exp is a pattern to be instantiated.

The team must instantiate to a class, a bag, or a tuple of

QLAMBDA functions. They will be applied to the instantiation of p-exp.

If a failure occurs during the application of one function in the team,

its side effects are undone and the next function in the team is tried.

With the exception of the GOAL statement, the application of the team

functions is for their effect rather than their values (i.e., the values

returned by the team functions are never used by the calling statement).

ctx, when present, must instantiate to a context. This context

will be passed as a context recommendation to the functions in the team

(i.e., it will be used as a default value for context references in the

team functions). The following are the possible context specifications

and their meanings:

• LOCAL—Current context.

• GLOBAL—Top context.

• ETERNAL—Current default context. Changes made in this

context will not be backtrackable.

> • UNIVERSAL—Top context. Changes made in this context will

34

not be backtrackable.

• A variable that was previously bound to a context.

• A CONTEXT statement.

If the WRT option is omitted in the statement, the context is

bound by default to the last context recommendation from a calling

statement. If no such recommendation was made, the top context is used.

The statement may be given a name. A team function may refer

to that name in a FAIL statement. The default name is the type of the

statement itself (e.g., ASSERT).

ind prop ... ind prop are property specifications. Their
1 1 n n

use in each statement type is discussed below.

2. Net Storage and Retrieval Statements

a. QPUT

The format of the QPUT statement is:

(QPUT p-exp [APPLY team] {.WRT ctx] [NAME name]
{ind prop ... ind prop })

'.. 1 1 . n n

The steps in the evaluation of a QPUT statement are as

follows:

(1) The pattern p-exp is instantiated, and an expression

exp that matches the instantiation is retrieved from

the net.

(2) A context CTX in which to evaluate the statement is

determined as .described above.

(3) The indicator-property pairs are instantiated, and all

properties prop, are assigned to the expression under

the corresponding indicators ind. with respect to CTX.

(4) If the NAME option is present, then the statement is

named name. Otherwise the statement is named QPUT.

(5) If there is an APPLY option, team is instantiated

and all of its functions are applied successively to

35

exp. The default for context references in the team

functions will be CTX.

If any team function fails, its side effects are

undone.

The functions in the team may cause the QPUT statement

itself to fail, as described in Section II-G, above.

(6) The statement returns exp as its value. For example,

in the sample program in Annex A. the QPUT state-

ment in HITCH,

(QPUT(PERSON $HUMAN)MARRIEDTO $Y APPLY $COMPUTERELATIONS)

operates as follows when the argument to HITCH is

(HAPPY ADAM)

• The pattern (PERSON $HUMAN) is instantiated to (PERSON

ADAM), and (PERSON ADAM) is retrieved from the net.

• The statement will be evaluated in the top context,

because no context was specified and the current default

context is the top context.

• $Y is instantiated to ADAMs spouse, say, EVE, and

placed as the value of the indicator MARRIEDTO on the

property list of (PERSON ADAM).

• The statement is named "QPUT."

• The team $COMPUTERSLATIONS is instantiated to the tuple

CMAKESPOUSE) .
The function MAKESPOUSE is called with the argument

(PERSON ADAM); if the (FAIL CALLER) statement in

MAKESPOUSE is executed, the QPUT statement itself will

fail and the property list of (PERSON ADAM) will be

restored.

If a (FAIL) statement instead of (FAIL CALLER) had

been executed, then the side effects of MAKESPOUSE

would have been undone but execution of the QPUT

statement would have continued.

• (PERSON ADAM) is returned as the value of the QPUT

statement.

b. QGET

The format of the QGET statement is:

(QGET p-exp [APPLY _team] [WRT ctx] [NAME name]

36

ind

ind prop {ind prop ... ind prop }
j- » £ £ n n

The evaluation of a QGET statement is similar to that of QPUT,

except that it retrieves values for each indicator ind.. If no property

can be found for an indicator, NOSUCHPROPERTY is used as its value. The

values are matched against the corresponding patterns prop.. If a match

for p-exp cannot be found, or if the match to some prop, does not succeed,

the QGET statement fails.

If only one indicator (and no properties) was specified, QGET returns

the corresponding property value. Otherwise, QGET returns the expression

exp.

For example, in the sample program in Annex A, when the QGET state-

ment in CHECKAGE,

(QGET (PERSON (@ SPOUSE)) SEX -SEX AGE -AGE)

is called with EVE as the value of SPOUSE, then $SEX will be bound to her

sex, $AGE will be bound to her age, and (PERSON EVE) will be returned as

the value of the QGET statement.

c. ASSERT

The format of the ASSERT statement is:

(ASSERT p-exp [APPLY team] (WRT ctx] {NAME name]

{ind prop ... ind prop })

ASSERT performs (QPUT p^-exp {APPLY team] {WRT ctx] {NAME name]

MODELVALUE T {ind prop ... ind prop])•
1 1 n n

Responsibility for consistency checks rests with the functions

in the APPLY team.

37

d. DENY

The format of the DENY statement is:

(DENY p-exp [APPLY team] (WRT ctxj {NAME name]

find prop ... ind prop })
1 1 n n .

DENY performs (QPUT p-exp [APPLY team] [WRT ctx] [NAME name]

MODELVALUE NIL [ind prop ... ind prop })
1 1 n n

Responsibility for consistency checks rests with the functions

of the APPLY team.

e.

The format of the IS statement is:

(IS p-exp [APPLY team} [WRT ctx] [NAME name]
find prop . . . ind prop])

1 1 n n

IS performs (QGET p-exp [APPLY team} [WRT etx] [NAME name]
MODELVALDE T [ind prop ... ind prop]) .

1 1 n n j

f . ISNT

The format of the ISNT statement is:

(ISNT p-exp [APPLY team] [WRT ctx] [NAME name}
[ind prop, ... ind prop })

1 1 n n

ISNT performs (QGET p-exp [APPLY team] [WRT ctx} [NAME name]

MODELVALUE NIL [ind, prop ... ind prop })
1 1 n n

g. BIS

The fo_rmat of the BIS statement is:

(BIS p-exp [APPLY team} {WRT ctx] [NAME name}

find prop ... ind prop } THEN e [e . . . e])
11 n n I "- 2 m-

38

BIS performs the same retrieval as IS, but when an expres-

sion has been found and the team members applied, a backtrack point is

established and the expressions e . . . e are evaluated in turn. If a
1 m

failure occurs, BIS will continue to retrieve different expressions from

the net until either none of the e. fails, in which case BIS returns the

retrieved expression, or until all possible retrievals from the net

have been attempted, in which case BIS fails.

BIS is a temporary expedient, which may be removed from

the language when INTERLISP permits control structure backtracking. -At

that time the IS statement will be able to establish a backtrack point,

and failures below it will cause another attempt at retrieval to take

place.

For example, in the sample program of Annex A, when HITCH

is called with the argument (HAPPY ADAM), the BIS statement will retrieve

an expression from the net of the form (PERSON «-Y) that has the property

FEMALE under the indicator SEX. The statements after THEN will be evaluated

If any statement fails, another expression will be retrieved from the net,

and the cycle will be repeated. If no statement fails BIS will return

(HAPPY ADAM). If no expression had been found in the net for which none

of the statements failed, then the BIS statement would have failed.

h. INSTANCES

The format of the INSTANCES statement is:

(INSTANCES p-exp {APPLY team] [WRT otx] [NAME name]
f ind prop ... ind prop])

1 1 n n j

INSTANCES instantiates the pattern p-exp, determines a

context CTX, and computes a name as was described for the QPUT statement.

INSTANCES then retrieves all the expressions from the net

that match the instantiation of p-exp, that have the value .

39

indicator MODELVALUE (unless some ind. is MODELVALUE) and that have pro-

perties on the indicators ind. which match the property patterns prop ,

with respect to the context CTX.

For each such expression found, all the members of the

APPLY team are applied to it successively.

A CLASS of all the retrieved expressions is returned as

the value of the statement.

i. GOAL

The format of the GOAL statement is:

(GOAL p-exp {APPLY team] [WRT ctx} {NAME name]

find prop ... ind prop }) •
1 1 n n

GOAL first performs (IS p-exp {WRT ctx} {NAME name]

find prop ... ind prop }) •
1 1 n n

If an expression was found, it is returned as the value of

the statement. If not, the functions of the team are applied successively

to the instantiated p-exp until some team member does not fail. The

value returned by that team member is then returned as the value of the

statement. If all the functions of the team fail, the GOAL statement

fails.

j. CASES

The format of the CASES statement is:

(CASES p-exp {APPLY team] {WRT ctx} {NAME name}) .

CASES is equivalent to GOAL, except that the IS statement

is not performed.

40

k. DELETE

The format of the DELETE statement is:

(DELETE p-exp {APPLY team] {WRT ctx] {NAME name]

find prop ... ind prop })
1 1 n n

DELETE performs the equivalent of

(INSTANCES p-exp [APPLY team] {WRT ctx} {NAME name]

MODELVALUE (FOR T NIL) {ind prop ... ind prop })
1 1 n n

For each expression of the CLASS returned by INSTANCES,

the indicator MODELVALUE is removed. DELETE returns that CALSS.

3. Other Statements That Can Set a Default Context

a. DO .

The format of the DO statement is:

(DO tpl WRT ctx)

DO instantiates tpl in the current context. The pattern

tpl must instantiate to a pattern of SYPTE TUPLE. The WRT clause is

evaluated, and this determines a new default context. The instantiation

of tpl is evaluated in this context, and the result of the evaluation is

returned as the value of DO.

b. MATCH

The format of the MATCH statement is:

(MATCH exp val {WRT ctx])

MATCH evaluates exp and val. It then attempts to match

the value of val to the value of exp. Any new variable bindings that

are created by the matching process are made with respect to ctx, if

present, or to the current context. The value of MATCH is the value of

val.
41

c. MATCHQ

MATCHQ is identical to MATCH except that the argument exp

is instantiated rather than evaluated.

This statement corresponds to the SETQ statement in QA4.

d. MATCHQQ

MATCHQQ is identical to MATCH except that both exp and

val are instantiated rather than evaluated.

This statement corresponds to the SETQQ statement in QA4.

42

Til HOW TO USE QLISP

A. Loading the System

The QLISP system may be loaded into LISP by typing:

SYSIN«SACERDOTI)QLISP.SYS)

All subsequent type-ins will be processed by the full QLISP system.

B. Creating and Using Symbolic Files

QLISP uses the INTERLISP file package to manipulate symbolic files.

PRETTYDEF, MAKEFILE, LOAD, and LOADFNS all know about QLISP constructs

and handle them properly. Variables whose values are to be extracted

from the net on output and stored into the net on input should be pre-

fixed by a $. Input to and output from the net is done with respect to

the current dynamic context at the time of the I/O operation. Input

of net variables is done with respect to the context ETERNAL, and thus

the values of LOADed variables are not backtrackable (although the ef-

fect of a LOAD is UNDOable if it is initiated at the teletype).

C. Defining Functions

QLISP functions are defined by using the functions PUTD, DEFINE, and

DEFINEQ.

D. Editing Functions and Variables

All QLISP functions may be edited by using EDITF.

QLISP variables may be edited by using EDITV. Net variables should

be prefixed by a $. Retrieval from and storage into the net is done

43

with respect to the current dynamic context at the time EDITV is called.

If the value of a net variable that is not at the top context is being

edited, EDITV will print a warning message.

E . Tracing QLISP Functions

Since the current implementation of LISP does not permit us to

backtrack properly through BREAKS, we have implemented a trace facility

that ADVISEs rather than BREAKs functions.

Functions may be traced by executing the function QTRACE. It is

an NLAMBDA no-spread function (just like TRACE), and thus can accept a

single function name or a sequence of function names.

The tracing of functions, may be turned off by invoking the function

UNQTRACE, which is also an NLAMBDA no-spread. Calling UNQTRACE with no

arguments causes all traced .functions to be untraced.

When new functions are defined by loading a symbolic file or by expli-

cit calls to PUTD, DEFINE or DEFINEQ, all QLAMBDA functions will be

automatically QTRACEd if the global variable QTRACEALL is set to T. (It

is set to T when QLISP is first loaded.)

QTRACE output may be directed to a file other than the teletype by

executing the command TRFILE (file name). This will also set LINELENGTH

to 120 to conserve line printer paper. The command UNTRFILE () will

redirect QTRACE output back to the teletype, reset LINELENGTH, and close

the previous output file.

F. Restrictions and Caveats

All function, variable, and property names beginning with "QA4:"

are reserved for the QLISP system.

44

LISP variables should not begin with $, ?, or «-.

With one exception, all CLISP constructs are valid in QLISP. The

exception is the use of the quote mark ('), which is used in QLISP to de-

note the quasi-quote rather than the LISP QUOTE.

45

ACKNOWLEDGMENTS

In creating QLISP, we have assembled in one package the good ideas

of many individuals. We are particularly indebted to Richard Waldinger,

Richard Fikes, Jeff Rulifson, Warren Teitelman, and Mark Stickel. The

development of the QLISP language was supported by the National Aero-

nautics and Space Administration under Contract NASW-2086. This work was

made possible by the environment and facilities of the SRI Artificial

Intelligence Center, which has been largely supported by the Advanced

Research Projects Agency through Contract DAHC04-72-C-0008.

47

REFERENCES

1. J. Rulifson, Derksen, J. A., and Waldinger, R. W., "QA4: A Pro-
cedural Calculus for Intuitive Reasoning," AIC Technical Note 73,

Stanford Research Institute, Menlo Park, California (November 1972).

2. W. Teitelman, et al., BBN-LISP TENEX Reference Manual, Bolt Beranek

and Newman, Cambridge, Massachusetts (July 1971) .

3. W. Teitelman, "CLISP—Conversational LISP," Third International Joint

Conference on Artificial Intelligence, Advance Papers of the Conference,

pp. 686-690, Stanford Research Institute, Menlo Park, California,

August 1973) .

4. Teitelman, W., et al., op, cit.

49

Page Intentionally Left Blank

Annex A

A SAMPLE QLISP PROGRAM

Page Intentionally Left Blank

Annex A

A SAMPLE QLISP PROGRAM

With the goal of creating a better world through computer science,

we present below a small system for making people happy. It was

written not with elegance or efficiency in mind, but to give examples of

the new QLISP features and their interactions with INTERLISP.

A. Program Testing

This symbolic file was created by MAKEFILE in the ordinary LISP

fashion.

53

< R E B O H > G E N E S I S , ; 3 ^ON 13-AUG-73 2 S 2 5 P M

Gt-NJ tS l -S)

(DEFINED

(SETUP
---- ttA*B0A- -fH-t— - - • • - - ------- - ---- <-*

ROUTINE,)

SEX FEMALE AGE 30 HOBBIES (CLASS TENNIS NEEDLEPOINT DANCING)

(A S S E R T (P E R S O N A L I C E)
SE-X~-«-WA-uE-AGE 72- H08B-IES (CLASS - S-CUBA-D-J-V-ING 81 RO-kATCH INC)

SEX FEMALE AGE ^9 HOBBIES (CLASS SNAKE -CHARM ING GARDENING
_______ . ______________ VOLLEYBALL))

(A S S E R T (P E R S O N A D A M)
SEX MAlc-A.GE-3* -NE-TUOH.m 5g.e«a0 hOBB-lES-
(C L A S S HUNTING FISHING G A R D E N I N G) }

USSEST (-PERSON SASA-). -- - ---^ - -- -- ' - -
SEX FEr-ULE AGE «0 NETWOPTH 20000203)

(HAKEHAPPY
(L-) - — — -'- — - (t .iv-iS-

PERSONS.)
------------ -------- ---- - <• -T.RY_Ifl

PERSON H A P P Y .)
cM*pr i i niMcT ION _ i LAMBDA i x>W^^T^^Tr^Ti'"^ \ ' U ' ' TT^ -f-^f-rv ^*^f^* ' wl^-^ ~^\ f -

(PRINT (A T T E M P T (GOAL (HAPPY (P X))
>P*IY - --
(TUPLE HITCH RICH]

[QLAMBDA (H A P P Y ^HUMAN) (« CYCLE THROUGH ALL
-------------- . — -MEMBERS-OF- -THE OPPOSITE

S E X ,)
------- .--.. ..- - - - (» HYPOTHESIZE A

M A R R I A G E AND SEE IF IT
________ __________ ___________ _ ___________ ___ _ ______ HQRKS OUT ,) __ ____________

(• IF IT DOES, THEN THE
....... - , _ _____ .— . . HUMAN-4S-HAP-P-Y-...) -

(BIS (PERSON *Y)

[f f> (P A R J N E R S E X (' (P E R S O N

APPLY S M A R R J A G E D E f O N S) -
(QPUT (PERSON SHUHAN)

M A R R I E D T O $ Y W R T G L O B A L APPLY
• . iCOMPUTE.BE-tAT.IONS)
(' (H A P P Y JHUMAN3)

34

I < R E B O H > G E N E S I S . ; 3 MON 13-AUG-73 2 S 2 5 P M

(CHECKAGE -
(OLAMBDA (MARRIED -COUPLE) <• M A K E SURE THE WIFE IS

NO-T-T-00 -MUCH-OLDER— THAN.
THE HUSBAND.)

•AGE
. -MALEAGE F E M A L E A G E) - - - • - -

• C M A P C (COS S C O U P L E)
. (FUNCTION (L A M B D A (SPOUSE)

(O G E T (P E R S O N (9 SPOUSE)) .
t. _._. SE-X- *-S£X. - , '.

A G E » A G E)
(IF (EQ SSEX (Q U O T E MALE))

THE-N (SETQ MALEAGE $AGE>
. _ ... ELSE- (-SETQ. FEM-AtEA.GE. SAGE3-

(I F (G R E A T E R ? F E M A L E A G E (PLUS M A L E A G E 5) >
— 1HEN. (-F.AIL-CAL.URU .. - .-

(O R E TURN O K))))

(CHECK HOBBY
-' .-(.Q.LAM8.0A—C-MARR-I.EC- » X .

• Y)

-(.ATTEMPT (M A T C H I N G (TUPLE (CLAS.S «•)*
»^

..... (C L A S S »H

(• FIND AT LEAST ONE
H-OgaJr. ..MSUCOKMON.
O T H E R W I S E FA IL ,)

------ ,(TUPLE- -(.OfiE-T-_0»-E-aSOU~$.XJ ------------------------
HOB3IES)

(Q G E T (P f R S O N SY) . . .
HORElES)))

-ELSE (-FAIL CALLER)))) - - ----

(O L A M B D A - X (• FIND THE OPPOSITE SEX
.OF THE-PERSOM-IN _________

Q U E S T I O N .)
- -IS.ELEC-TQ (C G E T iX SE!X) .

(M A L E ((. 'JCTE F E M A L E))
. .. . ___ ..(FEMALE- .(3UO.T.E.JUtEn ____

(E R R O k " U N K N O W N ! S" X "))))

55

i <REBOH>GE*<ESIS,)3 MON IS-AUG-TS 21.25PM

!;—^ iff tru - - - .-. -•- -

(QLAMBOA (HAPPY -HUMA.'J) (• TRY TO ACHIEVE A NET
__ .. vUW-H-G&EA^E-R THAN ONE

1ILLION.)
-— H»—tE--A€44i€VABLE> THEN

THE HUMAN IS HAPPY,)
,__i __ _. 4»...TH|-S-fl3UT IKE- NO H ON IY

MAKES A SIMPLE CHECK
- AGAINST THE DATA BA8C-r»-

UF (G R E A T E R ? (Q G E T (PERSON S HUMAN-)
_ N£THOfiTH> : :

00
--St

ELSE (FAIL))) >.

(MAK.ESPOUSE ' -
COLAMBQA (PEB50M "BEBSONJ- . (• T f cAM XgMBjjB OF

SCOMPUTERELATIONS,)
._ _ (•._ENSU«ES-:T-HA?-..TME—

SPOUSE IS NOT ALREADY
. |4^R84£{)̂ -) :

(• ASSERTS T H A T THE
, SPOUSE IS HARRIEDi)

(O P R O C «*SPOiJSE,
C-Q££T~-tP£«SON-*a£RS.ON4 ---

. . MARRIED T O)))
(IF--(NOT -(EO--(-CCET.-<.PEftSON-sSP-OUS£J ^

MARRIED T O)
. ' ; (Q U O T r

THEN (F A I L CALLER)
_- -Eise..-i.ap-.u*~.<.p.ERS.oN. .S

H A R R I E D T O S P E R S O N 3)
.) _ _ .„ .. _ ... _. _._

; (L ISPXPRINT (QUOTE GENES.JSFNS)

(RPAQQ GENESISFNS (SETUP M A K E H A P P Y HITCH CH£CKACE CHECKHOB8Y
: _ . - . F A ^ T N £ R 5 E X RICH M^KESPOUSE? >

(L I S P X P R J N T (Q U O T E C E N E S J S V A R S)
, j.)_

[RPAQQ G E N E S I S V A R S (S M A R H J AGEDEMONS SC OM PU TE "E LA TI ONS
(P {QSrTUP C E ^ E ^ I ^ V A R S) ?
(P (DEFTYPE (QUOTE MARRIED)

•- (.QUOTE-CLASS]
(R P A Q Q SMAftr tUGE'JEMONS (CHECKAGE CHECKH08BY))

-«*PA4»O-
(QSETUP
.fO£fTVPE:

(O U O T E C
STOP -• -o ft/f -

96

B. Sample GENESIS Run

Here is a session at the teletype using the functions of the GENESIS

file in the QLISP system:

57

I N T E R L I S P - 1 3 07-37-73 ...

H I * RENfi .
-SYSIW«SACEROUTI>QLISP.SYSJ Load in QLISP
«SACERDOTI>'3LISP..SYS;2'/1) «
QHSLLO
-LOAD(GENESIS] Load file with user programs
FILE CREATED 19-JUL-73 16:44:07 Since the variable QTRACEALL is set to T,
G E N E S I S F N S ' all QLAMBDA functions will be QTRACEd
G E N E S I S V A R S
GENESIS . ; 3
•-SMARRIAGEDErtONS Net variables are treated just like
(CHECKA3E CHSCKHUSBY) LISP variables
«-PP(HITCH] QLAMBDA expressions are treated just like

LAMBDA expressions

CQLAMBDA (HAPPY "HUMAN) **COMMENT** **COi'f'.<lENT** **COMMENT**
C3IS (PERSON ~Y)

SEX
C9 (PARTNERSEX (' (P E R S O N SHUMAN3

THEN (ASSERT (M A R R I E D SHUMAN $Y)
APPLY SMARRIAGEDEMONS)

(QPUT (PERSON SHUMAN)
MARRIEDTO $Y WRT GLOBAL AP»LY
SCOMPUTERELATIONS)

(' (H A P P Y SHUMAN])
(H I T C H)
••SETUP] Evaluate the user's initialization function
T

58

(MARRIED ADAM ALICE)

(M A R R I E D
OK

ADAM Ei/E)

-i-lAKEHAPPY((A 0AM S A R A))
H I T C H :
QA4:ARG= (HAPnY ADArt)

PARTNSRSEX:
QA4:AR G = (PERSON ADAM)
(PARTNERSEX) = FEMALE
CHECKAGE:
QA4:ARG= (MARRIED ADAM MARY)
(CHECKAfiE) = OK
CHECKHOB3Y:
QA4:ARG= (MARRIi-10 ADAi'l MARY)
CHECKAGE:
QA4:ARG=
CHECKAGE:
QA4:ARG=
(CHECKAGG) =
CHECKH033Y:
QA4:ARG= (MARRIED ADAM EVE)
(CHECKHOS3Y) = ((CLASS SNAKE-CHARMING

GARDENING HUNTING FISHING))
MAKESPOUSB:
QA4:ARG= (PERSON ADAM)
(MAKESPO'JSE) = ADAM

(HITCH) = (HAPPY ADAM)
(HAPPY ADAM)
HITCH:
QA4:ARG= (HAPPY SARA)

PARTNERSEX:
O.A4:ARG= (PERSOtJ SARA)
(OARTNSRSEX) = MALE
CHECKAGE:
Q A 4 : A R G = (M A R R I E D ADAM SARA)

R I C H :
O.A4:AR3= (HAPPY S A R A)

Try to make Adam and Sara happy

-Example of function trace

-Function returns 'FEMALE

-Function is called, but does
not return; it caused a failure

GARDENING 70LLSY3ALL) (CLASS

fiC: 8
5989., 10068 FREE WORDS
(R I C H) = (HAPPY SARA)
(HAPPY SARA)
F I N I S H E D

Garbage collection of list storage

59

Page Intentionally Left Blank

Annex B

THE SYNTAX OF QLISP STATEMENTS

Page Intentionally Left Blank

Annex B

THE SYNTAX OF QLISP STATEMENTS

For the syntax of INTERLISP statements see reference 3.

The representation of the syntax of the other QLISP statements is

presented below. The following notation is used: '

• Braces ({}) indicate that the enclosed elements may be omitted.

• Square brackets ([J) indicate the choice of one of the enclosed

elements.

• A subscript indicates an element of a sequence.

• e indicates an expression to be evaluated .

• p-exp indicates an expression to be instantiated.

• tpl indicates an expression of STYPE TUPLE.

• var indicates a net variable.

• ctx indicates an expression that instantiates to a context.

• name indicates an expression that instantiates to a statement

name.

• ind indicates an expression that instantiates to a property

list indicator.

• prop indicates an expression that instantiates to a property.

• tuple, vector, bag, and class indicate expressions that evaluate

to a TUPLE, VECTOR, BAG, or CLASS respectively. Note that a

LISP list is treated as a tuple.

63

(ASSERT p-exp APPLY

_

tuple
vector
bag
class

•v

'

{WRT ctx} (NAME name]

f ind prop . . . ind prop })
1 1 n n

(ATTEMPT e [e . . . e } {THEN e ' ... e '} {ELSE e " . . . e " })
\. 2i • n J- rn L- K

(BIS p-exp <

y

APPLY

\

tuple
vector
bag

class

1

,

{WRT ctx} {NAME name]

\ L '

{ind prop ... ind prop } {THEN e . . . e })

(CASES p-exp < APPLY

tuple
vector

bag

class

{WRT ctx} {name name})

(CONTEXT
PUSH
POP
CURRENT

ctx)

(DELETE p-exp < APPLY

tuple
vector
bag
class

{WRT ctx} {NAME name}

•> i. _j '
find prop ... ind prop })

1 1 n n

(DENY p-exp APPLY

tuple
vector
bag
class

{WRT ctx} {NAME name}

{ind.̂ prop.̂ . ind prop))
n n-

(DO tpl WRT ctx)

(FAIL
1 rCALLER"! I

I Lname J(

64

(GOAL p-exp

y

APPLY

,

tuple

vector
bag
class

•» — -

{WRT ctx] (NAME name]

{ind prop ... ind prop })
1 1 n n

(INSTANCES p-exp

/

APPLY

,

tuple
vector

bag
class j /

[WRT ctx} {NAME name]

f ind prop ... ind prop })
1 1 n n j

(IS p-exp APPLY

tuple

vector
bag

class

{WRT ctx} {NAME name}

\ J

{ind prop ... ind prop })
1 1 n n

(ISNT p-exp < APPLY

tuple

vector
bag
class

{WRT ctx} {NAME name}

find prop . . . ind prop })
n n

(MATCH e e fWRT ctx})

(MATCHQ p-exp e {WRT ctx})

(MATCHQQ p-exp p-axp {WRT ctx})
J. &

(QGET p-exp <

s

APPLY

,

™ ™ v

tuple

vector
bag

class
- _ '

{WRT ctx} {NAME name}

[ind
lind prop {ind prop

1 1 £
. . . ind prop

2 n n

(QPROG args e e., . . . e)
1 2 n

65

y

APPLY

.

tuple

vector

bag
class _

v

/

(QPUT p-exp {APPLY | ̂ ~"~ |) {WRT ctx} [NAME name]

ind prop find prop ... ind prop })
1 \, £ £ r* *•*•

(QRETURN {p-exp})

(STYPE e)

(VAL var {WRT ctx])

66

