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PREFACE .

- An earlier report [ 1] describes the application of a quasi-optimum
control technique to the design of a control system for a three degree-of-
freedom motion simulator, This technique, developed under this contract,

NAS 2-3636 and an earlier contract, NAS 2-3648, was applied to. design

- a complete six degree-of-freedom motion simulation in the investigation

described herein. This report contains the analytical results and simulated
time histories that would be obtained with various. paruméter settings for
several types of missions. To facilitate experimental evaluation of the
control law, a description and listing of the washout subroutine is given

in Appendix 1V,

The authors are grateful for the assistance provided by Mr. J. G.
Douvillier and by Dr, E, C. Stewart, who served as Contract Technical
Monitor, '
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1.  INTRODUCTION

In controlling the motion of an aircraft, the pilot uses both visual and kinesthetic .
cues. Visual cues provide information about the position of the aircraft with respect
to a suitable frame of reference; kinesthetic cues provide information about the motion
(velocity, acceleleration) of the aircraft with respect to the reference frame. The
pilot processes the data from the visual and kinesthetic sensors in a sophisticated (and
little understood) manner in such a way that his action upon the aircraft controls .

causes the aircraft to behave as he desires.

Since the primary objective of the pilot is to control the position of the aircraft,
it is reasonable to suppose that the pilot relies primarily upon visual cues; kinesthetic
cues, although very useful, are not indispensible. Presumably, this is the reason that
fixed-base (non-moving) simulators, which provide accurate visual cues, (but no kinesthetic

cues) have been used with great success in a variety of aircraft and space applications.

Owing to the absence of motion cues in fixed-base simulators, however, the ex-
perience of the pilot in such simulators is not identical to what he would experience in
an actual gircraft, and hence there are many instances in which the pilot's performance
is not the same as it would be in an actual aircraft, and in which he may complain
of the lack of fidelity of the simulation. It is generally believed that in the absence of-
motion cues, the pilot after an initial training period in the simulator, alters his methods
of mental data processing in an attempt to maintain his performance at the level he would
achieve in the actual aircraft. In effect, the pilot synthesizes or interpolates the in-
formation he expects from his kinesthetic sensors. To accomplish this, however, requires

greater mental effort; accordingly, the pilot becomes more rapidly fatigued, and he

generally describes the task as being more difficult to perform.

The recognized shortcomings of fixed-base simulators have led to the increasing

use of simulators which can move in response to the pilot's commands. The introduction
of additional motion into simulators, however, has not alleviated all the problems of fixed-

base simulators. There are even situations in which the pilot indicates preference for a



fixed-base simulation over a moving-base simulation. The major difficul.fy with
moving-base simulators is that their motion is generally not identical to that of
the aircraft being simulated, because the simulator is confined to a physical
. volume which is much smaller than the volume in which the aircraft is free to maneuver
(The exception to this general situation is the so-called case of "one-to-one" motion,
in which the pilot's task and aircraft are selected so that the aircraft could be maintained

within a volume not larger than the volume available for motion of the simulator. An

example of such a situation is a helicopter with a hovering task.)

It is evident that fidelity of the motion cues can be increased by increasing
the volume in which the simulator is free to maneuver. The important question in regard
to design of motion simulators is thus  how to make most effective use of a given V

maneuverability volume.

To make effective use of the volume in which the simulator moves, some knowledge
of the nature of the kinesthetic sensors of motion is required. It is generally believed
that the principal sensors of motion in the human being are in the labyrinth structure of
the ear, and comprise the semicircular canals and the otoliths. The former are believed
to act in the manner of rate gyros to sense the angular velocity of the pilot's head and -
“the latter act like linear accelerometers fo sense the specific force at the pilot's head. Motion
_ of the body is also sensed as a result motion of the organs in the abdominal cavity and due to

pressure on the body surface (the "seat of the pants"), but it is believed that the motion cues

derived from other than the ear labyrinth are relatively insignificant.

Various studies have been made to determine the characteristics of the labyrinthine
sensors and it has been concluded that these are fairly complex nonlinear dyhamic systems .
Moreover, the characteristics of the physical sensors themselves, even if obtainable, - ‘
would not be adequate to determine how the human being senses motion, because the
signals from the sensors are processed by the sophisticated digital computer which is the
brain. Sensor models have been constructed to account for the signal processing in the
brain, but these are not very well established. Hence, for the purpose of this investigation,
we have assumed that the motion cues of significance are simply angular velocity and .

specific force. Each are vector quantities and are refered to a set of reference axes fixed



in the pilot and moving with him.

o

The ldeal motion snmulofor would produce in t.2 simulator cab the same angular
velocuty vector and specnfac Force vector as would result in the aircraft in response
to the p:lof s control inputs. The difference between the angular velocity vector of
the snmulator and the ongulcr velocity vecfor in the aircraft is an error.as is the dlf-
Ference befween the specxflc force vector in the cab and in the aircraft. If these.
error vectors are both zero, the motion sumulchon is perfect (" one-to-one' ), The
_ob|ecf|ve of the snmulcfor control system desngn is to keep these errors as small as

possible.

One‘o‘f. fFe\difficulfies in de_s'igni'ng an opfimqm'sirﬁulof’or control system is that there
are two (2) vector-valued error components (angular velocity and specific force) ora
total of 6 soalar error signals. It is thus necessary to devise a single scalar measure
of error to account for the 6 components which may be present. Since the typical
pllo'r is usually able to discriminate between types of motion snmulohons und can assess
' fhelr relative performcnce, it is possﬂole that such a measure of error exists. If |t does
exist, it may depend on the parhculcr task, the pilot's experlence, fhe nature of the
visual cues, and many other factors. Hence determination 'of the "natural " rﬁeasure
of error, i.e. the measure of error which governs the pilot's sub|ecf|ve evaluation of
simulator quality, is unrealistic. The only feasible approach is to use a "reasonable "
measure of errr. The approach adopted in this study is to regard the total measore 01:'
error as the welghted sum of two scalors, one representmg SpEleIC Force ond one re=-
presenting angular velocity, i.e. '
E=M_ +kM
, B w
L
where M is the contribution to the total error due to eriors in the specific force vector,

-‘Mw‘ is the contribution due to errors in the angular velocity vector and k is a constant

~which detérmines the importance of angular velocity relative to specific force. The
scalars M and M are determined from the corresponding vectors on the basis of the

following empirical considerations:



. The direction of the error is significant. For example, if the true
specific force is 0.5 g and the simulated specific force is 1.5 g
(i.e. the error magnitude is 1 g), this is less serious than when the
simulofea specific force is - 0.5 g (i.e.,the error is still 1 g in
magnitude but the simulated specific force is in the opposite direction

to the true specific force).

. The specific force in the vertical direéction when the aircraft is not
accelerating vertically is 1 g (which is also the specific force ex~
perienced by a person at rest on the ground). One is not Anorn‘xall'y
aware of this vertical specific force when standing. In other words,
it is reasonable to assume that the brain "biases-out" the normal 1 g
component of vertical specific force, and hence that the vertical |

specific force sensation is the actual specific force less 1 g.

Based on these considerations several alternative analytical expressions for the
measure of error in specific force and angular velocity have been developed and are

described in Section 2. 4.

Using these error measures and the methods of optimum control theory, a set of

control laws were devised.

--)



2. ANALYSIS

2.1 Description of Simulation Problem

In the operation of a moving-base flight simulation, a pilot manipulates a set of flight
controls and the simulator cab in which he is situated moves in a manner which tends to re-
produce‘ the sensation of motion which the bilbt would experience if he were in the actual
aircraft and he manipulated the flight controls in the same manner. Ideally, the motion of
the cab should be identical to that of the aircraft. Under conditions which permit the cab
motion to reproduce the aircraft motion perfectly ("dne-to-one" simulation) the sensation of
motion in the sémblator is the same as the sensation of motion in .the,ccrucl aircraft. Generally,
however, simulaforg are used to simulate flight tasks in which one-to-one simulation is physically
impossible bécause the cab is confined to remain inside a fairly small physical volume. The
simulator control system thus must be designed, not to reproduce the motion of the aircraft
being simulated, since this is impossible, but rather to provide a sensation of motion which is
as close as possible to the sensation of motion in the actual aircraft, but without co:.lsing the

cab to exceed the physical limits of its motion.

The moving=-base simulator of concern in this investigation is of the type currently in use
at the Ames Research Center; the cab is built into a gimbal system which provides three
rotational degrees of freedom and the whole gimbal assembly is in turn provided with three
translational degrees of freedom by a system of three mutually perpendicular tracks. (See
Figure 2-1). Each degree of freedom of the cab motion can be independently controlled by
the cab arive system. A digital computer is used to simulate the dynamics of the aircraft
which permits the dynamics to be modeled to any degree of accuracy desired. The inputs to
this computer are the flight commands resulting from the pilot's manipulation of the flight
controls in the cab. The computer outputs are the state variables (velocity, angular rotation,

and etc. ) describing the motion of the aircraft which in turn are used by the simulator control

to compute_the_signals-needed-to-drive-the cab moticn, "It is the design of the simulator control

that is the subject of this study. Figure 2-2 shows a functional block diagram of the overall

simulator system.
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Figure 2-1
The Ames All-Axis Motion Simulator
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Since each degree of freedom of the cab is driven by an electromechanical system
which is designed as a high-speed position servo, it is reasonable to assume that the position
(i.e. gimbal angles for rotational degrees of freedom, translations along tracks for trans-
lational degrees of freedom) of the cab is identical to the drive system position commands,
so lorig as the latter do not exceed the motion limits. If the motion limits are exceeded,
mechanical switches are operated to engage a system designed to arrest the cab motion safely.
When the safety switches are engaged, the simulation is ended, the cab is returned to a
neutral position, and, after various safety checks are made, the simulation is again initiated.
To avoid engaging the safety switches, the drive system has an electrical system designed to
anticipate the engagement of the mechanical safety system and to cutoff power before cab
motion causes the latter to be engaged. Accordingly, from the operational viewpoint, the
simulator control should be designed so that the cab drive command signals do not cause either

the electrical or mechanical safety limits to be exceeded.

Because of the physical construction of the simulator, the position of the cab at any
instant of time is approximately described by the three translations of the movable gimbal
structure on the system of rails, and three gimbal angles. These quantities and their time
derivatives (twelve in all) are a set of state variables natural to the motion of the cab. They
are, however, not particularly well-suited for describing the sensible motion of the aircraft.
For the latter, a more suitable set of state variables are the components of the vehicle linear
and angular velocity vectors resolved along a set of axes fixed in the aircraft at the pilot's
station (6 quantities) and 3 angles relating the position of these body axes to a set of reference
axes. With regard to the sensation of motion, }he position in space of the aircraft is not im=-
portant. Fof that matter, velocity, per se, is not imporfdnt; it is acceleration that is re-
sponsible for sensation of motion: linear translation at constant velocity does not contribute
to the sensation of motion. This fact is particularly convenient with regard to simulation of
the forward motion of the aircraft. Under quescent conditions (cruise, for example) the air-
craft moves at constant forward velocity which is not sensible, except through visual reference.
Only changes from this qﬁiescenf state are detectable; consequently, the constant forward
component of velocity is not required in the simulation. As a consequence, the simulation is

accomplished by subtracting the forward component of velocity of the aircraft from the total



velocity vector before driving the cab. The effect can be visualized by the assumption that
the aircraft flies in a wind tunnel in which the air mass moves at a constant velocity equal

to that of the forward speed of the aircraft. When the thrust of the engines is adjusted so

that the aircraft is‘sfotionory with respect to the wind tunnel, the situation is aerodynamically

identical to the motion of the aircraft in a windless airmass but with constant forward velocity.

In-consequence of these considerations, the control system for the motion simulator in -
a situation in which one=to-one motion simulation is possible has the form shown in Figure
2-3. The aircraft acceleration and angular velocity vectors, in body axes are transformed
to accelerations of the cab along its axes of travel and to cab gimbal rates, respectively.
The former are integrated once to provide the velocity components of the cab. After sub-
tracting the constant forward speed ;x of the aircraft, the velocity components are again
integrated to produce the position commands for the linear drive system. Concurrently, the
cab gimbal rates are integrated once to yield the cab gimbal angle commands which are used

to drive gimbal servos. .
’ ’ ’ ¥

When the task or set of tasks to be simulated is such that one=to-one motion is not per-
missible, however, the linear and angular drive signals cannot be generated as shown in
Figure 2-3. Instead, it is necessary to "wash-out" some of the aircraft motion before generating
the cab servo drive signals. The placement of the wash-out system (or "wash=out circuits")

is shown in Figure 2-4. .

In the design of the wash-out circuits, three techniques are conventionally used: scaling,
high-pass filtering, and "residual tilts". Scaling consists of multiplying each component of the
vector acceleration or angular \}elocify b); a constant scale factor less than unity. This causes
‘an attenuated sensation of motion, but the sensed directions of the vectors in the simulator are
the same as in the aircraft. High-pass filtering is employed to eliminate the d-c and low-

frequency components of acceleration which lead to large excursions. To compensate for the

Toss of susfained (i.e. low-frequency)accelerations due to high-pass filtering, residual tilts
are sometimes used. The idea here is to use the components of the gravity vector in the
forward and lateral directions which result when the cab is tilted to simulate the sensation of

sustained acceleration in these directions.
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The amount of scaling, filtering and tilting which is employed in a particular sim-
ulation is currently determined empirically, using a combination rules-of-thumb developed
out of prior experience and adjustments on the simulation of an aircraft in an actual mission.
It has been generally recognized that this design technique may not use the capabilities
of the simulator to the fullest extent: that a more systematic approach might provide greater
fidelity of motion within the confines of the same volume, or might be useful for a larger
variety of tasks. The purpose of this investigation is to study the possibility of using the
techniques.of optimum control theory as a method of systematizing the design of improved

wash-out systems.

If o single control system is to be used for a broad spectrum of tasks, it would appear

" that the desired performance is essentially nonlinear (with respect to the functional de-
pendence between the wash-out and the aircraft motion). For those tasks or phases of a

task in which one-to-one simulation is possible, one-to-one motion should be used. When
one-to-one simulation is not possible, the minimum amount of wash~out which keeps the

cab within its permissible motion limits should be used. The basic question in designing

the control system is: What aspects of the aircraft motion must be followed accurately by
the simulator, and what aspects can be sacrificed without degrading the realism of the
simulation? It is generally accepted that one of the most important factors governing the
realism of a simulation is the kinesthetic sensation of motion. Although there is a continuing
discussion of what "sensed" quantities really are, a consensus of the opinion is that the linear
acceleration and the angular velocity, as measured with respect to axes fixed in the pilot

are the most pertinent factors sensed by human kinesthetic sensory organs. Thus, simply
stated, the control problem is to endeavor to find a control law which, while keeping the
cab excursions within specified physical boundaries, minimizes the errors in the motion
sensations. |If a suitable cost or penalty function of the errors in the motion sensations can be
determined in addition to an analytical model for representing the errors in the motion sen-
sation, then it is possible to apply the optimum control technique. Since this oﬁprooch is
considered the most likely candidate to yield the "best" simulator control law, it was adopted

for this investigation.

12



During the initial phase of the investigation of applying the quasi-optimum control
technique to the wash-out circuit design (1968-1969), a relatively simple case of one-degree-

of-freedom longitudinal motion was considered to establish the feasibility of using the technique.

In the present phase of the investigation, the general six degree-of-freedom motion

simulation is considered. In order to treat the six degree-of-freedom problem realistically,

it was necessary to modify the analytical approach used inthe first phase because the earlier
approach led to hopelessly complicated calculations in the more realistic problem. The problem
formulation in the present case is substantially more realistic in that a trade-off between the
angular and the linear motions is allowed to utilize the effect of "residual tilt" and that the
washout control system is independent of the aircraft dynamics, although "good" setting of the
parameters in the wash-out circuit may depend on aircraft dynamics as well as the specific

mission.

In the following subsections, the different phases of the analysis leading to the simulator

control design are discussed in detail and these include the following:
. Definition of the various coordinate systems and their mutual transformations.

. Formulation of the problem in a manner suitable for application of the optimum
control technique including a discussion of the notation and pertinent quantities.

. Development of various cost or penalty functions of the errors in the sensed
motion which provide a realistic measure of the "goodness" of the performance
and, on the other hand, are mathematically tractable as a performance indices
for the optimum control technique.

. Application of the quasi-optimum control technique to obtain the simulator
control law.

. Discussion of an implimentation scheme for realizing the simulator control
design.

13



2.2 Coordinate Systems and Transformations

There are two sets of axes of significance in the motion simulction: a set of “inertial "
axes fixed with respect to the ground and a set of axes fixed in the vehicle and moving

- with itz

(1). - Inertial Coordinates - The assumed "inertial " reference frame is a cartesian co-
ordinate sy‘;tém"wifh its origin at the center of the moving-base simulator track assembly
and oriented so that each axis coincides with one direction of translational motion of the
simulcfo:r. The positive directions of the X, ¥, z axes are chosen, respectively, to coincide
with forward, right side and downward motions. The translational motions of both the cab

and the aircraft are defined with respect to the same inertial coordinate system.

(2) Body Coordinates - The body axis forms a carfesich coordinate system fixed with

respect to the vehicle where the origin is located at the pilot's seat in the cockpit of the
vehicle. The directions of the axes are in the same sense as. th‘e.i'nerticl reference (i.e.
forward, right, and down), but with respect to the pilot rather than ground': Since there are
two vehicles, the simulator cab and the actual q;rcraft, there are correspondingly two sets
of body coordinates. The two séfs of body coordinates are illustrated in Figure 2-5 where

subscripts "A" and "c" are used to denote "aircraft" and "cab", respectively.

The displacements of the vehicles from the inertial frame are denoted by position vectors

-

o
*

r, and r

A c

. The angular orientations of the vehicles are described by the Euler angles
(yaw, pitch, and roll) relating each respective system of body coordinates to the inertial co-
ordinates. Any vector defined in the inertial coordinates can always be transformed into
either of the éy'sférhb of body coordinates by means of an orthogonal direction cosine matrix.
Elements in the direction cosine matrix are functions of the Euler angles where the particular
functions depend on the sequence of rotations from the inerﬁol‘dir.'ections to the directions of

the body axis that have been adopted.

* In this report, variables with an arrow (=) on top denote physical vectors with magnitude
and direction (velocity, force, and etc.) whereas variables with a bar ( - ) on top merely
denote column vectors with three elements where the three elements may not be the x, y, z
components of a physical vector.

14
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In accordance with the physical structure of the existing gimbal assembly, as

shown in Figure 2-6, the angular orientation of the cab is described by the three gimbal

angles:
OQuter gimbal: Pitch (8)
Middl e girﬁbol: Yow ()
I nner gimbal: Ro-ll (o)

Thus, for computational convenience, the Euler angle transformations in this report for

both the cab and the aircraft are defined according to the following sequence of rotations:

(Pitch = Yaw — Roll). In mathematical notation, let

-

?

.= 1| g. | =Euler angle vector
i 1 -
lpi

;Z_/= a vector in the inertial coordinate system
1. = the transformed vector of n, in theAb"'ody coordinate system
i i
where i=A for the aircraft
i = c for the cab
then the vector ﬁ is obtained from n_by the transformation
1 i
B, =Cx)n, 2.1
Ky (>‘z‘,) i (2.1)

where the transformation matrix C(-izl) is the orthogonal direction cosine matrix given by

cos cos sin - cos Yy, sin 8,
¥ i 8 i lbzl 4)7', eL

- = 5' 3 - 3 ! . + - -
CO\'L) in ¢Z§ sin et sm,(pt cos 0, cos 91, cos ¢i, cos {pi sin ¢'_L cos 91: cos ¢ism % sin 613

cos ® sin 9, Tsin®, sin P cos §, =sin®, cos P, cos ®, cos g, - sin ®, sin P, sin @,
1 2 i i i i i i i 2 i i

(2.2)

16



Figure 2-6

Gimbal System for the -Ames Simulator




The orthogonal property of C(ii,)' i.e.
-1 , -
C ) =c¢(,) (2.3)

is used frequently in subsequent calculations ¥,

It is noted that this particular sequence of rotations is specific to the physical structure
of the existing gimbal system and is not the generally adopted sequence of rotations used in
the description of aircraft motion. The conventional sequence of rotations is (yaw, pitch,

— 14
roll}. If the conventional set of Euler—angles are denoted f)y )\’2\ = (¢Z , OX, xpz ), then
these are related to the Euler angles >‘A = ((pA, eA’ sz) , used here as defined in (2.1)
and (2.2) by

1 sin ‘P:& cos ;p; -~ cos ‘PZ sin 92\ sin 4)7\

(PA = tan
cos (PA* cos gb’;\ Tsin @y sin 6/’: sin :‘b;
sin g*
A A
8, =tan (2.4)

cos 9; cos 4;’:
‘bA =sin_](cos e; sin ;p;)

Let (:37: be the angular velocity vector of the vehicle with p_ , q, and r, as its com~
ponents in forward. right side and downward axis of the body coordinates respectively. The
components p, + q, and e customarily refered to as "roll rate", "pitch rate"” and "yaw rate",

respectively, are related to the gimbal angle rates Xz',= ((pb ’ ézL ’ ;pt)'by

# The superscripts (~1) and (/) used in conjunction with a vector or a matrix denote,
respectively, the inverse and the transpose of the particular vector or matrix.
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pt 1 sin w?} 0 (pi
a| = 0 cos @, cos lbz‘, sin (,Dt éi . . (2.5)
__ri«. , l_O Tsingy cos ;pb . cos (pz', ' _wt

For riotational. convenience, let

ot ] - o lbi ' . o . . . : Te
F()\i) = 0 cos (Pi/ cos !’bt sin @, : - (2.6)
LO -sin ¢t cos ‘b,?'/ | .cos (pL

then (2.5) can be written in vector notation as

@, = FO,)N, | o (2.7)

The matrix F(i ) is not orfhogonol in general since the three components (P_L é and
lb of the Euler ongle rate vector )\ are not orthogonal components of a physical vector. The

inverse of F()\ ) which will be encountered frequently in subsequent calculations, is given by

1 - tan ‘pi/cos (pt tan ‘b?./sin ®;
. a4 ._ . | 3
F o‘i,) = 0 cos (pil/cos Py -sin (%I/éos Py
0 sin‘Pt IR c'osfpi

It should be noted that the orientation of all the angular quantities used in this report are

defined in accordance with the right~hand convention as shown in Figure 2-6.




2.5 Mathematical Formulation of the Control Problem

The general control problem is formulated as a set of first order differential
equations relcrfng the state of the dynamic system to the control variables and also an '
explicit expression of the performance index in terms of the state variables and control
variables defined in the differential equations. The objective of the system design is
to find the control law for computing the control variables from the state variables
which minimizes the performance index. The sys}em of differential equations defining
the dynamic system under investigation is described below. Several choices for the

explicit expression of the performance index is given in the next section.

The first step in the mathematical formulation of the dynamics is to derive the
differential equations describing the motion of the simulator cab plus explicit expressions
relating the sensed motion felt by t.he pilot in the simulator cab to the actual motion of
the cab. There is a corresponding set of variables and differential equations describing
the actual and sensed motion of the reference aircraft. The equations for each vehicle
are distinguished by the subscript A or ¢ which will be used throughout the report to

indicate reference to the aircraft or to the cab, respectively.

Since we are interested in how well the cab motion duplicates the aircraft motion,

it is convenient to introduce a third set of variables defined as the difference between two

corresponding quantities for the cab ond for the aircraft. These variables will be referred -

to as the "error" quantities and will be denoted by the absence of a subscript.

Since we are generally dealing with variables or quantities composed of three com-
ponents, the development will utilize three =component vectors. In the definitions given

below, it should be noted that, for both the cab and the aircraft, some of the quantities

are defined in their respective body coordinates and the other quantities are defined in the.

inertial coordinates fixed with respect to the ground. To express these quantities in a for-

mat convenient for an optimum design approach, we let
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= position vector of vehicle in inertial reference axes.

. , .
=7 =veclocity vector of vehicle in inertial reference axis.

e

= Euler angle vector relating vehicle body axes to inertial
reference axes. '

= Euler angle rate

oo
-

r- g = specific force(pound per unit mass) acting on vehicle

"sensed" specific force
reading from accelerometers mounted at the pilot's seat.

=C_()\t)qt

iz
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— 0o N ‘o
= "unbiased" sensed specific force.

i -
B2
1P
- S\~ " 1]
w, =la, | F()\i)ut = "sensed" angular.velocity vector of vehicle..
" = reading of rate gyros.mounted on the vehicle's body axes.
i
where
i = A for aircraft
i =c for cab
0
g =| 0 |=gravitational acceleration vector in inertial reference
9

g = 32.2 Ff/sec2,= 9.81 m/sec2

C(\. ) = orthogona! transformation matrix which transforms a vector in .

inertial reference axes to a vector in body axes as defined in 2.2)

F(X . ) = transformation matrix which transforms an Euler angle rate vector
into an angular velocity vector as defined in (2.6)

The error quantities which indicate the difference between the motion (both actual

and sensed) of the cab and the aircraft are defined by

o
r o -r
c A
—_ — - —.0 —.v
vVEV mv, Tr -r
c A c A
*e LX)
—_ - —_ - -
a=a -a, ¥r_-r
c A ¢ A
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In the above equations, it is noted that the components of the vectors_r.il., ;'L , ai’ , g
. ’ - -
are defined with respect to the inertial reference axes whereas the components of a, Bt

are defined with respect to the corresponding body axes.

The quantity -‘éz‘, , obtained by adding g to &‘t, is considered a more salient
measure of translational acceleration sensed by the human pilot rather than &L , since
it is argued that a pilot who is accustomed to being in a 1 g environment does not really
sense the effect of a 1 g force acting vertically downward with respect to himself. In
other words, the pilot's "vertical accelerometer® only senses deviations in the specific
force from the normal 1g force. In the subsequent development, the unbiased sensed

specific force Et will be considered to be the sensed translational acceleration felt by

the pilot.

- - .
Obviously, the sensed errors 8 and w are a consequence of the actual motion

errors t and A . The actual motion errors are in turn generated by the presence of the wash-

opt signals. In other words, from (2.8), the relation"

al

(2.9)

>le 42

ci

establishes the fact that
a = translational acceleration washout signal

¢ = angular rate washout signal

From (2.8) and (2.9), it follows that the differential equation governing the actual

motion of the cab are

- -
=a r

c A

=4

+

(2.10).

Wt
c >LA

i

> I



The differential equations (2.9) represent the dynamic system required for the
‘optimum design procedure where the washout signals G and & are the control variables.
The differential equations (2.10), which form the basis for the realization of the designed
washout control system, suggest a general control system configuration as shown in Figure
2-7. As indicated in Figure 2-7, the command signals generated as a result of the pilot's
manipulation of the flight controls in the simulator cab are processed by the digital computer
to compute the corresponding motion of the reference aircraft. The variables defining the
motion of the aircraft are in turn processed by the washout circuit to compute a and G.
The washout signals a and G are then combined with the aircraft motion according to
(2.10) to produce the command signals controlling the motion of the cab. The two
integrators shown in Figure 2-7 are necessary since the servomechanisms of the cab drive
system are designed to follow the translational position commands ?c and the gimbal angle
commands Xc' A more detailed block diagram showing the physical implementation of
the control system is given in Section 2.6.1 after the equations describing the washout

circuit have been derived, (See Figure 2-19)

As discussed previously, a simulation is regarded as perfect if the sensed motion
errors are zero (= w=0). Consequently, the goal of a wash-out control system is to
minimize 8 and @ . It is noted, however, that since-é and @ are physical vectors with
magnitude and direction, the question of whether a particular value ofE (or &) is
smaller than another value ofB {or U_S) in the minimization process requires further
interpretation.  This question is resolved by introducing two scaler functions, MB (—é)
and M (@ ), which in some sense, measures the "size" of—é and @ with respect to
the fid:)li‘fy of the simulation. |f these penalty functions are to be used in the performance
index required for the optimum control technique, then the functions M  and Mw must

B

possess the following properties:
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From (2.11) and (2.12), it follows that the penalty functions MB and M increase
monotonically with increases in the sensed motion errors 8 and w , respectively. A more
detailed discussion of the penalty functions, including explicit expressions for MB and

Mw is given in the next section.

Another aspect necessary to complete the formulation of the control problem is
the consideration of physical constraints. The cab motion is, in general, constrained
by limits on the translational distances and by limits on the gimbal rotations, both the
angles and perhaps the angular rates. Nevertheless, experiences with the existing
simulators has indicated that except for the excursion limits, the other limitations
seldom cause difficulties. For-this reason, and for mathematical convenience, only

excursion constraints will be considered.

In order to account in the performance index for the constraints on the cab motion,
a penalty function L(?c) is defined in a similar fashion to M and Mw except that
L(?C) depends only on the magnitude of F'C. The optimum control technique requires

that the penalty function be chosen to possess the following properties:
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2
L N
L(r Y= o0, a7>0_ T PR (2.13 )

Several spec:frc forms of L(¥ ) will be consndered ina subsequent sechon.

Bosed on the penalty functions, infroduced above, a performance index S is defined as
t+T ' '
S = j‘ L
M +kM +el)dT: , .
f,(B w E) . 2. 14)

. where t = present time, T =fixed time span, and k, € are constant adjustable weighting

factors. The control |aws a und U are de'rermmed by means of the optimum control
technique so that the scaler 'S is a minimum (or near mmlmum) for any given values of
k and € . For the trivial case, ¢ =0, i.e., when no boundary constraint is imposed on
the cab motion, the control law should provide a perfect simulation. For large €, the cab
excursions being highly penalized, the control law should generate abnormal motion cues.
In this eense the parameter € can be r‘egm"c-‘ie_d‘qs‘ a cont(o],oﬁ,the amounf of wash-out, ad-
.justed in qce_qrdan;e with :tl_f'\e available distances permitted for travel of the simulator.

The parameter k which weighs M in the performance index S in (2.14) provides
a means of adjusting the trade-off between translational and ongulor motions, since the
effect of "residual tilt" is embodied if the linear combination of the penalty functions
"M _and M o The feehniqu'e of residudl tilt can be illustrated by an ekdmple'WHer‘e the
reference cnrcraft is-flying at a trim attitude (XA = 0) with & forward accelerafion of X X A
(y A = 0) as'illustratéd in Figure 2- 8a . Suppose that the simulator cab hés no trans-
lahonal motion, but is pitched downward by an angle 9 ‘as illustrated in Figure 2-8b. In
the pitched down condition, the simulator pllot will sense a Forword translo'nonal acceleration

of g sin . asa result of gravity. If the pltch angle 9 is chosen so that XA =g sin 8,

el 97

- then-the simulator pilot would sense-the same motion as felf in the actual aircraft, if it is

assumed that the simulator pilot is unaware of or ignores the fact that the cab is pitched down
ward. There is also an upward translational acceleration of g (1 - cos ec) sensed by the

simulator pilot as a result of pitching downward, but this-upward translational acceleration



is much smaller than the forward franslatiénal acceleration as long as the pitch angle does
not become too large and thus can be ignored. Therefore, by pitching the cab upward or
downward, it is possible to simulate a translational acceleration along the longitudinal axis
(x) of the aircraft. Similarly, by rolling the cab, it is possible to simulate a translational
acceleration along the lateral axis (y) of the aircraft. Clearly, residual tilt can only sim-

ulate translational accelerations which are smaller than 1g (g = 32.2 ft/sec? = 9.81 m/sec?).

The disadvantage of residual tilt is the unrealistic angular motion required to im-
bliméh’r'fhe technique. In cases where high'fidelity of translational motion sensing is de-
manded, but the limited cab motion imposes a severe handicap, the technique of residual
tilt may result in a better overall simulation of the sensed motion even though abnormal angular
motion is imposed in order to compensate for the limited translational accelerations. The
problem of determining the optimum trade -off between translational and angular cab motion
which yields the greatest fidelity of the simulation forms the primary basis for using the

optimum control approach.

g

xA ) g sin ec
=10 B = 0
A 0 € g (1-cos ec)

{a) Reference Aircraft (b) Simulator Cab

Figure 2-8
Hlustration of the Effect of Residual Tilt
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To summarize, the equations describing the optimum control problem for de-

signing the washout control are

Dynamic System:

-
= a

~!

U

i
U}

Performance Index:

t+T
= + + ¢ L)dT
S tj (Mﬁ ka € L)

Find: '

@ and U so that'S is minimized

Simulator Motion :

LAY
Lt
Xc >‘A v

In solving the optimum control problem, it will be assumed that a flight simulation
always starts from a trim condition and the cab attitude is aligned so that the initial

conditions ¥ (t) = ?A(f), —r'(t) =_r.A(t), and X (t) =0 hold. It is also assumed that all

(2.15)

(2.16)

(2.17)

aircraft quantities needed for the control law can be obtained from the computer sim-

ulating its motion.
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2.4 Performance Indices

.-
One of the major task in attempting to apply an optimum control method to the

control of the six degree-of~freedom simulatof is the séarch for an appropriate perfor-

" mance index. “To start with, the state-of-the-art dictates that a precise definition of

what constitutes a sensed mohon cue is still an open physnologlcal question. Even with

the assumption that the motion cues sensed by the pllot are the same quanhhes as ‘can

be measured by three linear acceleromefers and by three rate gyros, the fact that these

quantities are vector valued makes it dlfﬂcul'r, if not mpossnble to find a single functional

expression which provides a realistic measure of how well the simulator is able to duplicate

the motion sensations. The search for a reahshc performance index in Funchonal form is

further compounded by the necessary requrremenf of mathematical fracfabxhry. As often

the case in the application of the optimum control technlque, a final form of the per-

formance index is chosen among other promlsmg candtdafes because of |fs functional

snmpllcny.

As indicated previously, the basic form assumed for the performance index is

FHT __—
[ Mg tkm +elydr _ 2.18 )

il

S

-

In this section, analyhcal expressnons for the penalty funchons MB Mw and L will be
defined in accordance wnh 2. ll) - (2 13), and fhelr properhes analyzed. lf is emphasnzed
that the penalfy functions dlscussed below were selecfed from a larger set of candldafes,
some of which may appear physmally more realistic but were excluded from further con-

sideration because of their functional complexity. . . ) .
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2.4.1 Sensed Acceleration Penalty Mﬁ

To establish a meaningful penalty function in terms. of the measurable sensed quantities, . -

BA and Bc (Figure 2-9 ), it is observed that the following properties should be considered:

(a) MB should be scaled relative to EA' i.e, if oll vecforediﬁu'cnfifies
in MB are mulhphed by the same constant, the value oF M should

“remain unchanged. In other words, for a given error ﬁ, the penalfy

is hlgher for small ﬁA and Tower for large BA

(b) MB should depend only on the orientation of Ec 'relotive

' to BAhnd not upon the absolblte orientation per se.

(c) It should be possible to represent M_ as a function 6f the-magn‘ifude of the

error vector |E | and the phase angle ¢ between B'c and E'A'

Based on these propositions, a general form of M which thus would be suitable as

a penalty measure is

o oo (B
Mg fm<BA>+Kpr(g) | : (2.19)

where the functionals Fm and fp account, respectively, for the magnitude and phase errors, . ‘
and the weighting factor K _ is used to adjust the relative importance between the magnifudé
and phase errors. The effect of the parameter KB on the penalfy imposed by M for differences

between the. sensed motion of the cab and fhe onrcraft, can be shown by a vector dlagrcm

comparing the sensed acceleration vectors ﬁ and By - An example of such a vector diagram is

given in Figure 2-10 where the vectors Bc and BA are normalized with respect to the mognitude Ba of

—“E"ﬂ(‘ﬁz‘“:'l:ﬁ’xl—}cnd—where—the—uni r~vector--§-A”/ﬁ'fA—i s-used-as-a-basis of reference. " InFigure
2-10, six different possible values of the normalized vector B'C/BA denoted by the indices 1
througH 6 are shown for comparison with BA/ﬁA. The circles with their center at the tip of the vector
EA/BA depict the contours for which the magnitudes of the error vecfor.E/ﬁA remain constant.

Obviously, if KB were zero, the penalty imposed on sensed cab motions represented by the vectors



- — - -

B 8. B [
1 Ba 4 Ba |5

14 14

Bal1 Ba 6.

are the same despite the fact that cases 1 and 4 have a phase error of £, while cases
5 and 6 have zero phase error. - With nonzero KB, however, the penalty corresponding to

1 and 4 is greater than the penolt'y corresponding to cases 5 and 6 by an amount of Kpr(g).

In Figure 2-10, the cab motions depicted by case 1 and case 4 have the same
magnitude error and phase error; the same is also true for the pair of cases 2 and 3
and the pair of cases 5 and 6 . For cases 1, 2, 5, the' magnitude of the cab motion
is smaller than that of the aircraft, whereas the corresponding cases 4, 3, 6 have larger mag-
nitude of motion as shown from the lengths of the vectors.: In practice, however, the
magnitudesof the cab motion is in general smaller than that of the aircraft. An excessively
large magnitude of cab motion at a particular time interval will have to be compensated
by an excessively small or even negative motion thereafter in order that the position of the

cab does not cross the boundary limits: Thus, it would appear logical to place higher penalties

on cases 3, 4, &6 where the magnitudes of the sensed cab motion are larger than for the aircraft.

‘The above discussion can be summarized by sketching contours of constant penalty,

MB = constant, as shown in Figure 2- 11,

Another important property that should be considered in selecting M _ is that of
assigning greater penalty for large phase ‘errors. " This is relafed t6 the notion.that main—
taining Téc in the same general direction as Bp is at least as significant, if rot more so,
than magnitude errors. Thus, in the region where the phase error is greater than, soy,lz,

the contours of MB should display a pattern as shown in Figure 2-12.

With these requirements in mind, various choices of Mﬁ are discussed below.
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Figure 2-9

Vector Diagram for Sensed Quantities

constant -&

contours

A .

Figure 2-10

Normalized Vector Diagram to Illustrate Relative Motions



4) contoﬁrs of

constant M
M c M, <M
Br Pr Bm
0 \Mﬁx \Mﬁm:
. : (

Figure 2-11

Contours of Constant M

A - .
. contours of
contours of constant M 8 / constant 8
/ BA

0 Tt
\ \ C ﬁA l ’ ,
A i M <M <M
3: ﬁt Bm
Figure 2-12

Contours of Constant M
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(A). Penalty Function "A" . )

n

= —_] . i + - "1 =
MB 7 {_LZ KB[ﬁﬁA(l cosg)]. ri ].,2, .
Ba .
=—-%+»K,33L--2— . " o 2.20)
ZBA A BA :
where 2 o . .
B =B'B . B=I|8|,et.
To aid in plotting the constant M_ contours, let
x = Ei cos ¢’
A .21 )
y = _L sin E’
Ba
then (2.20 ) is rewritten as
Mg = 5 6+ (W7 -) | B 2.22 )
Figure 2- 13 shows the MB contours forn =1, KB = 0.02, 0.5and 12.5
M, = _;(x2+y2)+,<ﬁ (m_x) 2.23 )
Figure 21 14 shows; the case fo;— n= 2 and Kﬁ =0.5
. 2
M, = ';*'_(xz +y2) + KiB‘(_va + y3 = x) @r24 )y
B



. () Iy e 125

4.0 (b) iy=08

Figure 2-14
Contours of Constant M _ for Penalty
x - Function "A" (n=2, KB= 0.5)

%0 ' y
(a) e 002

Figure 2-13 Figure 2-15
Contours of Constant M _ for Penalty Contours of Constant M _ for Penalty

Function "A" (n=1.0) Function "B" (K_=0.5)
A 36 B



(8) Penalty Function "B"

2
M =—é2—+K (l-cosg) r n=1,2,
2 BB\ | - |
A_=_é7 +K (1-_1_5_ ‘ 2.25 )
284 B B Ba : ‘

. g 7
y=isin'€(= /L-x -—A}= /B_ .-x2 ' (2. 26)
BA Ba Ba 32 |

| 1 2 2: 1 +x n . -
M o= 5 (xT+y ) +K, 1~ —— X (2.27 )
B 2 B ( [T o

_ (]+x)2+),2) .

and the set of curves for n = 1 and Kﬁ =0.5 is shown in Figure 2-15 ,
(t) Penalty Function "C"

2 . A 2
,Mﬁ,'= —}L'* KB [EQA— cos ¢ (1-!(] -péA cosﬁ')}

p 3 2 ’B, 7 2 (2.28)
= % +K _(__:%) __L-.K]_-_—Az:-\ — S S
2%, P\ B4 Ba /
In term$ of x and y.
Mg = —;—(x2+y2)+KBx2(]-Kl x)2 ' .29 )
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Figure 2-'16 shows the M

B
(D) Penalty Function "D"
2 | 2
Mg = £ [1 +K (1"- K, "EE— cos g'> ]
264 A
2 B B
= _% [] +Kk [1-k. AT
8 172
28, B

In terms of x and Ye

_~1' 2 2 2
Mg = 5 624y 14K (1=K 0

{

contours for different combinations of K and K

Figure 2- ]7 shows I'He M _ contours for different c.ombinafions of KB and K.I .

2.4.2 Sensed Angular Penalty Mw _

1

. (2.30)

(2. 31 )

It is assumed that the angular penalty Mw takes the same form as the acdeleration

penalty M_. Therefore, all of the discussions concerning M _also applies to Mw.. The

various possible choices used for the function M ,, are summarized below:

. 2 ' &)y @
- ||An':: M= _U‘)__ +K . i -
A “A
2 -y - n
LY L M = _w + K (]— wc A
w Zwi @ c “A
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(c) Kp=2.0, ,s0.5
30 s AT
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20 .

(e} Kp=as5, Ki=L0

Mg =4.0

Figure 2-16

Contours of Constant Mp

Function "C"

for Penalty
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Figure 2-17
Contours of Constant M for Penalty
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. w? Wy w wy @
Tall - L -
c": N\w—2 +Kw 5 1 K] 5 (2.34 )
2 wpw) 2
D M =L ek (12K —— ) (2.35 )
w 5 2 w 1T 2 ’ ' j
2.4.3 Excursion Penalty L(?c )
The basic requirement in the choice of ‘L(Fc ) is that of assigning heavy penalty
for large cab excursions and small penalty when travelling well within the allowable
boundary. There are two possible types of the limiting penalty described below.
(@) "Soft" Limiting Penalty:
! X 2n Y. 2n z 2n
T)==|{ =< + =) +( =
Lr)= 5l 3 3 . ,nz 1 (2. 36 )
: x y z

where dx' d , d_ are adjustable parameters, whose values depend on the actual lengths

of the allowable excursion limits. Forn =1, (2. 36 ) reduces to

Lr)=1L v p7 .
(rc) 2 e D Me - (2.37)
with B . .
5 0 0
d
NS
D = 0 d2 0
Yy
0 0 —]7
d
dome z-
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(b) "Hard" Li miting Penalty:

L(F)=L +L +L -
c x y z

where

0

Lx— |x -d I
c  x
0

:L.= P, ‘

y Y -d |
0

L = -

2 lz_-d,|

Figure 2- 18 illustrates these two types of penalty functions.

~

.Ix |<d
c X
|x | =d
c X
Iy I<d,
Iy 124
|z ,<d
c z
,zc ]zdz

(2.38)

' (2.39)
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(b) Hard Limiting Case

Figure 2-18

Excursion Penalty Functions

42



2.5 Quasi=Optimum Washout System Design

In this section, the optimum control problem, as formulated in Sections 2.3 and
2.4, will be solved using the quasi-optimum control technique. Although it would be de-
sirable to consider all the penalty functions defined in Section 2.4 so that the relative merits
of the resulting washout systems"could be evaluated by actual flight simulation, only one
case will be considered in detail due to the limited amount of time available. In particular,

the penalty functions considered in this report are (2.20), (2.32) and (2.36) withn =1, i.e.

- L 2 B: B
Mg (B, X), Byt = £+ (- 5 (2.40 )
2 4 A _
M (3. %), o M) = & w | S 1
w(UJ (Ul )\)l UJA(T)) _2:2A Kw K = sz (2'4 )
LF)= —;?;DFC | 2. 42 )

In subsection 2.5.1, the maximum principle is applied to reduce the optimum control
problem to a two-point boundary value problem whose physical interpretation is discussed in
subsection 2.5.2. Finally, in subsection'2.5.3, the quasi-optimum control technique is

applied to solve the two-point boundary value problem for the controls @ and G in closed form.

2.5.1 The Two-Point Boundary Value Problem

The-control-problem-to betieated consists of the érfor dynamics

r=3
- (2.43 )
A=vu

T ) ' .43



e —— e .

and the performance index

BEPUE

_ o +T
s-tl‘ (MB+ka+6L)dT (2. 44 )

B e U

- which is rewritten in state variable form, by letting o =S
.= + +
o Mﬁ k Mw €L

-

>l <le e
l
ol

= (2. 45 )
=g

7=

€ =0

The initial time is taken as the present time t and the time interval T is assumed fixed.

The assumed initial conditions are

ro(r) =0

() =1, )

vit) =v, () (2. 46 )
x)=0

T)= t.

€t)=¢

and the assumed terminal conditions are

ro(t +T) = free ’ A(t +T) = free
T(t+T) = free , TH+T)=t+T 2. 47 )
v(t+T) = free ’ €(t +T) = free



The Hamiltonian for the dynamic system described by (2.45 ) is

= + +€L)+p’'V *p'a +p @
h ?O(MB ka L) R’V *tpia *p, T +pT (2.48 )

where the adjoint variables p are defined by

aL(?c)
Py = -EPO ar

O
i
1

T

. aM_(3, X, T) am (T, X, T)
p, ¥-Pp — . —
A 0 ax . ax

(2. 49 )

aM_ (&, X, 7) aM (T, x, 1) aL@, 7)
[3 =-p B +ko w + €,
T 0 or oar o7

. - -
pe - pOL(rc)

subject to the boundary conditions

ﬁv(f+T)=0 (2.50 )

t+T)=f
pT( )= free

$T)=0
P+ T)

The solution of the two-point boundary value problem defined by (2. 45 ) — (2. 50 )
is highly complicated in its original form due to the irrational form of the penalty functions

(2. 40 ) and (2.41). It will be shown that by means of a nonlinear transformation, the original
problem can be reduced to one which may be more readily solved and which in turn provides

physical insight into the structure of the system.
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The first step is to apply the maximum principle to obtain the optimum controls
a and u» This entails computing the partial derivatives of the hamiltonian. h, given
by (2. 48 ) with respect to a and 0, respectively, and fhen setting the denvahves to

zero, The resulhng equohons are

aM
w

=p. /k - 2.52 )
3o A o ‘

where the adjoint variable P was easily found to be Po= " 1 from (2.49) and (2.50).
Substitution of Mﬁ and Mw from (2. 40 ) and (2. 41 - ) into (2. 51 )and (2. 52 ), re-

spectively, results in an expression which can be solved for '@ and 5. The final equations

for o and G (see Appendix I for the details of the derivation) are

K .
- 2 - T O\ 7 - T
g = B . (BA pv"" KBC ()\C)BA)+C (—XC)OlA T A
\/ﬁA +2 K BA C()\)p +KB : :
2. 53 )
G w .
\/ FIEE RN T B AT oKk BRI B A K
wp Py Py A Py w
2 VSO A K FNa | e TG @ -6 .54 )
wal xg N w AN <) YA T YA ‘
or, in functional form
3 =35, X, X,(1),8,(1))
2.55 )

U =G(5xl X ’ XA(T)I GA(T))



Using the optimum control laws (2. 53 ) and (2. 54 ), the closed-loop

two-point boundary value problem can be obtained by substituting these controls into -

(2. 45 )and (2. 49 ). It is noted from (2. 45 ), (2. 49 )and (2. 55 ) that the pertinent

variables are r; ¥, X, p , p and px and that they are uncoupled from the rest of the state

and adjoint variables. In order to obtain the closed-loop equations in terms of the pertinent

variables, we evaluate the partial derivatives in (2. 49 ) by noting that

M. &
° ﬁ:( aE_), PMg
ax  \ax ag

(2. 56 )
M . 7
M =< a¢3> My
ax  \ax/ a@
But, from (2. 51 )and (2. 52 ), we have
IM - -
8 =< 28 > -5,
9a g
, (2.5 )
M . - 1
3u au /
or ' _ 11
M =\’
‘s _ < 3B 5
-t - v
a8 i da ] 0. 58 )
m [ 08 7
. ( - ) Py/k
dw | ou ]
and =
3{‘-. =c(x)
da (2. 59 )
29 - k(X
au
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a a
_ (2. 60 )
a3 3F
ax ax c
Substitution of (2. 58 ) — (2.60 )into (2. 56 ) yields
M [aci) | |
—8 - a! — | c(X )5,
S ax
2.61 )
aMw _ aF(XC) , = -1_- ’
— =0 [F"(x )] px/k _

ax ax
Further substitution of (2. 61 ) into (2. 49 ) obtains the closed-loop two-point boundary

value problem for the pertinent variables

T =v

v=q 2.62 )
X =0

. aL(T)

p =€ ——

r ar ' ' . A
P, = ~B, B , . _ _ , (2.63 )
. aF(x) =y ac(x) | )
p, = G/ — [F'(X\ p, + 3’ | ———|. C(\)p

AT Y © Mol ey <

where & and T are givenby (2. 53 ) and (2. 54 ), respectively, and where the initial
conditions and boundary conditions are given, respectively, in (2. 46 )and (2. 50 ). The
obiec’ﬂvé is to solve for 5v and 5)\ in terms of the state vectors 7y Vand X from the coupled
differential equations (2. 62 ) and (2. 63 ). Substitution of the expressions for p, and 5)\
into the control laws for @ and G shown in (2. 53 ) and (2. 54 ), will result in the feedback

configuration necessary to realize the washout circuit.
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The nonlinear transformation required to solve the two-point boundary value
problem involves the introduction of a new adjoint vector ¥ and a new angular washout
vector n that are related to '3)\ and U by

-1 .
=[F" Q)1 By (2. 64 )

<

31

KX )5 | 2. 65 )

c

Multiplying both sides of (2.64) by F'(Xc) and differentiating with respect to time, we have
. . aF (X)) _ |
Py = FF(X )y +3, ——— 2.66 )
akc

Equate (2.66) to the last equation in (2.63), gives

: -1 ac'(}) :
y = [F’ & ——— C(X )P 2. 67
=R & ——=C(R b, | (2.67 )

After performing the sequence of matrix multiplications in (2. 67 ), the differential

equation for the new adjoint vector simplif';ies to
y= -&:: x C( Xc)fsv
—_ I - - ) .
=-C(x )a_xp] | (2.68 )

where the symbol "x" denotes the "cross product" of two vectors. For mathematical con-

venience, (2. 68 ) can be rewritten as (see Appendix I)

y=-a x7 2. 69 )
where
] [, s \ )
516 )as
B _[.2 2 -, - 2 .
A KB ij P, +2Kﬁ3 C(lc)pv+Kﬁ
(2.70 )



The .two=point. boundary value problem given by (2. 62 ) and (2. 63 ), is next

rewritten in terms of the new variables to give

P=7 AOREA0
v=a T =70 2.71 )
X = FUR)R X()=0
. aL(r)
p, =€ ——— p(t+T)=0
a7 " o
) ’ 2.72 )
5, = P, p,(t+T)=0
7 =C(RIE, x5 ) FE+T)=0

where the translational control @ is shown in (2. 53 ) and the transformed angular control

n is rewritten from (2. 54 ) as

K
w

1-
2 2,2 -, - 2

+ ’ +
\/;A'y [k 2waAy/k Kw

n =

2 - -

+ &, -F(X )i, _ R (2.73 )

2.5.2 Physical Implication of the Mathematical Formulation

As a result of the theoretical developments-in the preceeding subsection, the optimal
control problem was reduced to a problem of solving a set of differential equations given
by (2. 71 )and (2.72 ) for the adjoint .vectors ﬁr, Ev and ¥ in the terms of the state
vectors T, v and X . Before proceeding further with the theoretical solution of the problem,

we will pause at this point to examine the physical implications of the equations (2.71 )

and (2. 72 ).
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First, for reasons of simplicity, we will consider the: "linear" case in which -
no "phase " penalty is imposed, i.e. K_ = Kw-= 0. For this case, it follows from -
(2. 53), (2.70 )and (2.73 ), that the system equations given by (2. 71 ) and
(2. 72 ) reduce to

>
r

‘M)a, -4a, (2.74 )

-
A

1
w™
>
o
<
+
(@)
[e]
Q
>
]
o
>

. 3 L)
p =€
' ar
P, =P, | (2.75 )
- _ 1 - -
Y = 2 (acxozA)
ABA : t 3

Also from the linearity assumption, the closed-loop cab dynamics (2.17) reduc'es to

52 . Sim e - '

re SBaA PR, TCM)ay, te | | (2.76 )
w2

- _ --l,=- A - =

Ac F (h.c) i +wA 2.77 )

in which the adjoint variables 5\4, and y are obtained from the solution of (2.74) and (2.75),

[
1As noted. previously, the parameter k is designed to account for the relative im- .
portance between the angular:and the translational motion errors. Thus, it is of interest

to see how the cab. motion would behave for extreme values of k. -

s



(1) ko=

This case heavily weights errors in angular motion which for the limiting situation
gives that the angular motion of the cab will be identical to the aircraft. This is indeed

the case, since for k ==, (2. 77 ) reduces to

el -
)\C—F ()\C)wA

which, upon substitution of the assumed initial condition _):c‘(t) = XA(t), further reduces to

-1 = - _.‘_ :
c= F ()xA) wA‘kA (2.78 )

>l

The translational motion equation (2. 76 ), with X =X., can be written as
. _ c :

A
F: =3i P, *C (XM ap, +d | -(2.7? )
=B P, 5y T 4
=B§ 5v+;-/;

whlch shows that the cab accelerohon differs from the aircraft acceleration by the amount

BA p . The wash-out signal BA p which can be obtained from (2. 75 ) is dependenf on
the excursion penalty L (F° ) and its adjustable weighting € .

(11 k-0

Direct visualization of the effect of k = O is not obvious from the c!osed-loop
equations since the terms involving k tend to = as k-0. Referring to the performance
index, given by (2.44), it is intuitively obvious that, since no penalty is imposed on the
angular motion error for k =0, the cab should assume whatever angular motion is necessary
to minimize the translational motion error. It is derived in the Appendix IIl that this is indeed

. i
the case. In fact, as k-0, the optimal trajectory tends to approach a "singular" subare for

which the adjoint variable 5 =0 and for which
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g xay =C(X)a xqg, =0 (2. 80 )

The implication of (2.80) is that along the singular trajectory the cab attitude
XC should be so mc'infained to keep the sensed translational accelerations ac and &A
co-linear for any specific force Ec being exerted on the cab. The fact that the two
vectors are co-linear provides that the cab motion is either completely in phase, or com-
pletely out of phase relative to the aircraft. The possibility of the motion being completely

out of phase arises because K _ was set to zero and no phase error penalty was imposed.

y

Substitution of Xc' obtained from the solution of (2.80), into (2.76) yields the

corresponding translational motion for the cab.

Thus, for intermediate values of k, the cab motion will always have some translational
-and angular motion errors, and it is a subject of experimental study to determine what

particular values of k will give an acceptable compromise between the two extremes.

2.5.3 Quasi-Optimum Solution of the Two-Point Boundary Value Problem

Simplified Control:

In applying the quasi-optimum control technique, the system is first approximated
by a simpler model for which the exoct optimum solution can be expressed in closed form.
This simplified control law is then corrected to account for the difference between the
original system and its simplified model. A convenient simplified system in the present
og;g_lighl)pig obtained for € _=_0, i.e. by ignoring-the-physical-constraint+—For-€—=-0;———— "7

the two=-point boundary value problem, given by (2. 71 )and (2. 72 ) reduces to
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7 1) =70
(2.81 )

§m=%ma

> o>
ro=v
s s
3. =3,
s s
LS 5.0=0
s e s ' s
Prs =0 F'rs(H-T)=0
= = -p D + =:
Pus Prs Py U n=0 (2.82 )
T e 1; S (+1)=0
. ¥ otCSXC(XCS)PVS ' Vs
where the qubscript 's" has been odded O signify the simplified sysfem-
golution of 2.82 ) immediately yields
B 70 A |
5, =0 T (2.83)
5,70 A
Consequentl‘y, from (2. 53 ) and (2. 73 ), the simplified controls are
> -’ < - nd .
% ¢ ()\cs)aA N e '
SF(L )04 (2. 84 )
x +->:A we get the closed=

A, O
into (2.81 ) ond noting that 2=
cs s -

Substitution of (2.84 )
(2.85 )

{oop error state equations:

v oo
r =V
S S
Vs =C ()‘s+>‘A)aA T9A
SR R ER T
ACA A
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It is noteworthy to observe that the simplified controls in (2.84) and the correspond -
ing error states in (2.85) are not zero, even though no excursion limits are imposed on the
cab motion. However, the "sensed"” errors are zero which can be seen by substituting

(2.84) into the definitions ofB and @ given by (2.8) .

B aCS-aA=C(>\CS)(GS+6’A)-O[A'=O

n

- 2 . = F Y o + = - =
@=W "Wy ()\cs)(us UA) Wy =0

An examination of the error state equations (2.85) reveals that the nonzero simplified
controls and the nonzero error states are a consequence of a nonzero initial attitude error
e If it happens that X is initially zero, then the solution of the last equation in (2.85)
yields X (1) = 0 which upon substitution into the remaining equafioné in (2.8‘5) and in

(2.84) results in the errors and the controls being zero.

In summary, when no boundary limitations are considered (simplified control problem),
a one-to-one simulation, i.e. 8 =& =0, can be achieved for arbitrary initial conditions

by using the wash-out controls in (2. 84 ).

The solution of the simplified problem is required to calculate the quasi-optimum
" control law to be derived in the next section. Unfortunately, there are two major dif-

ficulties that arise when attempting to obtain analytical solutions to the simplified problem:

(A} The transformation matrices C and F , as defined in (2. 2 )

and (2. 6 " ) are nonlinear.

(B) In order to solve the two-point boundary value problem, the

q‘uontities ‘_&A' 3A, L'JA and )‘A describing the aircraft motion
must not only be known for the current time t but for time in

the future of t.



To overcome these difficulties it will be assumed that the attitude error Xs between

the cab and the aircraft is sufficiently small to permit the approximation

CO g, -a T C(X ey -, =0
cs’' TA A A A.A . 2. 86 )

-1 -
F ()\A)wA-uA 0

n

-1 .- -
F -

(X J &)~ Ay
Such an approximation is not unreasonable since, with no excursion limits imposed on the

simplified system the attitude error will tend to decrease from its initial value. If the initial

attitude error is zero, then it will remain at zero.

From (2. 86 ), (2.85) can easily be solved to give

r(T)=F V0 (1 -1

s
- (2.87 )

v (1)

"

\7;('r)

R ) =X 0)

Quasi-Optimum Control :

The quasi-optimum controls are obtained by first deriving the correction factors

J)r ;P ond J"y so that the adjoint variables Pr P, and y of the original system can

be cpp\foximoted by

n

=g

pl' pI'S

Sl Lo - -
pv IDvs ”bv wv (2 8 )
Y Ev e, <R,

Next, Ev and y are substituted into the control laws for a and i given by (2. 53 )and

(2. 73 ), respectively.
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It is shown in’Appendix II that the quou-ophmum solunons for fhe costate varlcbles

p and y are given by

pHT ::t+TTA

= > alL L 4
P, T —€fT] -] [ —=dxdr (2.8 )
or t ot 9r . .
: ‘)’=’)’(f‘)'J (OtCX‘r,')d‘r o ‘ B (2. 90 )
. . . 1‘ B _:;' - S . A . .

In order to evaluate the integral in (2. 89), where the anélyfical exp;réssién for the
function L(F) is given in (2.42), kn0w|edge of aircraft's posnlon r (T) for time T in the
future of the current time t(T = t) is requured To resolve this problem a welghfed Toylor s
series expansion of rA(T) is used to extrapolate the future position of 'r‘he aircraft from its

current value ?A (t)« The resulting expansion is

. 2 o ’ :
AT =m0+ r-n i m s LI ) @)

2 BA max
where

BA max is the maximum value of Ba that must be determined (opproxifnofe'ly) a pribii.

Utilizing (2._9] ), gives

oL -
ar le =0 _Drc € =0
=D +P ) ¢ = o
LA
=D l-':(f) .+( —f)r (I’)+ (f)+( ‘f)r (f (T f)z (f)]
L ) - ZBA max..
T et |
D[ () +(T =) F () + T 7 (1) e @.92)
B 2BA max




Therefore, dropping the subscript "s" we have from (2.89 )

- s, T
= - — o —
P ¢D 7 e 3T

(2.93 )

The evaluotion of (2. 90 ) will be done numericallyiduring the simulation beéouse of

the complicated expression for the'infegrund.
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2.6 Summary and System Implementation

In this section the simulator control system designed previously using the quasi-
optimum control technique is summarized-and its implementaﬁ;m is discus'sed. A block
diagram showing how the required corﬁpﬁfcfions can be implemented duril;g an actual
flight simulation is given. A FORTRAN IV subroutine which performs the computations
shown in the block diagram is also described.

2.6.1 Summary of the Simulator Control System Design.

Recalling from Figure 2-2, the complete six degree~of-freedom simulator consists

of the simulator cab, aircraft computer simulation, simulator control system, and cab
drive system. The flight commands resulting from the pilot's manipulation of the cab con-
trols are fed into the computer simulation of f.he aircraft. The computed ci.rcraff motion,
in particular, the translational acceleration _I:’; and the angulor velécity _;A are the
inputs to the simulator control system which in turn generates the drive command signals
.used to control the motion of the cab. In the problem formulation it was assumed that

the cab drive system consists of perfect servos so that the outputs from the simulator control

system are the cab position ?c and the cab attitude Kc . The basic input-output equations

for the simulator control system are

SO0S Lo translation (2.94)
c A
< 2 + = “rotation” (2.95) .
A =yt
where
el ey, 2
X,mUes ei ’ ;bil
i=c,A

as illustrated in Figure 2-4. Thus, the simulator control system has a total of 6 inputs and

6 outputs.
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The washout signals @ and v are included-in (2.94) and (2.95), respéctively, in order
to compensate for the limits on the cab excursions. The purpose of this study is to design the
control laws for computing @ and U . The performdnce index used in section 2.5 for

. ‘. . d -
detérmining a and u was

T |
s =f (M_+kM +¢Ll)dy (2.96)
t B w

where M= 2 /26, +K {8/, ~BaB/83)

_ 2,2 e, 2
Mw-w /2wA+Kw(u/wA wAw/wA).

- -
r'Dr
c ¢

N —

. 2 2 - 2. -
D=D|cg[]/dx,'|/dy,|/dz}

This performance index minimizes the sensed motion errors while penalizing large

cab excursions. This performance index gives rise to 8 scaler parameters T,k, ¢, KB, K,
- w

dx' dy' dz. A large portion of the computer simulation study described subsequently is
concerned with an investigation of the effects of using different values of these adjustable
parameters in order to arrive at a range of values that may optimize the performance of the

moving base simulator,

In Section 2.5, the quasi-optimum technique was used to design a washout system
that minimizes the performance index in (2.96). The resulting equations for computing

— - -
a and u are summarized below.

Translational Washout Signals:

-

a=(1-Kg/E+C" (N )a, -3,
5 (2.97)
€=8yp, *K,C'(X) 3B,
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Rotational Washout Signals:

o= FGn

n

(] 'waA/n)a+—J)A = F(KC)KA

= (.2 - -
6= (wh /KIY+K 3y

Adjoint Variables

-]
1

i
1

v -
- X
o, X n

31
]

2., -
[1/0- K80/l an + (K /Gy

Sensed Motion Variables

.0
-—>

=9

L)
-
=r

OA— -dg

=l

Cc Cc

o, = CG\C)OC

o] |

O!A= C(AA)OA

-

AToTS wp= Fag)2p

5'=00,0,91

Transformation Matrices

- eD[(T2/2)?C + (T3/3)"r’c + (T4/852Amax).?;]

(2.98)

(2.99)

(. IOO)‘

(g = 32.2 ft/sec? = 9.81 m/sec?)

cos ) cos B sin ¢ - cos Y sin 6
C(:) = sin @ sin 6 - sin i cos d cos @ cos & cos sin ® cos § + cos ® sin ysin g
cos ® sin g Tsin ® sin h cos g -sin® coshp cos ® cos B~ sin ® sin yPsin
(2:101) —
1 siny 0 - tan yeos ©  tan Psin O
F(X) = 0 cosd cos y sind | F_](K) = 0 cos ® secyy -sin® secy
0 -sin®cosy cos® sin ® cos &



A block diagram of the simulator control system showing the implementation of (2.94),

(2.95), and (2.97) - (2.101) is given in Figure 2~19. Each arrow or path in the block diagram -

corresponds to a 3-component vector quantity. A total of 3 x 5= 15 integrators are required
to realize- the siniiulator control system.- The boxes inthe block diagram represent gains
multiblying the various vector quanfities with the one exception of a single vector cross product
indicated by a bold face X . The gains are composed of both scaker and mctrlx multiplication
of the vector inputs to the boxes. The boldface letters C, D, and F indicate matrix operations.
The matrix D is a constant, diagonal matrix (see (2.96)). 'The matrices C and F denote co-
ordmafe transformahons which are a function of elther AA or A ; the parhcular choice is
md(cated m the block dlagram. Thus, the matrices Cand F are nonhnear gains Wthh must
be’ compufed confmuously. To slmphfy the block diagram, arrows connecting the integrator

outputs and )‘c to the corresponding boxes containing C and F are not Ashown.

Ay
Of the scaler gains, some are.linear, constant gains while the others are nonlinear,
time-varying gains which must be computed at each iteration. The nonlinear gains require
computation of Bar wp € Q which are the magnitudes of the vectors EA ‘ BA, 0,
respectively. These magnitudes are obtained by computing at each iteration the square root

of the vector dot product. Again for simplicity purposes, the computation of these magnitudes

is not explicitly shown in the block diagram. '

In summary, the block diagram shows that the washout signals @ and U are a function

of
a= a(;AI )\,Al )\Al rcl rcr )\cl y)
. U= ;GA’IA’ IAI?CI_':I Icl;).
where ‘ '
XA' T‘c, —;c' Xc' ; : -sﬁ:f'e"variables, of the simulator Cpntrbl system '(oufrpu’rs of the

integrators).

A’ _>‘A : inputs to the simulator control system.

s X ¢ outputs from the simulator control system.
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Figure 2-19

Block Diagram of the Simulotor Control System
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2.6.2 Analysis of the Linear Design Case

- The general characteristics of the simulator control system shown ‘in Figire 2-19 are
of interest and would be valuable in selecting the optimum'values of-the parameters. Unfortu-
nately, a detailed analytical analysis is very difficult to perform be.couse. of the nonlinear
cross-coupling between the six degrees-of-freedom. Consequently, the selection of the
parameters must be performed by computer snmulahon._ However, for the specnol case of the
qucdrahc perFormance index to be discussed below, it is posmble anolyhcally to gain some

A insight into the characteristics of the simulator control system.

If KB = K = 0in the performance index shown in (2.96) then the eqL;otions for the
w

- simulator control system given by (2.94),.(2.95), (2.97) - (2.101) can be simpliﬁed. In

this case it can be shown that the equations for.computing ‘r; and Xc - from ?A ond XA are

F AT A ST - AT, +IC BJCOy) - 113y - @0)
X =FR) X ALY los)
RIS S Tﬂ o el
A

" where matrix coefficients in the first equation describing the translational motion of the cab

are given by

1 =5 €T 8,
1 .22
Ay =7€T 8,0
1 42,2
As = T6€T By D/BA o

The second equation (2.103) for the angular motion of the cab can be rewritten as

2 (o .
- - - U.)A o XC!A
IR R A 2104

Ba



If ¢ =0 then A.l = A2= A3 = 0 and from (2.100) it.can be shown that (2.102)

d R v = 0. Substituting & = @, . N .
. feduces to o= 0p oo URSTITUTING @ = 0 jnto (2.104) immediately gives
that JSC = :)\ or = 0. Inother words, if no penalty is imposed on the cab excursions
then the simulator control system will cause the cab to move so that there is no error in the

sensed motion. For ¢ >0 there will be errors in the sensed motion.

" An examinqﬁbn of (2.102) shows fhat;the translation motion of the cab is governed by a
second order system with two forcing':ferms —I:A and EA =._r:A +g. The second forcing term
on the right hand side of (2.102) makes adjustments in the translational cab motion due to
differences in the cab and aircraft attitudes. If ->‘c = _XA then the second forcing term.

vanishes. The second forcing term occurs because the objective is to minimize the sensed

errors rather than the actual motion errors. .

lgnoring the second forcing term in (2.102), the computation of ?; from —r:A is almost a second

order linear system with constant coefficients; it would be a time~invariant, linear system except
for the pi term ir? the matrix coefficienfé A] ’ A2, A3. Assuming for the sake of argument
that B, is a constant, then the fraqsfer function from ?A to _r; is a high pass filter. To
illustrate,, suppose the characteristic equation of the left hand side of (2.102) has real roots

Wy and wy then the Bode plot of the frequency response would appear as shown in Figure 2-20.

Figure 2-20

High Pass Filtering Characteristics

r /l‘A of the Simulator Control System

[
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The high pass filtering characteristics that evolved from minimizing the performance index

are intuitively reasonable since one of the common approaches is to aftenuate the low frequency
portion of the aircraft motion while passing the high frequencies. Another feature incorporated
in the translational equation (2.102) is the presence of the 5ca||ng factor (I-A ) multiplying

the aircraft acceleration. Equation (2.102) shows that the magnitude of the cab position

will tend to vary linearly with difference between rand AS. Thus, the adjustment of the
constant parameter ¢, T, D and BZA max” that affect the values oFA] , A2 and A3, in turn

amounts to the trade-off between the high pass characteristics and the degree of scaling.

The rotational motion of cab governed by (2.103) or (2.104) encompasses the {dea of
residual tilt. An examination of (2.104) shows that as long as the sensed translational motion
vectors for the cab and aircraft remain colinear (i.e., Ec X EA = Q) then the cab attitude

identically follows the aircraft attitude. As the phase error between &c and &A deviates

from zero, (2.104) induces an angular error in order to help reduce the error _é and ¢ in
the sensed translational motion. The trade off between angular and translational errors in the
sensed motion is governed by the parameter k . As k increases, the level of angular

error decreases according to (2.104).

2,6.3 Computer Simulation Program

In order to study the performance of the simulator control system design, a FORTRAN

computer program was developed to simulate the complete six degree-~of-freedom motion

simulator. The simulated time histories shown in Section 3 were obtained by use of this
program. The computations required to implement the simulator control system design sho'wr'm

in Figure 2~19 were performed in a subroutine entitled WASHFL.

Tije inputs to the WASHFL subroutine consists of the aircraft motion given by )‘A' ""A'
and —FA » the integration step size At , and an index varigble governing the moJe of
fperaﬁon. The outputs from WASHFL are the cab motion command signals givenby T cna
A, The adjustable parameters in the performance index may be entered as input daf‘; to
the program or stored internally in the subroutine in DATA statements. The latter storage option
permits WASHFL to be used on the NASA AMES computer facility in order to generate the drive

commands during an actual flight simulation.

66




A more detailéd de;criptio‘n of the WASHFL subroutine, including a program listing and
description of all .t.:é'r‘nputer variables, is given in Appendix IV. Two other subroutines required

by WASHFL to perfo;h the numerical integration of the state variables are also given in- -

Appendix IV,




3. PERFORMANCE SIMULATION

3.1 Description of the Reference Aircraft Motions

To have a realistic assessment of the performance of the washout circuit designed in ‘
the preceding sections it ultimately would be necessary to ‘conduct a full-fledged pilot simu-
lationusing the simulation facilities ot the Ames Research Center. As a preliminary step
toward such a simulation, digital computer simulation studies were conducted to evaluate
possible performance of the quasi-optimum washout circuit and to determine suitable ranges

of the values for the adjustable parameters in the washout circuit.

The first phase of the computer simulation study was to generate examples of the aircraft
motion that result in several distinctive "tasks', which the simulator cab attempts to duplicate, |
during typical operdfions of the motion simulator. The second phase, discussed in the next
section, was to examine the cab motion resulting from the application of the washout circuit

for the reference aircraft motion generated in the first phase.

The dynamics used to compute the reference aircraft motion are for a medium sized

twin jet transport whose aerodynamic characteristics are summarized in Table 3.1,

To generate the reference aircraft motion, a general six degree-of-freedom aircraft
motion simulation program (SIXDOF) was used. This program was developed at the Kearfott
Research Center and has been used extensively for a variety of studies. The SIXDOF program
incorporates an autopilot, also developed by the Kearfott Research Center as part of an
automatic landing study. This autopilot was used to simulate the behavior of a human
pilot. To use the SIXDOF program, a nominal trajectory for a given typical flight task is
first defined in the manner required by the program. The autopilot then computes the aircraft
control=surface deflections required to minimize the difference between the actual aircraft
flight path and that of the defined nominal trajectory at each instant after the inception of
simulation run. From the control-surface deflecfioné, the reference aircraft motion is generated

by the model of the aircraft dynamics.

“ " The three flight fasks considered in this study are the following:

Task 1 - Tracking Maneuver - This task was created for the purpose of simulating such

flight operations as mid-air refueling, formation flying, etc. It is also a useful task forevalu-
ation of quantitative pilot followup error. The reference trajectory of the aircraft and the

time histories of 24 dynamic variables of the aircraft are shown in Fig. 3-1 for 30 seconds
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of flight time. These variables are:

X, ¥,z = inertial x, y, z excurisions
X, ¥,z = inertial x,y, z velocities
ot T inertial x, y, z accelerations
I'4 I'4 :

. o ay’.az = sensed x, y, z specific forces
or 6 = Euler angles ' ' ' i
@ 8,3 = Euler angle rates
p,q, r = angular rates

6e’ 601 6|_ = elevator, aileron and rudder deflections

It is seen from these trajectories that the flight is quite hectic. This is intentional

and designed to give the washout circuit a good workout.

Task 2 Approach Landing Maneuver - Aircraft landing operation is another typical ex-

ample of simulator application. To generate o reference aircraft motion, it is assumed that

during a landing approach, at about 50 seconds before touchdown, the pilot "suddenly" realizes
9 P Y

that the aircraft is 200 ftf (61 m) and "o the right of a prespecified nominal landing tra-
jectory and that, instead of aborting the landing as he would normally do under these circum-
stances, he tries to complete the landing. In view of the relatively large course error, just
50 seconds prior to touchdown, a rather severe maneuver is called for. The autopilot that
simulates the pilot performance completes the desired landing successfully 55 seconds after the

maneuver is initiated. f

Figure 3-2 shows the resulting reference aircraft trajectory for those dynamic variables

listed in the preceding section.

Task 3 Emergency Pull-up Maneuver - The last simulation mission selected was an

emergency pull~up maneuver during a final landing approach. In this mission the aircraft was

assumed to be initially fblying the ILS beam. At an altitude of about 50 ft (15.2m) above the runway

the pilot decided to abort the landing and excuted the pull-up maneuver, in which the aircroft

pitched up sharply while simultaneously turning away to the right side of the runway.

A particular feature of this flight operation is the large yaw and pitch angles it induces,
and, as a consequence, the large deviation in forward (x) acceleration. Figure 3-3 shows the

resulting trajectories.
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TABLE

3.1

CHARACTERISTICS OF SIMULATED AIRCRAFT

(@) Physical Properties

c 11.08 ft (3.377 m) I 125000.slug * ft2 (169477, kg-m?)
b 71.2 ft (21.70 m) I, 120312.slug - f2 (163121, kg-m?)
s |6%0. ft @10. m) I, 234375.5lug - ft? (317770. kg-m?)
m |777.5 slug (11347,  kg) I, 8125.5lug + fi2 ( 11016, kgem?)
v 2364 ft/sec (72.05m/sec) Pilot's 30 ft (9.14m) ahead of
' ) : Seat vehicle CG :
(b) Stability Derivatives
cDo .098" Ct @=0) .2
s .377 ach/aa, .76
o
aCD/aa 1.82 Cn ((2'——' 0) -.025
[ . P
C  (x=0) -.1722 | 3C /oy -.93
g "o ‘
aC {aa -.506 C, (a=0) ©.375
B (o4
C -.22 C 5.35
X L '
P &
: C:, -.1722 .302
6, be
Cy .021 C -12.3
5r m
‘ q
C -1.022 C ~4.01
m m, .
C < 523 C 2 T
s, "8
Cn‘ A --I Cn -032
5, r
cy -.8
B
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Reference Aircraft Trajectory - Tracking Maneuver
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3.2 ‘Simulated Time Histories of Cab Motion

The washout control law as summarized in (2.97) - (2.101) contains nine adjustable
parameters, namely: ' A '

€ - adjust the amount of linear translational magnitude washout
k - adjust the amount of linear angular magnitude washout

K_ - adjust the amount of nonlinear translational phase washout

K = adjust the amount of nonlinear angular phase washout

T - adjust the "filtering" characteristics between high-cut-off-and-low-scaling
and low-cut-off-and-high-scaling '

dxi,'dy' dZ - adivusf the weightingof ¢ in x, y, z directions
4 c PR B

2 . limits the maximum scaling

BA max

The task of choosing a suitable combination of these parcnmeférs is highly éém,ﬁlicated in view
of the multidimensional perforrh;:nce requirements and the interrelationship between these
parameters and performance. For the purpose of facilitating a systematic determination of
the performance and the adjustable parameters, the following sequence of cases were con-

sidered during the course ‘of simulation study,

Case 1 Linear translational washout only (KB =K =0, kooo)
- (D)

Case 2 Linear tre.slational and angular washout ( KB =K =0)
w

Case 3 Nonlinear translational and linear angular washout (K = 0)
e ————— w -

Case 4 Nonlinear translational and angular washout
It should be noted that these cases were studied in consecutive order and a parameter which was
found suitable for a previous case was not altered for the following case unless it was necessary
to maintain the cab excursions to stay within confinement. In other words, the simulation is
not exhaustive for every case due to limitation in available computer time. It is conceivable
that better results than those shown in this section' may be achieved by a more exhaustive

simulation.

Of the three tasks considered, the tracking and landing maneuvers received a fairly

thorough investigation but only Case 1 and Case 2 were considered for the emergency pull-up
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maneuver. Typical time histories of the cab motion and that of corresponding aircraft motion
for these tasks and cases are shown in the following pages and their corresponding values of

the parameters and figure numbers are tabulated in Tables 3.2-3.4.

In the Figures 34-3-29, the cab motion is represented by solid lines and the corresponding

aircraft motion, by solid lines with circles. The dynamic quantities shown in these figures are

x,y, z = inertial x, y, z excursions

B’ By' B,= "unbiased"x, y, z sensed specific forces

©r B, = gimbal angles

P, q, r = angular rates 4
The cab excursions shown in these figures are all confined to within £ 10.0 ft, (3.05m) and
aircraft excursions, which are in the order of 1000 ft (300 m), were purposely "trimmed" down
from the actual values shown in Figs. 3-1-3-3 in order to permit plotting both cab and air-

craft excursions by the same scale. Let x be the aircraft excursions shown

fig’ yﬁg ! %fig
in Fig. 3-4-3-29 and Xact 7 Yact © 2 'be the actual aireraft excusions as shown in

Fig. 3-1-3-3, then for

act

Tracking task:

X\t =xﬁg +30.0 +236.71+ (ft) [Xﬁg +9.14 +72,15t (m)]
Yact ~ Yfig
Z, 4" 2o " 5001.5 (ft) [Zfig - 1524.5(m) ]
Landing task: ‘
' X ot = xfig +30.0 +243.0t (ft) [Xfig +9.14 + 74,0t (m) ]
Yact = Yhig +200.0 (ft) [yfig +61.96 m)]
Zo4 " zﬁg - 718.8 (ft) [z':ig -219.1 (m) ]

Pull-up task:

ocf i

y .= yfig +90.0t (ft) | [yfig +27.43 (m) ]

act

Zaet = Pfig " 127.2 - 13,5t (ft) tzﬁg -38.77 - 4.11t (m)]

act
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Relative Motions of the Aircraft and the Cab - Tracking Maneuver
- Case 1 (linear translational washout only). - T = 2.0
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Relative Motions of the Aircraft and the Cab - Tracking Maneuver
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Figure 3-8

Relative Motions of the Aircraft and the Cab - Tracking Maneuver
- Case 2 (linear translational and angular washout), - T = 40,0
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Figure 3-9

Relative Motions of the Aircraft and the Cab - Tracking Maneuver
- Case 2-(linear translational and angular washout). ~ T = 2,0
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Figure 3-11

Relative Motions of the Aircraft and the Cab - Tracking Maneuver
- Case 3 (nonlinear translational and linear angular washout). - T = 40,0
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Figure 3-12

Relative Motions of the Aircraft and the Cab - Tracking Maneuver
= Cose 3 (nonlifear translational and linedr angular washout), - T = 2.0
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Figure 3-13

Relative Motions of the Aircraft and the Cab - Tracking Maneuver
- Case 4 (nonlinear translational and angular washout). T = 500.0
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Figure 3-14

Relative Motions of the Aircraft and the Cab
- Case 4 (nonlinear translational and angular washout), T =

91
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Figure 3-15

Relative Motions of the Aircraft and the Cab - Tracking Maneuver
- Case 4 (nonlinear translational and angular washout). T = 2.0
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Figure 3-16
Relative Motions of the Aircraft and the Cab - Landing Maneuver

~ Case 1 (linear trdnslational washout only), T =

94
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Relohve Mofuons of the Aircraft and fhe Cab - 'Landing Maneuver
- Case | (linear translational washout only), T = 2.0
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Figure 3-27

Relative Motions of the Aircraft and the Cab - Landing Maneuver .
- Case 4 (nonlinear translational and angular washout). T = 2,0
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Figure 3-28

Relative Motions of the Aircraft and the Cab - Pull-up Maneuver

- Case 1 (linear translational washout only). T = 10.0
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Figure 3-29

Relative Motions of the Aircraft and the Cab - Pull;up Maneuver
- Case 2 (linear translational and angular washout). T = 10,0
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3.3 Summary and Discussion of Simulation Results

Of the nine adjustable parameters ¢, k, K, K ,T,d ,d ,d and pz ; the three
fw x" Ty' Tz A max
parameters k, K , Kw were used to define the four cases in Section 3,2, the parameters
2

€,d,d ,d were used as direct control of the cab excursions, g, , which limits the
x" Ty’ Tz A max

the magnitude of maximum scaling, were kept constant throughout the simulation study
after initial trial runs, whereas the remaining parameter T was used to alter the nonlinear

filtering characteristics of washout circuit for the translational motion.

It is noted from Section 2.6.2 that for large T, the system tends to behave as a high-
pass filter with low cut-off frequency and high scaling of the input aircraft accelerations,
while for small T, the system is more like a high-pass filter with higher cut-off frequency
and low scaling effect. In general, the low-cut-off-and~high-scaling effect is reflected in
the sensed cab motion with good phase and poor amplitude relations with that of sensed air-
craft motion. On the other hand, the high-cut-off-and-low-scaling effect tends to give poor
phase but with better amplitude relations. These effects are visibly evident for all the tasks

and cases considered in the present study as will be pointed out in the sequel.

Another important property for assessing performance is the "onset" characteristic, i.e.,
the ability of the cab to follow the initial aircraft translational acceleration. The onset
motion generally occurs in the vertical (z) direction since the turns are normally well co-
ordinated and forward speed variation is more often kept at low level. A glance at the
part (6) of the Figs 3--4-3-29 reveals excellent onset following characteristics of the washout

system for all tasks.

As for the angular motion, it is generally agreed that the deviation between the sensed
angular motion (i.e., angular rates) of the cab and the aircraft should be preferably kept small
since the human motion sensor tends to be more sensitive to the deviation in the angular motion
than to the deviation in the translational motion. In the present washout system, the amount of
angular motion deviation is controlled by the adjustment of parameter k, which has been kept

ot a value that keeps angular motion error small.

Thus, the major effort in the simulation study is to obtain a range of the adjustable

parameters to provide suitable choice of translational motion with [imited motion deviation.
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In the discussion that follows, attention will be directed to the response of the sensed
translational motion B’ By,’and Bz“ in part (4), (5) and (6), respectively, of Fig.-3-4-
3-29. ’ )

Trcckmg Task s

Three values of the porameter T were conslderedm each case to ||lusrrate the trode-
off between th e good-phase-poor-amplitude and poor-phose-good-omp||fude responses. Take
Case | (Flgs. 3- 4, 3-5 and ' 3-6) for example at the initiation of the simulation, all cases
show excellen'r onset Followmg, after | sec, however, small T (Fig. 3-6 (6)) is'seen to cause the
n‘sensed cab motion p " to go in an opposite direction to that of sensed aircraft motion - BA,

. -(phcse error) while for large T (Fig. 3 -4 (8)), B, refmains at the same direction as that of

Ba, * On the other hand, at about 4 seconds, large T causes B, t° reach a magnitude
of 8 ft/sec/sec whereas, for small T, the peak B., reaches only 4 ft/sec/sec. Again .
- during the following period of 4sec, large T provides. beffeu:_orpplifp_de,‘response with the
cost of phase error while small T provides better phase relg_ﬁen with the cost of larger
amplitude attenuation. An intermediate value of T (Fig. 3-5 (6)) results in a compromise

.between the two extremes.

‘ The reduced peclk amplltude response caused by large T , which may not be favorable in
z-dlrechon, is definitely favorable in y ond x-dlrechons. Because of well coordinated -
turns, the aircraft has a small lateral sensed occelerahon BA P but the cab motion which can-
not be coordinated within the available maneuvering region shows some spurious latéral
aeceleraﬁoh ch'. If is seen that the peak’ ‘ch “for large T (Fig. 3-4 (5)) is significantly
smaller than that for small T (Fig. 3-6 (5)). The same effect is also true for the forward

ccéelerofion B, % can'be seen from Flg. 3-4 (4), 3-5 (4), and 3-% (4).

The eFfecf of fhe cd|usfmenf of T on the cab mohon discussed above for Case ]
~ (Figs. 3-4, 3- 5, -6) can be extended to cover Case 2 (Flgs. —7, 3—8 3- 9), Cose 3
(Figs. 3-10, 3-11, 3-12), and Ccse 4 (3-13, 3- 14, -15) ' S

The introduction of ongulor washout by the ad|usfmenf of k in Case 2 is desugned to
uhllze the residual tilt for the purpose of i |mprovmg ?ronslchonol mohon. This effect can
be wsuchzed by comparlng the corresponding hme-hlstorles for Case 1 (Flgs. 3-4, 3-5, 3-6)
..and Case 2 (Flgs. 3-7, 3-8, 3-9). For the limited amount of washout provnded 'a general
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improvement in x and y directions are visible from the figures,

In Case 3 (Figs. 3-10, 3-11, 3-12) an additional nonlinear washout signal was pro-
vided for the purpose of improving phase relations in the translational motion. The effect is

relatively moderate for the combination of parameters used in the simulation, however, the

nonlinear washout does provide an alternative to the linear cases.

In addition to the translational nonlinear washout in Case 3, a nonlinear dnngJIGl; ‘
washout signal was utilized in Case 4 (Figs. 3-13, 3-14, 3-15) for the purpose of irﬁproving
angular phase relations. Since the an.gulor phase relations are nearly perfect in all cases, no
significant improvement can be expected from the nonlinear signal. The figures 'c;'e presenfed

here for the sake of completeness.

Landing Task :

The response characteristics of the washout system discussed in the foregoing paragraphs
for the tracking task also applies to this task in general. A major difference between the
tracking task and the landing task is that the former has a relatively symmetric vertical
acceleration whereas the latter is osymmefric as can be seen from part 6 of the figures. For
a motion with asymﬁ\etric acceleration profile, the high-cut-off, low=scaling characteristics
of the filter can be utilized more advantageously to eliminate the d=c component of the
acceleration. Thus, substantially smaller values of T can be u§ed in the present task than

had to be used in the previous task.

Another consideration in the determination of suitable. combinations of the adjustable
parameters is that because of the larger vertical excursion than the lateral excursion in
the landing task, the weighting on the amount of translational washout (dx, dy' dz) need
not be equal in all three directions as was the case in the tracking task. In a direction in
which large excursion occurs a larger weighting is needed to restrain the cab from moving
beyond the physical boundary, and in a direction with small aircraft excursion the weighting

can be smaller to permit the cab to move in a larger volume.

Again, three values of T were considered in each of the Foqr cases and its effect to
_the cab response is similar to that in the tracking task as can be observed by comparing the

three figures in each case: Figs. 3-16. 3-17, 3-18 for Case 1, Figs. 3-19, 3-20, 3-2I for
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Case 2, Figs, 3-22, 3-23, 3-24 for Case .3 and Figs 3-25, 3-26, 3-27 for Case 4. Good
. vertical onset following and improved lateral and forward performance are visible in all

cases.

{

Pull-up Task: -

‘Substantially different aircraft motion, reflected in the presense of large forward accel-

eration variation, in this task from the preceding tasks provides a good test of the adaptability

of the washout system. Only Case 1 and Case 2 were considered and only one value of

T was simulated for both cases.

Referring to Figs; 3-28 and 3*29, a perfect following of the aircraft motion by the cab
for the first 6 sec, in which the aircraft was descending at a trim condition, is as expected.
After thé commencement of the pull-up mcneuvér,.fhe sensed cab accelerations display a good
onset following before subsequent deviation from that of aircraft motion. The effect of high-
pass characteristics is most visible after 20 sec: the high frequency component of the aircraft
vertical acceleration was faithfully preserve’d by the cab motion, while d-c component of

" the acceleration was effectively removed. The effect of residual tilt can be seen by comparing
Figs. 3-28 and 3-29. A general improvement in cab acceleration is visible in Fig. 3-29

particularly during the period beyond.20 sec.
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4. CONCLUSION AND RECOMMENDATION

This investigation is concerned with the design of a six degree-of-freedom motion
simulator control system. The problem considered herein is a generalization of the problem
considered in an earlier study [ 1] in which control systems for a two degree-of-freedom

motion simulator were designed by applying the quasi-optimum control technique described
in [2.3] . Although the same general method was employed in the present investigation, the
mcfhemoﬁc;:ll formulation of the physical problem here is substantially more general and more
convenient, in that, (a) the reference aircraft dynamic was not necessary in the formulation,
(b) the effects of residual tilt and phase error were incorporated in the nonlinear performance

index.
The results of this investigation may be interpreted as demonstrating that:
° The quasi-optimum washout control system can be effectively used for a
wide variety of flight simulation tasks,
° For each simulation task, the cab excursions can be readily confined to
within any specified value and the characteristics of motion sensation can |

be varied by adjustment of constant parameters.

It is believed, however, that the adaptability of the washout system has not been
fully explored in the simulation study reported here. The general presence of spurious
lateral sensed acceleration ﬁcy throughout the simulations, for instance, may
be an inherent limitation of motion simulation in o finite volume and may have to be
present irrespective of the manner in which the washout signals are generated. On the
other hand, the possibility of improvement through better combination of adjustable param-
eters cannot be discounted. Another option, Which is logically promising but has not been
simulated in this study, is the employment of different filtering charactistics of the washout
system in each direction. It was pointed out in Section 3.3 that, to achieve an appropriate
washout effect, the filtering characteristics embodied in the washout system should be altered
by adjustment of parameters from task to task. But for any one task, the filtering characteristics
were maintained the same in all x, y, and z directions despite the fact that the acceleration pro-
files are significantly different in each direction. Thus it is conceivable that tailoring the
filtering characteristics in each direction in accordance with each acceleration component may

ultimately provide improved performance.
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Based on a comparison of the results obtained in the present study and those achieved for
the two degree-of-freedom case which has received favorable comments from pilots who made
actual flight tests, it is not unreasonable to conclude that we have achieved a design which

may be preferable to those achieved by use of conventional washout techniques.
In view of these results the following further effort can be recommended:

1 More exhaustive simulation study of the washout system design reported here.

. Experimental assessment of the washout system by means of actual flight
simulation at the Ames Research Center.

° Extension of present design approach to include the consideration of

human kinesthetic sensor models.

The importance of experimental evaluation with actual pilots cannot be minimized.
It is possible to scrutinize an unending number of time histories without knowing for certain
whether one design is better than another, because the characteristics that are being sought
in the ﬁme—hiﬁfory have not been pinpointed. Thus, actual pilot experiments are ultimately

indispensible for complete evaluation of washout system performance.
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APPENDIX T

Derivation of Optimum Controls &, U

In this Appendix, analytical expressions for the optimum controls @ and U will be

obtained from (2.51) and (2.52), respectively,

aM

8 =5 _ IT-1)
3a M
aM

© =p /k ~ 1-2)
35 A

for the penalty functions in (2.40 ) and (2.41 ),

. 2 BB
MaB @ %), By = vk | = - a-3)
B 284 B A Ba

X o o (o PAE T-4)
M (-’(-IA)I.‘ () = +K - - -4
ww [§] ‘ UJAT 20)1 w wA wi

Since the solution of u from (I-2) and (I-4) is essentially the same as the solution

of @ from ([-1) and I-3), we will first solve (I-1) and (I-3) for @ .

Applying chain rule to (I-1), we have

M -\ , M
M. (e8) Mg
3a 3a 3B
= - |
=@ | (£ - 09
82 P \p.B 8:

where use of the following relation was made

7o) {e 15, - o o)
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Equating the right Hond sides of (I-1) and C[-S')"gives""

. - F . o
B ik B__ A ) —cxis . o -7) -
BZ 8 BAB ﬁz C(XC) PV C[ )

Next substituting (I-6) into (I-7) and solving for &, yields

BB
:_——A——[ﬁAp +K

T CRIB +CR)E, -E, o
AB TR gPa

B

To eliminate the 8 fe.rm in (I-8), (I-7) is rewritten as
K - - ' ' . |
— WA —§BA+C(>~C)5V ) . @)
TR N AN

Next, compute the inner products of the vectors on either side of equal sign in {~9); the re-

sulting scaler equation may then be solved for 8 to obtain

B= (I-10)

2
JﬁAP +2K BA C(x )P +Kﬁ

Substitution of (I-10) into ([-8) gives the desired result
- g - 2 - A I -
a= - (ﬁA pv+KBC ()\c)BA).FC()Lc)O?A-OA

ﬁAp +2K BAC(A )b, *Kg

I-11)
Following the same procedure results in a similar expression for the angular wash-out, given below

K

L)

Jz" TEIE R 5, M 42K SLIF R /1<+Kl

i

wApx

FLR) F R By kK FT R0 E, | HFR) 3, - G
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APPENDIX II

Derivation of Quasi-Optimum Correction Factors

The optimum control problem defined in (2. 94 ) — (2. 97 ) is summarized below:

roﬁMB +ka +el ; ro(t)=0 , ro(t+T)=free
7= ; 7 (t) =F"A(t), . Pt +T) = free
¢ =a i VW) =20, P +T) =free @-1)
X=G P xH =0 |, At +T) = free
T =1 ;T =t Tt +T)=t+T
€=0 ; ety =¢ , €t +T) = free
h=p0(MB KM o tel)Fpl V tp & +p'Utp v @-2)
Po =0 i Pt +T) =-1
5=-€p0ﬂ ;i p(t+T)=0
r - i r
. or : _
P, =~ P, ip (t+T)=0
5, =5 " |2 (F 17, 2 [-—f] CR, ipG*N=0 (@3
ax ' i DN
M IM ;pT(f+T)=free
S = - B + w 4 AL
P Po\37 k37 ¢ 57
T i Pe t+T7)=0
. b _ -
¢ Pt

Let the vectors X and p represent all the state variables and the corresponding

adjoint variables, respectively,
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F [
"0 Po
- -
r P
7
X 0= X =P (T-4)
.
s..e R pT
-pE-A

The corresponding quantities for the "simplified" problem (¢ = 0) are denoted by

the subscript "s":

[ T0s] [ pOJ
Fy F->rs
;s B ;s | 55 = Evs @-5)
*s F-))\s
T, P
L0 L0

In this appendix, we will derive a correction matrix M so that the original adjoint

vector p is given by

+

]
T
|

P ]

(I-6)

2

+

, tME

If
T

where 5 is the correction to adjoint vector p and £ is the correction to state vector x.

< =X tE (T-7)
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The matrix M is conveniently partitioned as follows:

™00 or mov "o 0, "0¢
™0 Mrr Mrv . Mr)\ mr—r mrE
™o Mvr Mvv Mv)\ mvT mvE
M = ) )
™\ 0 Myr Myv M ™7 )¢
- . _ - . - (@-8)
"o Tre Mrv T T Mre -
Lmeo Ter Mev ex Ter Mee

The elements denoted by capital M are n x n matrices, and m's denote vectors. The elements
appearing in (I-8) = not all of which are required for quasi-optimum control law— are to

be found with the aid of the auxiliary equations for  and t

;g=H £ +H »

xp PP
= - - @-9)
b= HL 6 -pr‘P,
or, by use of the matrix Riccati equation: -
- N = + +' » : -
dM/dr Mpr prM +Mpr M+H (-10)

The coefficient matrices H _, H , H -and H in [I-9) and (I-10) are obtained by
xp’ px’ pp xx
partial differentiation of the Hamiltonian h in (II-2) with respect to x and p where the

resulting derivatives are evaluated at )?5 and 55 . The first partials of h are:
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e, -, 28] ¢
, ax v
aMw oL
+k +¢ 9+
a7 € dr
+€L
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In order to evaluote the second partial matrices about the "simplified " solution, it

is noted that for the simplified problem we have

€ =0

E:&-’:B:O

- L - - 7 ~»
a '*u”*’aA C'(\ )QA
g =5+i, =F ()T
c A c’ A
PO(T)="1

pl(r)=0

PV‘(T)“O

px('r)fo

p_(1)=5lt +T)

B (1) =f L(r(r)dT

'ro(‘r) =

Flr) =70+ T r - 1)

V() =71)
Ty =X
t{r)=7
e{r)=¢
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where the subscript "s" has been omitted in (II-13) — ([I-16). In the subsequent
development, we will be using only the "simplified" solution, and hence for con-

venienc the subscript

s" will be omitted unless otherwise indicated. Thus,

H' = ah =H' =
P“ axaple=0 P
0 0 0
0 0 ¢}
Q 0 0
-’ 7 —, 14 _‘I
0 ~9c [—%]C "% a_i [Fl]
RN 9
28] | (23]’
0 oT oT
L 0 0
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TN

-3h
H S em— =
0 0 0 0 0
0 0 0 0 0 0
27
0 0 3p 0 0 0
v
au
0 -
0 0 ap, 0 0
0 0 0 0 0 0
0 0 0 0 0 0
_ a2k _
H, = = =
> ax €=0
0 0 0 0 0 0
_ 8L
0 0 0 0 0 e
0 0 0 0 0
0 0 0 0 0 0
. oL
0 0 0 0 0 ar
_aL aL
0 ar 0 0 2 0
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Substitution of (IT-17) — (I[-19) into the auxiliary equations (I-9).

results in
£y “LE,
£ -8,

;’:«éV - 3;;c [3,_;_] e Bt 3%. £t :;: b,
f ool e e 2,
i, - '
£ 70
E, - :_:..Ee

8,203,

b e [E]5 (5]
ib'e’:";?LE' “3 e -t
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(a)
O
' (c) -

@) -

(e)i .
o

 a)

(b)

(c)

@

(e)

(f)

@@-20)

@-21)



with boundary conditions

ot #T) == gy (t +T)d(t +T) =0 @)
J,(f+T)=-$,(r+T)d(f+T)=o b)
B, + D= -'-év(f +T)d(t+T) =0 ©
BOHN=-F (+DdG+D=0 @ - @-22)
$€(f+T)=v_bE(f+T)Ci(t+T)=0 . ©
_ET(t+T)=-1'-(f+T)g(¢+T)=_d(,+T) ©

and  BIGHATVE G+T =5 G +T)F¢+T) or

p (H+T)=0 | (9)

Since the optimum control laws @ and G in (2. 53 ) and (2. 54 ) are only a function
F;v and 5)\'- respectively, the elements in the M matrix (II-8) of primary interest are
those affecting the correction of ﬁv and 5)\ . The correction factors Er and E)& are

written in terms of the elements of M from (II-6) to give
b=Mg - ([@-2)

- oL - - - - - _
lbv vOEO+Mvr gr Mvv€v+Mv)\ El +mv‘)' E‘r +mv€ §€ @-24)

n
2 2

i

b =M + + T+ E +m +m -
a M)LO,EO M TV E MO "nr 62 T Mae e @-25)

Those elements of the matrix M, appearing in (II-24) and -25) will be evaluated

as follows:
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From (II- 21a ), (I- 220 ) and @1~ 23 ), and the Fact that M is symmetrlc, |t is

evident that the first row and column of M vanish. Hence:
Uy =0 (I-26 )
"o " ™o | , D | -

From (II- 21b ) and the fact that Eé =¢, we have:
- -— T oL » ‘ |
b (r)=yp (D+e [ —Zda S {@-27 )
r r ot ar : o :

and hence, from I~ 21c ), we have:
m z - o HaL :
g ) =y () -y ()r-e [ [ —dydy (- 28 )

t t 8r
Using boundary conditic_:ns M-22b ) and [-22c ) in (I~ 27 )aond (I- 28 )yield;:
t+7T 8L -
4 () =-¢ —dx =@ __¢€
j\ ar ‘ re
and
- t+T FHT g
p == |T] i:"—‘dx-j Xﬁidxdf € - @d-29 )
ar f tar »
m ¢

Therefore, from I~ 6 )and (II- 15 ), we have the quasi-optimum solution for B,
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Ev;.?'.Q» 'TS - o——dx = == dnd:T) - (@-30)

To obtain ib- , it is observed from (I[-21d ) that the differential equation govern-
ing ¢ is exacfly the same as the original equation for p Py in M- 3 ), which, as was
shown in Section 2.5.1, can be-simplified by the transformation defined in (2~ 64 )

Therefore, proceed by letting
-] PN - . X . . ~“‘_~~. -
- = 0T - “ i

‘ fhen, from (2. 66 ) - (2. 48 ), (II- 21d) is transformed into

*

y

TR I | @)

and integration of (II- 32 ) yields

3

o _ . T el '_"‘u" AP St ed
yq('r)=7q(f)'f§ Ch@ xp ldr (@-33 )

Since from (II- 6 )and (II- 15 ), we have the original ['J)‘ as

it immediately follows that
-— ~ - T - - -
'y(‘r)—yq(T)-y(f)-tf C(Xc)lacva]dT (- 34 )

The quasi-optimum approximations of p and y in (- 30 ) and (II- 34 ) respechvely

are the necessary terms in deriving the quasi-optimum control law in Section 2.5.3.
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APPENDIX TII

Singular Optimum Control

Consider the optimum control problem described by (2. 45 ) - (2. 50 ). If

k = 0, then the Hamiltonian becomes

- -p —D+- -’+-I - -~
h po(Mﬁ+€|—)+prv P, & *B T *p_ (- 1

Using (2. 61 ), the adjoint equation (2. 49 ) can now be rewritten as

Po="1 (- 2
E.) =€—a.£ (m..3
r -- X
or
P, =" P, (II- 4
. aM aC(x )| '’
p, = —Ff =7 |——=| <), @- 5
o DY
aM
e = -—.é--’-e —a_-L— m- 6
T aT aT
P =L -7

The optimum controls & and U are obtained by computing the partial derivatives of the
Hamiltonian h with respect to @ and U and equating the derivatives to zero.
aM
- _:.& +p =0 (m- 8
da

p. =0 4 m- ¢
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Substitution of (M- 9 ) into (II- 5 ) results in the relation

Lo lackx )| 5
a’ |——— CX)p, =0
c ~ ¢’ v

which can be rewritten as

Tacc)]
(B, =0

&’ C(x) =
c [+ aA

or, using (2. 71 ) with KB =0, it becomes

aclh ) | L

aA=.0

a, C(Xé)

ax

- (- 10)

(ﬂI- 1)

After performing ﬂ;ue' matrix multiplication, (II]‘:-ZH ) can be reduced to the component

[N 3
o) 3 -

form

vaC)’“AZ-’ acz aAy

(acy Up, ", aAy) sin®_cos y_*+lu_ap, e, aAz) cos &_cos y_

+A(acy YAz "%z O‘Ay) sin '«bc =0

{

x  %ex aAz) sin d>c='0 :

e oy + ;
<acx %Ay " %ey O‘_Ax) ?os ,¢c (acz oA

(- 12)

Since the set of equations in (fﬂ- 12 ) should be satisfied for all values of d>’c and éc ,

it follows that

®ex 0‘Ay %y XAx

Uey o‘Az--mczmAy:O

- :0
Cez ®Ax ~ %ex %Az

132

(M- 13 )



which implies that
2 =0 ' (0I- 14 )

It is noted that for the singular case, the control G is solved from (II[-8 ) in
exactly the same way as for the nonsingular case. The control G, however, can not
be obtained by a direct application of the maximum principle. The equation III- 9 )
obtained by the maximum principle results in an indeterminate value of 5. To obtain
o for the Singu'lo'r case, first solve the set of equations (III-12) for the cab attitude
ec’ (Dc and ;bc « Next, differentiate the expressions for Qc,_¢c,'and wc and use the
definition (2. 8 ) to obtain ¢ .

It is noted that the cross product relation (I~ 14 ) con also be obtained by -
neglecting the angular error dynamics and treating the angle error X as a control variable.

In this case, the system dynamics (2. 45 ) become

o‘= +

o MB elL

= _ -

r =V

v =5 | - (@-15)
Pt |

e =0

for which @ and X (which is implicit in MB ) are the control variables. The formulation
given by (lI- 15 ) can be interpreted as determining @ and X so that good translational per-

ception of the motion is obtained without regard to angular perception.
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APPENDIX IV

-FORTRAN SUBROUTINE OF THE SIMULATOR CONTROL SYSTEM

A FORTRAN subroutine called WASHFL was developed for implementing the simulator

. comrol system design shown in Figure 2-19 and given by (2.94), (2.95), (2.97) - (2.101).

. Thus éubyoutine was used in the computer simulation study described in Section 3 and also

. has ;f'iiq:féa@.bilify of being used on the computer facility at NASA-AMES to generate the actual

.dr'if\'(e" _gdmfncnds for the moving base simulator.

This qppéndix contains program listings of the WASHFL subroutine and two other sub-
ines, GINTR and DRPRC, required by WASHFL to perform the numerical integration of
‘!.sfate vunables of the simulator control system. In addition to the program listings, a brief

-descnphon of how to use the WASHFL subroutine and a description of all computer variables

SUBROUTINE WASHFL

e "lvnﬁpvler'nent the simulator control system design.

. See"fh“e block diagram of the simulator control system design in Figure 2-19.
: CALL WASHFL (IMODE, H, APHI, ATHT, APSI, AXFM, AYFM, AZFM,
| v' . PA, . QA, RA, CPX, CPY, CPZ, CPHI, CTHT, CPsl)

g 'where the inputs are
- IMODE index confrolllng the mode of operation;

‘ "=0, bypass; =-1, initialization; = +1, simulation.
: H ‘ integration step size (sec).
- APHI- aircraft roll angle (rad).
ATHT . aircraft pitch angle (rad).
- APSI aircraft yaw angle (rad).
 AXFM aircraft inertial acceleration in the x direction (ff/secz).
 AYFM aircraft inertial acceleration in the y direction (ft/secz)
A AZFM : aircraft inertial acceleration in the z direction (ff/sec2).
" PA 4 aircraft roll rate (rad/sec).
QA aircraft pitch rate (rad/sec).
RA aircraft yaw rate (rad/sec).
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and where the outputs are

CPX cab inertial displacement. comimand in the x direction (fr).

CPY cab inertial displacement command in the y dlrechon (Ft); -

CPZ cab’ mer’rlol dlsplocemenr command inthe z dlrechon (ft). »

CPHI - _cab ro“ cngle commcnd (rud) o ‘

CTHT “ ‘ cab pltch cmgle command (rad) ( - .
CPsl ‘ cab yaw angle commond (rad)

Remarks :. .
The input ourcraff Euler angles APHI, ATHT, and APSI are defined accordlng to the
convenhonol sequence of rotations: yaw=-pitch-roll. Slnce the simulator control system was
designed usmg the sequence of rotations: plfch-yaw-roll, a transformation is included in
WASHFL to convert the mrcrafr Euler angles from the former sequence to the latter sequence.
The FORTRAN statements contalnmg the transforma’rlon are designated by’ the word MAYBE
in columns 74-78. If the aircraft Euler angles defined according to latter sequence are
available in the computer simulation of the aircraft then, by deleting the FORTRAN state-
ments identified by MAYBE in columns 74-78, those Euler angles can be used in the cc:”i'ng;'

argument. v

The output cab Euler angles are defined according to the rotational sequence: pitch-

yaw-roll,

An improved first~order Euler method is used to perform the numerical integration. An

integration step size of H=0.05sec was used in computer simulation studies.

+

Subroutines required: GINTR

A list of all computer varlubles used in the WASHFL subroutine is given below where the

variables are partitioned accordlng to scaler or crray rype.

Scaler Computer chobles

Computer  Mathematical Descrlption
Variable  Symbol L .

TIME t Double precision value of T,

H2 At Double precision value of H.

TFIN R ' t + T is the terminal time in the performance index.
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3 s

Computer. Mathematical

Scaler Computer Variables, contd v

Description -

Variable ~ Symbol
CK K
8
FK K
‘ w
EPS €
WEIGT k
XMAX d

ymax d
ZMAX . d
ot

RCA -
APHI ®
RSA

PCA
ATHT =+ -

PSA
YCA

APSI
YSA

| RNUM
RDEN
PNUM
. PDEN
YARG

IMODE

Weighﬁngsfa'éfof in the performance index.
Weighting factor in the performance index.
Weighting factor in the pérformance index.

Weighting factor in the performance index.

Translation limit of the cab motion in the x direction,: ~~"

" Translation limit of the cab motion in the .y direction.

R IR

Translation limit of the cab motion in the z direction,

EcosBp.
-Aircraft roll angle..

. :?,,sfn dJA S S

=05 B -

Aircraft pitch angle. |
=sin G |
= cos bae

Aircraft yaw angle.
=sin YA
=sin¢Ac§s ba "~ cos¢A§in9A singbA. _ N
=costiDAcos'¢pAb+sin¢A.sineAsin bt )
=sin eA' A

T NCET .

=coseA si.n;pA. J

Index for control of subroutine computational mode.
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Scaler Computer Variables, contd

Computer Mathematical . - Description

Variable  Symbol ,

T t . Current time. _

H At ' Time increment used for numerical integration.
IFRST " Index used to initialize the numerical integration.
TF2 | =12,

TF3 =13, " See TFIN

T4 =14,

CPX X Cab inertial displacement command in x direction.
cpPY Y, Cab inertial displacement command in y direction.
CPz X, Cab inertial displacement command in z direction.
cvX )'<c Cab inertial velocity in x direction.

cvYy ;lc Cab inertial velocity in y direction.

cvz ic Cab inertial velocity in z direction

CPHI ¢c ) Cab roll angle command.

CTHT 8, Cab pitch angle command.

CPsl b . Cab yaw angle command.

GAMMI Yy x = component of the new costate variable .
GAMM2 7y y - component of the new costate variable 4.
GAMM3 Y, z ~ component of the new costate variable y. |
ATO - ' =tany, . i

APHID o =PA - (qA cosCDA -y sin ¢A) tan , ; roll gimbal rate. (See 2.7)
PA Pa Aircraft roll rate. .

QA ap Aircraft pitch rate.

RA A Aircraft yaw rate. A

ATHTD .BA = (qA cosd)A - rAsn'leA)/ cos Y 57 pitch gimbal rate.
APSID JJA =quin¢A +I’A cos(DA; yaw gimbol rate.
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Scaler Computer Variables, contd

“Computer Mathematical " Description
Variable ~ Symbol ' o
AXFM XA o Aircraft inertial acceleration in x direction.
AYFM 'y'AA Aircraft inérﬁ%:l éccélerat;iq_n in y direction.
AZFM "A Aircraft inertial acceleration in z direction.
CTO =tany .
ABETA2 =gl
. A’
: 2
CK2 =K.
2 " . 8 -
2
PV2 =P,
XXX ~¢/4-
oo i .
I Do loop index.
CAX xc ' x = coémponent of the cab acceleration.
CAY c y = component of the cab acceleration. -
CAZ x z = component of the cab aéc:_eleraﬁon.
y I =°° !+ .
CAZZ oc(3) "2 'e
GAMI =y, [ ke
GAM2 = v, / k.
GAM3 =v, / k.
PQR2 wi - Magnitude squared of the aircraft angular r;te.
FK2 K2 Square of the weighting factor in the performance index. .
w . . . -
_ 2
GAMMM2 =(y/ k). -
PQRGAM =Z,A.;/k.'
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Scaler Computer Variables, contd

Computer  Mathematical Description
Variable  Symbol
000 =0/ W
PC P, Cab roll rate.
. QC 9, Cab pitch rate.
RC L Cab yaw rate.
CPHID &,c Derivative of the cab roll angle command.
CTHID C.bc Derivative of the cab pitch angle command.
CPSID &’c Derivative of the cab yaw angle command.
Array Computer Variables
Computer Mathematical Dimension Description
Varigble  Symbol
vC 12 Simulator control system state vector.
YC SR : 9 Derivative of the simulator control system state vector,
AF EA 3 Specific force acting on the aircraft.
AALFA EA 3 Sensed specific force acting on the aircraft.
ABETA E'A ' 3 Unbiased sensed specific force acting on the aircraft,
ACO | 3 = cos Xy -
ASO 3 =sin XA'
TFM C (XA) 3x3 Coordinate transformation of the aircraft Euler angles.
cco 3 = cos ) -
Cso 3 =sinx _-
CFM C (ic) 3x3 Coordinate transformation of the cab Euler angles.
CALFA -&c 3 Sensed specific force acting on the cab.
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Array Computer Variables, contd

Computer  Mathematical Dimension Description
Varigble  Symbol
PV 'ﬁv 3 Costate of the velocity error.
’ - Ed
ROA 3 =C (}c) ap
=C’(s )Aa
ROB 3 C ()‘C_) Rp*
w a 3 Error in the specific force.
ETA -7; 3 Intermediate variable used in the angular washout
_ computation.
D 3 Diagonal elements of the matrix D in the penalty

function L Gc)°
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Listing of Subroutine WASHFL

SUBROUTINE WASHFL(IMODE, H,
* PA,QA,RA,
CIMENSION VC(12),YC(9)

APHI yATHT y APSI ,

AXEMyAYFMy AZFM,

CPX,CPY,CPZ, CPHl.CTHT,CPSP LE

CINMENSION AF(3),AALFA(3),ABETA(3)}, ACO(3)9ASO(3)9TFM(3!3)
DIMENSION CCG(3), CSO(3),CFM(3.3).CALFA(3)
DIMENSION PV(3),R0A(3), ROB(3).H(3)vETA(3) D(3!

CATA TFIN/S5.0 /
DATA CK/C.0 /
CATA FK/C.C /
DATA EPS/C.16 /
DATA WEIGT/1.0 /
DATA XMAX/10.0 " /
CATA YMAX/10.0 -/
DATA IMAX/10.0 /
DATA FNORM/350.0 /
DOUBLE PRECISICN TIME,H2

RCA= COS(APHI)
RSA= SIN(APHI)
PCA= COS(ATHT)
PSA= SIN(ATHT)
YCA= COS(APSI)
YSA= SIN(APSI)

RNUM = —RCA%PSA*YSA + RSAXYCA
RDEN = RSA%PSAXYSA + RCA%YCA
PNUM = PSA
PDEN = PCA*YCA
YARG = PCA*YSA
APHI = ATANZ(RNUMoRDEN)
ATHT = ATAN2{PNUM,PDEN)
APSI = ASIN(YARG) :
IF (IMODE) 100C, 3000, 2000
o 2 2 e o o o e ek ek
INITIALIZATION
o 2 4 e o o e o e A o o o

1000 CONTINUE

T = 0.0 :
TIME = DBLE(T)
T = SNGL(TIME)
H2 = DBLE(H)

IFRST = 0
TF2 = TFIN%#2
TF3 = TFIN%®%3
CTF4 = TF2%#%2
SD(1) = 1.0/ (XMAX®%2)
D(2) = 1.0/(YMAX%%2)
D(3) = 1.0/(ZMAX*%2)
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Listing of Subroutine WASHFL (Continued)

OOOOOOO0

CPX = 0.0
CPY-="C.0.
CPZ- = 0.0 .
CVX = 0.0
CVY = 0.0
CVZ = 0.0
CPH1 = APHI
CTHT = ATHT
CPSI = APSI
GAMM1 = 0.0
GAMM2 = 0.0
GAMM3 = 0,0
GG TO 3000

CONTINUE

ACOI(1)
ACO(2)
ACQO(3)
Asa(l)
ASC(2)
ASO(3)
ATQO =
APHID
ATHTD
APSID

D - U [T T { I |}

Honon -

TFEM({1,1)
TFM(2,1)
TEM(3,1)
TFM(1,2)
TEM(2,2)
TEM(3,2)
TFM(1,3)
TEM(2,3)
TFM(3,3)

AF(1)
AF(2)
AF(3)
AALFA(1)
AALFA(2)
AALFA(3)

o o o o e o ok o ok o o ok gk o ok o ok e e o o e o e

DEFINING AIRCRAFT VARIABLES
e o o o o ok kol ol ok o o ok o ke o ol ok ok

COS(APHI)
CCS(ATHT)
Cos{AaPSI)
SIN(APHI)
SIN(ATHT)
SIN(APSI)

N(APST)
PA -
(QA%ACC(1)

ASO(3)

(LS LI T LI T T O T I I}

({CA*ACO(1) - RA*ASC(1))*ATO
~ RA®ASQ(1))/ACO(3)
QA%ASG(1) + RAX*ACO(1)

ACC(2)*ACO(3)
ASQ(1)%*AS0(2)
ACO(1)*ASO(2) + ASC(1)*ASO(3)*ACO(2)

-~ ACO(1)%ASC(3)%AC0O(2)

ACC{1)%*ACO(3)
—ASO(1)*ACO(3)
-ACO(3)*AS0(2)
ASO(1)%*ACO(2)
ACO{1)*ACO(2)

+ ACC(1)#*AS0O(3)*AS0(2)
~ ASO(1)*AS0O(3)#AS0(2)

nonon
>
<
m
x

AZFM
TEMIL1,1)%AF(1) + TFMIL,2)%AF(2) + TFM(1, 3)#AF(3)
TEM(2,1)#AF (1) + TFM(2,2)%AF(2)
TFM(3,1)%AF (1)

- 32.2

+ TFM{3,2)%AF(2)
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Listing of Subroutine WASHFL (Continued) ‘ S

NaXaXaizinks

OO0 O0

"ABETA(

ABETA(
ABETA(

2) = AALFA(2) - ;) o
3) = AALFA(3) + 32.2

sl o0 2 e e o e o sk e ok ok g ke o o o o o

DEFINING CAB VARIABLES
segodododok dokokoR ok ok o Rk R

cco(l)
ccot2)
cCcot3)
csotl)
€sQ(2)
cso(3)
CT0: =
CFM(
CFM{
CFM(
CFMI(
CFM(
CrM(
CFM(
CFML
CFMI(

= COS(CPHI) :
= COSICTHT)

= COS(CPSI)

= SIN(CPHI)

= SIN(CTHT) : .-

= SIN(CPSI) - . o

TAN(CPSI) .

1,1) = CCO(2)%CCO(3)

2:1) = CSO(1)%CSO(2) - CCO(1)*CSO(3)%*CCO(2)
3,1) = CCO(1)*CSO(2) + CSOL1)*CSO(3)*CCO(2) .. .
1,2) = CSG(3) o - R
2,2) = CCC(1)*CCO(3)

3,2) = ~-CSO(1)%*CCO(3)

1,3) = -CCO(3)*%CSO(2)

2,3) = CSOU1I*CCD(2) + CCO(1)I*CSO(3)%CSO(2)
3,3) =

CCG(1)*CCG(2) - CSQ(1)*CSO(3)*CSq(2)

o e o e o e o o ol ok ok o ol ol ok ool ROk S R R R R K

CCMPUTES TRANSLATICONAL WASHOUT CONTROLS
o o o o o o ok ot o ok o ok ok koo kRl ko ok ok K &

*

£T

12

PV(1) = —EPS*D(1)%(CPX%XTF2/2+0 +CVX*TF3/3 0 +AXFM*TF4/(8 O%FNORM) )
PV(2) = —EPS%D(2)*(CPY®TF2/2.0 +CVY*TF3/3.0 +AYFM*TF4/(8.0%FNORM))
PV(3) = —EPS®D(3)*(CPZ%TF2/2.0 +CVZ*TF3/3,0 +AZEM*TF4/(8.0%FNORM))
ROA(1) = AALFA(L)*CFM(1,1) + AALFA(2)%CFM(2,1) + AALFA(3)%CFM(3,1)
ROA(2) = AALFA(L)®CFM(1,2) + AALFA(2)%CFM(2,2) + AALFA(3)%CFM(3,2)
ROA(3) = AALFA{1)*CFM{1,3) + AALFA(2)%CFM(2,3) + AALFA(3)%CFM(3,3)
ABETA2 = ABETA(L)#%2 + ABETA(2)%%2 + ABETA(3)%%2 . . . ;
If (CK.EQ.0.0) GO TO 100
CK2 = CK*%2
PV2 = PVIL)#%2 + PV(2)%%2 + PV(3)#%2
ROB(1) = ABETA(L)*CFM(1,1) + ABETA(2)#CEM(2,1) + ABETA(3)4CFM(3,1)
ROB(2) = ABETA(L)*CFM(1,2) + ABETA(2)*CFM(2,2) + ABETA(3)%CFM(3,2)
ROB(3) = ABETA(L)*CFM(143) + ABETA(2)*CFM(2,3) + ABETA(3)%CFM(3,3)
XXX = ABETAZ¥PV2 + CK2 + 2.%CK *(PV(1)*ROB(1)+PV(2)*R0B(2)

: A4PV(3)%ROB(3)) - ‘
XXX = SQRT(XXX)
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Listing of Subroutine WASHFL (Continued)

DO 5 1=1,3
ETA(I) = =({1sC + CK/(-CK+XXX))®*AALFA(1) + CK*ABETA(I))/ABETA2
5 W(l) = (1.0 - CK/XXX)*(ABETA2*PV(I) + CK*ROB(I)) + ROA(I) - AF(I)
GO TO 200 :
100 CONTINUE
C
DC 6 I=1,3
ETA(I) = -AALFA(I)/ABETA2
6 W(I) = ABETA2%PV{I) + ROA(Il) - AF(I)
200 CONTINUE
CAX = AXEM + W(1)
CAY = AYFM + W(2)
CAZ = AZFM + W(3)
CAZZ = CAZ - 32.2
CALFA{1) = CFM(1,1)%CAX + CFM(1,2)%CAY + CFM(1,3)%CAZZ
CALFA({2) = CFM(2,1)%CAX + CFM(2,2)%CAY + CFM(2,3)%CAZZ
CALFA(3) = CFM(3,1)%*CAX + CFM(3,2)%CAY + CFM(3,3)%CalZ
C .
C +
C 2 % 2 A A A 3 o o A s e Xk e o e o de ok o ole ok ol e o ok ok e ok ok ok ok ok
o CCMPUTES ANGULAR WASHOUT CONTROLS
C o % %k 3k ok A 3 ok ¥k A a3 e v o o o ok ¥ o ok Xk o ok e e ok o ol ok ok o
c
c
GAM1 = GAMM1/WEIGT
GAM2 = GAMM2/WEIGT
GAM3 = GAMM3/WEIGT
PGR2 = PA*PA + QA*QA + RA%RA
c .
IF (FK.EQ.0.0) GO TG 700 !
FK2 = FK*FK
 GAMMM2 = GAM1%#2 + GAM2%%2 + GAM3*%2
"PQRGAM = PA%GAM1 + QA%GAM2 + RA*GAM3
000 = PQR2%*GAMMM2 + 2,.0%*FK#*PQRGAM + FK2
C00 = SQRT(00Q)
PC = PA + (1,0 — FK/00D)*(PQR2*GAM]1 + FK#*PA)
QC = QA + (1.0 - FK/COO)*(PQR2%GAM2 + FK#QA)
RC = RA + (1.0 - FK/000)%(PQR2#*GAM3 + FK%RA)
GO To 800 :
700 CONTINUE
c
PC = PA + PQR2%GAM1
GC = QA + PQR2%GAM2
RC = RA + PQR2#GAM3

800 CONTINUE

CPHID =PC - QC*CCO(1)*CTO + RC*CS0O(1)*CTO
CTHTD =QC*CCO(1)/CCO(3) - RC*CSO(l)/CCO(3)
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Listing of Subroutine WASHFL (Continued)

QOO0

(@] aOOOOO0O

CPSID =QC*CSO(1) + RC*CCO(1)

¥ v vk v o s vk ok 3 o S o e o ae e ol ke ok o oo o o o e e ofe o o o o ok

CCMPUTES INPUTS TO THE INTEGRATORS
e e o ook e s o ok s ook o ol R ok ok ok kol o ok

YCc(1)
YC(2)
YC(3)
YC(4)
YCis)
YC(6)
YCU{T)
YC(8)
YC(9)

ve(l)
ve(2)
“VEi3)
vC(4)
VC(5)
vC(6)
ve(m)
vCc(8)}
vC(9)
ve(10)}
veill)
ve(1l2)

CAX

caAY

CAz

CPHID

CTHTD

CPSID '
CALFA(3)*ETA(2) -~ CALFA(2)*ETA(3)
CALFA(1)*ETA(3) - CALFA(3)*ETA(])
CALFA{(2)*ETA(1) ~ CALFA(1)*ETA{2)

cPX
cvX
cpy
cvy
cprz
cvz
CPHI
CTHT
CPSI
GAMM1
GAMM2
GAMNM3

s o ol o o oo e o o Aok e o ol ol ok Rk

PERFORMING INTEGRATION
o e o o ok R ok e o ol R R

CALL GINTR{T, Hy VCy YC, IFRST)

cPX
cPY
cPz
cvx
cvyY
cvZ
CPHI
CTHT
CPSI
GAMM1
GAMM2

Honon

v
v
v

ctl)
c(3)
C(5)

ve(2)
vCi4)

v

=
=

C(6)
vei7)
vc(8)
ve(9)
vCc(1l0)
vC(1ll)
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Listing of Subroutine WASHFL (Continued)

c

GamM3 = vc(12) 0T

TIME = TIME + H2
T = SNGL{TIME)

3000 CONTINUE

RETURN
END
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Listing of Subroutiné GINTR

SUBROUTINE GINTR(T, Hy Y, YC, IFRST)
DIMENSION Y(12),YD(12},YC({9),XXX(12)
DIMENSION STATE{(12), STATET(12)
COMMUN/DOUBLE/ STATE, STATET
DOUBLE PRECISION STATE, STATET, DTT, DBLT
TMAX = T + H _
IF (IFRST.NE.O) GO TO 900
IFRST = 1 :
EPSIL = l.E-4
\ CALL DRPRCI(YD, Y, YC)
900 CONTINUE
101 CONTINUE
DBLT = DBLE(T) .
DTT = DBLT + 0.5D0 * DBLE(H)
TT = SNGL ( DTT )
DO 105 I=1,12
STATE(I)} = DBLE(Y(I))
XXX(I) = 0.5%H*YD(I) ,
STATET(I)=STATE(I)+DBLE(XXX(I))
_ Y(I)=SNGL(STATET(I)) '
105 CONTINUE '
CALL DRPRCI{YDy Y, YC)
Lo 205 I=1,12
XXX{T) = HxYD(1)
CSTATE(I)=STATE(I)+DBLE(XXX(1))
Y{1)=SNGL(STATE{(1})
205 CONTINUE
DBLT = DBLT + DBLE(H) !
T = SNGL ( DBLT )
CALL DRPRCI(YD,y Y, YC) .
IF { Ts LT . ( TMAX - EPSIL )} GO TO 101
RETURN ' ’
END
3
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Listing of Subroutine DRPRC

SUBROUTINE DRPRC(DXP,ZP,VP)
DIMENSION DXP(12),2ZP(12),VP(9)

c
o
DXP(1) = ZP(2)
DXP{2) = VP(1)
DXP(3) = ZP(4)
DXP(4) = VP(2)
DXP(S) = ZP(6)
DXP(6) = VP(3)
DXP{7) = VvP(4)
DXP(8) = VP(5)
DXP{9) = VP(6)
DXP(10) = VP{(T)
DXP{11) = VP(8)
DXP(12) = VP{(9)
C
C
RETURN
END
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