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MEASUREMENTS AND A MODEL FOR CONVECTIVE VELOCITIES
IN THE TURBULENT BOUNDARY LAYER

1. INTRODUCTION

The extraction of an exact solution from the equations of motion for the turbulent
boundary layer has proven to be difficult because of the lack of an adequate physical model
for the turbulence and because of mathematical complexities. A basic step forward would
be an understanding of the fundamental physical structure of the flow. The examination of
organized fluid structures within the boundary layer would give valuable insight into the
understanding of the physical flow structures. The velocities of such organized structures
will be designated as convective velocities.

Klebanoff [1], Kline et al., [2], and Grant [3] give some insight into the turbulent
structure. G. . Taylor [4] with what is now called “Taylor’s Hypothesis’ gave perhaps the
first physical model for the motion of eddies embedded within a flow. Taylor stated, “If the
velocity of the air stream which carries the eddies is very much greater than the turbulent
velocity, one may assume that the sequence of changes in u’ at the fixed point are simply
due to the passage of an unchanging pattern of turbulent motion over the point, i.e., one
may assume that u’'=¢(t) = ¢(X/Vm) where X is measured upstream at time t=0 from

the fixed point where u’is measured.” Taylor requires that the turbulent structure of the
flow is convected or transported at the same rate as the mean flow, when the above
conditions are met. One statistical method by which to evaluate the rate at which turbulent
structures are convected within a flow is the space-time correlation of signals originating at
spatially separated sensors. The space-time correlation comparing the signature
identification of turbulent structures sensed at one location with signatures sensed at a -
downstream location yields a most probable transit time for structures to be convected
between the sensors. The rate at which turbulent structures are convected can be evaluated
by dividing the probe separation by the most probable transit time evaluated from the
space-time correlation. In this work the term convective velocity is defined as being the rate
at which the turbulent structures are convected.

The convective motion of the embedded eddies has been studied in grid-generated
turbulence. The most recent study is that of Comte-Bellot and Corrsin [5], 1971, where the
grid flow was found to be consistent with the constraints of Taylor’s hypothesis. The
experimental results were also consistent with the hypothesis.

Fluid motions with high turbulence intensities, or those where velocity gradients
allow the mixing of fluids of different velocities, cannot be considered to fall within the
constraints of Taylor’s hypothesis. Thus, convective motions in shear flows, such as jet flow
and the turbulent boundary layer, become somewhat more complex. Wills [6-9], Favre,
Gaviglio, and Dumas [10-15] have shown that convective velocities in the turbulent
boundary layer may be much different from the pointwise mean velocities.

This report presents a physical model which describes the convective velocity
processes for the flat plate turbulent boundary layer. Analytical inferences and restrictions
are derived from the physical model. Finally, experimental evidence is presented to justify
the model.



The model predicts convective velocities greater than the mean flow near the wall of
a turbulent boundary layer, below the formation zone. Convective velocities less than the
mean flow are predicted for the outer portion of the layer, above the formation zone. In
" special instances the convective velocity may be greater than the mean velocity throughout
the layer.

Il. BACKGROUND

Osborn Reynolds [16] gives the best history of fluid mechanics before 1900.
Reynolds notes the original accomplishments of Navier in 1822 with updating by Venant in
1846 and Stokes in 1845, with Stokes making mention of the term “eddies.” Osborn
Reynolds introduced what is now termed the Reynolds Number in 1883, and expanded on
itin 1895 [16]. This work laid the foundation for the understanding of the general effect of
eddies in fluid motions. In 1915, G. I. Taylor examined eddy motion in the atmosphere and
made the first documented statement about the convective transport ability of the eddy,
when he said, “It seems natural to suppose that eddies will transfer not only the heat and
water vapour, but also the momentum of the layer in which they originated to the layer
with which they mix” [17].

In 1917 Taylor performed experiments to map the shape of eddies in the
atmosphere [18]. Taylor found that the eddy shape is déependent upon the elevation above
the ground. He expanded further on the eddy in 1918 [19], and in 1921, he introduced the
idea of a random migration (walk), and with it the ability of the turbulent fluid to diffuse
fluid properties [20]. In 1923 he introduced the concept of the eddy cascade [21]; that is,
that the large eddies lose their energy by forming smaller eddies, and at last the smallest
eddies are dissipated by viscosity. In 1931, he examined the motion of eddies near an
instability [22]. Taylor’s microscale and macroscale were defined in 1935 to give insight
into eddy size as well as a statistical approach to the problem of turbulence [23-27]. He
published the relationship between correlation measurements and spectra in 1938 [4]. This
study laid the foundation for future work using correlation measurements to describe
particular motions of selected portions of the spectrum. it is here that Taylor gave insight
into the motions of eddy structures as compared with mean fluid motions. Taylor states, “If
the velocity of the air stream which carries the eddies is very much greater than the
turbulent velocity, one may assume that the sequence of changes in u’ at the fixed point
are simply due to the passage of an unchanging pattern of turbulent motion over the point,
i.e., one may assume that

o= = e(X/Vy) L ()

where x is measured upstream at time t =0 from the fixed point where u is measured. In
the limit when u'/Vm—>0 (7) is certainly true. Assuming that (7) is still true

when u ’/Vm is small but not zero, Ry is defined as
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This quote was later to become known as Taylor’s hypothesis. Taylor referenced work by
Dryden [28] where correlations were measured with band filtered circuits. Dryden’s test
was performed in grid-generated turbulence and was held within the constraints of Taylor’s
hypothesis. Since Dryden’s experimental results which supported Taylor’s hypothesis were
published, many others have examined convection in grid-generated turbulence [29-32]. A
comprehensive study is reported by Comte-Bellot and Corrsin [5], and their experiments
are shown to support Taylor’s hypothesis.

Since it does not fall within the constraints of Taylor’s hypothesis, the turbulent
boundary layer does not have a simple space-time relationship with which to speculate on
the turbulent structure. Visualization and analytical techniques have been used in an
attempt to understand the boundary layer’s physical structure. Numerous papers which
delve into the structure of turbulence have been written. The most important studies with
regard to the background and development of this paper are given in References 1, 2, 3, and
33 through 47.

Insight into the flow structure has been obtained by studying the structure of the
turbulent pressure field on the floor of a boundary layer [48-52]. Corcos [48], Bradshaw
(491, Blake {50], Willmarth and Roos {51}, and Willmarth and Wooldridge {52] note that
the convective velocity of the pressure fluctuations is a function of wave number. Willmarth
and Wooldridge [52] note, “The-lower convection speeds are measured when the spatial
separation of the pressure transducers is small, or when only the pressure fluctuations at
high frequencies are correlated.” This observation also agrees with Corcos [48]. Willmarth
also notes that the pressure fluctuations are produced by eddies convecting at the same rate,
intimating that the convection velocities of eddies near the wall are a monotonically
decreasing function of frequency.

The use of correlations for resolving the structure of the turbulent boundary layer
has not been limited to pressure measurements [10, 11]. The use of such techniques to
establish convective properties of the flow is of prime interest for this report. Favre et al.
[10-15], Wills [6-9], and others [53-58] have approached the problem of convection with
the use of space-time correlation concepts. The constraints, limitations, and use of these
techniques are presented in Section IV to give physical and analytical insight into a simple
model to predict gross characteristics of the convection processes in the turbulent boundary
layer. These concepts are also used for constructing an experimental test procedure to check
the model’s predictions.

Kline et al. [2], presented extensive visual studies of the turbulent boundary layer
near the wall, where the major portion of the turbulent production occurs. It was observed
that well organized spatially and temporally dependent motions in the viscous sublayer
formed low speed streaks in the region near the wall. These streaks begin a gradual “lift-up”
process, which finally oscillates and ejects fluid into the outer portion of the boundary
layer. Kline used a hydrogen bubble technique which showed details of the trajectory away



from the wall. He attributes the streak breakup to the: dominant transfer of momentum
between the inner and outer region. These concepts appear consistent with the findings of
Sandborn [38], who observed that the high frequency components are intermittent
throughout the layer. o

Laufer and Narayanan [59] gave reasons to believe that these inner streaks and their
final breakdown may be correlated with the undulating outer edge of the flow. Kibens and
Kovasznay [34] also noted that the streaky structure near the wall was closely associated
with the undulating outer edge of the boundary layer. Grant [3] mentions that stress
relieving motions very near the wall would cause an outward migration originating near the
wall. When Kline and Lahey [54] later used short time averaging to better examine the
migrations, the spectra of the migrations seemed to peak away from zero. One is now
tempted to speculate about whether the migration results from fluid being driven upward
from an instantaneous localized separation. :

itl. THE PHYSICAL MODEL

_ Based on the observations of Kline et al. [2], Laufer and Narayanan [59], and
others, we may hypothesize a physical model for the turbulent boundary layer. A portion of
the model relies on the concept that a relationship exists between the external potential
flow and turbulent production near the wall of a turbulent boundary layer. This concept
comes from Laufer and Narayanan [59] who showed that processes occurring near the
viscous sublayer scaled with outer flow parameters of a boundary layer.

The scaling may be a result of strong localized pressure gradients created in the
valleys of the convoluting (intermittent) outer edge of the boundary layer [34, 54]. These
strong localized pressure gradients in the outer portion may create either small jets or
pressure pulses which travel through the boundary layer and result in an instability near the
surface. Directly above the viscous subregion near the wall is the layer where the effect is
observed. The subsequent instability becomes the streaks noticed by Kline which form
packets of vorticity. The packet of vorticity, with its circulation, is then acted upon by the
surrounding velocity field. The direction of circulation coupled with the surrounding fluid
velocity then creates a pressure gradient across the packet, causing the packet to be driven
either upward or downward toward the wall. If the surrounding fluid’s velocity coupled
with the circulation velocity on the top is greater than it is on the bottom, the packet will
be forced upward. Conversely, if the surrounding fluid’s velocity coupled with the
circulation velocity on the bottom of the packet is greater than the top velocity, the packet
will move downward toward the wall.

A model allowing turbulence to enter the viscous subregion tends to be in agreement
with Klebanoff [11, who notes that the dissipation is greater than the production in a very
thin region next to the wall. (The above model allows the packets of vorticity to enter the
viscous sublayer where they may be quickly dissipated.) After the packets of vorticity have
been formed, they may be identified by the structure of their oscillations. The velocity of
the packets is termed ‘‘convective velocity” because the mean flow becomes the forcing or
driving function on the packets and convects the packets in a downstream direction.



Corcos [48], Bradshaw [49], Blake [50], Willmarth and Roos [51], Willmarth and
Wooldridge [52] and Wills [6-9] all observe that the convection processes near the wall are
faster than the mean motion. Experimentation by Kline et al. [2, 33, 54] shows mainly the
motion away from the sublayer. Favre et al. {10-151 found that the convectlve motion in
the outer portions of the layer is slower than the mean motion.

The input of energy from the highly intermittent outer edge of the boundary layer
will be a rapid process. The packet of vorticity is formed and moves approximately with the
mean velocity of the layer in which it is formed. The packet of vorticity moves both upward
into the main body of the boundary layer and downward into the viscous subregion. The
region directly above the viscous subregion is where Kline [2] and Kovasznay [42] both
observe the apparent formation of the vorticity.

The present experimental study will show that the convective velocity is equal to the
mean (ensemble average) velocity in the region where the packets are formed. Below the
formation region (viscous sublayer), the convective velocity is greater than the mean
velocity; and above the formation region, the convective velocity is less than or equal to the
mean velocity. (The relative positions of the various regions are shown in Figure 1.)
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Figure 1. Sketch of the boundary layer.

The packet of vorticity, now an integral part of the boundary layer, is traceable
because of the packet’s organized wave pattern. The high degree of orderliness of the
structure makes it identifiable for distances of two orders of magnitude greater than its
length scales [60]. This characteristic suggests that once the packets are formed they tend
to be entities within themselves. The present mathematical analysis of the proposed model
will show that the intermittent outer edge of the boundary layer is controlled by the
packets, which are shown to control the asymptotic growth of the boundary layer. Insight
into the question of when a flow is fully established is also gained through the present
mathematical study.



The der’ivati_dns for the equations of motion of the packets of vorticity will be
presented later, and will be inspected to obtain inferences regarding the motion of the
packet.

A. Vertical Direction of Motion

The following assumptions are made so that an analvtical derivation can be
performed: .

1. Once the packet leaves the layer in which it was formed only its translational
motion need be considered.

2. Since the analysis starts only after migration from the production zone, it may
be assumed that the packet has an instantaneous velocity at time t=0.

3. Once the packet has moved away from the production zone the only
accelerational influence on the packet in the vertical direction will be opposite to its
velocity, such as a pressure drag or viscous drag.

Consider a packet of vorticity that is three dimensional. Three characteristic lengths
or scales, A;, A\, and Aj, are used to describe the packet. The mass of the packet is
represented by C; A A A3p . (C, =n/4, if the packet were considered a cylinder.)
Subscripts 1, 2, and 3 denote directions parallel to the mean flow, vertical to the mean flow
away from the wall, and parallel to the wall and perpendicular to the mean flow,
respectively.

When the previous assumptions for the physics of the packet’s vertical motion are
used, the only force acting on the packet will be in a direction opposite its velocity. The
effect of drag is introduced by using a viscous damping term, u , with the dimensions
FT/L?. If the flow were completely viscous, u would be some constant times the dynamic
viscosity. In dimensionally forming Newton’s second law, a characteristic length is
necessary. The characteristic length perpendicular to the direction of motion was selected
for the following analysis. However, the conclusions derived from the following analysis do
not depend upon which characteristic length is selected. This is because the analysis
considers all packets to have similar geometrical configurations; thus each characteristic
length is directly proportional to the other characteristic lengths. The reason we use A; for
the characteristic length is because Cliff [60] used this characteristic length to formulate an
empirical formula describing radial motion of turbulent packets in an axisymmetrical jet.
The motion was successfully used to predict the intermittency factor as a function of radial
direction in the axisymmetrical jet. Noting that the acceleration is in a direction opposite to
that of the velocity, we see that Newton’s second law becomes

2
CipAiaA; d_dth(Q + uA, g%—%) =0 (1)



or

dyt) [ __» dy(®) _
dtz C1p7\2?\3 dt ’ (2)

The physical restrictions placed on the model require that at time, t , equal to zero,
an initial velocity exists, V;, and the original location may be some vertical distance above

the flat plate; i.e., y(0) =Y;. A reasonable assumption for the region of formation might
be y*=50 ([61], where y* =yuT/n. Here, u_=shear velocity =\/Twa“7p and
n = kinematic viscosity. The initial conditions may be expressed as follows:

dy(p/dt = Vy;

and : (3)

Y(O) = Yl s

at t=0.

Integrating equation (1) and using y(0) =Y; yields

dy(® _ __ w Doy o0 4
- dt Clp?\2>\3 y(t) M Vyl * Cl)\2k3 Twp ()

Using the translated coordinate system with y =0 at y* = 50, equation (4) becomes

dy(®) _ ___ u
dt Clp)\27\3

YO + Vg ©)

Equation (5) is now the equation for the velocity of the packet of vorticity in the vertical
direction, the left-hand side of the equation being the vertical velocity of the packet. The
first term on the right is the dissipative term which retards the motion of the packet.



A direct solution of equation (2) with y(0) = 0, dy(0)/dt = Vyi ,at t=0 gives
K
YO = Wy SO e vy
or
# * .
- [t . . ,
y(t) = V i&”l‘}_).\i (1 - e fCIpM}g ) - , 7
y m
Because
s wwl | uy(t)
: 1PAz A3 = _ )
yi® Ciohars T Vi o 8)

' differehtiation of equation (6) proc.luc‘es‘ equation (5).

B. X-Direction of Motion

Once a packet of vorticity has been.formed:and is injected .into. the surrounding
boundary layer, the vertical position may be described by equation (7).

The horizontal motion of the packet may be examined by assuming that the only
external force in the X-direction is caused by the mean motion of. the surrounding fluid.
That is, whenever the packet velocity is different from the mean velo<:1ty, the mean motion
becomes the driving force to either accelerate or decelerate the packet in question.

A first approximation might be that the force on the packet would be equal to the

‘rate of change of momentum incurred by the mean fluid because of the presence of the

“packet of vorticity. The mass of fluid that must be deflected in some manner as it passes

- over the packet is C; A, A30(V, - V,)dt. A moving reference frame is used for convenience
[62]. '

The force on the packet must be equal to the mass times the acceleration of the
surrounding fluid as a result of the packet. This force must in turn accelerate the packet of
vorticity, the total force on the ﬂLIld bemg ‘
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|

v,
= C17\2>\3p(vm - Vx)dt —&— s

where V, = convective velocity of packetand V, = velocity of mean motion. Since the

actual acceleration may not be known because of the uncertainty of the shape and other
related processes (i.e., pressure drag, etc.), a coefficient of drag Cj is introduced such that

Cq(Vp - V) = dVp,

Thus, setting Fy equal to mass times acceleration yields

v,
dt

C'dC1>\2 7\3P(Vm - VX)2 CipA1A2As

or

Wy _ CalVm = V' _ Ca
dt A Ay X

222V Vg t Vm’ ]
In terms of displacement in the X-direction:

2y, C , C C4V, 2
d2x d(dx)2 +2Vm_dg dVm

¢ ", \at) Modat T 0

)

(10

a(an

Solutions of these differential equations are given in Appendix A [63, 64], when the ‘
functional forms for Cd, A, and Vm are known. When Cd, A, and Vm are essentially

constant, the exact solution to equations (10) and (11) are given (Appendix A). The

solutions for constant Cg, A, , V, are

M (Vi - V)
m = 4Cy(Vy -V +n

V() =V

(12)




where Vi is the initial value of Vx at time t=0 and

A
Cyq

A 2n),

x(t) = Vpt - o

The assumption that the rate of change of \; may be considered small can be
justified by Kline’s [2, Fig. 15] picture of the lift-off phenomena near the wall. Cliff [60]
presents pictures showing shape changes in the outer portion of a free shear flow. Both of
the above references indicate that the length scale in the X-direction may be considered
constant for short periods of time. The rate of change of Cy for cylinders and spheres is

not greatly affected by small changes in Reynolds number, as shown by Schlichting [65]
and Sabersky and Acosta [62]. It is shown that Cq may vary approximately 30 percent

over two orders of Reynolds number. The rate of change of V,, may be considered small

in the outer portions of the boundary layer, or where there is little shear. One could also
develop the equations and use small increments of time to allow the equations to be used in
high shear regions; that is, assume that the velocity takes step increases, and use the
equations for each step.

Once the packet of vorticity is removed from the region of high shear, the above
simplifying assumptions are reasonable.

The equation for the Y-direction of motion of the packet indicates that the packet
moves most quickly away from its origin in the high shear region, and will spend most of its
time in the outer portions of the boundary layer. Thus the above solutions should give good
first approximations, and are exact solutions for the case where the simplifying assumptions
are met. The limiting case where the packet is in the extreme outer portion of the boundary
layer and is not subject to great shears should give the best results.

C. ‘Evaluation of the Motion of the Packet of Vorticity

The motion of the packet of vorticity gives direct insight into the structure of the
turbulence and the turbulent bounday layer. First, some of the packets will eventually
become the turbulence at the intermittent outer edge of the boundary layer. Second, the
boundary layer growth is eventually controlled by the motion of the packets, the limiting
case occurring when the packets force the boundary layer to grow as a linear function of the
X-direction. Third, the turbulent flow may not be considered in equilibrium as long as there.
are accelerations of the packets within the flow; however, the following analysis shows that
within a finite distance the packets become very close to equilibrium with the surrounding
flow.

The equations to be examined are as follows.

10



The acceleration of the packet in the Y-direction;

M
- —_— ]t -
e /Clp)\2)‘3 ’

= & =k
Ay(t) Clp)\g)\a Vy(t) Clp)\z)\3 Vyl
(14)
2 [TAVA
= " vy - —L—
(Clp)\2X3)2 : C1p>\2>\3
The Y-direction of velocity;
AV t \V _fC PI;; X dt . 2 ry(t) :
= . 1 213 = e e et~ .
y®) = Vyie T i T (15)
The Y-direction of displacement; - '
. N . . : #
Syt = Vin1_pl1M_li<1 -e f.CIPMM .d > 16
The X-direction of acceleration;
A (t) - Cd[vm - Vx(t)]2 _ R,Cd(Vm-Vl)z
X | ¥  C(V - VD) + X7
_ Cg i Vg = V°
- Ao | K rem,) Cd :
x(t) + o gn[n, +1C(V, -Vl - C V—(Vm =V |
d . d § Vm
(17)

The X-direction of velocity;

11



(Vg - V)
Vi) = Vm v vy T L

Vi - GV (Vi - VI { C4(Viy - Vi) [x(t)

A\, A 2y,

(18)
The X-direction of displacement;
_ A ' : A 2nA |
x(t) = Vt - G; gn[x; + tCy(Vy, -Vl + —lC_-g-—l- . | _ (19)

i
The equations of motion for the packet of vorticity in the Y-direction, equations
(14), (15), and (16), will be discussed first. '

Equation (14) requires that the deceleration of the packet be inversely proportional
to A, A3 . This inverse ratio means that larger packets are decelerated at a slower rate than
the smaller packets. Consider the limiting case:

limity o Ay() = 0 .

.Cl PAa A3

The acceleration becomes equal to zero when y(t) = Vy1_ m

. A longer distance is
required for the larger packets to reach a constant velocity.

Equation (15) shows that the velocity of the packet decreases exponentially with

time. It also requires that the vertical velocity of the -packet become equal to zero at a
. CipAaAs

) yiT w®
‘proportional to A,X; . For the same initial vertical velocity, a larger packet will move
farther into the flow than a small packet. Similar results were obtained by Cliff [60] for jet
flow. One may infer from this that the spectral content of the flow should change such that
there must be more high wave number structures near the wall where the packet forms than
farther away. That is, the spectral roll-off must be somewhat less close to the formation

distance y = V. . Thus, the penetration of the packet into the flow is
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zone, which Tieleman [66] has shown using the CSU-Army wind tunnel. Since the
equations are not limited to the positive y axis, the same effect should occur below the
formation zone as well. Thus, as one moves away from the production zone, the high
frequency must disappear.

. Equation (16) is the general relation for the vertical displacement of the packet. At
time t = 0, the packet is at the axis of the coordinate system;i.e., t=0 and y =0 where
y = 0 is the formation zone, y* = 50 . The most interesting case is the asymptotlc values for
t very large,

S

o) = CCipAads 20
y(=) VYI—T_ . (20)

This equation implies that, if the outer edge of the boundary layer is formed by
packets generated near the wall, only the largest structure would have propagated to this
area. If V u,Ci,p are the same for two dlfferent packets, the f1nal dlstance in the

Y- dlrectlon to which they may propagate is proportlonal to A, )\3 If A, and 7\3 are each
proportional to some basic characteristic length, A, the migration distance the packet will
attain is proportional to A?. The larger packets are decelerated at a lower rate than the
smaller packets. Thus, the outer edge of the boundary layer will be composed primarily of
the larger structures. Photographs,:as well as-experimental results; indicate that this is true
{33, 34, 37, 60]. The height of the boundary layer, §., becomes.the value of- y(e) or

5 = v Ciohads

The clumping of smaller packets could increase their ‘basic size to allow the packet
to penetrate the flow to a greater distance. Fiedler and Head [37] suggest the possibility
that the transition zone is a breakdown of small randomly distributed patches of turbulence
which finally coalesce. This is found to be consistent with the proposed model. For
boundary: layers an increasé in the energy of the power spectrum at lower wave numbers
with increasing distance from the wall could indicate the occurrence of clumping, However,
other phenomena such as dissipation and slower migration rates of smaller packets will also
.cause a decrease in the power spectrum at large wave numbers. Tieleman [66], indicates a
gain'in power in the low frequencies with increasing distance from the wall.

Equation (15) should also be valid in the transition region. This suggests that the
‘transition region must develop much more rapidly than the turbulent boundary layer. This
may be deduced from the. fact that the packets move out more quickly-from the reglon of
: thelr pomt of. formatlon S . : p - :
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Cliff [60] noted for jet flow that, since the equation for the vertical motion is
exponential in nature, the intermittency of the outer edge should also have an exponential
form. The present analysis for the boundary layer will lead to the exponential form for the
variation of intermittency. Fiedler and Head [37] obtained an exponential variation of the
outer edge intermittence for a number of turbulent boundary layers. . :

The limiting case for large time gives
Hmitp, e y(t) = 6 & Ang . , _. (22)

(Note: limity_, y(t) + distance from the wall to the formation zone = & . However
limitp, ,y(t) > distance from the wall to the formation zone.) The boundary layer

thickness will be proportional to A,A; . Taylor [20] found that the growth of a length
scale will be proportional to the square root of time. Thus,

limity,e y(t) = 8 o t21% « t

Therefore, for a constant 'V , (V ) thus

s« x . ' o @

Thus, for the limiting case of long times, the boundary layer growth becomes a linear
function of distance. Zoric [67] points out that this is 2 requirement for similarity solutions
to exist in the turbulent boundary layer. That is, one of the requirements for the boundary
layer to have a nondimensional velocity profile that is invariant with respect to downstream
distance is that the boundary layer have a linear growth in the streamwise direction.

Equation (17) gives the acceleration of the packet in the X-direction. At time t=0,
the acceleration is inversely proportional to its characteristic wavelength in the mean flow
direction. As time becomes larger, such that th(Vm 'Vi) >\, , the acceleration of the

packet becomes proportional to A; and inversely proportional to time and Cg . Thus) the

smaller the packets are, the more quickly they are initially accelerated; that is, the smaller
packets are the most affected by the initial conditions. Since the acceleration is also a
function of the square of the difference in velocity from that of the mean flow, there comes
a point where the smaller packets are moving faster than the larger ones. Thus at some time
the larger packets (moving more slowly) are accelerated at a greater rate than the smaller
ones. This point occurs when the finer structure has approached the mean velocity and the
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velocity of the larger structure is still significantly different from the mean. The velocity
equation for the X-direction is equation (18), which shows that, at time t=0, the
convective velocity is not a function of wavelength or characteristic length. The zero time
limit corresponds to the formation zone. As time becomes a factor, the velocity of the
packet of vorticity in the X-direction is negatively proportional to A; , the characteristic
wavelength in the mean flow direction;i.e.,

(24)

;o= v M
Vx T Vm Tgg

Thus, the smaller the packet is, the closer its velocity is to the mean velocity. Likewise, the
larger the packet is, the greater the difference its velocity is to the mean velocity.

~ Equation (24) also indicates that for t very large, the convective velocity of the
packet once again becomes independent of wave number. At some finite time, velocities of
all packets, which had been generated for that length of time, should travel at
approximately the same rate. '

A simple calculation can Be made for the time needed for the convective velocities
to approach their asymptotic value. Consider that the fluid impinging on the packet is
deflected entirely in the Y-direction. Here, then, Cd=1 . Also, when the convective

v
velocity is approximately equal to the mean velocity, A, would be equal to ﬁ,or the

inverse of the wave number. The flow will be considered stable (i.e., a similarity solution for
the velocity profile will exist) when the convective velocity is equal to 0.99 V,,
where V. is the mean velocity of the outer flow.

Equation (24) may be written as

Vv ) :
=X - M :
1 Vm‘ thCd ’ _ ' (25)

For the outer regions,
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thus, -

v 1
Vm 211’ fth :

Applying the above requireinent on the convective velocity (0.99 Vi)

—m__X = o0 , @6

the general relation being

V_ (V. -V S

Example 1: Consider that the freestream velocity, is V=20 ft/s;c
(6.1 m/sec) and that the initial velocity of the packet is V;=35 ft/sec (1.525 m/sec).
Consider also that the minimum frequency content of concern is 10 Hz. Therefore,

. =%% = 0.318 ft (0.097 m)

and

t = 063 se¢ = 1.59»sec.
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Equation (19) gives the distance the packet must travel before a similarity solution
could be expected:

_ A LnA
KO = Vit = gl + Co(V -Vl + 2 g

x = (20)(1.59) - 0.318¢n[0.318 + 1.59(15)] + 0.318(-1.15)

= 31.8-3.2~-04 = 28.2 ft (8.6 m)

For the same initial conditions, for a frequency content of 20 Hz, we see that only
approximately one-half of this distance would be required. Equation (27) shows that the
time required for the convective velocity to approach the mean velocity is a linear function
of the percent difference that may be allowed.

Example 2:
V. = 80 ft/sec (24.4 m/sec) ,
V; = 1/4 V, = 20 ft/sec (6.1 m/sec),
Minimum frequency of concern = 10 Hz,

Experimental error ~ 4 percent (agreement between mean and convective
velocity), f '

and A 2= = 80 27360338 m)
s Zmf 207 O b : :

Thus, equation (25) becomes

\ 1 o0l

x — —
b -v ™ %0 = 3mcy = et o
__ 01 _
t = 0.04)2r - 0.398 sec
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and

x(t) = V() - A onp, + tCy(Vy - V)] +%
Ca d

(80)(0.398) - 1.273 Qn[l.273v + (0.398)(60)] + 1.273¢n 1.273

27.4 ft (8.35 m)

This result agrees well with Zoric’s work taken in the CSU-Mmy wind tunnel [67]. Zoric
finds that for V_, = 80 ft/sec (24.4 m/sec), the boundary layer thickness, & , displacement

thickness, §* , and momentum thickness, #, all begin to grow linearly at x =30 ft
(9.15 m). Our model is presently concerned with the linear growth of the boundary layer
thickness. That is, when the internal flow structure comes into equilibrium with the mean
flow, the growth of the boundary layer is predicted to be linear.

Equation (19) gives the X-direction of motion for the packet. The larger particles are
found to travel the least distance because their aceeleration is originally somewhat slower
than that of a smaller particle. Examples 1 and 2 show the importance of this equation.
With the knowledge of the difference between the convective velocity and mean velocity,
one can estimate the length required for similarity solutions to exist. The mean velocity
profile used in the derivations may be slightly modified; however, since the nature of the
vertical direction of motion demands that the packet will expend most of its life in the
outer portion of the flow, equation (19) should be useable with little or no modification.

‘A more detailed approach to evaluating equation (10) would be to assume a spec1flc
velomty distribution through the boundary layer rather than a charactenstlc velocity, V

As an example, consider Vi =[Gy + V;l, where C, is a constant and V; is the velocity
in the X-direction at y = 0. " T - ’

Using a first order approximation for y(t) Gie., Vi = CyVyit + V)), equation
(10) becomes ’ :

Cq Cq - Cq
= —=—V2? —2)\—1[Cv it + ViV +— [vaylt+V]2 . (28)

Equation (28) is of the same form as that conside_red in Appendix A. The method of
approach given for the general case in Appendix A is; however, not well suited for this
particular differential equation. Thus, a slightly dlfferent transformation is used, as outlined
in Appendix B, to solve equation (28).
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The solution of equation (28) in Appendix B, gives the following X-direction
relation for the motion of the vorticity packet. A flow of the form Vin = Gy,

where C,, is some constant, is assumed. The velocity in the X-direction is given by

-C,C,: C.CV. .\~ .
- vy d>vyi . '
Vy = (Cdcvvyih‘l)% tanh( X, ) t + Cvat +V,
| (29)
| Y Y4
=V -< C:j) ( : tanh .A_,(Vm - Vit ,
while the motion in the X-direction is given by
%)
= -t LS ‘ CdCVVyi
x(t) = vayi T + Vit - C_d ¢n cosh (———xl— t |
- (30)-
H
_ Vin t Y, AL

Cq
3 .t - Cd ¢n cosh Tl—(Vm - Vir)t

Equations (29) and (30) are approximations to the governing equations for the
conditions when the packet is near the floor. The velocity profile of the turbulent boundary
layer might be examined.in two parts, A and B. A is the linear fit to the portion near the
formation zone, and B is the linear fit to the outer region. Equations (17), (18), (19), (28),
(29), and (30) could be used to describe the motion of the packet throughout the layer.

The asymptotic solutions would still be govermned by equations (17), (18), and (19) which
have previously been discussed. '

.ELEVATION

VELOCITY
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1 ’ R
A general form Vm = (CVY) [ [62, page 229], where CV is a dimensional
constant, may also be used for the velbcity profile. Using again a first order approximation
for the Y-direction of motion;i.e., y(t)= Vy1 ,gives V. = (Cnyit)l/ 7.

The differential equation governing the motion is still equation (10). The solution
given in Appendix C is

Vo (Vi = V) .
Vo= Vg - (31)

3/
— (V- V)[ngVyﬁ L Vl-t] + Vo,

where

<
|

1 ) y
CVyi) 7+ Vp = (Cy) 7+

and

Equation. (31) would be difficult to work with, since the velocity profile increases
to infinity as time goes to infinity. However, the expansion of the velocity profile,

V = Cy 1 , in a Taylor series yields
) C -6 -13
V) = VO @ v Ey R - -yt Oy R

Thus in regions where y is large, the velocity profile may be considered constant for large
increments of elevation, implying that the equations for convective velocity in a flow with
no velocity gradient could be used. The simple case of allowing the mean velocity to
approach some asymptotic value and using the equations for a constant mean motion would
be realistic.
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“ The velocity of the packets in the formation region should be independent of wave
number, because at this location all packets move with the local mean velocity of the fluid-
Thus, a direct transformation between wave number and size may be determined for this
region. When the velocity of the packets approaches the mean velocity, once again a unique
relatlonshlp will ex1st between wave number and s1ze

From the previous analys1s one may infer that the boundary layer must grow rapidly
through the laminar to the turbulent transition region. The boundary layer growth rate must
then decrease with the limiting case being when the growth rate has decreased to a linear
function of X. The shape of the undulating outer edge may be examined in the light of the
model. The outer edge will contain, primarily, large scale structures. If the boundary layer
goes to separation, the formation-zone would be raised suddenly, and the outer-edge would
contain a greater number of smaller scale structures. One might expect that the outer edge
would, thus, be somewhat less intermittent than upstream. (This was observed by Fiedler
and Head [37].)

At the point in time where the convective processes travel at nearly the mean flow-
rate, correlation measurements should more nearly indicate a near frozen flow. The width of
the correlation curve should not change greatly with separation distance, because the
spreading of the covariance with distance is partially attributed to the.fact that various
frequencies traveling at different rates will not allow all frequencies to be in phase at
separations other than zero. It may be shown that spatial weighting of individual harmonies
will not decrease the magnitude of the normalized cross covariance (Appendix D, paragraph
E). This leads to an interesting speculation that the majority of spreading or diffusion
processes in a boundary layer may be caused by varying convective velocities of structures
or frequencies of various sizes.

1IV. EVALUATION OF CONVECTIVE VELOCITIES

This " section concerns the ‘use of the statistical “concept of space-time covariance
computation to obtain the magnitude of the convective velocity. The convective velocity is
most easily obtained by either holding time constant and varying the separation distance
until the cross-covariance becomes a maximum, or holding the separation distance constant
and varying the time delay until the cross-covariance becomes a maximum. In both cases,
the convective velocity is obtained by dividing the appropriate separation distance by the
appropriate time delay. The special case of Taylor’s frozen flow theory is covered, along
with the case in which the flow may not be considered frozen.

A. Convective Velocity for Time Invariant Covariance
The relationship-between time and space in shear flows has, for the most part, been
avoided in the past-by assuming that Taylor’s hypothesis [4] was valid. That is, for flows in

which the turbulent intensity is low, the flow pattern is assumed frozen. Thus, an observer
moving with the mean motion of the flow would detect an unchanging spatial pattern in the
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flow. A shift in space could be represented solely by an appropriate time displacement. A
function of space and time, f(x,t), would be equally represented by f(x + Ur ,t + 7).
For this special case, the correlation or covariance function would be invariant in time for a
statistically stationary set of data: that is, ’ ‘

% fx,)f(x + Ur,t +7) = 0 . : (32)

This result follows the analysis given in Appendix D, which requires that

Ie:

f(x,t) f(x,t) = 0 . (33)

9
3 f(x,t) f{(x+Ur,t+71) = ;
The covariance may also be expressed as
fx O fx+E,t+7) = f(xDf(x+E+Ur,t+r+7,) . (34)

Wills {49] noted that temporal invariance of the covariance may be obtained if it is
assumed that the change in the turbulence pattern between the two measuring points is
statistically independent of the instantaneous velocity fluctuation at the initial point. Wills
obtained the relation

aMf(x,t) aM[f(x,t) - f(x+¢,t+7)]  _ 0 (35)
ath atm

for some ¢/r and forall N and M. For n=m=0,

fx,)? = f(x0) f(x+E, t+7) . E (36)

Frozen flow requires that f(x + &, t + ) reduce to f(x,t) when considered at the point x + £
and at time t+7, where £ is in the direction of the flow. Thus, for frozen flow, the
covariance is invariant. For the frozen flow, the convective velocity may be uniquely
defined by
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di

T ) = C = Convective Velocity. 37
7 ny(s ,7) = constant

v

This relation is shown schematically in Figure 2. Here the spatial pattern is convecting at a
velocity identical to the mean flow rate.

B. Convective Velocity for Noninvariant Covariance

The real world presents a somewhat more complicated picture in that the flow is not
frozen, and the covariance is not invariant. Turbulent decay, for example, is a condition that
will cause the turbulent velocity to change its nature and the covariance to decrease in the
streamwise direction. However, turbulent decay may or may not change the value of the
normalized covariance (Appendix D, paragraph F).

Figure 3 shows how the isocovariance curves may appear in nature. Dumas, Favre,
and Gaviglio [14] present similar curves for velocity fluctuations in a flat-plate turbulent -
boundary layer.

Two separate convective velocities may now be obtained. The first is defined by a
two-point measurement separated by a given distance, ¢, where the time delay between
sensors (located at each point) is allowed to vary. The convective velocity is equal to the
separation distance divided by the time delay which gives the largest covariance amplitude.

This convective velocity is represented in Figure 3 by holding £ constant at £, , and
varying 7 until ny(s,f) becomes a maximum; that is at the point

0 =
'5'7'_- ny(E DT) - 0 ’

which is the case 7, in Figure 3. Thus, the convective velocity becomes Cvr = £, /12,
where C,_ is the convective velocity obtained by holding ¢ constant and varying 7.

A second convective velocity may be obtained in a similar manner by holding
7 constant and varying & . This is represented in Figure 3 by holding 7, constant and
moving in the ¢ direction until ny(g,r) becomes a maximum; that is,

3Cyy(&.7)
13
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For this case, Figure 3'gi\A/es; CVE = £, /7, , where CVE is the convective velocity defined by
holding 7 constant and varying £.

Lim_a A (Eigl. 3) passes t‘hrough all points of

,l a ny(g JT)
o7

Therefore, the slope of line A is Cyr ."Line B pavsse'sﬁth_roligh all p,oint.SWheré ~ '3

3Cyy (£:7)
28

Therefore, the slope of Line B is Cvg’ ..Figure 3 shows that the two convective velocities are"
different for nonfrozen flows.

To demonstrate that the convective velocity measured using a constant spatial
separation and varying the time delay is the more useful for the present analysis, a signal
representative .of a particular packet of fluid at several locations was considered (Fig. 4).
Another aid is the examination of the interactions of the two separate correlations. Assume
that the time-varying covariance between points 1 and 3 of Figure 4 is that of Figure 5.
Let & =¢&,, of Figure 2, where Figure 2 gives the maximum of the curve occurring at time
delay, T2 . For this case, ny(E 7)= 0.7. From Figure 2 we see that, for the same time

delay, we are able to get a higher correlation, approx1mately 0.74, if the separation distance
was only £,, (£,<&,). This point is represented on Figure 5 by point A. Examining Figure
2 again, it is seen that for £, ,an even larger correlation occurs at 74 ,(T3<T2 ) . This point is
plotted as point B on Figure 5.

Applying the same procedure we see that for 73 there occurs a greater correlation
at an even shorter separation, £;. This correlation is point C on Figure 5. For §; there isa
greater correlation at 74 , point D of Figure 5.

This process may be repeated over and over again until the origin is reached. Thus,
the peak of a time covariance must lie within the time covariance curve for a slightly smaller
separation distance. The maximum time covariance value for a given time delay (note that
this is not the peak) is the true maximum of the space covariance for that time delay and
corresponds to the separation distance for the curve on which it lies. For Figure 4, the time
covariance of points 1 and 3 would give a maximum at some delay, e.g., 7j.At thissame

time delay, the covariance of points 1 and 2 could have a larger value.
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PACKET OF FLUID AT 3 SEPARATE LOCATIONS -~
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Figure 4. Schematic for correlation analysis.

Figure 6 may be examined in the same manner as Figure 5. For a given time
delay, 7, , a peak will occur at ¢, (point A, Fig. 6). However, at ¢, a higher covariance is
obtained at 73 ,73<7, (point B). At r; a larger covariance is found at £; (point C).
At ¢; the maximum covariance occurs at 74 ,74<73 (point D) and so on as in the above
case.

Statistically, the peak of the space-time covariance curve with varying time delay
occurs when the signals are most closely matched; that is, the optimum time delay is the
time delay where the wave shapes are the most alike. The space-varying, space-time
covariance curve indicates that a slight decrease in separation will give a higher covariance
amplitude for the same time delay. The difference between the two convections gives a
measure of the degree to which the flow is not frozen.

The present analysis deals primarily with the passage of fluid packets and the signal.
produced as a result of them. A transit time needed for the packet to best reproduce itself is
desired. Thus, the time-varying scale was selected. That is, the convective velocity will be
obtained as the given separation distance divided by the time delay at which the covariance
becomes a maximum. (This is consistent with the work of Favre, Gaviglio, and Dumas.)

£ =
N = Gy (38)
M1 aC,, ¢n
S S— )
a7

A 'typical covariance curve is shown in Figure 7. Unless otherwise stated, the covariance will

henceforth be written as ny(r). The above chosen convective velocity, C,. , will be
written V. for the overall convective velocity. To this point, nothing has been said about

whether the convective velocity is a function of wave number or characteristic lengths.
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Figure 6. Correlation in space domain as function of time.

The convective velocity of specific frequencies will be denoted by V¢, where the
subscript f will be replaced by the frequency in question.

C. Evaluation of Convective Velocities

The following paragraphs on concepts and experimental procedures deal primarily
with correlation, spectra, and statistical signal analyses. A short outline on signal analysis
and correlation concepts is given in Appendix D, which includes the spectral relationships
for the correlations discussed in the preceding section, using both stationary and
nonstationary series. Also included are restrictions imposed on the correlation and spectra
by physical limitations, such as records of finite time and stationarity of the original signals
through the nth and mth moments, respectively. The effect of correlating derivatives, a
physical meaning for the cross phase spectrum, effects of space and frequency weighting
functions on covariance computations, as well as the interrelationship of correlation and
probability density, are examined. Although the fluid model presented in this report does
not rely on these statistical tools, advances have been made which give more insight into
statistical processing and are presented in the appendices to aid future studies.
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Figure 7. Convective velocity evaluation.

D. Concepts

This section outlines the necessary physical and statistical tools used to check the
physical model presented in Section III. The model requires a correlation of the undulating
outer edge of the boundary layer with the region directly above the viscous sublayer.
Packets of vorticity are formed which migrate from a region called the “production zone.”
The model predicts that the boundary layer acts as a filter to separate sizes or wave number
components; that is, the convective velocity becomes a function of wave number.

Finally,.an asymptotic approach of all sizes of packets to the local mean velocity is
predicted. Thus, after a finite residence time, the convective velocity will become
independent of frequency. Methods by which to analyze each of the above hypotheses are
presented. '
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1. Correlation of the Outer Edge of the Boundary Layer with the Internal Flow.
The model assumes that the convoluting outer edge of the boundary layer will create strong
local pressure gradients, which affect what transpires near the wall of the boundary layer.
However, it is not crucial to know exactly what produces the packet for the major
contribution of the present report. When the flow near the wall is affected by occurrences in
the convoluting outer edge, a packet is formed. One may speculate about .whether a
stress-relieving phenomenon.[3] may cause localized separation to occur that initiates the
onset of turbulence.

A measure of the phenomena proposed is the cross-correlation of the local pressure
gradients at the two locations in question, such as

P P B
] Xj X, . ’
outer J inner

where 1 = 1,2;j = 1,2; x; = X-direction; and x, = Y-direction.

Since the local pressure gradients are difficult to measure, one may wish to use local
accelerations of the fluid particles which are related to the local pressure gradients. Thus,
the correlation

aw> | a%>
at outer t inner

might be considered. For covariance computations, only the fluctuations need be
considered:

au; au’
atl'> —a—tL> ;i=1,2;j=1,2; uy =u';andu,' = v . 39
outer inner

Appendix D, equation (D-82), gives the relationship between

aui'> auj')
ot outer’ ot inner
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“and

’ !
b ui) outer u]) inner .

The correlation of the velocny fluctuatlon may be used to evaluate the inner-outer
correlation described by the model. When only the fluctuatlng portlons of the signals are
correlated, the product is often referred to as the * covanance

, The covariance deals only with the fluctuations. The dc or mean values give no
insight into convective transport rates, and, thus, only covariance computations will be
examined for the present applications. “Correlation” will be used interchangeably with
“covariance,” and, unless otherwise stated, correlation will refer to ac-coupled signals (i.e.,
the means are zero).

2. Production Zone. The main requirement for this region of the boundary layer is
that the convective velocity equal the mean velocity; that is, the convective velocity of all
. size structures is the same.

1

Evaluation in this zone will be the measure of the convective transport rate for
various frequencies. If all frequencies travel at the same rate, one can infer the structure’s
size from the wave number concept. The space time correlatron concept discussed in the

preceding chapter is used to evaluate the convective velocities.

3. Filtering Action of the Boundary Layer. Filtering of. the boundary layer implies
an ability of the boundary layer to separate frequencies in some prescribed fashion. The
physical model predicts that varying frequencies will be convected at different speeds in
certain portions of the boundary layer. The separation in speed will occur in both the
vertical and horizontal directions. :

Spatially separated sensors are used to measure the convective speeds of the
different’ wave numbers. The convective velocity is used, together with the frequency, to
determine the wave number. The packet size is related to the wave number

4. Convective Velocity Profile Independent of Frequency. The model predicts that
packets of all sizes will asymptotically approach the mean flow velocity after a finite length
of time. The example previously given indicates that lengths of the order of 25 to 30 ft (7.6
. to 9.15 m) are required for the convective velocities in a turbulent boundary layer to equal
the mean velocity. The convective velocmes are measured by the spatlally separated hot
wires.

V. EXPERIMENTAL SETUP AND PROCEDURES *

The experimental portion of this investigation was performed at the Engineering
Research Center of Colorado State University. Two wind tunnels were used to study the

w
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convective velocities: a large meteorological wind tunnel and the entrance portion of a
small separation tunnel.

As defined in Section IV, the convective velocity is a time-average quantity, much
like the concept of mean velocity. Figure 7b is a schematic of the hot wire configuration
used to define a convective velocity. First, signals from two spatially separated hot wires are
selectively filtered to obtain desired frequency components. (The wires are separated in the
X-direction of motion — the mean flow direction.) The signals are then fed into the
correlator, which produces the signal’s temporal cross-correlation and integrates this value
for a desired length of time. Integration times of approximately 5 minutes were used for this
experiment. The cross-correlation is then plotted by an X-Y plotter on graph paper.

The instrumentaiton involved for this- measurement includes the hot wire
anemometers, filters, a correlator, an X-Y plotter, and a tape transport.

A. Wind Tunnels

1. The Meteorological Wind Tunnel. The meteorological wind tunnel test section
has a cross section that is 6 ft (1.83 m) by 6 ft (1.83 m) and has a 95-ft (29-m) long test
floor over which the boundary layer may develop. The wind tunnel is of the recirculating
type with the air speed controlled by a variable speed, variable pitch aircraft propeller. Plate
and Cermak [68] describe the facility in detail. Figure 1 shows a sketch of the boundary
layer’s development along the tunnel test floor, and Figure 8 shows a top view of the tunnel.

Tieleman [66] has shown that damping screens and a 9:1 entrance contraction
produce extremely low free-stream turbulence, and his results showed that the turbulence
intensity ranges from 0.00015 at 20 ft/sec (6.1 m/sec) to 0.00027 at 80 ft/sec (24.4 m/sec).
The boundary layer along the floor of the tunnel is artificially tr1pped by a saw-toothed
fence preceded by a 4-ft (1. 22-m) section of gravel (Fig. 7).

The first 30 ft (9.15 m) of the floor were used for the present experiment. A
boundary layer thickness of approximately 18 in. (0.457 m) [69] is attained in the 30 ft
(9.15 m). The measurements were made in the vertical plane along the centerline of the
tunnel behind the tripped section at distances downstream of 1, 2, 4, 8 18, and 30 ft
(0.305, 0.61, 1.22, 2.44, and 9.15 m). The X-axis was taken along the centerline of the
tunnel floor, the Y-axis is vertical to the floor, and the Z-axis is parallel to the floor and
perpendicular to the flow direction.

2. Separation Tunnel. The separation tunnel is of the open returm type. A
honeycomb, which is located in a large circular inlet, is used to straighten the inlet flow and
break up any large scale disturbances. From the inlet the flow passes through a settling
chamber and is then accelerated into the test section, where the cross section narrows to 18
by 18 in. (0.457 m by 0.457 m). The entire test section is made of plexiglass for visual
observations. A 54-in. (1.37-m) fan which governs the flow rate by a variable speed motor is
located downstream of the test section. Figure 9a is a photograph of the flow facility.
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(a) WIND TUNNEL/FLOW (b) INSTRUMENTATION
FACILITY

1. CSU HOT WIRE ANEMOMETERS
1. ENTRANCE 2. TRUE RMS METERS

2. HONEYCOMB . SINE WAVE GENERATOR
3. SETTLING CHAMBER . TRUE RMS METER
4. BOUNDARY LAYER DEVELOPMENT

. SCOPE
SECTION
5. SEPARATION SECTION i s

ONOOOTAW

. 14 CHANNEL TAPE RECORDER

Figure 9. Wind tunnel and instrumentation.

The entrance portion of the separation tunnel was used for the initial convective
velocity measurements. The tests were run at 2 ft, 2 in. (0.66 m) and 4 ft (1.22 m) from the
start of the test section. The ceiling of the tunnel was adjusted so as to develop a near zero
pressure gradient flat-plate boundary layer. The boundary layers were approximately an
order of magnitude smaller than those of the large wind tunnel. Probes were traversed
vertically through the boundary layer by an external actuator. The X-axis was parallel to the
ceiling in the flow direction, the Y-axis was perpendicular to the ceiling in the flow
direction, and the Z-axis was parallel to the ceiling and perpendicular to the flow direction.

B. Instrumentation
1. Hot Wire Probes. The hot wire was used as the basic sensing element for all

correlation measurements and turbulence measurements. The material for the hot wires was
80 percent platinum, 20 percent iridium, 0.0004-in. (0.01-mm) diameter wire. The wires
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were operated by constant temperature hot wire anemometers designed at Colorado State
University by Finn and Sandborn [70]. Figure 9bl is a photograph of the anemometers.
Figure 10 shows probes of five different designs which were used during the running of the
experiment. The first probe (Fig. 10al) was used for spatial separation méeasurements in the
Z-direction of the inner-outer correlations. One wire was placed close to the wall and the
other in the intermittent outer edge of the boundary layer. The second probe (Fig. 10a2)
was a manifold of twelve hot wire elements erected in the Y-Z plane with its major axis in
the Z-direction. Nine of the twelve wires were in the Z-direction and were used for
inner-outer correlations as well as spatial correlations. The three remaining wires were in the
Y-direction for use in space correlations. The next three probes (Fig. 10a) were used in
traversing the boundary layer for taking mean, turbulent, and convective velocity profiles.
Each of these probes used two wires: the lead wire being used to make mean velocity and
turbulence measurements, and the second wire being directly downstream from the lead
wire but out of the lead wire’s wake. The downstream wire was used to correlate with the
lead wire to measure a convection time for the flow to traverse from the lead wire to the
second wire. The length of wires used ranged from 0.05 in. (1.3 mm) to 0.16 in. (4.1 mm).
The wires ranged from about 3 to 20 ohms cold resistance. Separation distance between the -
leading wire and the lagging wire ranged from 0.002 ft (0.00061 m) to 0.0275 ft (0.00084

m). Tapered piano wire or jeweler’s broaches were used for the hot wire supports. The piano
wire or jeweler’s broaches were soldered to conventional copper lead wire, which was
connected to the anemometer. The hot wire anemometer is comprised of a sensing element
and a control unit. The output of a constant temperature hot wire anemometer depends on
the temperature difference between the wire and the local fluid temperature, and the
‘velocity of the flowing fluid. There are many different sensing materials which may be used.

The hot wire anemometer is able to sense a number of fluid properties which may in
some way transport heat either to or from the sensing element. The temperature of the flow
was held constant and the pressure fluctuations were very small. It was thus assumed that
the only first order heat transfer effect was produced by the convection properties of the
fluid passing over the wire. Therefore, for this case where an overheat ratio of 1:1 is used,
the “hot” wire will, in general, sense only velocity fluctuations [71]. For the convective
velocity measurements, a calibration of voltage versus velocity is not necessary. Only a
measure of the ability of the flow to transport its heat transfer qualities is necessary.

The hot wire is also used for the mean and turbulence measurements. The output
voltage of the hot wire is a measure of the velocity of the flow.

To obtain accurate calibration curves, the calibration measurements of the hot wires
were taken in the frees-stream section of the wind tunnel against a calibrated pitot tube. An
averaging circuit, included as an integral part of the anemometer housing, was used to obtain
an integrated averaged voltage.

Each hot wire was annealed before its calibration and use. That is, the wire was
heated until red hot, and was allowed to “cook” until the hot wire characteristics became
stabilized. The hot wires were calibrated before and after each run. A typical calibration
curve is given in Figure 11. The slope of the calibration curve dE/3 U is the sensitivity of the
hot wire to velocity. Velocity rms values were calculated by measuring the rms and the
mean value of the signal, with the local sensitivity, 3E/a U , being determined graphically at

36



(e) VARIOUS HOT WIRES

1. ORIGINAL INNER -OUTER PROBE

12 WIRE MANIFOLD FOR INNER-
OUTER CORRELATIONS AND
SPACE CORRELATIONS

3. 2 WIRE PROBE FOR CONVECTIVE

VELOCITIES

4. 2 WIRE PROBE FOR CONVECTIVE
VELOCITIES

5. 2 WIRE PROBE FOR CONVECTIVE
VELOCITIES

(b) PRINCETON CORRELATOR

GAIN CONTROLS =
. COUPLING CONTROL

SIGNAL DELAY CONTROL
READOUT RATE
INPUT CHANNELS i‘
OUTPUT OF TIME BASE .
OUTPUT OF CORRELATION

N~ wm b >

Figure 10. Instrumentation.

the mean value of the signal, E. Multiplying 3U/dE with the rms of voltage, /e? , gives the

rms of the velocity, \/l? . An error could arise in this evaluation if the turbulence intensity
becomes too great, although this is not a problem for turbulence intensities below
approximately 15 to 20 percent [71]. High turbulent intensities are encountered near the
boundary, and these measurements are therefore less accurate. The sensitivity of a hot wire
to flow direction and an empirical solution for the hot wire evaluation are given by Zoric
[67]. Sources of error such as solid boundary effects, wire length, velocity gradient, and
turbulent intensity are covered by Tieleman [66] and Zoric [67].

For convective velocity measurements, a new source of error may be a phase or
time-delay mismatch of the anemometer electronics. The convective velocity measurement
relies on the fact that time-delay separation of leading and lagging wires is dependent only
upon the convective flow velocity. The two hot wire anemometers used in the research were
checked for differences in time delay or phase shift. By placing both of the hot wire sensing
elements very close together in a turbulent flow, and cross-correlating the output of the two
systems, any time-delay errors would be seen as a difference between the auto- and
cross-correlations. Figure 12 shows the result of one such test. The units were found to be
identical for the purposes of this experiment.
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2. Pitot-Static Tube. Mean velocity was measured by a standard 1/8-in. (3.18-mm)
diameter pitot-static tube. The pitot tube used for mean velocity measurements was
calibrated by comparing it with a laboratory standard pitot tube. The standard had
previously been calibrated by placing it on a whirling arm, the length of which is known.
With this information, along with the number of revolutions made per unit time and
correcting for swirl effects, the laboratory standard was calibrated. The pitot pressure from
the laboratory standard was read on a water, U-tube micromanometer, as was the case for
the test pitot tube. The micromanometer has been calibrated from laboratory standard
micromanometers. The possible sources of error for the mean velocity measurement are
covered by Zoric [67]. They were found to be negligible for this experiment.

3. Actuator. Two types of actuators were used for precision placing of the sensors
in the vertical direction of the boundary layer. The first was a stand-type model, which was
set directly on the floor of the meteorological wind tunnel. A small electric motor with a
screw-type gear was used to change the probe elevation. A variable potentiometer which
changed resistance as the carriage moved up or down was used to determine the elevation of
the probes. The second type of actuator extended a rod through the ceiling of the
separation wind tunnel. Variations in the external length of the rod gave a direct measure of
the probe location in the flow. This actuator was also controlled with an electric motor and
a resistance potentiometer with an emf output to measure the elevation of the probe. The
first actuator, used in the meteorological tunnel, had a range of approximately 18 in (0.46
m) while the second actuator had a range of about 6 in. (0.15 m). In both cases initial
conditions of probe placement were determined with a standard length scale, within an
accuracy of 0.005 in. (0.13 mm).

4. Electronic_Filters. The filters used in this study were continuously adjustable
from 0.2 Hz to 20 kHz in either a low-pass or high-pass mode. Filter attenuation and phase
shift as a function of frequency were found to be identical for the two filter banks
employed. Attenuation of the filter units shown in Figure 9b, was 24 dB per octave.

Since filters may cause nonlinear phase shifts as a function of frequency, two
electronic filtering systems that are not identical would produce what appears to be a time
delay between two identical signals after passing through the filters. Thus, a calibration and
check procedure was used to determine phase differences as a function of frequency for the
filters used in this experiment. All possible types of auto- and cross-correlations of filtered
hot wire signals were used to check for phase differences. The same signal was fed through
.each filter and then correlated. Similarly, identical sine waves were used. Both cases showed
the filters to be identical as far as the present study was concerned.

Figures 13 and 14 show the phase checks using a hot wire signal as the emf.

5. Time Correlator. For auto- and cross-correlation of hot wire signals, the
Princeton Applied Research Correlation function computer model 101 was used (Fig. 10).
The correlator is a hybrid computer which uses both analog and digital techniques. The
correlator shifts one signal in time, multiplies the two signals together, and integrates. It
performs the operation for 100 discrete points each separated by a time shift of Ar . The
time shift A7 between successive points may be selected. The correlation may be examined
from O to 100 A7 in steps of A7 . A precomputation period may also be selected, so that
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the initial time delay is not 0, but j(100 Ar), where j may be selected from 1 to 10. The
term 100 Ar may be selected from 0.0001 to 10 sec. Readout circuitry .allows the
continuous monitoring of the function during operation. The.correlation function may be
either viewed on an oscilloscope or plotted on an X-Y plotter or strip chart recorder. The
accuracy of the unit is within 1 percent of the ideal function. Both ac and dc couplings are
available. o \

The correlator was checked for phase shift and time delay within its own dual
circuitry by cross-correlating a sine wave from a calibrated function generator. This check is
good for both phase shift and time delay calibration. The magnitude of. the correlator
compared with a calibrated rms meter was found to be in calibration.

6. Tape Transport. The tape transport used in this experiment was a 14-channel
standard I-rig (Fig. 9b) recorder. The recorded signals were FM modulated. The carrier
frequencies were calibrated with a special commercial unit. The 14 channels are split into
two sets of heads, one set for odd numbered channels and one set for even numbered
channels. Only odd channels, or only even channels, were used when recording a run to
avoid time-displacement errors caused by the physical separation of the heads. Interchannel
displacement errors were checked by recording various frequency sine waves and correlating
the outputs. Any off-Zero peak of the correlation would indicate a time-displacement error
in the recorder. For frequencies less than 100 kHz, no error could be detected. Frequencies
of interest for this experiment were below 2 kHz. Dynamic interchannel time placement
errors in the recorder were also checked and found to be inconsequential.

7. Other Instrumentation. The ordinary types of instrumentation which‘ are
common will not be described in detail, but rather are listed so that the reader will have a
feeling for the type of instrumentation needed for this type of experiment. They are
oscilloscopes, function generators, rms meters, digital voltmeters, and X-Y plotters. The
type of transport described above is also desirable, so that the identical signal may be
analyzed for all computations, some of which must be done recursively.

The time base of the correlator was used to calibrate the X-component of the X-Y

plotter, and a standard cell was used for amplitude calibration.
C. Convective Velocity Computations

The convective velocity was determined by the following procedure:

1. Orient two spatially separated hot wires in the direction of the mean flow.

2. Measure the magnitude of the hot wires’ separation.

3. Cross-correlate the output from the two spatially separated sensors.

4. Determine‘the time delay for which the cross-correlation is a maximum.

5. Now, dividing the separation distance by the time delay for which the correlation

was a maximum gives the convective velocity. We see that simultaneous filtering of phase
matched systems may be used to describe convective velocities of various frequencies.
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'D. Inner-Outer Correlation Measurements

The velocity fluctuations in the intermittent outer region Were correlated with
velocity fluctuations near the wall using two hot wire sensing elements in the respective
locations. Signals were put directly into the correlator, which was described previously. The
normalized correlation is used to give a relative measure of the similarity of the two signals,
and it gives some insight into a possible mechanism for the tnggermg of turbulent
productlon near the wall. A time delay of the correlation other than zero would indicate the
length of time for the production process to acknowledge a stlmulus produced at the outer
edge.

E. Data Reduction 6f Time Series

Because of the length of this subject it has been placed in Appendix. D. General
signal analysis is covered, as well as some extensions which give insight into methods of
dealing with convective velocities in Fourier transformation planes. Restrictions imposed
upon correlations by either finite time series lengths or certain degrees of nonstationarity of
the time series are examined. The effect of space and frequency weighting functions on the
normalized cross-covariance is analyzed, and finally the space-time covariance is viewed as to
its relationship with the probability density distribution of the original time series.

'VI. EXPERIMENTAL RESULTS AND DISCUSSION

~ The theoretical model presented in Section III predicts the occurrence of several
phenomena, some of which have been confirmed by previous investigators.

The objective of this section is to present experimental evidence confirming the
physical model presented earlier. Experimental evidence shows correlations of the
intermittent outer edge with flow near the wall. Data confirming the existence of a
formation zone where the convective velocity is independent of wave number are presented.
The convective velocity is seen to be a function of wave number throughout most of the
boundary layer. The convective velocity is shown to approach the mean velocity in the
outer portion of the boundary layer at a distance downstream, as predicted by the model.
Several special cases concerning the convective velocities will also be examined.

A. Outer-Inner Correlation

The correlation between the intermittent outer edge of the boundary layer with
flow near the wall was evaluated in the small wind tunnel previously described. The
boundary layer thickness was about 3 in. (0.076 m) with a free-stream velocity of
" approximately 30 ft/sec (9.15 m/sec). The basic principle involved was to determine if a
correlation existed between the velocity fluctuations of the undulating outer edge of the
boundary layer and the turbulence near the wall.

)
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The outer-inner correlation was performed by placmg .a hot wire in the highly
intermittent outer region of the boundary layer and one very near the surface. Both wires
were oriented normal to the flow and parallel to the surface. The size and type of wires used
are described’ in paragraph V.B.1. A sketch of the setup is given in Figure 15b. The signals
were ac-coupled and cross-correlated. The normalized cross-covariance was then computed.
The experimental values of the correlation obtained were about 0.1. Figure 15a shows a
typrcal expenmental curve, [t was always found that a time delay existed between the two
sensors for the peak of the correlatlon that is, the maximum correlation.occurred when the
signal from the wire near the wall was delayed slightly in time before correlating it with the
wire in the intermittent outer region. In an attempt to see if it was possible to get a
maximum of the correlation to occur nearer zero time delay, the lower sensor (sensor y in
Fig. 15b) was slowly moved upstream. Moving the probe upstream so that the lower probe
was either directly under or upstream of the outer probe resulted in the complete
elimination of a measurable correlation.” A measurable ‘correlation could only be obtained
when the sensor near the surface was slightly downstream of the outer probe. This result
seems to give support to the assumptron that disturbances are transmitted from’ the outside
“of the boundary layer to the inside, and not vice versa. The vanishing of the correlation,
when the inner probe is moved upstream ‘of the outer probe gives some confidence that the
correlation 'did not result from large scale c1rcular structures that pass through both probes
_simultaneously.

Other configurations of wire ‘geométry were also used for this correlation; for
example, the outer wire parallel to the mean flow and the inner wire normal to both the
mean flow and floor. The configuration where both wires were perpendicular to the flow
produced the same resulf as that above. The manifold-type of probe (Fig. 10b) was also used
with the same results. These measurements are in agreement with the physical model
presented at the beginning of this report. Laufer and Il\Jarayanan [59] have shown that
‘processes occurrmg near the viscous sublayer scaled with outer flow parameters.

~ The expenmental test run, correlating the inner and outer edge of the boundary
layer, tempts one to speculate about the role of the outer edge in the onset of turbulence
near the wall. It may be ‘inferred that information is fed innto the near surface region of the
boundary layer from the undulatmg intermittent outer edge

~ B. The Formation Zone )

The physical model required the assumption that there is a region near the surface
where the convective velocity is identically equal to that of the local mean velocity.
Convective and mean velocity measurements were made simultaneously across the boundary
layer to determine if such a condition did exist.

. The convective velocity was calculated using two spatially separated hot wires. The
'wires were spatially separated in the direction of the mean motion. The lead hot wire was
used to measure mean velocity as well as the turbulent velocities. The cross-correlation of
the ac-coupled lead wire with the ac-coupled second wire was évaluated. A maximum
correlation at some finite time delay was obtained. (Figure 16 is a typrcal example of the
correlations that were found.) The spatial separation of the wires divided by the time delay
at which the maximum correlation occurred was then considered a measure of the
convective velocity; that is,

45



Cyy (T)
Oy O‘y

(a) TYPICAL CORRELATION

: " BOUNDARY
SENSOR X _ / . LAYER
S EDGE "

— SENSOR Y
(6) SENSOR LOCATION
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Figure 16. Correlation curves with no filtering in the outer region.
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Figure 6 gives a graphical picture of this process, where C, is the convective velocity in the
direction of the spatial separation, AW, and ™m is the time delay at ‘which the

cross-correlation is a maximum. Section A% descnbes the convectlve velocity “concept in
more detail.

‘Figures 17 and 18 show the .experimental results obtained across two different
boundary layers. (Note: Two different wire separations were used for these two sets of
measurements.) Both of these flat plate velocity profiles give a region where the mean and
convective velocities are equivalent. It appears that this may be more likely a region than a
point, where the two profiles are very nearly equal. The location of the region corresponds
closely with that observed by Kline et al. [2, 33] in the visualization studies. The convectlve
velocity is less than the mean velocity in the outer portlon of the boundary layer. At the
same time, the convective velocity is higher than the mean velocity profile below the
formation zone.

The problems associated with one wire following downstream of another must be
evaluated. One must be sure that the trailing wire is not affected by the wake of-the .
upstream wire or probe. This was checked by moving the front probe slightly, and seeing if
there was an effect on the dc level of the second wire. That is, if the second wire wasin a
wake flow caused by the leading wire or probe, the mean velocity recorded by -the second
wire would. be less than if the front wire or probe was not there. The fact that the
convective velocity exceeds the mean velocity indicates that the convective velocity is not a
probe-interference phenomenon and gives some assurance that the second probe is not in
the wake of the first. Closely spaced, large wires would be more prone to interference errors.
The rear wire was also shifted up and down to see if a velocity defect reglon existed. There
was no indication that the second wire was in the wake of the first. .

The cross-correlations of the longitudinal velocity fluctuations across the boundary
layer are seen in Figures 16, 19, and 20. It is interesting to note the sudden decrease in
amplitude of the correlation near the wall. The decrease is in part due to the fact that the
high frequency spectral components are dissipated in the viscous subregion.

Appendix D, paragraph F, shows the relationship between the probability density
distribution and the covariance computation. Equation (D-93) shows that, since the
covariance is a squared function of the perturbation size and a linearfunction of time, the
larger excursions from the mean are the most heavily weighted. It is also found that if the
turbulent velocities continue to propagate with the velocity indicated at the first sensor,
equal perturbations above and below the-mean velocity will create correlations of equal
magnitude at time delays equally spaced about the. tlme delay that 1nd1cated the mean
velocity. ; “ R R

It is ant1c1pated that.a symmetrlcal probablhty dens1ty dlstrlbutlon w1ll produce a

correlation peak that will indicate the mean velocity. Figure 21 shows the probability
density distribution and probability distribution at specific points in the flat plate boundary
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" Figure 17. Mean and convective \}elocity versus elevation, AW = 0.0233 ft (7.1 mm).
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Figure 19. Correlation curves with no filtering.
layer, which was about 2 in. (5.08 ¢cm) thick at the point of measurement. Figures 21, a and

b, show the distributions near the outer edge of the boundary layer. The obvious skewing
toward the negative side indicates that the convective velocities will be substantially lower
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Figure 20. Correlation curves with no filtering near the surface.
than the mean velocity at these locations. This indication of a lower convective velocity

agrees with the actually measured convective velocities. Figures 21, ¢ through f, show the
probability densities closer to the wall. The distributions are skewed over a large part of the
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{e) 0.100 in. {0.254 cm) FROM PLATE (f) 0.025 in. (0.0635 cm) FROM PLATE

Figure 21. Probability distributions in the flat plate boundary layer, 26 in. (0.66 m)
from start of test section, free stream 40 ft/sec (12.2 m/sec).

boundary layer. Only very near the wall does the probability distribution appear

symmetrical. A symmetrical probability distribution would indicate that the convective
velocity is almost equal to the mean velocity (Appendix D, paragraph F).
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As noted in Appendix D, paragraph F, if the probability distribution indicates a
skewing toward the positive or negative velocity fluctuations, the convective velocity will
likewise be correspondingly higher or lower than the mean velocity. The correlation
function is built up by all the velocity contributions of the probability distribution. The
wings of the probability distribution are the most heavily weighted. A convective velocity
less than the mean would give a time delay greater than the time delay for the mean
velocity; a convective velocity greater than the mean would give a time delay less than that
for the mean velocity. Appendix D, paragraph F, gives the contribution produced by each
turbulent velocity acting over some finite time interval. Thus, a skewing of the probability
distribution is propagated into a skewing of the shape of the correlation function. Figures
16, 19, and 20 are photographs of the correlation function for various Y-distances. Note
that the correlation curve skews to the right at the outer edge of the boundary layer and
becomes more symmetrical nearer the surface. The shapes of the probability distributions
and correlation functions are consistent with the proposed physical model. The symmetries
of the correlation function and probability density distribution are consistent with the
production zone of the model. Here the convective velocity is equal to the mean velocity, so
that symmetrical correlations and probability density distributions are observed.

C. Convective Velocity Profiles as Functions of Frequency

This section presents experimental data to support the physical model’s hypothesis
that the boundary layer will frequency-filter the packets of vorticity that migrate from the
production zone; that is, the packets will be separated according to frequency. Also, some
support is given to justify associating frequency with size.

The analysis in Section IV required that the boundary layer local velocity separate
the various scales as they migrate from the production zone. In general, only at the point of
origin, where all scales are moving with the mean velocity, should the convective velocity be
independent of frequency. The special case when the convective velocities have reached
equilibrium with the mean flow will be discussed later.

Convective velocity measurements were taken across a flat plate, zero pressure
gradient boundary layer using various wire separations. Willmarth et al. [51, 52] noticed
that the convective velocity of pressure fluctuations on the floor of a flat plate boundary
layer were functions of sensor separation. The measurements taken during this experiment
also showed that for very closely spaced sensors, the convective velocities are a function of
sensor spacing. The convective velocity for closely spaced sensors is lower than convective
velocities measured with larger separations for the same frequencies.

Figure 22 shows the measured mean velocity profiles along with convective velocity
profiles for various frequencies. Phase-matched filters were used together with the two hot
wires, as indicated in paragraph VI.A, to obtain Figure 22. The normal dropoff of the
turbulent spectrum acted as a low pass filter, while electronic filtering was used for the high
pass filtering. This combination of electronic filtering and turbulent spectral rolloff acts as a
notch filter, which allowed the evaluation of convective velocity for narrow bandwidths.
Figure 22 represents convective velocities measured with different separations between the
sensors. In all cases the farther from the production the measurement is made, the greater
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Figure 22. Mean and convection velocity versus elevation for various AW.

the spread is of the convective velocities, and, as the profiles get nearer the surface, the
spread of the convective velocities decreases and begins to collapse to a single velocity.
Another way to view this problem is to plot the ratio of the convective velocity at a given
frequency to the convective velocity with notch filtering versus wave number. The wave
number is computed by the formula,

(4D
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where ch is ‘the ‘e’o’n_ve(':‘tiye velocity at frequency f (chf will sometimes be expressed

as Vg for breyit&r). Figure 23 shows the variation of the data of Figu‘re 22 plotted in

convective velocity versus wave number form. In every case the profile of the convective
velocity versus wave number which is nearly one for all wave numbers:is that ‘of the
measurement nearest the production zone (Tables 1 through 4). The spreading or frequency
filtering of the convective velocities by the boundary layer was predicted by the physical
model. The spreading of all frequencies from a single point supports the belief that thisis a
formation zone.

Figure 24 shows_measurements in the region both above-and below the formation
zone in a very large boundary layer. The large boundary layer showed the same effects as
the small boundary layer. As before, spreading occurs whenever the measurement is made
away from the production zone (Table 5); that is, above the production zone the higher
frequencies moved faster than the lower. frequenc1es and below the peructlon zone the
higher frequencies move slower than the lower frequencies. However, in both cases the
higher frequencies more closely approach the mean velocity than do the lower frequencres
In general, the convective velocities above the production zone are slower than the mean
velocity; the convective velocities. below the production zone are higher than the mean
velocity. The mean velocity -obviously is the driving or forcing function on any packet or
structure in the flow. The relationship between convective and' mean velocities, as indicated
above, is consistent with the physical model presented. Figure 25 shows a typical set of
cross-correlations for convective velocities in the outer portion of a boundary layer. Note
that the skewing iS consistent with the analysis of Appendix D, paragraph F. The
progression of higher frequencres toward the mean velocity trme delay 1s consrstent with the
physical model. - : _ oo

The coalescing of all convective velocities at a particutar point makes it difficult to
accept models which require large eddies with characteristically high velocrtres protrudlng
into the lower layers of the boundary layer.

Figures 22 and 23 and Tables 1 through 4 represent four separate evaluations of
convective velocity with various wire separations. Figures 26 and 27 present the above data
in the. fbrm of Vcth Versus Kf%-;ﬂ. Although V. cp Vm. s Kf, and AW have

previously. been defined, K¢ %W has not in itself been examined. If one considers a time

function wrth an angular frequency of 2xf convecting with a-velocity V.. cf? , the number of

cycles that the functron performs while traversing a drstance AWis

v, 2« - M “2
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Figure 23. Convective velocity versus wave number.
This dimensionless number is similar to a dimensionless frequency or Strouhal number.

However, here the parameter represents the number of oscillations a particular frequency
will make between the first and second sensor. Figure 26 shows the individual test results.
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TABLE 1. TEST I CONVECTIVE VELOCITY PARAMETERS

Run No. 1 _
Vin = 40.4-ft/sec (12.3 mfsec)
AW =0.01167 ft.(3.56 mm).. . . -« .. Elevation = 1.968 in. (4.99 cm).
Convective
. ) Velocity, N i .
Convective ~ fps . B _ ‘ KeAW/2m,
Frequency | (m/secX 3.28) | Vg/V, Ko \ZA™ cycles
All - 27.8 1.00 - 0.00 0.688 0.0000
1 - 27.8 ' 1.00 | .023 0.688 0.0004
10 1 27.8 : 1.00- 2.26 0.688 0.0042
100 278 1.00° 22.60 0.688 0.0419
200 27.8 o 1.00 45.20 -0.688 0.0840
300 ¢ 27.8 1 ‘1.00 '67.80 0.688 0.1259
400 - ' ' 28.6 : 1.029 87.88 0.708 0.1632
500 - ‘ 29.15 - 1.049 107.8 0.722 0.2002
600 - 304 1.094 11240 | 0.752 0.2303
700 7307 1.104 |1433 0.760 0.2261
800 31.35 1.128 |160.3 0.776 0.2978
RunNo.2 . . .0 _ .
Vi, = 39.6 ft/sec (12.1 m/sec) ' ' Elevation = 1.788 in. (4.55 cm)
" Convective
Velocity, :
‘Convective | =~ = fps = A B ; - : Kwa/zﬂ’
Frequency (m/sec X 3.28) Vi/Vo Ky VeIV, cycles
All ' 278 1.000 0.000 1 0.702 0.0000
| S - 27.8 1.000 0.226 | 0.702 0.0004
10 27.8 o 1.000 02.260 | 0.702 0.0042
100 : - 27.8 T 1.000 22.60 0.702 0.0420
200 - 278 { 1.000 45.20 . 0.702 0.0840
300 - ‘ 278 1.000 67.80 -0.702 0.1260
400 - - 27.8 - 1.000 | 90.40 0.702 0.1680
500 . 28.6 _ 1.029 | 109.8 0.722 0.2040
600 : ’ 29.2 : 1.050 129.1 0.737 0.2398
- 700" T 301 1.083 146.1 " 0.760 '0.2714
800 30.7 1.104 | 163.7 0.775 0.3041
900 31.7 1.140 178.4 0.801 0.3313
1000 31.7 1.140 11982 | 0.801 0.3681
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TABLE 1. (Continued)

Run No. 3 - B
V=359 ft/sec (11.0 m/sec) Elevation = 1.053 in. (2.67 cm)
Convective - _
Velocity, o
Convective fps KeaW/2r,
Frequency (m/sec X 3.28) Vil Vo K¢ Vg/Vm cycles
All 24.3 . 1.000 0.000 0.677 0.0000
1 24.3 1.000 0.260 0.677 - 0.0005
10 24.3 1.000 2.580 0.677 0.0048
100 24.3 1.000 25.86 0.677 0.0480
200 243 1.000 51.71 0.677 . 0.0960
300 25.2 1.037 74.80 0.702 0.1389
400 253 1.041 99.34 0.705 0.1845
500 - 25.8 1.062 | 121.7 0.719 . 0.2262
600 26.3 1.082 | 143.3 0.733 0.2662
700 27.0 : 1.111 162.9 0.752 0.3026
Run No. 4 .
Vi, = 26.4 ft/sec (8.05 m/sec) Elevation = 0.368 in. (0.935 cm):
Convective
Velocity, :
Convective fps : KeAW/2m,
Frequency (m/sec X 3.28) V¢V, Ky VeV cycles
All 204 1.000 0.000 0.773 0.0000
1 204 1.000 0.308 0.773 0.0006
10 20.4 1.000 3.080 0.773 0.0057
100 204 1.000 30.80 0.773 0.0572
200 204 1.000 61.60 0.773 0.1144
300 20.6 1.010 91.50 0.780 0.1699
400 20.8 1.020 | 120.8 - 0.788 0.2244
500 21.0 1.029 | 149.6 0.795 0.2779
600 21.5 1.054 | 175.3 0.814 0.3257
700 21.6 1.059 | 203.6 0.818 0.3782
800 21.8 , 1.069 { 230.6 0.825 0.4283

59



TABLE 1. (Concluded)

Run No. 5

Vin =187 ft/sec (5.7 m/sec) Elevation = 0.050 in. (0.127 ¢cm)
Convective
Velocity,
Convective fps ; KeAW/2nm,
Frequency (m/sec X 3.28) V¢/Vo K¢ \ A - cycles
All 172 1.000 . 0.00 0.920 0.0000
1 . 172 1.000 0.37 0.920 0.0007
10 - 17.2 1.000 3.65 0.920 0.0068
100 17.2 . 1.000 36.53 0.920 0.0678
200 172 1.000 73.06 0.920 0.1357
300 17.2 1.000 | 109.6 0.920 0.2035
400 - 17.2 1.000 | 145.1. 0.920 0.2695
500 17.2 ©1.000 | 172.6 0.920 0.3207
600 - 17.25 1.003 |} 218.6 0.922 0.4059
700 17.35 1.009 | 253.5 0928 0.4708
800 - .17.35 1.009 | 289.7 0.928 0.5381

TABLE 2. TEST Il CONVECTIVE VELOCITY PARAMETERS

Run No. 1
AW =0.0271 ft (8.25 mm) _
Vi = 41.0 ft/sec (12.5 m/sec) ‘ ' Elevation = 3.670in.(9.33 cm)
Convective .
Velocity, . . -
Convective fps Y _ ‘ - KeAW/2m,
Frequency - | - (m/sec X 3.28) | V¢/V, K ViV - cycles
All 274 . 1.00 0.00 | 0.668 0.0000
10 274 1.00 2.29 0.668 0.0099
100 v 274 1.00 22.93 0.668 - 0.0989
200 * 274 < 1.00 45.86 0.668 0.1978
300 - 28.0 " 1.02 67.32 0.683 0.2904
400 1 28.6 1.04 87.87 0.698 0.3790
. 500 : 29.4 1.07 106.8 0.717 0.4609
600 | ¢ 304 1.11 124.0 - 0.741 0.5349
700 31.0 1.13. 141.9 0.756 0.6119
800 - - 315 1 115 159.6 0.768 0.6882
900 : 31.9 1.16 - | 177.3 0.778 0.7646
1000 31.9 1.16 196.9 0.778 0.8496




Run No. 2

TABLE 2. (Continued)

1V, =40.7 ft/sec (12.4 m/sec)

Elevation = 2.62 in. (6.65 cm)

Convective
Velocity,
Convective fps’ 1 ‘ ) : KeaW/ 2m,
Frequency (m/sec X73.28) V¢l Vo K¢~ A " cycles
All 26.0 1.00 0.00 0.639 0.0000
10 . 26.0 1.00 - 2.24 0.639 0.0104
- 100 1 26.0 1.00° 24.17 - 0.639 0.1042
200 27.1 1.04 46.37 | 0.639 0.1200
300 276 1.06° 68.30 .0.666 0.2946
400 - 28.2: 1 1.08 89.12 0.693 0.3844
500 29.0 1.12 108.3 - 0.713 0.4672
600 30.0 1.15 125.7 0.737 0.5420
- 700 '30.8: - 1.18 142.8 0.757 0.6159
~800 32.2 1.24- 156.1 0.791 0.6733
900 325 1.25. 174.0 0.799 0.7505
1000 33.0 1.27 190.4 0.811 0.8212
Run No. 3
Vi, =405 ft/sec (12.4 m/sec) Elevation = 1.820 in. (4.63 cm)
Convective .
Velocity, -
Convective fps : | KeaW/2m,
Frequency (m/sec X 3.28) V¢/Vo K¢ VelViy cycles .
All 25.8 1.00 0.00- 0.636 0.0000
100 26.1 1.01 -} 24.07 0.644 0.1650
200 26.3 1.02 47.78 0.649 0.2061
1300 27.1 1.05 69.56 0.669 0.3000
400 27.6 1.07 91.06 0.681 0.3928
500 28.2 1.09 111.4 0.696 0.4805
600 29 4! 1.14- 128.2 0.726 0.5531
700 30.0 1.16 146.6 0.741 0.6323
'800 30.8 1.19 163.2 - 0.760 0.7039
900. 31.2 1.21 181.2 0.770 0.7817
31.6 1.22 198.8 0.780 0.8576

1000
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Run No. 4

TABLE 2. (Continued)

vV, =365 ft/sec (11:2 m/sec)

Elevation = 1.220 in. (3.' 1-_ cm)

Convective
Velocity, . .
~ Convective fps . K¢aAW/2a,
" Frequency (m/sec X 3.28) V¢l Vo K¢ VelVi, cycles
All 24.2 1.00 0.00 0.663 ©0.0000
10 24.3 1.00 2.59 0.663 0.0111
100 24.8 1.02 25.34 0.666 0.1117
200 25.0 - 1.03 50.27 0.679 0.2168
300 25.8 1.07 73.06 0.685 0:3151
400 26.2 1.08 95.93 0.707 0:4138
500 274 1.13 114.7 0.718 0.4945
600 27.6 1.14 136.6 0.751 0.5891
700 282 1.17 155.9 0.756 0.6727 -
800 28.4 1.17 176.9 0.773 0.7634
900 28.6 1.18 '} 1977 - 0.778 0.8528
1000 29.0 1.20 216.7 0.795 0.9345
Run No.5 . _ v
Vi, = 30.85 ft/sec (9.4 m/sec) " Elevation = 0.635 in. (1.61 ¢m)
Corivective
Velocity, . o
Convective fps - _ g KA W/2nr,
Frequency (m/sec X 3.28) V¢l Vo CKp Vf/Vm ~ cycles
All 21.7 1.00 0.00 0.703 0.0000
.10 21.7 1.00 2.90 - 0.703 0.0125
100 21.7 1.00 28.95 -0.703 0.1250"
200 . 22.0 1.01 57.12 0.713- ‘0.246 -
300 22.5 1.04 | 83.78 0.729 0.362
400 23.6 1.09 106.5 0.765 0457
500 23.8 1.10 '| 132.0 "0.771 0.570
600 24.2 1.11 155.78 0.784 0.671
700 24.4 1.12 180.3 0.791 0.787
800 24.4 1.12 206.0 '0.791 0.890
. 900 24.5 1.13 230.8 S 0.794° 0.994
1000 24.5 L1.13 256.5 1.106

0794
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Run No. 6

TABLE 2. (Concluded)

V= 25.5 ft/sec (7.8 m/sec)

Elevation = 0.240 in. (0.61 cm)

Convective
: Velocity,
Convective fps . » , KeAW/2n,
Frequency (m/sec X 3.28) V¢l Vo K¢ VeV, cycles
All 17.1 1.00 - 0.00 0.671 0.000
- 10. “17.1 1.00 3.67 0.671 0.016
100 17.1 1.00. 36.74 -0.671 0.158
200 - 17.1 1.00 73.49 0.671 0.317
300 17.1 1.00 110.0 - 0.671 0475
400 17.2 1.01 . | 146.1 0.671 0.631
500 17.2 1.01 182.7 0.671 0.788 .-
600 17.3 1.01 212.1 0.671 0915
700. 17.3 1.01 .| 2542 0.671 1.098
290.6 . | 0.671. 1.253

800 .

173

1.01

TABLE 3. TEST III CONVECTIVE VELOCITY PARAMETERS

Run No. 1

AW =0.002083 ft. (0.635 mm)
V=357 ft/sec (10.9 m/sec)

Elevation = 1.105 in. (2.81 cm)

‘Convective

Velocity, -

Convective fps KeAW/2m,
‘Frequency (m/sec X 3.28) Vf/Vo K¢ Vf/Vm cycles
All. 7.44 1.000 0.00 0.208 0.0000
10 - 7.44 1.000 8.45 0.208 0.0028
100- 7.44 1.000 84.45 0.208 0.0280
200 - 8.04 1.081 156.3 0.225 0.0530
300 - 8.67 1.165 217.4 0.243 0.0720
400 - 104 1.398 241.7 0.291 0.0800
13.0 1.747 241.7 0.364 0.0800

—

500
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"TABLE 3. (Continued)

Run No. 2 A
Vi = 30.5 ft/sec (9.3 m/sec) _ Elevation = 0.525 i_nl,(1.33 cm)
Convective
. . Velocity,
Convective - fps: - . : KeaW/2n,
Frequency (m/sec X 3.28) \AL K¢ S ViV, cycles
All .80 1.000 | © 0.000 | . 0.262 0.0000
10 " 8.0 1.000 |- 7.850 0.262 0.0026
100 8.0 1.0000 | .78.54 |- 0.262 0.0260,
200 8.0 .1.000: 157.1 0.262 0.0520
300 8.5 1.063 - | 221.8 0.278 0.0732
- 400 9.9 1.238 253.9 0.324 0.0838
500 11.6 1.450 270.8 0.380 0.0895
Run No. 3
Vin =265 ft/sec (8.1 m/sec) Elevation = 0.265 in (0.673 ¢cm)
Convective
Velocity,
Convective fps - KfA_W/ 2m,
Frequency (m/sec X 3.28) V¢/ Vo K¢ VeV cycles
All 7.4 1.000 0.000 0.279- 0.0000
10 7.4 1.000 8.490 0.279 0.0028
100 7.4 -1.000 - 85.91 0.279 - -0.0281
200 7.4 1.000 169.8 - 0.279 0.0562
300 8.3 1.122 227.1 . .0.313 0.0751
400 9.9 "1.338 253.9 0.374 . 0.0838
500 - 11.6 1.568 2708 - | 0.437 . 0.0895
Run No. 4 )
V= 21 2 ft/sec (6 47 m/sec) Elevation = 0.080 in. _(0.203 cm)
Conv‘ectlve L
, . Velomty, :
Convective fps ‘ ' KeAW/2m,
Frequency . . (m/secx 3.28) . V¢/Vo | K¢ VelVi _ cycles
All 5.3 1.000 0.00 0.250 0.0000
10 5.3 1.000 11.86 0.250 0.0039
100 5.3 -1.000 118.55 0.250° 0.0393
200 5.3 1.000 237.1 0.250 0.0785
300 6.2 1.170 303.7 0.292 0.1005
400 6.9 1.302 364.2 0.325 0.1207 .
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Run No. §

TABLE 3. (Concluded)

V,, = 15.7 ft/sec (4.8 m/sec)

1

Elevation = 0.020 in. (0.0508 c¢cm)

Convective
. Velocity,
Convective fps : ' ‘ KeAW/2m,

Frequency (m/sec X 3.28) | V{/V, K¢ VeV cycles
All 5.5 1.000 0.00 0.350 0.0000
© 10 5.5 1.000 11.42 0.350 0.0038
100 5.5 “1.000 114.2 0.350 0.0378
200 5.5 1.000 228.5 0.350 * 0.0756
- 300 5.8 3249 0.370 0.1077

-1.055

'~ TABLE 4. TEST IV CONVECTIVE VELOCITY PARAMETERS

Run No. 1

AW =0.0050ft (15.3 mm)
Vi, =41.2 ftfsec (12.6 m/sec)

Elevation = 2.708 in. (6.9 cm)

Convective
Velocity,
Convective fps . KeAW/2n,
Frequency | (m/secX 3.28) | V{/V, Ky VeV, cycles
All 2.08 1.000 0.00 0.051 0.0000
10 2.27 1.091 27.68 0.0550 0.0221
50 2.63 1.264 119.5 0.0638 0.0950
75 345 1.659 136.6 0.0835 0.1083
100 3.84 1.846 163.6 0.0930 0.1300
150 5.26 2.529 179.2 0.1275 0.1472
200 6.25 3.005 | 201.1 0.1515 0.1600
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TABLE 4. (Continued)

Run No. 2

V=410 ft/sec (12.5 m/sec) . Elevation = 1.848 in. (4.70 cm)
Convective
Velocity, '
Convective fps KeAW/2m,
Frequency (m/sec X 3.28) Vf/Vo K¢ Vf/Vm cycles
All ’ 4.81 1.000. 0.00 0:117 0.0000 -
10 ' ' 4.90 1.019 12.80 0.119 0.0102
100 4 : 5.3 . A 1.102 118.6 0.129 0.0945
200 58 - - 1.206 216.7 0.141 . 0.172
300 7.2 1.497 261.8 0.175 0.208
400 8.6 1.788 2922 | 0.210 0.232
© 500 .98 2.037 3206 0.238 0.255
600 : 12.2 2.536 309.0 0.336 0.246
Run No. 3 :
Vi, =356 ft/sec (10.8 m/sec) * Elevation = 0.898 in. (2.28 cm)
Convective
- Velocity,
Convective fps KeAW/2m,
. Frequency (m/sec X 3.28) V¢/Vo K¢ VeV cycles
All 10.0 1.000 0.000 0.280 0.0000
10 - 10.0 1.000 6.280 0.280 . 0.0050
100 . ~ 100 1.000 62.83 0.280 0.0500
- 200 ' 10.6 1.060 118.6 0.298 0.0943
300 11.6 1.160 162.5 0.326 0.1294
400 13.1 1.310 191.8 0.376 0.1527
500 13.9 1.390 227.0 0.390 0.1810 -
600 15.5 1.550 - | 243.2 0.435 0.1935
700 : 16.7 1.670 263.3 0.469 - 0.209
. 800 17.5 1.750 287.2 0.491 0.228




TABLE 4. (Continued)

Run No. 4 LR
"V T 28.4 ft/sec (8.66 m/sec) Elevation = 0.388 in. (0.985 cm)
Convective .
. Velocity,
Convective fps _ ‘ o Kea W/2n,
Frequency (m/sec X 3.28) [ V¢/V, K¢ " Vi/Viy cycles
All- ‘ < 95 - 1.00 " 0.00 | - 0.346 0.0000
10 9.5 1 1.00 6.55 7|+ 0.346 0.0052
~100 ' -10.0 1 1.053 62.83 " 0.364 0.0500
200 104 1 1.095 120.83 | 0.379 0.0955
300 115 = ¢ 1.211 1639 0.405 - 0.1297
- 400 : - 126 o 1.326 .1 199.5 | 0444 0.{1590
500 133 o 1400 { 236.2 - 0468 - 0.1880
600 ) 14.7 - | 1.547 | 249.7 - 0.517 0:1980
700 I8 T UT1.632 283.8 © | 0.546 - 0.225
Vi, = 24.0 ft/sec (7.33 m/sec) . ' Elevation = 0.158 in. (0.402 cm)
Convective
Velocity, - 1
Convective . |  fps ' _ ; KeAW/2n,
Frequency (m/sec X 3.28) | V¢/Vo * K¢ : Vf/Vm , cycles
All - 96 1.00- | 0.00 0.400 - 0.000
10 ‘ 96 : 1.00 6.55 0.400 0.0052
100 . ' 9.6 - 1.00 | 6545 | 0.400 0.0520
200 ’ 9.7 1.010 129.55 0.404 0.1030
300 104 : '1.083 181.25 0.433 0.1440
400 ’ 11.5 1.198 218.6 0.479 0.1735
500 12.75 1.328 246.4 0.531 . 0.1970
600 13.5 1.406 2793 0.562 ©0.222
700 14.3 -1 1.490 307.6 0.595 0.244
800 14.6 1.521 344.3 0.608 0.274
900 15.9 1.656 395.2 0.662 0.315
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TABLE 4. (Concluded)

Run No. 6 _
Vin = 20.0 ft/sec (6.1 m/sec) : Elevation = 0.033 in. (0.0839 ¢cm)
“Convective
Velocity, I T
Convective fps KeaW/2n,
Frequency (m/sec X 3.28) \CAL) K¢ V¢/Vi cycles
All 8.3 1.00 0.00 0.415 0.0000
10 : 8.3 , . 1.00 7.57 0.415 0.0060
100 .- 83 1.00 75.7 0.415 0.0602
200 8.6 1.04 146.1 0.430 0.1163
300 9.3 . 1.120 202.7 0.464 - 0.161
400 . 104 1.253 241.7 0.520 0.192
500 11.6 1.398 370.8 0.580 0.215
600 12.8 1.542 | 294.5 0.640 ~0.234
700 13.1 1.578 335.7 0.655 0.267
800 - 13.5 1.627 372.3 0.675 0.296
1000 15.0 : 1.807 418.7 0.750 0.332
Run No. 7
Vi, = 15.4 ft/sec (4.7 m/sec) - Elevation = 0.008 in. (0.0215 cm)
Convective
Velocity,
Convective " fps KeAW/2m,
Frequency | (m/secX 3.28) V¢/Vo K¢ VeV, cycles
All 5.9 1.00 - 0.00 0.383 0.0000
10 59 - 1.00 10.65 0.383 0.0085
100 59 1.00 106.5 0.383 - -0.0847
200 6.3 1.068 199.5 0.409 0.155
300 6.3 1.068 299.2 0.409 0.238
400 6.7 1.136 375.1 0.435 0.298
500 7.1 1.203 442.5 0.461 0.352
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Figure 27 is a composite of the four tests, the results of which are far from conclusive.
Another possible explanation for the convective velocity being a function of spatial
separation is that, for closely spaced sensors, a random walk phenomenon is occurring, and a
conglomeration of many velocities is being measured. With longer and longer separations,
only the trajectories moving directly in the direction of the two sensors would be correlated.
The use of different separation distances might be a tool for measuring selected particle
speed. Other authors have identified this problem [49, 57]. Before a.firm explanation can
be given, much more research needs to be done on this problem.

The convective velocity below the productlon zone was examined as a function of
downstream distance. Figure 28 gives tabular and graphical results for the region near the
surface. The model is consistent along the X-direction both above and below the production
zone; that is, the smaller scale structures more nearly approach the mean velocity than do
larger scale structures. The filtering of convective velocities is as predicted by the model.

D. Limiting Convective Velocities

The purpose of this section is to provide experimental evidence to support the
postulate in  Section III that the convective velocity must approach the mean velocity
throughout the boundary layer after a sufficiently long dwell time.

- Example 1 of Section III predicted that the convective veloc1ty will approach the
mean velomty for a boundary layer that had developed for approximately 28 ft (8.55 m)
with a free-stream velocity of 20 ft/sec (6.1 m/sec). Since the meteorological wind tunnel is
capable of producing the large growth lengths necessary to test the prediction, the
convective velocity profiles were measured for a boundary layer developing for 30 ft (9.15
m) in length. A free-stream velocity of about 25 ft/sec (7.63 m/sec) was used for the study.
Figure 29 shows the convective and mean velocity profiles at the 30-ft (9.15-m) station. The
variation of convective veloc1ty, as a function of frequency, was very small. A typical set of
correlation curves is shown in Figure 30. Figure 30 indicates that all the frequencies are
moving at very nearly the same velocity.-According to Appendix D, paragraph F, one would
expect a nearly symmetrical probability density distribution for the velocity fluctuations.
This in turn would produce a symmetrical cross-correlation. F1gure 30 shows very
‘symmetrical correlation curves at all frequencies.

Since the formation zone exists along the entire boundary floor, there will be some
packets being continually fed into the flow all along the boundary layer. This means that
there will be a few packets that are somewhat newer to the flow than others. Thus,
complete conformity between the convective velocity and the mean velocity may not ever’
be exactly obtained. 4

The present measurements again confirm the phys1ca1 model. Table 6 glves the
measurements of Flgure 29 in tabular form.

Very near the floor, where the production zone is still active, one would still expect
to see some difference between the convective arid the mean velocity even at the large
X-distances. The region near the floor at a test location 18 ft (5.5 m) downstream shows
that the convective velocities near the floor are $till very much different from the local mean
velocity (Fig. 28).
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Figure 29. Convective velocities 30 ft (9.15 m) from roughness.

The limiting case of the convective velocity catching up with the mean velocity may"

give some insight into why similarity solutions do not exist except for very thick boundary
layers.

E. Convective Velocity Meésurements from the Phase Spectrum

This section gives a brief account of expenmental data taken from the phase portxon
of the spectrum to determine transit times and convective velocities.

Appendix D, paragraph C, gives the theory which allows the phase spectrum to be
used to evaluate convective velocities and transit times. Equation (D-50) shows the relation
of transit time between sensors to the shift in phase. Figure 31 shows the phase spectrum and
the calculation of transit time from the phase spectrum, 8 = 2afr . The data are also given
in tabular form in Figure 31. Equation (D-51) gives the necessary relation for determining -
the convective velocity from the phase spectrum,
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TEST 2 RUN 3

0 (rad)

PHASE,

0 * T T ' T T -
0 200 400 600 - 800 1000
'FREQUENCY, f (Hz)
(a) PHASE ANGLE
. 8 (radions)] 0 |.654 |1.29811.883 |2.44 |3.02 |3.50 |3.97 |4.42 |4.88 |5.38
f(Hz) 0 100 [ 200 [ 300 | 400 | 500 | 600 [ 700.{ 800 | 900 (4000
864 | 856

T (103 sec)[1.048 | 1.04 | 1.032] 1.00 | 976 | .96 |.928 | 904 | .880

r=9f/27rf
.0015?

TEST 2 RUN 3

0010

91/21Tf {sec)

.0005 -

T T T I
200 400 600 800

FREQUENCY, t (Hz)
(b) PHASE TIME DELAY

¢

Figure 31. Phase spectrum evaluation.
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V. = 2nft-

Oon - T

Figure 32 givés a tabular and graphical result of one of the test runs.

This method is valuable for measuring the convective velocity - because one’ can
determine the bandwidth of the spectrum for which convective velocity méasurements are
meaningful. That is, only when the time delay determined by the phase spectrum is a
smooth continuous function would the convective velocity measurement be significant. The -
graphical display of the phase spectrum, phase convective velocity, and phase time delay
appears_to be_ a useful and easv tool. for _determining the significance of a measufemenlt for
any particular frequency bandwidth. S :

40 TEST 2 RUN 3
e CONVECTIVE VELOCITY FROM TABLE O

- O PHASE VELOCITY
- . .
o
o
-4 30 —
w
>
w
[Z¢]
<x
X
o .

20

I
|| 1 T I 1 - 1
0 200 400 600 800 1000
FREQUENCY, f (Hz) "

&
2 fE(1‘t/sec)

26.0) 26.2 |27.1]27.8|28.2 29.2]130.0130.8 3'1.4- 31.6

f (Hz) - |400 | 200:/ 300|400 | 500 [ 600 [.700 | 800 | 900 | 1000

CON. VEL. ‘
FgOM"lgl'\_BLE 2, 26.1126.3 | 27.1.| 27.6 | 28.2|29.4]| 30.0| 30.8| 34.2 | 31.6
ft/sec {m x 3.28) . : : . ] ) .

Figure 32. Phase velocity.
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F. An Exploratory Test

Convective velocity profiles were taken at a station 1 ft (0.305 m) downstream of
the roughness near the meteorological wind tunnel inlet. It was felt that inlet accelerations
- would have an effect at this location. The mean. free-stream velocity in the test section was

- approximately 38 ft/sec (11.6 m/sec). Figure 33 shows the results of the measurements in
the boundary layer. Figure 34 shows the correlation curves over the frequency range of
interest for one location., o '

] 04 I o . ¢
: e A WIRE = 0.02625 ft (0.800 cm)
o X=1f%t{(30.48 cm)
0.3
3 .
N
S 4 e :
f 0z O M™EaN
hey O " HIGH PASS =0 Hz
o]
8 > HIGH PASS = 100 Hz
< .
-3 \ HIGH PASS = 300 Hz
o 0N HIGH PASS = 500 Hz
04
0 T "1 -
0 20 40 ) 60

VELOCITY, fps (m/sec x 3.28)

Figure 33. Convective velocities at entrance of meteorological wind tunnel.

a 1

It is séen that the convective velocities are larger than the local mean velocity. The
higher the frequency is, the more nearly the convective velocity approaches the local mean
velocity, as predicted by the model.

o This test is presented as an exploratory case where not all of the phenomenological
.+ -‘aspects of the inlet accelerations are known.
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G. Some Thoughts Concerning Eddy Viscosity

Taylor stated, “It seems natural to suppose that eddies will transfer not only the
heat and water vapour, but also the momentum of the layer in which they originated to the
layer with which they mix” [17]. S1m11ar1y, it seems logical to describe a viscosity created
by turbulent interactions by a velocity profile of the turbulent motion rather than the mean
motion. One might think of.this as macroscale interactions of turbulent packets, similar to
the concept of dynamic viscosity. of a gas bemg caused by collisions of molecules. Describing
an eddy viscosity by :

dy ’

where ¢ is the eddy viscosity, seems realistic. Rotta notes that for nonequilibrium
boundary layers, the concept of a constant eddy viscosity defined by

becomes more realistic with distance downstream [72]. The results would be consistent
with a constant eddy viscosity based on the convective velocity profile, because farther
downstream the convective velocity profile more nearly approaches the mean velocity
profile. At the distance downstream where the two profiles assume the same Shapes, a
constant eddy viscosity concept for the outer portions of the layer would be identical for
both convective and mean velocity profiles. Rotta also points out that, for more accurate
results, the effect of upstream history on the turbulent motion must be taken into account
[72]. Both the mathematical model and the experimental results show that the convective
velocity depends upon the upstream history. Since the mean velocity profile may not be
representative of the turbulent interactions, the concept of eddy viscosity being defined by
the convective velocity profile of the turbulence is presented as an alternative approach.

Vil. CONCLUSIONS

A physical model is proposed to explain the formation and motion of packets of
vorticity within the turbulent boundary layer. It is hypothesized that a production region
exists where turbulent packets are formed. These packets migrate into that portion of the
flow field which is above and into that portion of the flow which is below this formation
zone. A mathematical,model describing the above action was used to predict the convective
velocity behavior across the turbulent boundary layer. Experiments were then devised to
check certain of the conclusions derived from the model.
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The three hypotheses of the model may be summarized as follows: -.

1. The undulating outer edge of the boundary léyer is the driving function for the
flow regime near the wall. :

2. Packets of vorticity are produced in the region which correlate with the outer
edge variation. :

-3. The packets migrate into the boundary la)?er with some. initial vertical velocity,
their horizontal velocity being that of the zone from which they are produced.

For the third hypothesis the mathematical model predicts the following:

1. Convective velocities outside the formation zone are different from the pointwise
mean velocities.

2. Convective velocities are filtered by the boundary layer such that the higher
frequencies are initially accelerated at a greater rate than the lower-frequencies. Thus,
initially, the boundary layer separates the various frequencies, allowing the higher
frequencies to more closely approach the pointwise mean motion in the boundary layer.
Convective velocities are functions of frequency. '

3. The acceleration of the packet is a function of the square of the difference
between its velocity and the velocity of the mean motion of the surrounding fluid.

4. The limiting boundary layer will have a growth that is linear with respect to the
streamwise direction.

5. For fluid structures of all sizes, the convective velocity will approach the mean
velocity profile for very long growth distances of boundary layers. This is because the mean
velocity is the driving function on the fluid structures and, thus, will accelerate the packets
and will be the asymptotic value for the convective velocities.

The conclusions of the experimental portion of the study may be summarized as
follows:

1. There is a correlation between the velocity fluctuations of the highly intermittent
outer edge of the boundary layer and those very close to the wall.

2. A production zone exists where fluid packets appear to be formed. Here the
convective velocity is independent of wave number. The convective velocity equals the
pointwise mean velocity for this region.

3. The convective wvelocity becomes a function of wave number outside the
production zone. That is, the boundary layer appears to filter the various sizes. The smaller
sizes are accelerated more than the large sizes. This may also be stated as follows: packets
whose characteristic frequency are higher are convected at a rate more nearly the mean
velocity than are packets with lower characteristic frequencies.
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4. For boundary layers which have developed- over long lengths, the convective
velocity becomes independent of wave number in the outer regions due to the asymptotic
relationship between the convective and mean velocities in the -outer reglons of the
boundary layer.

5. The probability density - distributions of the turbulent fluctuations are skewed
when the convective velocity does not equal the local mean velocity. '

6. The cross-phase spectrum may be used to determme the uniformity of
convection velocity - over widé bandwidths.

The experimental results are consistent with the requiremehts of the physical model.
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APPENDIX A
SOLUTION OF EQUATIONS (10) AND (11)

The equation needed to solve the X-direction of motion of the packet of vorticity is
equation (10). That is,

Vy _ CaVx  XdVmVx |, CaVm’
dt )\1 )\1 >\1

Noting that C4, A, , and V,, may all be functions of time, equation (10) becomes the

generalized Riccati equation. ThlS is a special case of the Abel equatlon [63 64]. The
Riccati equatlon is a differential equation of the form

y(t) = h(t) + gy + f(Oy" . ‘ ‘ ‘ (A-1)

Kamke [63] states that the solution may be found, if suitably selected
constants « and f may be found, where

(%) o= et [ + of h(t)e/8(DAL g¢ (A-2)

1
such that Z(t) = ( %) I is a solution of the linear differential equation,

Z@)Y - g®) Z(t) = ah(t) . | (A-3)

Then, the solution of the original differential equation follows from

1 |
y(t) = (—fgg) hoyey | | (A4)
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where U(t) is determined by

| 1 .
So—— -aU+1 +C = f(ﬁi%)/n W)y dt . (A-S)

For equation (10), the constants « and 8 must be selected such that

204V
.f d

Vp = e M (B +af

= dt CqVm® /

]

2C4V.
—dTﬂ- dt (A-6)
e 1 dt] .

Equation (A-6) requires an explicit relationship for Cd , Vm , and X as functions

of time. For many cases, these will not be known and approximations must be used. One
may Wwish to consider Cd , A1, and V to be independent of time. The differential

equation then becomes a spec1al form of Abel’s equatlon to which the solution is given
below.

By equation (A-1),

and
z= (1) =v, . | (A-8)
Using (A-2) -
Jf chvm dt CeCrt S XdVm_ 4
Vp = e’ M 6+of 2 M a . (A-9)
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Att=0,V, =V, = p= V.. Differentiating equation (A-9) yiélds

_ 2V eCqVy?

= a = 2 . I :'_:‘:r,?"(A'lO)

From (A-5),

CV
U s S B - ut

and

du B 1 _ VmCdt+C
TF-20+1 - 1-U - \ : (A-11)

Equation (A4) gives Vi = ZU, where V, = V; at t=0. The equation. for velocity of
the packet besomes '

MV, - V)
X m = 4Cy(V, - V) + Ay

(A-1 2,)

Integration of equation (A-12) yields the X-direction of motion for the packet:

MOy -V)

O et T =Wy

A, +1Cq(Vy, =Vl + C .. (A3)

The initial condition that X = 0 ,at time t = 0, yields

- A : A 2N\ i
X(t) = Vit - f:l-szn[x, + t,Cd(Vm: - Yi) + —1(?& (A-14)
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Thus, the equations of motion for the packet in the X-direction are as follows:

Acceleration

EX() AV Gy

- 2 _ - 2 . .
T at ~ '[Vx 2VmVx + Vm 1 . (A-15)
Velocity ‘
aXO _ oy g - M Vi = V) A
dt Vx(t) Vm W HCd(Vm"Vi) (A-16)
Distance
_ A | A, 2
X(@) = th - —C-é— Qn[.x, + th(Vm'Vi)] + ——‘CE—‘ . (A-17)

The technique used to solve this equation was selected to give reference for general
use. The following is given as proof that the previous approach will give a solution for the
equation:

Y = f(x) Y+ g(x)Y + h(x) , : (A-18)
where
1 . .
z = (—%‘-)/“ = ¢J83X [ + o he JBAX gx] (A-19)
and
]
dU f\/n
= (=)™ hdx . A-20
fU“-aU+l+C f(h) * (A-20)
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The hypothesis being that Y = ZU is a solution of the differential equation, (A-18). -

Proof

7 = J8dXg zefEdx 4 ofedX gpefEdX = o7 4+ an : (A-21)

U = -Lun - aU + 1)
zZ (A-22)

From the hypothesis Y = ZU,

Y =Z2U+VUZ . .. - - . S S (A23)

Equation (A-23), combined with equations (A-21) and (A-22), yields:

Y = U@Z +ah) + ZD (UM - aU + 1)

Y ="gZU + hU" '+ h I

Y = hY" + gY + h . (A-24)

" Equation (A-24) is the original equaﬁon, and thus Y = ZU is ‘a solution to equation
(A-18).*

The solution to equations (10) and (11), where Cd s Vm , and A; areindependent

of time, may also be found by noting that equation (1 0) may be written as

dvy ' - _ o _
a C(VX? + 2V, +b = 0, R (A-25)

*Proof of existence thanks to Dr. H. G. Krause, NASA, MSFC.
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where '

: and b vV _?

C=-=—3;a= -V,

Equation (A-25) is now a special form of Abel’s equation [63] where the solution is
known

V, -V

. CgT
m = U+ O - (&26)

- Applying the initial conditions V, = V; attime, t = 0,

MV - V;) ‘
Vm - Vx T v (A-27)

which is the same as equation (A-12) derived earlier.

Equation (A-27) may now be viewed as a differential equation to describe the
distance the packet moves in the X-direction.

ax o MOp-VY) (A28
dat —th(Vm-Vi) - m ’ (A-28)
the solution being
-Al (Vm - Vl) i '
X =T, oy W Vg mVRL + Vit # € (A-29)
m i '

which is the solution to equation (11).
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Applying the initial condition that X =0 «at time t =0, we obtain

X(t) = %(;—szn[x, + 1V =Vl + Vppt + el O (A30)

d
equation (A-30) being identical to equation (A-17).

For easy reference the basic equations for the X-direction of motion of the packet
are given. (Note: Cd , Ay ,and Vm are independent of time.)

Acceleration of the packet in the X-direction

dav Cs(V_ -V:)? C ‘
- X _ xd\"'m” i’ _ ~d : _ 2 i
A, = - A X, [V ?VmVx + Vi ?1] . (A-31)
Velocity of the packet in the X-direction
_ MV -V
Vi T Vm TN ARV, V) : 4 (A-32)

Displacement of the packet in the X-direction

x(t) = Vit ‘_écl?’znlxl + tCi(Vy - VI +———“éf;‘“ o - (A-33)
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¢ - .APPENDIXB
SOLUTION OF EQUATION (28)

The solution of equation (28),

Equation (28) may now be written as

dv, CgV,? 2G4 Cq .
e v ..[cvvy1t + Vil Vy [cv yit * Vil
— Cd C t+ V ‘]2 ) |
= V- Gyt + VIR

is performed by using a change of variables. Let

Z = [Vy - CVyit + VI

dZ _ avy
a - @ SV

dz _ G’
I oY

(B-1)

(B-2)

(B-3)

Solutions to this differential equation may be found in Reference 63, p. 296, no.

123, or Reference 64, p. 229, no. 55.

Murphy [64] gives for y' = a + by?

@) ry =atan(C+1x) ; 1 = Jab
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(ii) sy = atanh (C+sx) ; s = v/-ab

(iii) y(C-bx)=1;a

0
o

(iv) y = ax+b;b=0

_For the case in question, y =z, x=t, a=-CVy, b=CyA,
and ab = (-C4C,V y1)/7‘1 . o

The velocity profile in question has velocity increasing with elevation; thus, CV >0.
Also, Vyi > OA, Cd > 0, and A1 > 0. Equation (ii) must therefore be used. .

sy = atanh (C+sx) ; s = +/-ab
Therefore,
2 | "
C;iC V., YV? C,.C.V..
d-vVyi _ . ~dvv"yi
(T) Vg - Cnyit -V) = "Cnyi tanh [C + (T.L> t]

Solving for VX , we obtain

». CdeV % R i
y1 :

X Y,
CdeVyi :
Ay

Att =0, V, =V, = C=0. Thus, the equation for fhe velocity ifi the X-direction
becomes . ' ‘

<
|
<
E
\./
—
N
=
-
TN
Lj
~—=
-
+
0
<
!-F
+
<

or ‘ ' B o (B4)
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: : Y
l A% =V ,__..._.....___C Vy tanh <%1_> i t
X m - A1
(Cde y1/>\)

Integration of equation (B-4) yields

, Y%
: ’. tz ! ) )\1 . . CdCVV 1 I
x(t) = ?VVYl_Z,_ + V.lt -—(TEQn cosh(—Y—7\l . t + C

4

Attime t = 0, x(0) = 0 = C = 0, which makes the X-direction of motion become

x(t)

"\ ¥
C,C V. :\"?
_‘_1_"._3’l> t (B-5)

M
th Cd £n cosh< X
SinceV CV it Vi, CV —(V —V-)/t.

The equatlons for ve1001ty and distance of the packet may now be written as
follows:

Velocity of the Packet

v (v -viYV2 ~ [c | &
A o] o

Translation of the Packet

i : Y5
x(t) = m2 Lt - é‘ en COShl:—d_( m=- Vi t:| ’ . (B-7)
d
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APPENDIX C
SOLUTION OF EQUATION (10)

Equation (10) for a- velocity gradient of Viy = (Cy¥) " + Vi, Where y(t) is

described by Vyit = y(t), will be solved by the Kamke approach outlined in Appendix A.

For the Kamke approach,

C.V ' -2C4V C w\ %
= d m . = .——d m . = _d_ = _h_ =
h = N 0 B Ag P 1 Ay and Z (f> Vi
Given the velocity gradient,
1
V. = CV.) "+ v (C-1)
m - & yi) i
Z' becomes
7 = Ltevoo™ cv.. = Lov -—vyscv (C-2)
TNy yi)'g viyi T 7V'm” i) 'Cv_yi

However Z' also equals gZ + «h ; thus

o ) 2C4VE G4V
Z = (Vi =V CyVy; = — g (C3)

Vi v

Solving for a , we obtain
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“a .
_ i ¢ 2Cde xl )
@ = [ 7Vm =V Vi + = | T

) {%’ [(Cv y1t) :I-% "Yyi‘ ¥ 2 [(CV y‘t)

A
¥ V] }cd[(c LR AL

Att =0,

Solving for U, we obtain

du 1
e N = +
fU’-'-aU+l f(l Uy o ¢

From equation (A-5)

! - Y,
gt ¢ ,f[(cvth) ERARY

Integrating and solving for U ;

Uu-=1- 1

C :
d[7 ¥, ] .
v [—8 CVyit 7+ Vit|-C

Using equation (A-4)

Vx = Vi - m - (€4
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- Using the ihitialbondiﬁons that V, = AVi at t = 0, equation (C4) may be solved
for the constant ¢ yielding :

Vm

Equation (C-4) for the velocity in the X-direction becomes

V, (Vo - V)
Ve = Vi - LU L BEE : (C-5)
d 1 % ] N
Tl- Vi —Vi) [8 Cnyit o+ Vit Vm
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_ APPENDIXD

SIGNAL ANALYSIS

£
A. General Analysis

The objective of this section is to establish the analysis which will be used.to extract
information from time series of finite duration. For convenience, it may be supposed that
the signal is coming from a hot wire anemometer, since this is the type of signal used in the
experimental portion of this paper. The figure below is given for illustration.

The recorded signal is of some given finite length, (T3, T, ). The present examination
will concern itself with less than the total record length; for example, 0 < T < T,.

Common statistical parameters that may be used to analyze such a function are
generally based on the first four moments of the function:

1. Mean value, Mf(T):

1

—_ T '
Mgy = TO = 1 of f(tydt (D-1)

2. rms value, If(t):

; T Y _
oty = |77 0/ (f(t) - Mgyy)® dt : (D-2)

3. Skewness factor, Sf(t):
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T,

IR YACEOTE o
So T TR y | (D-3)
1L , N2 A
o [T, ‘0/ (fo - Mf(t))z_d_t (.
4. Kd;tosis factor, kyy: |
1 F e
| T .{ (ft) - Mgy)* dt
b R S — (D-4)
—- 2 '
. T of (f(t) -,Mf(t)) dt]
: 5 Auto-correlation, Rge(r):
Rer) = 7 / Danferna . - R
6. Auto-covariance, ceg(r):
T ' »
Cff(’r) = ‘Tll' ‘0/‘l (f(t) *Mf(t)] [f(t.+ T) - Mf(t‘H’)]dt S o (D-6)

It is easily shown that only one of the mean values need be used to calculate the
auto-covariance function; that is, one of the mean values may be set at zero or any
convenient constant value while using the true mean for the other mean value.

7. Normalized auto-covariance, Cep(r):

_ﬁ(_f_)__ , ' (D-7)

Celr) =
7 = S orm
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The above expressions give meaningful statistical values in either the time domain or
time-delay domain. It will also be important to know certain statistical values of the original
function in the frequency domain. Taylor [13]-elucidates on work by Simmons in 1938 to
show the formal beginning of the importance of the frequency domain.

The simplest approach for basic understanding is t6 ‘examine the function f(t) and
find the best-fit sine wave with n periods in time T, . A least-square fit from 0 to T, ,
for n oscillations gives

T,
- / [aninz’%‘—- f(t)] "dt =0 | (D-8)
n

Using'-the Leibniz theorem for differentiatidn of an in'tegr'alll'in' équatidn (D78) yields

IES

T, o
Y4 [ 2B, sin? 2L _ gin 222L f(t)] [ P )
0 1

Integration of equation (D-9) gives

T, 21rnt : R
B,T, - 2 / sin f(tydt = 0 . ' (D-10)
0
Solving for Bn , we obtain - -
T . , :
S ! 27rnt - e .
By =177 J fHdt . (D

Bn is now recognized as being the nth Fourier coefﬁcient of the sine terms of £(t) . The

above procedure may also be used for all cosine terms with integer oscillations over the
interval (0,T;).’
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, A more satisfying approach is to assume that f(t) over (0,T,) may be represented
by a series of harmonic components, such as

o N . 2mnt . 2mnt
f(t). = izo Apcos SIL + Bysin =g (D-12)

To solve for any A, or B, , multiply both sides of the equation by the sine or
cosine function which accompanies the A, or B , and then integrate both sides over the
interval (0,T,). The integration is solved, leaving

A, =—1/Tl cos 2T 1) dt’ (D-13)
n =2 T,
and
T |
_ 1 v 2ant
By = gz sinc fwdt (D-14)

Using the above equations leads the right-hand side of equation (D-12) to converge
absolutely and uniformly to f(t) over the prescribed interval if f(t) is continuous
and f'(t) is at least sectionally continuous over the interval (0,T,) . The only exception is
at the end points where the right-hand side of equation (D-12) yields %2{f(0) + f(T,)] .
~ The above restrictions are applicable since the functions that are dealt with are both
continuous and continuously differentiable. Thus, the Fourier series will converge within
any given error with a finite number of terms.

Equation (D-12) may be written in the form:

o i2nnt :
) = ), Cye ', (D-15)
n=-oo X
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where

-i2nnt
1 o T,
C, = Tr_{ f(t) e at . | - (D-16)
Noting
_ 2m o T _ 21 p] =2
w = T, n T and Aw T, [(n+1) -n] ) s
equation (D-16) becomes
ity = ) C, ;;r lwt A,
n=-eo

If the time period becomes long, Aw approaches dw with

» m TGy et L iwt
f(t) = _fm - e dw = o _f°° gw)X' do (DD
and
T -iwt
gw) = T,C, = / ftye ~dt . (D-18)
0

~ Cross-channel manipulations require the following statistical concepts:

1. Cross correlation of f(t) and g(t) :
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T .
Rgy(r) ='11‘_1' { " Rogt+rdt . . ~ (D-19)

2. Covariance of f(t) and g(t):
L b |
rgln) = 7 {' () -Mggl [t +7) - Mglt+n)ldt . (D-20)

3. Normalized covariance of f(t) and g(t):

: cfg(T)

Cfé(T) = If(t) og(t +7) (D-21)

.« . It is permissible that the functions of f(t) and g(t) be momgnts of functions, such
as f(t) = h(t). ‘ ' -

B. Restrictions Causedv by Physical Limitations

The previous section on signal analysis provides the mathematical tools with which
to analyze real time functions. This section shows the feasibility of defining turbulent flow
structure with the preceding statistical quantities in view of physical restrictions placed on
the flow. It is also an objective of this section to show how restrictions placed on a single
time function propagate the function’s restrictions into.moments and cross-moments with
other functions. T : :

For the purpose of analysis, consideration will be placed on a finite flow field with
finite velocities. :

Consider two points in the finite flow field domain: A at (x,.y,,z,) and B at
(X2,¥2,22). Consider also the velocity of the fluid at point A in the direction a and the

velocity of the fluid at point B in the direction b. For simplicity, it is assumed that the mean
flow is in the direction of the X-axis with a constant mean value. Then,

Uy(t) = Uye,y + ua(t) at A (D-22)
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and

Uyt = Ugep, + uy(t) at B, " - (D23

_ where the € ’s are the direction cosines of the ith direction with the jth direction.

The cross-correlation becomes

Ry u () = Uy(®) Ub(tﬁ) = Uy exx eb*. o) wt+r) . (D-24)

If the signals are ac-coupled, that is, if only the fluctuating portion of the signal is of
concern, then, C : .

Rﬁaub = u(t) u(t+7) . | - o (D-25)

Since u,(t) is the “fluctuation  portion only, ie., ua(t) = 0, the Fourier
representation of u,(t) over the interval (0,T,) may be written as

' u(t) = ;_1. <‘an cos 2?1“. + b, sin 21.;.:“-) ,. : A " (D-26)
where
" T . -
2 1 . .
o = of u,(t).cos 221 e (D-27)
and

105



u(t+r) = le (a'ncosz—"n(—t—ﬂ—)-?k b’ sin

T

with
T, +r
e 2 2an(t + 1)
a, = =% . + UL L ILEP A T
*n = Tf ub(t” 7) COS T, Ad_
and
T, +r

2 L . 2an(t+71) .-
n -,1.—.1- f ub(t+r)sm—T—-dt

T

.
f

Letting t' = t-7 forany 7, dt' equals dt,

Tl ‘ ’
' - 2 ’ 21Tnt'
ap —-'IT Of u(t’) cos T, dat

and

by, = = le () sin 22BE gy
n T, A b T,

106,

2an(t +7)

(D-28)

(D-29)

(D-30)

(D-31)

(D-32)

(D-33)



For any given 7

T, o
— _ 1 2nnt . 2mnt
(1) w(t+r1) = T, of lzél [(an cos = + b, sin T )]

>/, 2nn(t + 1) . . 2an(t+71)
[nz;_l <anCO§ ——T;__ +v bnSln —-_Tx——)] dt

L, T, 7T, T ST SR,

E” . 2mnt 2wt , .. 2znt . 2mnt
an coS COS - a.85n sin

r . 2ant 2mnt ' 2mt . 2t
+ bnsm,Tl cos T, + b, cos T, sin T, )] dt
(D-34)
Orthogonality of the function is noted and the integration is performed:
1 5 (T 2nn7 T, 2nnrt
= — =L ' et B ! LA
uy(t) uy(t+7) T, ‘nZ=I ( ) -ana nCos=p— + = apb'y, sin T,
_ T , 2nnr T, . 2nnt
> bnah T, + - bpb’, cos T
il 2 2
. ' 2mnr . . 2mnt
= 3 ;.-1 <ana n©0s Sp— + apb’ysin =%
, . 2anr , 2nnr
~ bpay, sin T, + b,b’, cos T, ) (D-3_5)



The average value of the correlation over the 7 region of interest becomes

Tua(t) ub(t + T) =

-basm T, + bb

T

n=1
m

2anT

n Ccos

/m —;E ( a'y cos ==— + ap b sin

-T

2mn7

2nn7

T,

(D-36)

Integration over symmetrical limits eliminates all odd functions, and integration of evenA

functions over symmetrical limits yields twice the value integrated over half limits.

The average value may now be written (where the presubscript, 7 ,

averaging over 7 ) as

U (D up(t+r) =

Letting (aja, + b,by) =

LU (t) up(t+7)

or

ua(t) ub(t+r) =

- 108

1
2r

m

+ b

1]
2 ‘?n

o0

%

n=1

7
0

m

5 b’y cos 2;:") dr

, equation (D-37) becomes

fs '
Z 21rn1 . dt
n=1 T

"n T, in 2mn7

T, 2an T,

E°° a,a covsM
& ndn T,

denotes. .

(D-37)

0-38). "

(D-39)



Each term of equation (D-39) i§ identically zero whenever
m=2T -, m-=1234.

This zero value indicates that for structures defined within a finite time, théir correlations
are also defined within an identical finite time.

In equation (D-35), by letting

(a a"n'/+ b, b)) = 22", and (a, b’y - .bpal,) = 2b7,

the cross-covariance becomes

o0

- = 5 " A 2nnt
Ruaub(r) = uy(t) ?b(t +7) = nZ=l‘.<'a~ n COSVT—I

4+ b sin ,2’}27) , (D40)
. 1

Equation (D-40) is identical to equation (D-26) except for the notation 7 and t . Thus, any
restrictions of a physical nature imposed upon the original functions are propagated
invariantly to the correlation function.

If physical limitations allow the time series to be considered stationary
through i moments, it is now proposed that products of moments will retain the original
degree of stationarity. ‘

Consider U,(t) and Uy(t + 7) stationary functions through their ith and jth
moments, respectively; that is, the moments of U,(t) and Uyt + 1) are independent of

the 'placement of the interval to be analyzed as long as the length of the interval stays
constant. Expressed mathematically, using the Leibnitz theorem,

3 a+To . - ’
30/ Udt = 0 = Ul@+To) - UM () (D-41)
a

109



and

a+T'Q | ) : ,
= [ UM(ttndt = 0 = UM(@+To +7) ~ UM(a+r) , (D42)
a ' . .

where n and m represent ahy stationary moments of ua(f) and Uy(t + 7), respectively.

Examining the product of statiéna‘ry time series for stationarity, the Leibnitz
theorem becomies ‘

Q+T0

L [ UM UM+t
¢4 . :

UM + Ty) Uy + T, + 7).

i ) ,
- - Uan(a) me(a +7)

= UMa) U™t 1) -

- U@ UMty (D43)

A corollary of equation (D43) could be expressed as follows: “The product of any
number of stationary functions is also stationary.” Thus, equation (D-43) would be

Q+T0 . .‘ .
2 [ USOUMW . Ufdt = Ul To) Uf™e+To) ... U+ o)
a

i
t

- U e) Uy™@) ... Ul@) . (D44)
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‘However from equation (D41), Ul—i(a + T, ) equals Ulj(a) . Equation (D<44) now becomes

identically equal to zero, and thus the product of moments of stationary functions is also
stationary. This corollary may be expressed as follows: “The product of moments of two or
more stationary functions is independent of the placement of the integral interval.” Thus,
by definition, the products of moments of two or more stationary time functions are
themselves stationary. :

The above analysis indicates that the product of stationary functions is only
stationary to the degree that each individual function is stationary.

; The conclusions of this section may be expressed as follows:
1. Any structure or function described in a finite time may also be described by
correlation functions with finite time delays. Expressly, the time-delay range must be of the
extent of the structure or function for a complete correlation description.

2. The average value of the correlation function is a function of the correlation’s
"upper time delay and is only zero at prescribed time-delay values, equation (D-39),
excluding, of course, the trivial case where all Fourier coefficients are zero.

3. The product of moments of two or more stationary time functions is also
stationary to the degree of the least stationary component. That is to say, the degree of
stationarity of a product of stationary functions is the same as that of the least stationary of
its components. If any moment of any component is not stationary, this product will also
be nonstationary.

4. A structure defined in a length of time T, can only be described fully in the

time-delay domain if 7., - 7., = T, .

C. A Physical Interpretation of the Fourier Phase Spectrum

_ Harmonic analysis is one tool which may be used to present data in such a way that
their full meaning may be easier or better understood. Phase shifts of individual harmonics
may be used to ascertain convective velocities. The phase spectrum is treated
mathematically in this section, along with its physical interpretation.

Consider two time functions and their respective Fourier transforms: -

-%"— + zl a, cos ———ZTfIr,u + bn sin ——21{,[“
n=

]

x(t)

2ant
T - ox,n)

=2+ ) @, + b)) cos( (D45)

n=1
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and

21rnt ' . 2mmit B

y(t) = c° ct z c ‘cos + dp sin =5
= & v 2 2 1/2 21|'nt _ ‘ )
2+ ;=1 (¢, + b%) cos(——-T byn) - (D-46)
A
Where gx,n and ey,n represent the phase shift of each harmonic at the

origin, Bx,n equals tan™ bn/cn and'ey n equals tan™ _dn/cn' The 'cc_)rrelatiicm of x(t)

and y(t) becomes

. T ' _ %
Ry =T/ [xﬂ) yit+ e = Sepe é Y, anenoos T
+ apdp, sin 23;-—1" - by, sin 27,}1" + b d cos’ 2?"] . (D47

1

The correlation may also be thought of as a function, without regard to the
functions involved in ltS formation. The Fourier transform of the correlation functlon could
be written as

_ € v 2anr . 2ant
ny(r) =5 + nz-—-l e COS =7 + f,sin T
1
-7t z (@ + e °°S(27Irm - 6'c,n) (D-48)

H

where cn is the phase sh1ft from the origin of the nth harmomc, Ocn = tan"-fn/er‘l-'.
Substituting from equation (D-47) for f, and e, we obtain '
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d, by
f ‘a.d. -b.c c. a,
_ 4 ‘n _ - n%n " %n*n _ . n “n
60,1‘\ = tan’! = - tan e Fbd- tan™! S
n n*n'™" ®n®n | 4-0 -0
a, ¢,
tané - tané .
= tan Y1 XM = tan? [tan (0, , -0y )] (D-49)
: 1+:tan(9y’n tanfy , y.n ,x,n:
"’c,n = ey,n - "x,n . ' ‘ (D-SO)

" The physical interpretation of equation (D-50) may be stated as follows: “The

-, phase of the nth harmonic of the correlation is equal to the difference of the starting phases

" “of the nth -harmonics of the original time series which ‘were used to calculate the
" correlation.” A special case of this result occurs when x(t) = y(t); thus, Oy n €quals 6, .

. This means that 6, must be equal to zero from equation (D-50); that is, the phase
_spectrum for the auto-correlation must equal zero for all frequencies. That the phase

.- ‘$pectrum is equal to zero for the auto-correlation is well known and may also be arrived at

| ~ by considering the evenness of the autocorrelation.

L -?(Thé' correlation receives its major contribution from the nth harmonic when

2ant \ . )
cos(-T— - ec,n) =1 ;

" that is, when

Oen = 2 = 2 o (D-51)

If all waves travel such that they peak at approximately the same time delay, the
correlation curve will have a pronounced maximum. The calculation of the convective
- yelocity of any harmonic is then the separation distance between the sensors divided
- by Oc,n/21rf:
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_ 2aft :
vV, = Ton . | (D-52)

Equations (D-51) and (D-52) show that the time delay may also be calcuiated from the
phase spectrum; i.e., 7 = .Gcn/21rf . Figure 31 gives the phase spectrum and time-delay

spectrum as functions of frequency for a given test.
The conclusions of this section are as follows:
1. The phase of a particular harmonic describing the correlation function equals the

difference between the startmg phases of the two functlons used to .calculate the
correlation;i.e.,

O¢n = % n - 9xn

2. The optimum time delay for a particular harmonic to convect from one sensor to
another is given by the equation

T

p = Gc,n/21rf

3. The convective velocity .of particular portions or individual harmonics may be
calculated from the equation

V, = 2nf/e

These relations describe the convective phenomena in terms of phase and frequency.

D. Special Properties of Correlations of Time Functions
The time functions used to describe physical models must be of finite duration as a
matter of practicality. Thus, for the following derivations the Fourier series is used rather
than the more familiar Fourier integral. The time length analyzed in al_l cases will be of total
length T, . The following cases will be examined:
1. Auto-correlation of function f(t) .

2. Cross-correlation of function f(t) with g(t).

3. Cross-correlation of a function, f(t) , with its first time derivative.
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4. Cross-correlation of a function, f(t), with a second function’s first time
derivative. A

5. The derivative of the auto-correlation with respect to 7 , time delay.
6. The denvatxve of the cross-correlation with respect to 7, t1me delay.
7. The der1vat1ve of an al;to-conelatlon with respect to time.

8. The derivative of a cross-correlation with respect to time.

9. The second derivative of a creee-'eonelation 'with reepect to time delay,

o 1' Auto-Correlatlon of Functlon f(t) The auto correlation w1ll be exa.mmed
con51der1ng the spectral content of the function to be auto-correlated. C

- Ao 2nnt ... 2nnt .
f(t) 5>+ nz=1 An cos Sp= + By sin T (D-53)
2 T 2mnt »
A, = -ff f(t) cos 7{{1 dt (D-54)
0 ,
2 T 2nnt
By = 5~/ f(t)sin Z’r“ dt _ | ‘ (D-55)
0

ftt+7) = A2° + :121—1 A'r} cos ——2ﬂ¥lt+7) + B'n sin ————2"%(:*'1) .(D-56)
; & 2en(t + 1) '

R 2rn(t+7) : ]

Ay =1 O/ f(t + 1) cos =g dt (D-57)
, h 2nn(t +7)

' — . n T

By = 1 { f(t-+ 1) sin =5 dt (D-58)
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The auto-correlation may now be written as

e 1 SRS L IV 2nnt
GIGDIEE VAN CLCLURE JVANE S0 (g cos 25
0 0 n=

+ B'nsinz”+ft1).] dt = - S [ﬁ
" A 0 -

+

n=

. 27 nt . 2ant)l| A’
.21 ( cos—-rrl—- + anm T, )J[T

v ' 2nnt 2anr .. '2nnf . 2ant
+ A’ co - A .
;:1 ( n COS T, cos T, q Sin T, sin

-+ B sin 2_1.}nt,cos 2mnr + B'n cos _2zrr_nt sin M)] ~dt
1 1

T, T
(D-59)
Upon integration of equation (D-59), the auto-correlation becomes
————— _ A¢A) * [ApAh 2anr ApBYy ﬁnnr
fR)ft+7) = 2 + ;=1< 5 C0s T, + —5— sin T,
-A'" B BB’ ' .
DD sin 2707 4 D7D cos 2’;")- L (D-60)
1 1 '
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Equation (D-60) may be rewritten as

—_—  ALA * ((A,A,+B_B')
f(t)f(t+7) = % + z ( 1 n2 0 os 2.711.1"
. n=1 _ ] !
- 4 O I L I (D-61)

If the function f(t) is stationary,

A, = A, and B, = B.

Thus, for a stationary function,

(AR - A By

2

The auto-correlation of f(t) is

2w nr

- AJA' o0 AA +BB
f) fit+7) = ° ° -+ Z (
‘ n=1

ApB'h-A'hBy 2nfr .
+ > sin T, - (D-62)
And, if the function f(t)_is stationary, the auto-correlation becomes
Mot = By v An *By 2mor. - (D-63)
() f(t+7) = = nZ=I s cos SET L
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The spectra of f(t) and f(t) f(t +r) are seen to be related because A,?/4 equals
(Ao/2)* , and (A,? +B,?)/2 equals one-half of the power spectrum of f(t) at the

respective frequencies.

2. Cross-Correlation of Functions f(t) with g(t) . The functions of f(t), Ay,
and B, are described by gquations (D-53), (D-54), and (D-55), respectively. g(t+7) is
described by equations (D-56), (D-57), and (D-58), where f(t + ) is replaced by g(t +7).

The cross-correlation may thus be written as

_— T, '
(et+n == / fOst+nd . (D-64)
0

The correlation in terms of its Fourier components becomes

AJA ° (A A_+BB
f(t)gt+7) = 10 + Z < n n2 L1 oo 21,?"
n=1 1
B -A'_B
+ An n n’n oo 21rn-rv (D-65)
2 T,

If the épectrum of f(t) is considered as A, +i B, and the spectrum of g(t+7)is
considered as A;l +i B;l , where i = +/-1 means a phase shift of 90 degrees, the spectrum

of equation (D-65) may be obtained by multiplying the spectrum of g(t+7) by the
complex conjugate of the spectrum of f(t) .

3. Cross-Correlation of a Function, f(t) , with its First Time Derivative.
Differentiating equation (D-53),

o0

af(t+7) _ 21 o 2en(tTy o, 2nn(t +7) ]
—r— T IZLI Annsm——Tl + Bnncos———Tl . (D-66)

where Ar’1 and Br'l are defined by equations (D-57) and (D-58), respectively. Thus,
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d f(t 7) 1 T ) f(t +17) 1 T, Ao
oD - L o gRe s |7
0 0

¥ Z (A COS-——nE + B, sin 21,}m) ,2[," Z
n=1 1 p=1

_L le Aoy 5 (agcos 2+ Bysin ot
Tl 1 ATI T n Tl
0 n
2 x 2n7
T ' 2ant 2an7
) E_ (— A’ nsin cos
n=1
+ -A' ncos = sin _%g[ + B',ncos ——-—-21,;{1 cos -—2¥1"
1
+ -Bynsin 228 sin -——2’"")} dt (D-67)
1 1
Upon integration term by term,
2nn7t

w .
£(t) _?’_E(_LL)- - 5 (_ A_Ansin
n:] .

2007 .
T, + A Bpncos T

' M ' . 2nnt
- BAncos =y BB, nsin T )

= = v ’ ’ 20T
T ;:l (n(Aan -ByA o) €08 T, (D-68)
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' p . 2ant . "
- n(A A" + B.B')) sin ——-—) . _ (D-68)
wen e T (Concluded)

If the function f(t) is stationary, A, = A}] and B = B;l . Equation (D-68) then
becomes

aM(t+r) _ -1 T 2 2\ o 207 4 | -
f(t) = = Tl g::l n(ATy + By sinSpl L . (D69)
Equation (D-69) evaluated at 7 = 0 yields
f(t)a—f“i’l= 0, frr=0 . @70

4. Cross-Correlation of a Function, f(t), with a Second Function’s First Time
Derivative. f(t) is defined by equation (D-53), and g(t + 7) is defined by equation (D-56).

The term fiigzt;f) is defined by equation (D-66), where f(t +'1) is replaced by g(t + 7).

—————————

Equation (D-68) now may be written to define f(t) iig(_g{_ﬂ as

£ty ag(t+1) E <n(A B A ) cos 21;“n1'>
=1 1
—  n(ALA + BnB o) si 2’}’}") . (DD

. 5. The Derivative of the Auto-Correlation: with = Respect.  to 7., Time
Delay. Differentiating the auto-correlation with respect to time delay yields

dRel7) RO f(t+7) af(t+r) _ af(t+7) a(t+7)
T - AT = f® = a(t+1) ot
= gt | (D-72)

a(t+17)
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Note that

Cof(t+ 1) af(t+7) 3a(t+7) of(t+7) _ o8f(t+7)

3t a(t+r) 8t a(t+n - or : (D-73)
From equations (D-72) and (D-73),
OR¢f(7) D
or - O - ' - (D-74)

Therefore, from equation (D-70), the auto-correlation must have a maximum at 7 = 0
i.e., the slope at r = 0 must equal 0. The spectrum of equation (D-74) would follow from
equation (D-68).

6. The Derivative of a Cross-Correlation with Respect to 7 , Time Delay. In
equation (D-72), replacing f(t+ 1) by g(t+7) gives

Rer ey o | o
g _ ag(t + 1) ‘ i
B ranlaR (U v : (D-75)

The spectrum of -the above follows from equation (D-71).

_ 7. The Derivative of an Auto-Correlation with Respect to Time. Taking the time
derivative of the auto-correlation function gives

dRge(r) D)
ot

+ aaft(‘) ft+r) (D-76)

Since Rﬁ(r) is not a function of time, its time derivative is zero. This does,
however, give ‘

() af(;t* D o= aaf?) ft+1) | (D-77)
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Therefore the spectrum of a—g(t—t) f(t + 7) would follow from the negative of equation
(D-68). a

. 8. The Derivative of a Cross-Correlation with Respect to Time. Replacing f(t +7)
by g(t + 7) in equations (D-76) and (D-77) gives .

IR, (1)
_gg{(l_ = 0 ’ (D-78)
and
f(t) aag§t+1) _ _aafgt) a(t +1) (D-79)
af(t)

The spectrum of >t g(t +7) follows from the negativé of‘equation (D-71).

9. The Second Derivative of a Cross-Correlation with Respect to Time Delay, 7.
Using equations (D-72), (D-73), (D-75), and (D-79), the second derivative of the
cross-correlation with respect to time delay becomes :

92 Re (1) ' ' '
- afzg' = a;gt). glt+7) | (D-80)

= f(t) 9—253(—?—’) (D-81)
- _ of(t) ag(t +7) (D-82)

ot ot

* To consider the auto-correlation, merely replace g(t+7) by f(t+7).

The spectral content of equations (D-80), (D-81), and (D-82) may be expressed as
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9?Rey(7) 1 &
& =2 ¥ 2mnr

573 = T iy n*(A,A', +B,B',) cos T,
+ n?(AgBy - Ay sin 0T (D-83)

For an auto-correlation of a stationary function, equation (D-83) becomes

PRe(r) | < 2an ? . Qmnr
__81'2 =5 z : Vi (Az_n'f' len) cos =T, (D-84) 4

n=1

Notice that equation (D-83) gives the spectral content for equations (D-80), (D-81), and
(D-82). Notice also that the spectra of equations (D-83) and (D-84) are identical with the
spectra of equations (D-65) and (D-63) except that each term is multiplied by the square of
its angular frequency. Equation (D-80) gives the relationship of the correlatlon of two
functxons to the correlation of the denvatlves of the two functions.

E. The Effect of Space and Frequency Weighting Functions on the
Normalized Cross-Covariance

Let f(t) be the fluctuating portion of the signal which first senses the flow
phenomena. Let g(t) be the fluctuating portion of the signal which then senses the same
flow phenomena at some later time, the separation between the sensors being ¢ .

Assume for the moment that f(t) is changed only due to spacing and frequency
before it becomes g(t) . Then,

t

ftt) = 2 -(an cos nwt + by sin nwt) - (D-85)
and
gt) = FEDft-r) = F@&.D E [2n cos nw(t - rp)

1 3
(D-86)

+ bn sin nw(t - Tn)] ,
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where F(t,f) is the above weighting function in space and frequency and Ty 18 the time it

takes for the nth harmonic to reach the second sensor. The correlation of f(t)
and g(t) becomes '

T o .
f(t)g(t++) = % / Z (a, cosnwt + by sin nwt) -
0 n=l

F(&.0) Z [an cos nw(f-rn+r) + b, sin nw(t—rn+r)] dt
n=1
a’_ + b2

= F&H ), —5—cosnw@-r) . (D-87)
n=1

The rms values of f(t) and g(t) are

I o fa2 +p2 \|%2 :
<f(t)2>‘/2 = |2 (3—“—;—2)  (D-88)

and

[g(t)z] "

n=1

) aZ +b2 l/2
F(&.0 {Z —"2—“] , | (D-89)

Thus, the normalized cross-covariance becomes _ |

T Al b ; .
‘ | Z — 3 Co0snw (7 - Tn) : {
; _ f(t) g(t +7) _ n=1 ,
Ceo(r) = = — = - - (D-90)
7 " [fr]% [z % S
2
' n=1
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The peak value occurs for each harmonic when 7 = h . If all harmonics travel at the same

rate, v, = constant, the maximum for the cross-covariance occurs at'r and its value is 1

n . :
Thus for convective velocities that are independent of frequency, the value of the
normalized cross-correlation is unchanged by space and frequency weighting functions.

The point to be made is that, assuming decay in time is negligible weighting in space
or frequency does not change the value of the normalized covariance. Thus, a decrease in
the normalized covariance must come as a result of a nonlinear phase shift as a function of
frequency for each harmonic. This may be expressed as a.shifting transit time for individual
harmonics to travel between two sensors. In the case of a nonlinear phase shift as a function
of frequency, the peak value would be less than one, and the curve would have a greater
width.

Since in maﬁy constant fluid flows, the turbulent intensity does not significantly
decrease between closely spaced sensors (i.e., the power spectrum is not a function of the
spacing along the stream tube.

o0

\/%—nz Aw)do ),

x(t)?

the decrease and spreading of the correlation curve as a function of the separation distance .
will be a result of varying phase shifts of the harmomcs and thereby varymg convective
velocities as a function of frequency.

F. A Physical Look at Space-Time Covariance Computations

The space-time covariance has been defined by equation (D-20) as

. ’ i o ‘
o) =1/ RO -Mypy]lat+ 1) -Mgeenyl dt (D-91)
where the points of origin of the time functions f(t) and g(t + r) are spatially separated by
some finite length £ , M; being the time mean of the function i .

Generally speaking, only the fluctuating component, ac, is used to preserve
information on the structure of turbulence for correlation processes. The dc components
only raise or lower the value of the correlation by a uniform amount.
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A typical example is a hot wire anemometer signal. The emf representing the mean
motion. of the fluid particles at the location of the wire is the mean value of the signal:
Equation (D-91) states that the mean value is subtracted from each representative signal.
Thus, the space-time covariance has rejected the basic method of measurmg mean ﬂow
velocities.

The remaining portion of the signal, which is used for analysis, is the fluctuations
about the mean. Probability statistics tell something about the nature of what is being
measured with the space-time correlation. A perturbation from the mean of tAf(t), that
has traversed the separation of the two probes in time, Tm » With some attenuation or

modification, A, now becomes g(t+7) = tAAf(t). The prodixét of f(t) and g(t+7)
becomes equal to AAf(t),? . If the perturbation is over a perlod of time,At, , the
contribution to the covariance w1ll be

At f(t), gt +1), = AAf(D),>At, . T (D92)

Since the average value of f(t) is zero (the means have Been subtracted out) and
since the perturbation, Af(t), , acted over a time, At, , a cancelling oscillation
of Af(t), acting over a time At, must exist such that Af(t),At, + Af(t),At; = 0.The
contribution to the covariance by Af(t), would be AAf(t),?At, . Thus, AAf(t),2At, =

) .
AAL(D), AAt2
1 .
the contribution by Af(t), being AAf(t,)*At, . If Af(t), > Af(t), ,then At, < At, .
The ratio of the contributions becomes .

, which is the contribution to the correlation by. the perturbation Af(t),,

AAf(D)2AL _ At
AAf(D AL, At

> 1 . ‘ _ (D-93)

Therefore, the larger perturbations are more heavily weighted in the covariance computation
even though they exist for a shorter duration.

Equation (D-92) states that the space-time covariance of temporal signals is related
to the probability density distribution through the square of the signal from the mean.

PROBABILITY
PROBABILITY

VELOCITY VELOCITY
(a) SYMMETRICAL PROBABILITY (b) SKEWED PROBABILITY
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Therefore, there is a weighting of the wings of the probability distribution. If the
probability of the velocity distribution is symmetrical, speeds moving faster than the mean
velocity are weighted equally to those of a lesser velocity. The correlation would then build
equally at the corresponding time delays, the average value being the mean velocity
indicated by the mean value of the probability density distribution. If, however, the velocity
distribution is skewed (Fig. (b) above), the longer wing is weighted much more heavily. The
covariance would indicated a speed commensurate with those associated with the long wing.

- Therefore, either natural skewness of the distribution or the effects of two separate
flows would give an indication of a velocity other than the mean. Intermittency of the
boundary layer is just such a situation. In the outer poriton of the boundary layer, the
model presented indicates that wave packets propagate to the outer region and are travelling
well below the mean velocity. These wave packets are then the tails of the probability curve.
The velocity measured from the space-time covariance calculation would indicate the
packet’s speed rather than the mean velocity, as indicated above. In fact, there appears to be
no reason at this time to expect the measured convective velocity to be near the mean
velocity except at the point of production where the probability distribution will be
symmetrical and at the location where the turbulent packets are in equilibrium with the
surrounding flow.

G. Conclusions

* The values which determine the mean statistical averages of a signal are eliminated
from covariance computations, and thus the ability to measure mean values is coincident,
rising from the shape of the probability distribution. Eddy motion and intermittency both
affect the shape of the dlStl’lbutIOI‘l and thus affect the measured value of convectlve
velocity.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Marshall Space Flight Center, Alabama, March 30, 1973
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